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Dissolution-driven density instability (DI) occurs when a species A dissolves into
a host fluid and introduces a buoyantly unstable stratification. Such an instability has
positive effects in related applications and may be affected if species A reacts with solute
B in the host fluid. In this paper, the lattice Boltzmann (LB) method is employed to
simulate the dynamics of such an instability coupled with reaction A + B — C in porous
media at the pore scale. Numerical simulations in homogeneous media have demonstrated
that six types of dissolution-driven DI can be classified based on the Rayleigh numbers of
three chemical species Ra, (ratio of buoyancy to viscous forces), and reaction can accel-
erate, delay or even trigger the development of DI. Then, a parametric study has indicated
that, increasing ARacp (Rac — Rap) can intensify density instability and reaction, promote
the diffusion of species A, and also introduce either stabilizing or destabilizing effects of
reaction. Besides, the increase of initial reactant concentration or/and Damkdohler number
Da (ratio of flow time to chemical time) can enhance the influence of chemistry. Finally,
simulations are carried out in three types of heterogeneous media HE1-HE3, and six
groups of fingering scenarios can also be observed in each medium. However, compared
with the homogeneous case, heterogeneous media HE1 with randomly distributed solid
grains can introduce deeper advancing position and rougher density fingering, and media
HE2 and HE3 with vertical variations of pore spaces can affect the developing speed of
fingering obviously. In terms of the storage of species A in the host fluid, medium HE2 with
large pore size in the top layer is favorable. The present study is of significant importance
for applications such as carbon capture and storage.

DOI: 10.1103/PhysRevFluids.4.063907

I. INTRODUCTION

Dissolution-driven DI in porous media develops when species A diffuses from above into a host
fluid, leading to a buoyantly unstable stratification of the denser A-enriched fluid on top of the fresh
host fluid [1]. This instability accompanied by convection can drive efficient mass and heat transport.
It is thus at the heart of some natural and industrial processes, like groundwater management [2,3]
and enhanced oil recovery [4]. It has also received considerable attention in the context of carbon
dioxide (CO,) sequestration, where convection is expected to improve the storage efficiency and
security [5]. Moreover, dissolved species A can react with another solute B in the host fluid following
the A + B — C scheme, and thereby modifying the density field and the fingering development [1].
It is therefore important to study the mechanisms of dissolution-driven DI coupled with reaction
A+ B — C in porous media, so as to provide design suggestions for relevant applications with
respect to their expected instability behavior.
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In recent years, experimental studies about dissolution-driven DI with chemical reactions have
been performed in small reactors or Hele-Shaw cells. For instance, Budroni ef al. [6] experimentally
showed that the reaction between dissolved ester and alkaline hydroxides can delay the onset and
the growth of density fingering and even introduce buoyantly stable stratifications. In parallel,
experimental efforts were devoted to dissolution-driven DI in CO;-alkaline solutions. Wylock et al.
[7,8] observed both the well-developed and the suppressed density fingering in such a system
by changing the solutes in alkaline solutions. Thomas et al. [9] and Cherezov et al. [10] then
experimentally demonstrated that the reaction between dissolved CO, and alkaline hydroxides
can accelerate density fingering, and the promotion intensity depends on the initial reactant
concentrations. More recently, Budroni et al. [5] carried out experiments in ester-alkaline and
CO,-alkaline solutions separately. They showed that dissolution-driven DI can be either refrained
or accelerated by chemical reactions.

The captured experimental results have confirmed the fact that chemical reaction can modify the
fluid density and subsequently stabilize or destabilize dissolution-driven DI. The development of
DI is often visualized by a pH color indicator because the solutions are transparent. It should be
noted, however, that this technique may not always capture the whole extent of the convective
dynamics [10,11]. In addition, the chemical influence intimately depends on the reactants, and
existing experiments may not have covered all the scenarios. Therefore, theoretical investigations
were performed to analyze dissolution-driven DI with reaction A + B — C. For example, Kim et al.
[12,13] studied the development of DI with chemical reaction in a porous medium using the linear
stability theory. They pointed out that reaction can enhance, delay, or even introduce the fingering
development. Loodts et al. [14-16] conducted a series of theoretical investigations to explore the
chemical effects on dissolution-driven DI. They provided a classification of eight types of density
profiles, with each one potentially representing a kind of DI dynamics.

Theoretical analyses have addressed the deficiencies in experimental investigations and predicted
more reaction-induced scenarios of dissolution-driven DI. However, these predictions were based on
fingering behavior in the early linear stage, and completely ignored the nonlinear fingering growth
during the later period. Besides, theoretical results have not described the development details of
density fingering, although they open the possibilities for chemical influence. For these reasons,
numerical simulations have been conducted under the guidance of existing theoretical predictions.
For instance, Kim et al. [12,13] numerically classified the chemical effects on dissolution-driven
DI, employing their linear analysis results as initial conditions. Budroni er al. [5] numerically
modeled both the stabilized and destabilized fingering phenomena and tested the effects of initial
reactant concentrations. Their results qualitatively verified both experimental observations and
theoretical predictions. In the meantime, Loodts et al. [1] numerically showed that reaction
A + B — C can delay, accelerate, or trigger dissolution-driven DI, which matched well with their
previous theoretical predictions. They provided the spatial-temporal dynamics of such an instability,
including the species distributions, the dissolution of species A, and the reaction-rate distributions.
In addition, they pointed out the difference between numerical and theoretical results when the
development of DI reaches the later nonlinear stage.

In summary, numerical simulations have been proven to be capable of investigating dissolution-
driven DI with chemical reactions more comprehensively. The existing numerical results have
improved our understanding of this process and are of great importance in relevant industrial
applications. However, two deficiencies in these numerical works should be noted. First, the medium
heterogeneity is not considered. In the nonreactive case, the permeability anisotropy has been
theoretically proven to be able of introducing considerable differences in fingering development
[17], and this effect may be extended to the reactive case. Second, pore-scale simulations are
still missing. Owing to the complex geometries in porous media, previous numerical studies were
conducted on representative elementary volume (REV) scale, where a number of assumptions are
required [18]. During the past three decades, the LB method has become an attractive alternative to
conventional solvers for studying various fluid flow problems at pore scale [19,20]. This is attributed
to its simple implementation, high parallelism, and ability to handle complex boundary conditions.
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FIG. 1. The computational configuration.

Therefore, to fill the gaps in existing numerical investigations, the LB method is applied to simulate
the dissolution-driven DI coupled with chemical reaction A + B — C in both homogeneous and
heterogeneous media at pore scale.

II. MATHEMATICAL MODEL

In this study, dissolution-driven DI between two reactive solutions (labeled as 1 and 2) are
investigated in two-dimensional (2D) porous media. Note that all the porous media in this work are
generated artificially [21] and, unless stated otherwise, they share the same porosity (¢ = 0.69) and
computational domain (0 < x < I, = 1,0 < y < [y, = 2/3), which allow for direct comparisons. As
displayed in Fig. 1, fluid 1 that contains a solute A is placed upon a fluid-saturated porous medium,
and host fluid 2 in pore spaces contains another dissolved reactant B. These two solutions, which are
considered miscible and incompressible, are initially placed in contact along a horizontal interface
at y = 0, with y pointing into fluid 2 along the gravity field. During the course of time, species A
diffuses into the host fluid, and reacts with solute B to give a product C following the A + B — C
scheme. The reaction rate R of this irreversible bimolecular reaction is taken as [1]

R = kCyCsp, 1

with k being the kinetic reaction constant, and C, being the concentration of species r (r = A, B, C).
All three reactive species can thus contribute to changes in fluid density p. With the well-known
Boussinesq approximation, p is considered as constant py = 1 except in the body-force term, where
it is assumed to vary linearly with local concentrations as [1]

0 = po + po(BaCs + BeCr + BcCc), ()

here S, is the concentration expansion coefficient of species r.

In this work, the top boundary (y = 0) is assumed to be partially miscible [1]. Solute A
can dissolve from fluid 1 into the host fluid, but no mass transfer takes place in the reverse
direction. Thus, this work focuses on the dynamics in the host fluid, and the fluid motion and
concentration evolutions can be described by the incompressible Navier-Stokes (NS) equations and
the convection-diffusion-reaction (CDR) equations,

V.u=0, 3)

ou
po(a +u-Vu) =—-Vp+V.-(wpVu)+F, (4)
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0Cy

. +u-VCy = D,V’Cy —R, (5)
aC
a—tB +u-VCg = DBV2CB —R, (6)
aC,
a—[c +u-VCe = DeV3Ce +R, (7)

where u = (4, v) and p are the fluid velocity and pressure, respectively, ¢ is the time, and v is the
kinematic viscosity. To avoid any double diffusive instabilities, the molecular diffusion coefficients
D, are set as constant D. The buoyancy term F = pg is expressed as

F = pog(BaCa + BsCs + BcCo), ®)

with g being the acceleration vector of gravity. Note that the constant force term ppg has been
absorbed into the pressure term V p in Eq. (4) [22]. The present governing equations (3)—(7) can be
solved with the initial conditions

Calx, 0Ky <D, 0)=Cqo=1, Culx,y>10,0)=0,

Cs(x, . 0) = Cpo.  Ce(x, y. 0)=0. ©)
Note that the concentration of species A at the top boundary (y = 0) is initially considered to
be equal to its solubility Cyo in fluid 2, and this value remains constant over time following the
local chemical equilibrium assumption [1]. It should be emphasized that, in order to trigger density
instability, a small perturbation ¢ is introduced in the initial concentration distribution of species
A near the top boundary. The value of ¢ randomly varies along the x direction within the range
[0, 0.00671,]. The boundary conditions are also required and, as displayed in Fig. 1, the periodic
boundary conditions in velocity and concentration are applied for all chemical species at the lateral
boundaries (x = 0, x = I,). The no-slip and no-flux boundary conditions are used for all species
at the solid matrix interface [x = (x;, y)], the solid bottom wall (y = /;), and the top boundary

(y = 0), except for the no-slip and prescribed concentration for species A at the partially miscible
top interface (y = 0). These boundary conditions can be described by

G0, y, 1) =C (L, y, 1), (O, y, 1) =u(l, y, 1),
VCi(x, Iy, ) = (0, 0), u(x, Ly, t)= (0, 0),
Cu(x, 0, 1) = Cao, VCge(x, 0, 1) =(0, 0), u(x, 0, 1) = (0, 0),
VC (x5, v5, 1) = (0, 0), u(xs, ys, 1) = (0, 0). (10

Equations (3)—(7) can be expressed in a dimensionless form by introducing the characteristic length
L, velocity U, time T, and concentration Cy as

L=1, U=gPalCso, T =LJ/U, C4=Cyo. (11)
In terms of the following nondimensional variables,

* p * Cr _ %

u
ut=—, =——, C=—, n=—,
U P poU? Cao " Cao
t — F
X*Zfa y*zz’ [*:—’ 10*2 '0 '00 ? F*Z 2 ’ (12)
L L T PoBaCao poU=/L
.Cyol? kCyoL
R* =DaC;C;, Ra, = M, Sc= K, Da= —22,
vD D U

063907-4



PORE-SCALE STUDY OF DISSOLUTION-DRIVEN ...

where the asterisked variables are the corresponding dimensionless ones, the dimensionless equa-
tions (3)—(7) read

V.u" =0, (13)
ou* S
al;* +ut-Vu'=—Vp' Ty év - (Vu*) + F*, (14)
A
aCs 1
9Cs +u*-VC; ! V2C: — R* (16)
u - = —— - 5
ot* B +RaySc B

Note that, by adding Egs. (16) and (17) and taking into account the initial and boundary conditions in
Egs. (9) and (10), the concentration of species B and C can be expected to remain constant because
Cp + Cc = Cpp. Based on this relationship, the dimensional force term can be rewritten as

F AR R
P (C* e M n)j,

UYL Rax "

A RaA B RaA
with ARacp = Rac — Rap representing the relative contribution to the density of product C and
reactant B. Therefore, the behavior of the dissolution-driven DI with reaction A +B — C is
characterized by the Rayleigh numbers Ra,, the Schmidt number Sc, the Damkohler number Da,
and the initial concentration ratio 7.

III. NUMERICAL METHOD

In this work, the multiple-relaxation time (MRT) LB model [18,23,24] is employed to solve
the above governing equations (3)—(7). This model can avoid the unphysical dependence of
permeability on viscosity for pore-scale simulations. Specifically, the most popular two-dimensional
nine-velocity (D2Q9) LB model is applied, and the corresponding discrete velocities e; and weight
coefficients w; are defined as [18]

4 .
e; = ¢e(0, 0), wi=§, i=0
[ — 1 [ — 1 1
e; = e| cos @ )n,sin (= D= , wi=—, Ii=1-4 (19)
2 2 9
2i— 1 2i — 1 1
e,»:x/ie(cos(l4)n,sin(l4)n), wi:%’ i=5-8,

where e = §,/§; is the lattice speed, with §, and §; denoting the lattice spacing and the time step,
respectively. In the following simulations, the parameter e is set as e = 1.

The present model consists of four LB equations, with one for the NS equations and three for the
CDR equations. Since the LB equations for concentration transport of species A, B, and C are of the
same pattern, only one of them is introduced here. The evolution equations of the D2Q9 MRT LB
model for the NS equations (3) and (4) and the CDR equation (5) of species A are [18,24]

[+ e, t48) = fite, 1) = —(M'SM)[ £, 1) — e, )] +8 [M—‘ (1 - ;)M] F,
ij

(20)

. .
gix+ed, t+8)—gilx, 1) = —(M'SM);j[g;(x, 1) — &7 (x, 1)] +8,Ri+7’8tRi, 21
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fori, j =0, 1,...,8, where f;(x, t)and g;(x, t) are the distribution functions for the hydrodynam-

ics and the concentration fields, respectively. To recover the incompressible NS equations correctly,
the equilibrium distribution functions f;* and g;? are given as [18]

- uu : (e;e; — I
[f=w |:I0p + po(elczu + ( - )):|, (22)

4
s 2CY

uu : (ee; — cf,I):|

2t 23

e -u
g = wiCA|:1 + - -t
cS
Here p,, is a variable related to the fluid pressure as p = c? Pp, With ¢, = ¢/ /3 being the lattice

sound velocity. To avoid discrete lattice effects in the LB model, the forcing and reactive distribution
functions F; and R; are [18,20]

_ e; - F uF : (e,»e,— — C?I)
Fr=wi| 5 , (24)
_ ei-ut.—0.5
Ri = wiR 1+ 3 . (25)
c2 T

The time derivative term in Eq. (21) is treated by the backward scheme as 9,R;(x, t) = [Ri(x, t) —
Ri(x, t — §&,;)]. The transformation matrix M is

1 1 1 1 11 1 1
-4 -1 -1 -1 -1 2 2 2 2
4 2 -2 -2 =2 1 1 1 1
0 1 0o -1 0o 1 -1 -1 1
M=| 0 =2 0 2 0o 1 -1 -1 1 (26)
0 0 1 o -1 1 1 -1 -1
0 0o -2 0 2 1 1 -1 -1
0 1 -1 1 -1 0 0 0 0
0 0 0 0 0o 1 -1 1 -1

This matrix can map the distribution functions from the physical space ¥ =
(Wo, Vi, ¥a,...,Y)T to the moment space as ¥ =M - . With this transformation, the
evolution equations (20) and (21) can be implemented in the moment space as

Fax+ed, t+8)=Ff@, 1)=S[fx, 1)—Flex, D146 (1 - §>F (27)
2
gx+ed, t+8) =28, t)—S[Bx, 1)— g%, )]+ &R+ %'a,ie, (28)

where S and S” are the diagonal relaxation matrix of relaxation rates s; and s; in the moment space,
respectively. In the following simulations, the relaxation rates are chosen as used in Refs. [24,25].
The equilibrium moments f ! and g% are defined by

7 = (0p, =20, + 3pou?, p, — 3pott®, pou, —pou, pov, —pov, po(u’ — v?), pouv), (29)

29 = (Ca, Ca(=2+3u?), Ca(1 — 3u?), Cau, —Cau, Cav, —Cav, Ca(u* — v?), Cauv), (30)
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and the corresponding forcing and reactive moments are expressed as

F=(0,6u-F, —6u-F,F, —F, F,, —F, 2(uF, — vF,), (uF, + vEF,)), (31)

N 55 s 55 6
R=(R —2R, R, (1= 3 ur, —(1 =22 ur, (1= or, —=(1=25)ur, 0,0). (32
2 2 2 2

Finally, the macroscopic variables can be obtained from the distribution functions as

pp=)_ I pou=Ze,-f,-+8—2’F, Ca=) g (33)

l

Note that the present model is similar to the one proposed in Ref. [24], except for the exclusion of
the lattice kinetic scheme and the inclusion of three reactive species. Through the Chapman-Enskog
analysis on the present LB equations, the governing equations (3)—(7) can be recovered with the
relaxation times t and 7, being

v=ci(t—1)8, D=c}(t.—3)s. (34)

Besides, the present model has been extensively validated as in Ref. [24], and the details are
not included for brevity. Therefore, it is employed for the following pore-scale studies of the
dissolution-driven DI coupled with reaction A + B — C. During the LB simulations, the treatment
of boundary conditions in Eq. (10) also plays an important role. In this work, the no-slip velocity
and impermeable concentration conditions at the bottom solid wall and the porous matrix interface
are realized by the halfway bounce-back scheme [26,27], and the partially miscible condition at the
top boundary is treated with the nonequilibrium extrapolation scheme [18].

IV. RESULTS AND DISCUSSION

In this section, dissolution-driven DI with reaction A + B — C is simulated in both homogeneous
and heterogeneous porous media based on the above LB method. Specifically, this work focuses
on the interaction between reaction and density fingering, thus the Schmidt number is fixed as
Sc = 100, and different values of Ra,, Da, and n are selected to change the test conditions. In
addition, the characteristic parameters in Eq. (11) are set as

L=l =1, U=gBalCao=0.177, T=L/U=565 Ci=Cpo=1 (35

and they are all in lattice units. Based on these characteristic numbers, the relevant parameters in
LB simulations can be calculated as

LU LU

V= —, D=—, Cpy=Cyon,
+/Ras/Sc +/RaySc B0 Aon
v . 1 D n 1 r UDa (36)
T=—4+=, T,=——4 -, = .
C?(S, 2 C%Sl 2 LCAO

Before proceeding further, grid convergence tests have been carried out for all the porous media
involved in this work, and a mesh of size N, x N, = 1500 x 1000 is chosen for the subsequent
simulations, unless otherwise noted.

A. General phenomena

The general phenomena of dissolution-driven DI coupled with reaction A + B — C are first
investigated in a homogeneous porous medium HO. As displayed in Fig. 1, the porous network
contains a staggered array of circular grains with a uniform diameter d = 126,, where the lattice
spacing is 8, = I /N,. Every grain center Gyo = (x, y.) locates on a grid node and obeys a regular
staggered distribution. The closest center-to-center distances between two cylinders in the x and
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TABLE 1. Parameters for Tests NR and R1-R3.

Tests Parameters

NR Ray =10°, Da=0, =0

R1 Ra, = 10°, ARacz=—10°, Da=5, n=1
R2 Ray, = 10°, ARacg =10°, Da=5, n=1
R3 RaA = —109, ARaCB = 109, Da = 5, n= 1

y directions are r, = 27§, and r, = 274,, respectively, and the single pore size can be calculated
as [, = r, —d = 155,. After a series of simulations and comparisons, the development of DI can
be divided into two nonreactive and four reactive groups, based on the Rayleigh numbers Ra, of
chemical species. To be specific, these six groups can be described as follows:

(I) For Ray > 0, nonreactive unstable.

(1) Nonreactive group NR: The dissolution of species A into the host fluid is buoyantly

unstable and can trigger dissolution-driven DI.

(2) Reactive group R1: Reaction can suppress the development of dissolution-driven DI with

species C being lighter than B (ARacp < 0).

(3) Reactive group R2: Reaction can enhance the development of dissolution-driven DI

provided C is sufficiently denser than B (ARacg > 0).

(IT) For Ray < 0, nonreactive stable.

(4) Nonreactive group NRS: The dissolution of species A into the host fluid is buoyantly
stable.
(5) Reactive group R3: Reaction can create an unstable density stratification and trigger the

development of DI with ARacp > 0.

(6) Reactive group R4: The system with reaction remains stable under the condition

ARaCB < 0.

This classification is similar to existing predictions by linear stability analysis in Ref. [15], with
the double diffusive instability not being included. As an example, a few specific test conditions are
provided in Table I to investigate the general phenomena, including one nonreactive Test NR, and
three reactive Tests R1-R3. Note that the nonreactive group NRS and the reactive group R4 are not
included because no fingering develops in these stable systems. Figure 2 depicts the numerical
density distributions varying with time for Tests NR and R1-R3, which can reflect the typical
characteristics of DI in different groups.

The results show that the general dynamics of dissolution-driven DI in each test follows
four similar stages. Initially, the miscible interface between A-enriched fluid and fresh host fluid
maintains nearly as a plane [Fig. 2(a)], and diffusion dominates the flow dynamics in this short
period. Then the interface deforms gradually with the diffusion of species A, and fingers of denser
fluid appear and sink into the host fluid [Fig. 2(b)]. After that, fingers begin to interact and merge
with their neighbors, and the number of fingers decreases dramatically [Figs. 2(c) and 2(d)]. Finally,
small new fingers regenerate from the top boundary and join the existing ones, and the number of
fingers remains almost unchanged [Figs. 2(e) and 2(f)].

Together with these similarities, differences between fingering behavior in Tests NR and R1-R3
are obvious as well. This is explained with the help of horizontally averaged density o* in Fig. 3.
In Test NR, density fingering develops gradually with the dissolution of A [Fig. 2, column (1)], and
the density profile at each time instance decreases monotonically [Fig. 3(a)]. Compared with this
nonreactive case, dissolution-driven DI coupled with reaction A + B — C develops more slowly
in Test R1 [Fig. 2, column (2)]. This is because product C cannot compensate the consumption of
reactant B in terms of density evolution (ARacp < 0), and a density profile with a minimum builds
up at every time instant [Fig. 3(b)]. It is observed that each density curve decreases vertically to the
minimum in the upper part and returns to increase from the minimum in the lower part [Fig. 3(b)].
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(1f) ¢* = 550 (2f) ¢* = 800 (3f) ¢* = 240 (4f) t* = 500
A S R Gl
1 1.5 2 0 0.5 1 0 1 2 3 1 15 2

FIG. 2. Density fields for Tests NR and R1-R3 in homogeneous medium HO.

Dissolution-driven DI thus only develops in the upper unstable stratification, and the lower stable
layer acts as a barrier to counteract the fingering growth. Note that, compared with previous REV-
scale density profiles [1], the width of the present pore-scale minimum also enlarges progressively
with time, while no transition from a strict local minimum to a zone with p* being constant as
the minimum occurs. For pore- and REV-scale simulations, Tartakovsky et al. [28,29] have argued
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—240

10°

FIG. 3. Horizontally averaged density profiles for Tests NR and R1-R3 in homogeneous medium HO.

that the REV-scale flow and transport equations can be obtained by averaging the corresponding
pore-scale ones over a support volume, but the use of effective dispersion and permeability models
at REV scale tends to overpredict the degree of mixing and reaction. In addition, they simulated
the transport of two solutes A and B coupled with reaction A + B — C in porous media on both
REV and pore scales. Their results revealed that, the REV-scale model overestimated the global
(also global-averaged) mass of product C, implying the overestimated reaction rate between solutes
A and B on REV scale. This finding can be applied to explain the inconsistency between the present
pore-scale and previous REV-scale results. That is, REV-scale simulations may have over-predicted
the extent of reaction and introduced the largest reaction (minimum density) over a certain depth.

By contrast, density fingering appears earlier and elongates more rapidly in reactive Test R2
[Fig. 2, column (3)] than that in nonreactive Test NR [Fig. 2, column (1)]. This can be expected since
the contribution to density of product C is sufficiently larger than reactant B (ARacp > 0). Under
this condition, every density profile in Fig. 3(c) decreases monotonically along y as in Test NR.
But product C enlarges the density difference from top (y = 0) to bottom (y = /) and subsequently
enhances the fingering growth. Similarly, in Test R3, dissolution-driven DI develops due to the
inclusion of reaction A + B — C with ARacpg > 0 [Fig. 2, column (4)], even its nonreactive
counterpart is stable. The density profiles in this test show a nonmonotonic fashion [Fig. 3(d)] as in
Test R1 [Fig. 3(b)], and each curve has a reaction-induced maximum. Density fingering develops
in the lower unstable part, while the upper stable stratification corresponds to the narrow stagnant
liquid layer near the top boundary [Fig. 2, column (4)].

Generally, in agreement with previous theoretical predictions [15], six kinds of fingering
scenarios can be classified from the present pore-scale simulations. Each case has a specific type
of density profile, and the nonmonotonic one appears when Ray and ARacp have the opposite
signs. However, density profiles in Fig. 3 fluctuate at later time instances due to the nonlinear
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TABLE II. Parameters for Tests I-IV.

Tests Parameters (Ra, = 10°)

1 ARacg/Ray = —1, 0, 0.25, 0.5, 0.75, 1; Da=5; n=1
I n=0.1, 0.5, 1, 1.5, 2; ARacz =10°; Da=5

11T Da=1, 5, 10, 50, 100; ARacp = 10°%; n=1

v ARacg/Ray = 0.25, 0.35, 0.4, 0.5; Da=5;, n=1

fingering development, which cannot be theoretically predicted by linear stability analysis [15].
In addition, compared with existing REV-scale investigations [1], the present simulations can also
qualitatively reproduce the fact that reaction A + B — C can stabilize (Test R1), destabilize (Test
R2) or even trigger (Test R3) dissolution-driven DI. On the other hand, different from previous
REV-scale density profiles, no plateau with o* remaining constant as a minimum exists in the
present pore-scale ones (Fig. 3), and this can be explained by the overprediction of reaction extent
at REV scale. Therefore, the present pore-scale results can clarify more progression details.

B. Parametric study

After the observation of general phenomena, a parametric study is further carried out in
homogeneous medium HO. As summarized in Table II, Tests I-IIl are performed to evaluate
the relationship between dissolution-driven DI and reaction A + B — C, with different values of
ARacp, 1, and Da. Note that, Test I with fixed Ras and varying ARacp can represent different pairs
of reactants A, B and product C.

The quantity [, is defined as the most advanced vertical position of fingering tips, and it
represents the extension zone of dissolution-driven DI. Time evolutions of /,, for Test I are displayed
in Fig. 4, and the corresponding nonreactive result is included for comparison. It is shown that
l,, for each ARacp matches well in the early stage, when diffusion dominates the fluid dynamics
[Fig. 2(a)]. After a short period tq, I, start to depart from the initial diffusive trend and increase
faster. This is because the unstable stratification becomes more intensive with the diffusion of
species A, and density fingering starts at #; [Fig. 2(b)]. The time period ¢, decreases monotonically
as ARacp increases, which implies the increasing destabilizing effects of chemistry. Besides, a
critical value ARacp; = 0.25Ra, can be observed, above which the reactive [,, deviates from

0.9}

0.7 |
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lm/ly
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FIG. 4. Time evolutions of the mixing length for Test I in homogeneous medium HO.
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FIG. 5. Schematic diagram of homogeneous media HO1-HO3 with different aspect ratios.

the diffusion stage earlier than the nonreactive one. On the basis of this property, the chemical
stabilizing (ARacp < ARacg) and destabilizing (ARacp > ARacp;) domains can be divided for
the early stage. During this period, the effects of ARacp are coherent with theoretical predictions
[15], and the critical value ARacp, is of the same order as the theoretical one 0.32Ray.

After this transition, each curve of [, in Fig. 4 grows with time and finally reaches the
bottom at 7. It is found that 7, becomes smaller with increasing ARacpg, and another critical
value ARacpy = 0.5Ra, appears. Beyond this value, fingering with chemical reaction arrives at
the bottom earlier than its nonreactive counterpart. Similarly, the chemical stabilizing (ARacp <
ARacpy) and destabilizing (ARacp > ARacpy) regions can be divided for the later fingering
development stage. Note that this later-stage critical value ARacp, differs from the early stage
ARacp. For the case with ARacp, dissolution-driven DI starts earlier, but generally slows down
and finally reaches the bottom later than that in nonreactive Test NR. It can be explained by the
fact that the nonlinear fingering growth and interactions at later times can slow down the vertical
progression of dissolution-driven DI. In addition, the later-stage critical value ARacp,, which is
introduced by nonlinearities of fingering, has not been predicted by linear stability analysis [15].

It is noted that two critical values of ARacp are mainly introduced by the formation and
development of density fingering, which may be influenced by the depth of porous media. To
provide insights into this, three homogeneous media HO1-HO3 with different aspect ratios (I, /I, =
2, 1, 2/3) are constructed and displayed in Fig. 5. These media share the same porosity and
geometric size as medium HO in Fig. 1; namely, I, =1, d = 128, r, = r, = 274,, and [, = 154,.
To focus on the effects of media length on two critical values of ARacp, Test IV (see Table IT) is then
conducted in media HO1-HO3 separately. The simulation setup and parameters remain the same as
in medium HO, but due to the change in aspect ratio, the grid sizes are set as N, x N, = 1500 x 750,
1500 x 1500, 1500 x 2250 for media HO1-HO3, respectively. The temporal evolutions of /,, are
measured and illustrated in Fig. 6, and curves with larger ARacp are found to increase much faster.
Besides, two critical values of ARacp can be observed in each of media HO1-HO3, and the early
stage one is consistent with that in HO: ARacp; = 0.25Ra,s. However, the value of ARacp, for the
late nonlinear period increases slightly with media depth: ARacp,/Ray = 0.35, 0.35, 0.4 for media
HO1-HO3, respectively. It should be emphasized that, there is an increase of only 14% in the value
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FIG. 6. Time evolutions of the mixing length for Test IV in homogeneous media HO1-HO3.

of ARacp,, with the media length becoming 200% longer from HO1 to HO3. Therefore, the effects
of ARacp in media HO1-HO3 show a similar tendency as in medium HO, and the influence of
media depth on the two critical values of ARacp is not significant.

The simulated curves of [, for Tests II and III are then analyzed as illustrated in Fig. 7. It is found
that all reactive cases have smaller values of ¢, and 7, compared with the nonreactive counterpart,
and the difference is amplified when n [Fig. 7(a)] or Da [Fig. 7(b)] is larger. It implies that
chemical reaction keeps accelerating the development of DI, while decreasing n or Da diminishes
the destabilizing intensity. This feature is also suitable in the stabilizing group R1 with ARacg < 0,
and increasing n or Da can promote the stabilizing effects of the reaction. It can be concluded that
increasing n or Da can enhance the influence of reaction A + B — C on the development of DI, but
cannot significantly impact the stabilizing or destabilizing classification. On the contrary, increasing
ARacp augments the destabilizing effects of chemistry, and subsequently features both stabilizing
and destabilizing regimes. Thus the following parametric study focuses on the effects of ARacp.

To better examine whether dissolution-driven DI returns to affect reaction A + B — C, the
volume-averaged reaction rate (R*) is calculated. (R*) reflects the global reaction strength, and
the results for Test I are illustrated in Fig. 8. It is demonstrated that each profile of (R*) evolves
with time nonmonotonically at first and fluctuates around a steady-state value (R*), after a while.
(R*)y is limited by the steady-state mass flux J; of species A from the top boundary as shown in
Fig. 9(b). Regardless of the fluctuations, the global reaction rate (R*) increases with ARacg, and
this can be expected since chemical reaction increasingly destabilizes the development of DI. To be
specific, the stronger density fingering elongates the contact zone between two reactants A and B
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FIG. 7. Time evolution of the mixing length for Tests II and III in homogeneous medium HO.

more obviously, and in the mean time, the stronger convection brings reactant B up to react with
species A more efficiently. The combination of the larger contact zone and local reaction rate leads
to the increase of (R*). Thus, dissolution-driven DI and reaction promote each other more strongly
with increasing ARacp in the development process.

The dissolution of species A into the host fluid is always desirable in related industrial applica-
tions (like CO, sequestration). So, the effects of dissolution-driven DI with reaction A + B — C on
the storage behavior of A are investigated. The horizontally averaged mass flux of species A at the
top boundary is introduced as [30]

J(t) = — (x*, 0)dx*. (37)

K

S f Wer
I¥«/RasSc Jo -

This parameter can be regarded as an indicator for the diffusing speed of species A into the host fluid.
As illustrated in Fig. 9(a), the temporal evolution of J* is qualitatively the same in both nonreactive
and reactive cases. J* initially decreases with time as long as diffusion dominates the transport
process [Fig. 2, row (a)], then it starts to increase with the development of DI [Fig. 2, row (b)],
after that it decreases again because of fingering merging [Figs. 2, rows (c) and (d)], and finally it

ARaCB/RaAi

FIG. 8. Time evolution of the volume-averaged reaction rate for Test I in homogeneous medium HO.
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FIG. 9. Time evolution of the storage of species A for Test I in homogeneous medium HO.

fluctuates around a steady-state value J; corresponding to the nearly unchanged number of fingers
[Figs. 2, rows (e) and (f)]. Note that the later-stage fluctuations of J* in Fig. 9(a) are introduced by
the new fingering: J* increases when new fingers form and decreases as they merge with existing
ones. This behavior of J* can verify the fingering promotion on the dissolution speed of species A. In
addition, every reactive J* is larger than the nonreactive counterpart, and the difference grows with
ARacp [Fig. 9(a)]. It is because the chemical consumption of species A increases the concentration
gradient 0,~C} at the top boundary, and the larger ARacp leads to the stronger reaction intensity
(Fig. 8).

To further quantify the storage behavior, the amount of A stored in the host fluid is also calculated.
Considering the fact that species A can be stored in the form of either unreacted A or product
C (reacted A), the stored A is defined as the volume-averaged concentration (C; 4 C&) [1]. As
presented in Fig. 9(b), every curve of (C; + C{) increases with time monotonically. This can be
explained by the evolution equation [1,31]

ot*
which is obtained by integrating equations (15)—(17) over the whole spatial domain and taking into
consideration the boundary conditions in Eq. (10). This equation expresses that (C3 4+ Cf) increases
with time monotonically under different conditions, because the corresponding dissolution flux J*
in Fig. 9(a) remains positive. The results in Fig. 9(b) also demonstrate that all the reactive lines
of (C} + C{) increase more quickly than the nonreactive one, implying the chemical promotion
of the storage process, and this is introduced by the larger values of reactive J* [Fig. 9(a)]. In
addition, the growing speed of every reactive (C; + C) in Fig. 9(b) increases with ARacp, which
is consistent with the change of J* in Fig. 9(a). Thus, the calculated J* and (C} + C{) suggest that
dissolution-driven DI with reaction can enhance the storage of species A in the host fluid, and the
promotion extent increases with ARacp.

In general, a comprehensive parametric study of dissolution-driven DI with reaction A + B —
C has been performed. The present pore-scale results about the effects of ARacp and 7, are
qualitatively similar to previous theoretical predictions [15] and REV-scale findings [1]. During
the later nonlinear growth period, however, the present critical value ARacp, to distinguish the
stabilizing and destabilizing effects of chemistry is related to nonlinearities of fingering and has not
been theoretically predicted by linear stability analysis [15]. In addition, the parameter Da is first
investigated, and increasing Da amplifies the influence of chemistry.
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FIG. 10. Schematic diagrams of heterogeneous media HE1-HE3.

C. Media heterogeneity

Having investigated the dynamics of density fingering in homogeneous media, the effects of
permeability anisotropy are further explored. As constructed in Fig. 10, three kinds of heterogeneous
media (HE1-HE3) are considered. The random porous networks HE1, including HEIA-HEI1C in
Figs. 10(a)-10(c) are composed of randomly distributed circular grains with random diameters. In
HE], the spatial location of each grain center is first generated as in HO (Fig. 1), and then a random
perturbation (x,, y,) is added to each grain center in both horizontal and vertical directions as
Guge1 = (x¢ + X, ye +yp). Each grain diameter d is then randomly determined by [21]

dmin’ 0<§ <5,
d(¢) = { dpin + Dtz —5), §<¢<1-38, (39)
dinax» 1-6<¢ <3,

where ¢ is a uniformly distributed random number within the interval [0, 1]. dnin and dpn,x are the
minimum and maximum values of grain diameter, and § is selected as 0.05. Related perturbations
and grain diameters for media HE1IA-HEI1C are set as in Table III, and the mean grain diameter

TABLE III. Parameters for generating heterogeneous media HE1-HE3.

Media Parameters

HE1A x,(¥p) € [0y, 48,1, dmin = 80y, dmax = 165
HE1B Xp(yp) € [=26,, 26,1, dimin = 86y, dmax = 168,
HEI1C x,(¥p) € [0y, 48:], dmin = 68y, dmax = 1854
HE2 dy =168, l,; =208, A=0.01, r,=r, =275
HE3 dy = 158y, 1,, = 128,, A= —-0.006, r,=r, =275,
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FIG. 11. (a) Measuring positions P, and volumes V), based on the structure of medium HO; (b), (c) Vertical
evolution of horizontally averaged pore size and porosity in both homogeneous medium HO and heterogeneous
media HE1-HE3.

in each medium is 126,. On the other side, heterogeneous media HE2 and HE3 consist of regular
circular grains with vertically decreasing (HE2) or increasing (HE3) pore spaces (permeability).
The location of each grain center in these two media is also determined as in medium HO [Gyg, =
Gugesz = (x¢, y.)], and the vertical grain diameter gradient X is calculated as

db - df
Iy

A=

; (40)

where dj, and d; represent the grain diameters at bottom and top layers, respectively. Based on
its definition, positive and negative values of A correspond to media with decreasing (HE2) and
increasing (HE3) pore spaces along the flow direction, respectively. Parameters for constructing
media HE2 and HE3 [Figs. 10(d) and 10(e)] are provided in Table III. Considering that fingering
mainly develops along the gravity field, the vertical change of horizontally averaged pore size l_p and
porosity ¢ in both homogeneous and heterogeneous media are calculated. It should be emphasized
that the measuring positions P, for /, and volumes V,, for ¢ are identical in each medium, and are
all decided based on the porous structure of medium HO [see Fig. 11(a)]. The calculated results
are illustrated in Figs. 11(b) and 11(c), and it is found that both l;, and ¢ decrease (increase)
monotonically in medium HE2 (HE3) along the flow direction due to the change of grain diameters.
On the other hand, in media HO and HE1A-HE1C, the calculated curves of ¢ remain nearly constant
at 0.69 along the y direction, but the lines of l_p fluctuate around 154,, 165,, 15.58,, and 16.54,,
respectively. Note that calculated results of l_,, and ¢ in the three random media HE1A-HE1C show
a similar tendency, and the values of /,, are all slightly larger than that in HO because of the random
porous structures.
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FIG. 12. Density fields for Test R2 in heterogeneous media HE1A-HE3.

Based on these heterogeneous media HEI-HE3, a series of simulation tests are performed,
and the initial and boundary conditions are all set as in Egs. (9) and (10). In agreement with the
above homogeneous case HO, six types of dissolution-driven DI with reaction A + B — C can be
observed in each heterogeneous medium. As an example, Fig. 12 portrays the density distributions in
heterogeneous media for Test R2 (see Table I). Considering that the fingering characteristics in three
random media HE1A-HEI1C are similar to each other, Fig. 12, column (1) depicts only the density
evolutions in HEIA. It is found that fingering growth in each heterogeneous medium experiences
four similar stages as in HO [Fig. 2, column (3)], but the development details of density fingering
are significantly influenced by the structure anisotropy. In medium HE1A, the large disorder in pore
spaces promotes few fingers grow more rapidly and finally penetrate into the host fluid much deeper
than the other fingers [Fig. 12, column (1)]. Besides, in medium HE1A, fingering tips are split by
solid matrix regularly [Fig. 12, column (1)], and fingering interface becomes much rougher than that
in HO (see outlines of density fingering in Fig. 13). In media HE2 and HE3 with regularly distributed
matrix, however, fingering fronts show a relatively flat advancement, and fingering interface is
smooth as in HO [see Figs. 12, column (2), 12, column (3), and 13]. In addition, compared with
homogeneous case HO [Fig. 2, column (3)], fingers are much thicker in HE2 [Fig. 12, column (2)]
while much thinner in HE3 [Fig. 12, column (3)], because of the vertical variation in pore spaces.

In addition to these various shapes of fingering, differences in advancing speed of fingering can
also be observed from the calculated /,, in Fig. 14. It is found that density fingering in each of media
HE1A-HEI1C shows a similar tendency and develops at a nearly monotonic rate as in medium HO.
In addition, among cases HO and HE1A-HEI1C, fingering grows the fastest in HE1C and the slowest

' AP W)

(a) HO (b) HE1A (c) HE2 (d) HE3

FIG. 13. Outlines of density fingering in both homogeneous medium HO and heterogeneous media HE1A—
HE3 at t* = 160.
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FIG. 14. Time evolution of the mixing length for Test R2 in both homogeneous medium HO and
heterogeneous media HE1-HE3.

in HO. This is reasonable since, in these four media, the values of ¢ are nearly unchanged along
the flow direction [Fig. 11(c)], but l_p has the largest (smallest) value in HE1C (HO) [Fig. 11(b)],
suggesting the promotion effects of large pore size on fingering growth. For media HE2 and HE3
however, the calculated curves of [,, exhibit two successive different velocities, which differs from
the homogeneous case HO obviously. This can also be explained by the change of pore size and
porosity along the flow direction [Figs. 11(b) and 11(c)]. In HE2, the large pore bodies near the
top boundary exert small resistance and help fingering grow the fastest among the four media at
first. Then the development of fingering in HE2 is gradually suppressed by the increasingly large
resistance along the flow direction and finally becomes slower than the homogeneous case HO. On
the contrary, density fingering in HE3 develops with a totally converse trend, since the permeability
is reversed to increase vertically. That is, initially, the fluid interface is nearly stable with much
weak density fingering and fingering becomes obvious and develops fast after a while. Note that
density fingering still develops the slowest in HE3 among the six cases, even though its growing
speed increases in later stages.

To quantitatively characterize the effects of media heterogeneity on the storage efficiency, two
metrics J* and (Cj + C{) are calculated. In Fig. 15(a), the time evolutions of mass flux J* are pre-
sented for analysis. It is found that J* fluctuates and finally collapses to a steady-state value in each
of media HE1A-HE1C, which is consistent with its homogeneous counterpart. This is introduced by
their similar distributions of pore size and porosity along the flow direction [Figs. 11(b) and 11(c)].
In media HE2 and HE3, however, curves of J* deviate from the homogeneous case significantly.
To be specific, in medium HE2, J* initially shows a similar fashion as that in HO, but it keeps
decreasing at later stage due to the reduction of pore spaces along the flow direction. In medium
HE3, J* deviates from the homogeneous case after the initial decrease stage, and it remains almost
constant because of the significant suppression of porous structure on fingering development. The
calculated profiles of (C; + Cf) are also plotted in Fig. 15(b), and all these curves increase with time
in a similar fashion, which can be expected by Eq. (38). In addition, the calculated lines of (C; + C{)
in HO and HE1A-HEIC are nearly identical, implying that these four media have a storage capacity
similar to that of species A. It should be emphasized that both J* and (C; + Cf) become larger in
HE2 but smaller in HE3 than those in HO, suggesting that medium HE2 can enhance the diffusion
of A into the host fluid.

Fingering in each of media HE1A-HEI1C develops faster than that in HO [Fig. 11(b)], but the
storage behavior of species A is nearly identical in these four media (Fig. 15). To further examine
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FIG. 15. Time evolution of the storage of species A for Test R2 in both homogeneous medium HO and
heterogeneous media HE1-HE3.

the differences between fingering characteristics in homogeneous and random heterogeneous media,
two homogeneous media HOA and HOB are generated as in Fig. 16. The pore sizes in HOA and
HOB are selected as the largest and smallest ones in medium HE1A, which have been calculated as
24.46, and 64,, respectively. In media HOA and HOB, solid grains also obey a staggered distribution
as in HO, but geometric parameters become d = 19.58,, r, = ry = 43.94,, [, = 24.45, for medium
HOA, and d = 4.86,, r, = ry = 10.84,, [, = 64, for medium HOB. Note that the number of grains
in these two media are different from that in HO, but their porosity and computational domain
remain the same. Besides, it is obtained by calculation that, in media HOA and HOB, ¢ remains
almost constant as 0.69 along the y direction, and [, fluctuates around 24.43, and 68, respectively.
Thus, the vertical changes of ¢ in media HOA and HOB are similar to those in HE1A-HEIC.
But the values of /, along the flow direction in HEIA-HEIC are bounded by those in HOA and
HOB. Based on media HOA and HOB, Test R2 is carried out separately, and temporal evolutions
of l,,, J*, and (C} + C{) are calculated and compared with the corresponding results in HE1A-
HEIC. As displayed in Fig. 17, among the five cases, fingering develops the fastest and the largest
amount of species A can be stored in HOA that with the largest pore size. In addition, the simulated
results in media HE1A-HEIC are all bounded by those in HOA and HOB, which is consistent
with their vertical distributions of /,. These results demonstrate that fingering characteristics in
heterogeneous media HE1 can deviate from the homogeneous case obviously by changing their

(a) HOA m (b) HOB

FIG. 16. Schematic diagram of homogeneous media HOA-HOB with different pore sizes.
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FIG. 17. Time evolution of the mixing length and the storage of species A for Test R2 in both homogeneous
media HOA and HOB and heterogeneous media HE1A-HE1C.

pore size distributions. In addition, they also verify the above argument that a medium with large
pore size is favorable for fingering development and storage of species A.

In summary, simulations have been conducted in three kinds of heterogeneous media, and
reaction A + B — C can introduce six types of fingering scenarios, which is similar to the afore-
mentioned homogeneous cases. Besides, the medium heterogeneity can influence the advancing
position, shape, and speed of density fingering. In terms of the storage efficiency of species A, the
calculated (C} + C¢) and J* indicate that medium HE2 with large pore spaces in the top area is
favorable.

V. CONCLUSIONS

In this work, a series of pore-scale simulations about dissolution-driven DI with reaction A +
B — C in porous media are carried out based on a MRT LB model. One homogeneous medium
and three types of heterogeneous media HE1-HE3 are artificially constructed, with HE1A-HE1C
having randomly distributed solid grains and HE2 and HE3 having vertically decreasing (HE2) or
increasing (HE3) pore spaces. These media share the same porosity and computational domain.

The results in homogeneous media have provided two nonreactive and four reactive types of
fingering scenarios and have suggested that reactions can enhance, refrain, or even trigger the
development of dissolution-driven DI. Then, a parametric study has demonstrated that increasing
ARacp can introduce stronger density fingering and reaction, improve the storage of A, and also
realize the transition from stabilizing to destabilizing scenarios. In addition, increasing n and/or Da
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can intensify the influence of chemistry on DI, without influencing the stabilizing or destabilizing
classification. These results can qualitatively confirm existing theoretical predictions and REV-scale
simulations. Note that, for some intermediate ARacp, fingering with reaction may start earlier but
progressively become slower than its nonreactive counterpart, and this is introduced by later-stage
nonlinearities and has not been predicted by linear stability analysis. In addition, differences
between the present pore-scale and existing REV-scale density profiles have also been observed,
which can be explained by the over-prediction of reaction intensity on REV scale.

A series of simulations have been carried out in heterogeneous media to further explore the
effects of medium anisotropy. Numerical results have showed that the inclusion of reaction A 4
B — C can introduce six types of dissolution-driven DI as the homogeneous case, but the medium
heterogeneity can significantly affect the development details. Compared with the homogeneous
case, media HE1A-HEIC can introduce obvious tip-splitting phenomena and rougher fingering
interfaces, and media HE2 and HE3 can produce smooth but much thicker or thinner fingering.
As for the growing speed, fingering develops the fastest in HE1C, and the slowest in HE3.
Besides, in medium HE2, fingering grows faster in early times, but finally becomes slower than
the homogeneous case, because it is gradually suppressed by the vertical reduction of permeability.
In terms of the storage behavior of species A, three random media HE1A-HE1C show a similar
capacity as the homogeneous one, and medium HE2 with large pore spaces near the top boundary
can introduce intensive diffusion of species A into the host fluid.

These pore-scale results have provided insights into dissolution-driven DI with reaction A + B —
C, and are important in related applications. For example, in the context of CO, sequestration,
enhancing the dissolution of CO, is crucial to improving the storage efficiency and safety. The
classified different types of DI can provide a method to compare different geological storage sites
according to their chemical compositions and select those where reactions can help in destabilizing
density fingering and accelerating the storage of CO,. Besides, the effects of porous heterogeneity
have highlighted the criterion that media with random structure or large pore size in the top layer can
be selected in related applications depending on their desired instability behavior: deeper advancing
position or more intensive storage of species A.
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