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Abstract

Synchronisation is a collective phenomenon extensively studied in classical oscil-

lators and, more recently, in quantum systems. The precise mechanisms of the

phenomena in the latter regime remain unclear. In this thesis we investigate the fun-

damental mechanisms of quantum synchronisation through the theoretical analysis

of a bio-inspired energy transfer system.

Firstly, we numerically explore the oscillatory displacements of underdamped

intramolecular vibrations in a vibronic dimer during energy transfer with Marko-

vian decoherence and dissipation. We reveal that the vibrations synchronise in the

timescale of the energy transfer process. We show that this synchronisation depends

on the survival of specific vibronic coherences and explain how the competition be-

tween coherent and dissipative processes promotes synchronising coherences. We

show that the time taken for synchronisation to emerge is positively correlated with

fast coherent energy transport.

Secondly, we investigate how the synchronisation dynamics of these vibra-

tional motions contain signatures of quantum properties of the system. We reveal

that a transient negatively synchronised period is a signature of excitonic coherence

dominating the dynamics. We show that synchronisation with a constant phase

difference occurs and is proportional to the detuning between the energies of the

vibrations. We show that this may be a general feature of quantum synchronisation

with detuning. Furthermore we show that this phase difference is correlated with a

reduction in quantum correlations between synchronising subsystems. This result

implies that our measure of synchronisation could be used as an indirect measure of

a purely quantum property.
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Finally, we investigate synchronisation in the presence of non-Markovian en-

vironments and show that non-Markovian effects can be both beneficial and detri-

mental to synchronisation.



Impact Statement

The research presented in this thesis contributes separately to two distinct academic

fields: the first which explores the nature of synchronisation phenomena in the quan-

tum regime and the second which aims to highlight the role of quantum coherence

in bio-inspired energy transfer processes.

To the former it contributes novel physical insight into the underlying mech-

anisms of synchronisation in the quantum regime and the roles that quantum co-

herence plays; it introduces a new setting in which we show synchronisation to be

present and connected to a possible biological function; it contributes the first inves-

tigation of transient spontaneous synchronisation in the presence of non-Markovian

environments; it contributes an adaptation to a synchronisation measure [24] that,

to our knowledge, has not been used as a dynamical measure of phase in this setting

before. Together these may have impact in the future design of quantum technolo-

gies due to their contribution to understanding of the control of quantum states.

To the latter it contributes a novel perspective from which to explore the role of

exciton-vibration coherences; it reinforces the importance of molecular motions in

electronic energy transfer and gives further motivation to experimentally investigate

the phenomena.

Code written for the calculations in this thesis may continue to be used for

research as they are applicable to a range of problems in open quantum systems.

Content from this thesis will be submitted for publication in peer-review journals.

During the research period for this thesis the author developed and delivered mul-

tiple outreach projects based on topics from the field. Work from this thesis will

continue to be used for teaching and outreach in the future.
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Chapter 1

Introduction

Synchronisation can be broadly defined as the adjustment of rhythms of oscillating

objects due to their weak interaction [61]. This description corresponds to numer-

ous processes throughout the natural world that occur on a wide range of length

and time scales. This is especially true in living systems, where synchronisation is

common and is often closely related to biological function [7, 50]. On the metre

scale, the synchronous flashing of male fireflies aids each individual in reproduc-

tion [7] and on the micrometre scale, cardiac cells synchronise contractions with

their neighbours [50]. The question of whether this phenomenon persists on even

smaller length scales such as that of individual biomolecules (nanometre) and time

scales such as the relaxation times of intramolecular motions (picoseconds) has not

been investigated. On these length and time scales quantum phenomena cannot

be neglected and synchronisation, if it occurs, could exhibit features that have no

equivalence in the classical regime [26, 33, 40, 43, 63, 83].

An interesting natural setting in which one can explore synchronisation in the

quantum regime and at the same time investigate its possible relations to biolog-

ical function, is the widely studied electronic excitation transport (ET) process in

photosynthetic complexes. Whether molecular motions can synchronise during the

transport process, and if this aids in any way biological function are open questions

to be investigated. Using quantum synchronisation as a lens through which we ex-

plore the quantum dynamics of bio-inspired vibronic dimers, and vice versa, are the

central focuses of this work.
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1.1 Quantum Synchronisation

Investigations of synchronisation in the quantum regime are often focused on

searching for features that are different from the classical version of the phenom-

ena. Examples of these unique aspects include: the ‘synchronisation blockade’ [43],

which predicts that in the deep-quantum regime synchronisation can be inhibited if

the frequencies of two oscillating objects are too close; and a step-like transition

to synchronisation [83] as a function of increasing coupling strength of oscillators,

which differs from the smooth transition in the classical case. However, motivation

for studying quantum synchronisation also comes from its importance in experi-

mental and technological applications. Electromagnetic modes, trapped ions and

nano-electromechanical resonators can all be represented, to a first approximation,

as coupled oscillators. Therefore understanding quantum synchronisation phenom-

ena fundamentally, especially its predictable control of quantum states, may provide

future design principles of experimental and technological set-ups [44]. However,

experimental exploration of quantum synchronisation is not yet common. Reports

of observations are limited to polariton condensates [2, 89] and micrometer scale

opto-mechanical oscillators [90] in the near-quantum regime. Theoretical studies

predict observations are within reach in trapped ions. For example: quantum syn-

chronisation could be indirectly measured through spin states [33]; and the phase-

locking of oscillations are predicted to be stronger in a quantum model than in the

classical model [40]. Investigation into quantum synchronisation is therefore pri-

marily computational and theoretical. In this thesis we also proceed with theoretical

and computational analysis.

The form of synchronisation that we focus on is best described as transient,

emphasising the transience of the phenomenon before relaxation to the steady state,

and spontaneous, emphasising the spontaneity of synchronisation occurring solely

due to the interactions within the quantum system considered and specifically not

due to the influence of an external fixed-frequency driving force [25]. This point

is to emphasise the difference from studies of quantum synchronisation where self-

sustaining oscillations are essential [42, 43, 83, 84]. Transient spontaneous quantum
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synchronisation (referred to from here on as synchronisation) has been recently

investigated in a range of open quantum systems [3, 25, 27, 44, 48]. In the simplest

case of coupled two-level systems (TLSs), it has been shown that synchronisation

cannot occur in the presence of dephasing channels alone and dissipation appears

to be essential [27]. In quantum harmonic oscillator (QHO) networks, adjusting

the coupling between oscillators can create asymptotically synchronised states that

avoid dissipation altogether [44]; and in hybrid TLS-QHO systems the form of

coupling of QHOs to TLSs can induce and control synchronisation between QHOs

with a well-defined phase difference [48].

Across these cases there are multiple explanations given for the mechanism of

synchronisation. Some relate synchronisation to the survival of a specific eigen-

mode of the system-environment interaction that dominates dynamics after a short

evolution from the initial state [25, 27]. This eigenmode is one in which the desired

observables are synchronised. Others provide analytic equations for the emergence

of synchronisation and reveal its dependence on coupling strength, initial state and

mode frequencies [26, 48].

Within this literature there is a need for a more physically insightful explana-

tion of the mechanism of synchronisation that includes a description of the quantum

states, coherences and dissipation processes. An eigenmode analysis alone fails to

explain why a specific mode exhibits synchronisation or lives for a long time, and

the analytic solutions are only for specific solvable cases. In this thesis we aim to

contribute a new perspective on the mechanism of synchronisation in open quan-

tum systems. Specifically we present a detailed analysis of the early-time dynamics

of synchronisation, which are often overlooked as an incoherent transient. At this

timescale coherent and dissipative processes overlap and have a complex relation-

ship, an analysis of which can give insight into the mechanism of synchronisation.



1.2. Photosynthetic Pigment Protein Complexes 12

1.2 Photosynthetic Pigment Protein Complexes
Photosynthetic light-harvesting proteins exhibit complex ET dynamics due to an

overlap of energy scales in electronic and vibrational degrees of freedom and the

timescales of their associated coherent and incoherent processes. Experiments and

theory suggest that these complexes are capable of sustaining quantum coherence at

room temperature lasting several hundred femtoseconds [14, 20, 22, 29, 59, 67, 74].

The leading hypothesis for the mechanism underlying long-lived coherent dynam-

ics in these biophysical systems is the quantum mechanical exchange of energy

between excitonic and vibrational degrees of freedom [10, 11, 17, 22, 31, 39, 52,

58, 65, 67]. Despite some controversy surrounding the observations [19], there re-

mains a widespread interest in understanding the intertwined dynamics of electronic

and vibrational motions during energy transfer.

Excitonic spectra from the photosynthetic pigment-protein Fenna-Matthews-

Olson complex have recently been observed to exhibit synchronous oscillations

[66]. Although this is not an observation of the synchronisation process, it suggests

that synchronisation phenomena may be relevant in these settings. An early fluo-

rescence depolarisation study of Light Harvesting Complex 1 from photosynthetic

bacteria Rhodobacter Sphaeroides [5] shows spectral motions initially out-of-phase

shift to in-phase during ET. These motions were later modelled theoretically where

they were attributed to excited state vibrational coherence [13]. However, the po-

tential synchronisation dynamics of these motions were not analysed. The literature

is lacking an in-depth theoretical modelling of vibrational synchronisation in pho-

tosynthetic ET. This thesis attempts to address this gap.
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1.3 Contribution of this work
This thesis aims to investigate in-depth the synchronisation of molecular motions

in a bio-inspired vibronic dimer. It aims to contribute further understanding to both

the quantum dynamics of bio-inspired dimers and the fundamental mechanisms in-

volved in quantum synchronisation.

The thesis is organised as follows: in Chapter 2 we introduce the bio-inspired

dimer model we use throughout the thesis and characterise its important dynamics;

in Chapter 3 we delve into the synchronisation of molecular motions in the excited

state dynamics, explain the underlying mechanism with exciton-vibration coher-

ences and demonstrate its connection to coherent excitation transfer; in Chapter

4 we explore the dynamics of synchronisation as a function of the frequency dif-

ference between molecular vibrations and reveal that our synchronisation measure

can indicate changes in quantum correlations between synchronising subsystems; in

Chapter 5 we couple the dimer to a more realistic non-Markovian environment and

explore its impact on synchronisation using the Hierarchical Equations of Motion;

in Chapter 6 we summarise and conclude.



Chapter 2

Energy Dynamics of a Bio-Inspired

Vibronic Dimer

2.1 The Exciton-Vibration Dimer

In this section we introduce the Hamiltonian description of a bio-inspired vibronic

dimer which we call the Exciton-Vibration Dimer Model [39, 58]. We describe the

initial state and parameters used throughout the thesis.

2.1.1 Hamiltonian Description

Consider a pair of chromophores with single excited states |ei=1,2〉 of energy ei=1,2

interacting via dipole-dipole coupling of strength V and each locally coupled to an

intramolecular vibration (modelled as a QHO) of energy ω1 = ω2 = ω (throughout

the thesis we set h̄ to 1) and coupling strength g1 = g2 = g. The system has a total

Hamiltonian of the form:

H = Hel +Hvib +Hel−vib (2.1)

The electronic Hamiltonian reads:

Hel = e1|e1〉〈e1|+ e2|e2〉〈e2|+V ∗|e2〉〈e1|+V |e1〉〈e2| (2.2)
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VΔe

|e1⟩

|e2⟩

ω1

ω2

kBT

kBT

g1

g2

Γth

Γth

Γdeph

≈

≈

Γdeph

X1

X2

Figure 2.1: Schematic diagram of the bio-inspired vibronic dimer
studied throughout this thesis. Two chromophores (sub-
scripts 1 and 2) with single excited states |ei〉 interact
via dipole-dipole coupling of strength V . Each elec-
tronic state is coupled linearly with strength gi, to an
intramolecular mode of energy ωi. The electronic sub-
system (blue oval) experiences dephasing at rate Γdeph,
each mode dissipates into a separate thermal bath (red
oval) of temperature kBT at a rate Γth.

Then defining |e1〉=

1

0

 and |e2〉=

0

1

 we can present Hel as a matrix:

Hel =

e1 V

V ∗ e2

 (2.3)

The eigenstates of Hel are delocalised electronic states known as excitons, which

we label |Ed=1,2〉, and have energies:

E1 =
1
2

(
e1 + e2−

√
∆e2 +4|V |2

)
E2 =

1
2

(
e1 + e2 +

√
∆e2 +4|V |2

) (2.4)

where ∆e = e2− e1 and |V |=
√

VV ∗.
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The unitary rotation U(θ) which diagonalises Hel to create an excitonic Hamilto-

nian Hexc =U(θ)HelU†(θ) has the form [47]:

U =

 cosθ sinθ

−sinθ cosθ

 (2.5)

where θ = 1
2 arctan(2|V |/∆e) is an effective measure of delocalisation of the elec-

tronic sub-system. This is easy to see by considering, for example, θ = 0 which

corresponds to a Hamiltonian in which delocalised states do not exist. After diago-

nalisation the resultant excitonic Hamiltonian has the form:

Hexc = E1|E1〉〈E1|+E2|E2〉〈E2|=

E1 0

0 E2

 (2.6)

The bare vibrational Hamiltonian reads:

Hvib = ωb†
1b1 +ωb†

2b2 (2.7)

where b†
i=1,2(bi=1,2) are the creation (annihilation) operators for the modes. The

eigenstates of Hvib are Fock states which we write as: |n1〉⊗ |n2〉, where n1 and n2

are vibrational quanta in mode 1 and mode 2 respectively. The matrix representation

of the bosonic creation operator depends on the maximum occupation number M in

each mode. It has the general form:

b =



0
√

1 0 0 · · · 0

0 0
√

2 0 · · · 0

0 0 0
√

3 · · · 0

0 0 0 0 · · · ...
...

...
...

... . . .
√

M−1

0 0 0 · · · 0 0


(2.8)
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The interaction Hamiltonian reads:

Hel−vib = g|e1〉〈e1|
(

b1 +b†
1

)
+g|e2〉〈e2|

(
b2 +b†

2

)
(2.9)

where we have assumed a linear coupling between electronic and vibrational de-

grees of freedom [64, 68]. We define the electronic operators in the exciton basis as

Θi =U(θ)|ei〉〈ei|U†(θ) and insert into Hel−vib to give:

Hexc−vib = gΘ1

(
b1 +b†

1

)
+gΘ2

(
b2 +b†

2

)
(2.10)

The final exciton-vibration Hamiltonian is then:

H =+E1|E1〉〈E1|+E2|E2〉〈E2|

+ωb†
1b1 +ωb†

2b2

+gΘ1X1 +gΘ2X2

(2.11)

where we have introduced the position operator for each mode Xi=1,2 = bi+b†
i . The

eigenstates of H which we label |ψ j〉 are exciton-vibrational (or vibronic) which we

can represent in the quasi-local basis as:

|ψ j〉= ∑
d=1,2

αd|Ed〉⊗
M

∑
n1=1

βn1|n1〉⊗
M

∑
n2=1

γn2|n2〉

= ∑
dn1n2

c(d,n1,n2)|Ed,n1,n2〉
(2.12)

where eigenstates |ψ j〉 are labelled in ascending energy.

2.1.2 Density Matrix Representation

The state of a quantum system can be represented using a density matrix which has

the general form:

ρ = ∑
a

pa|λa〉〈λa| (2.13)
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where pa is the probability that the system is in pure state |λa〉. Using the eigenvec-

tors |ψ j〉 of our Hamiltonian we write the density matrix of our system as:

ρ(t) = ∑
jk

ρ jk(t)|ψ j〉〈ψk| (2.14)

where ρ jk(t) = 〈ψ j|ρ(t)|ψk〉 and we have allowed for the time dependence of the

system probabilities. We analyse the states of our system in both the eigenbasis of

H,
{
|ψ j〉

}
, and the quasi-local exciton-mode-mode basis, {|Ed,n1,n2〉}, at different

sections of the thesis. We use the quasi-local picture to construct states from the

subsystems and to gain physical insight into the effects of Markovian environmental

coupling. We use the eigenbasis to understand the dynamics of synchronisation.

The measurement of a general operator O in the density matrix formalism is as

follows:

〈O〉(t) = Tr{Oρ(t)} (2.15)

where Tr{} is the trace. In figures throughout this thesis the time dependent ex-

pectation value of an operator will be labelled simply by the operator in order to

compact the notation.

2.1.3 Initial State

Since we are interested in the process of synchronisation during electronic energy

transfer, we begin in an excited electronic state, namely the the higher energy ex-

citonic state |E2〉. The initial state density matrix for our electronic subsystem is

therefore:

ρexc = |E2〉〈E2|=

0 0

0 1

 (2.16)

We set the initial state for both intramolecular modes as the thermal equilibrium

state before this excitation i.e. at thermal equilibrium with baths at temperature T =

298 K and electronic sites in their ground state. The density matrix that represents
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a thermal distribution of Fock states has the form:

ρ
th
i = ∑

ni

(
1− e

−ω

kBT
)

e
−niω
kBT |ni〉〈ni| (2.17)

where kB is the Stefan-Boltzmann constant and T is the temperature. We combine

these subsystem density matrices to construct the global initial state:

ρ(0) = |E2〉〈E2|⊗ρ
th
1 ⊗ρ

th
2 (2.18)

2.1.4 Units and Parameters

Dimers in light-harvesting proteins in which intramolecular modes are predicted to

be involved in ET exist in the parameter regime where ∆E ≈ ω > g > V . Several

examples exist in which ∆e is large enough for ET to be interband-like: Crypto-

phyte algae proteins Phycoerythrin 545 (PE545) from Rhodomonas CS24 [39] and

Phycocyanin-645 (PC645) from Chroomonas CCMP270 [65]; Cyanobacteria pro-

teins Allophycocyanin (APC) and C-phycocyanin (CPC) [87] and higher plant pro-

tein Light Harvesting Complex II (LHCII) [54]. Whilst the majority of phenomena

explored in this thesis are demonstrated with parameters that represent the central

dimer in PE545, the methods and findings could easily be extended to any of the

systems described above. The parameters are based on experimental values [39, 53]

and are displayed in Table 2.1. All energies or rates given in cm−1 are spectroscopic

wavenumbers.

∆e V ω g kBT Γth Γdeph
1042 92 1111 267.1 207.1 [1ps]−1 [0.1ps]−1

Table 2.1: Set of parameters used as a base for numerical calcula-
tions throughout this thesis. Extracted from [39, 53] and
represents the central dimer in cryptophyte algae protein
PE545 (PEB50/61). Units in spectroscopic wavenumbers
cm−1 except final two columns.

These parameters correspond to a mostly localised excitonic system as θ =

0.087� θmax =
π

4 . As the site-mode coupling strength g is relatively small also, the
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vibronic states, |ψ j〉, formed by this system are not far from the quasi-local states

|Ed,n1,n2〉. This local nature is visualised in Figure 2.2 where the energies of both

vibronic and quasi-local states are shown to be very similar. To obtain convergent

dynamics we account for a maximum occupation M = 8 in each mode.

|E100⟩

|E200⟩
|E110⟩ |E101⟩

|E210⟩ |E201⟩
|E120⟩ |E102⟩ |E111⟩

|ψ0⟩

|ψ1⟩

|ψ2⟩ |ψ3⟩

|ψ4⟩ |ψ5⟩
|ψ6⟩ |ψ7⟩

Figure 2.2: Comparison of energies of vibronic eigenstates |ψ j〉 and
quasi-local picture states |Ed ,n1,n2〉 for PE545 param-
eters listed in Table 2.1. Note that for illustration, the
energies are shifted such that the energy of |ψ0〉 is set to
zero.

2.2 Isolated Hamiltonian Evolution

Any completely isolated quantum system, when initiated in a non-eigenstate of its

Hamiltonian, will coherently sample its Hilbert space in a cyclic pattern that de-

pends on the initial state. In the following, the isolated Hamiltonian evolution of

the Exciton-Vibration dimer introduced in the previous section is explored.

2.2.1 Solving Time Evolution

The time evolution of an isolated quantum system is described by the Liouville von

Neumann equation:

ρ̇(t) =−i [H,ρ(t)] (2.19)
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which is the density matrix form of the time dependent Schrödinger equation. This

has the solution:

ρ(t) = e−iHt
ρ0eiHt (2.20)

Equation 2.20 can be solved exactly if H can be diagonalised analytically. This

would allow exact equations of motion for system observables to be derived and

therefore the dynamics of, for example, synchronisation could be determined. In

practice however, H is not trivially diagonalisable, especially in systems consisting

of multiple degrees of freedom. Exact diagonalisation of exciton-vibration dimers

has been demonstrated [4, 21] but for the number of Fock states required for con-

vergent eigenvalues in the parameter regime of PE545 it is not practical. With this

considered, the closed system dynamics must be obtained by numerical solution of

Equation 2.19.

2.2.2 Coherent transport mechanism

One of the most important features of the prototype system considered is that effi-

cient ET is aided by a resonance in energy between the exciton energy splitting and

an energy quanta of the local intramolecular modes [17, 39, 58]. This resonance

results in a range of eigenstates |ψ j〉 that are close in energy yet in the quasi-local

basis {|Ed,n1,n2〉} have significantly different weights (see Figure 2.2). When co-

herently evolving from the initial state considered (with the excitonic system being

initially in the highest-energy exciton state) joint exciton-vibrational transfer path-

ways are open and population can be coherently transferred to eigenstates involving

the lowest lying exciton.

Figure 2.3 displays the coherent evolution of the exciton populations and the

absolute value of inter-exciton coherence. The dominant oscillation in exciton pop-

ulations is due to coherent transition between eigenstates |ψ1〉 and |ψ3〉 which have

an energy difference that corresponds to a frequency with period 0.4 ps. As will be

discussed further in Chapter 3, these eigenstates have different weights over each

exciton and hence transfer population. This exciton-vibrational coherent transport

mechanism is a key feature of the bio-inspired vibronic dimers which we refer to
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throughout this thesis.
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Figure 2.3: Closed system evolution of exciton populations and ab-
solute value of inter-exciton coherence from initial state
Equation 2.18. Measurements are labelled in-figure by
their operator. Notation ||E1〉〈E2|| indicates absolute
value. PE545 parameters listed in Table 2.1.

Additionally we note that the inter-exciton coherence follows the same slow

oscillatory envelope but with an additional fast oscillating component. This fast

oscillation is the natural frequency of the intramolecular modes ω = 1111 cm−1

which has a time period of approximately 0.03 ps and will be investigated in later

chapters.
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2.3 Open Quantum Systems

In general, quantum systems are not isolated and interact with a large number of en-

vironmental degrees of freedom that limit and destroy coherent evolution of quan-

tum superposition states [6]. However, when the energy scales of the system and

system-environment interaction are comparable, and environmental fluctuations ex-

hibit well defined spectral features, the system and environment can enter in a fruit-

ful interplay where coherent superpositions can last long and exhibit a rich dynam-

ics. Indeed, this is what is argued to be the case for electronic excitation transfer

in photosynthetic pigment-protein complexes. In the following we introduce the

theory to describe a quantum system interacting with a simple environment.

We define a new global Hamiltonian that includes the environment:

HG = HS +HE +HI (2.21)

where HS is the system of interest, HE is the Hamiltonian of the environment(s)

and HI is the Hamiltonian describing their interactions. Using the Liouville von

Neumann equation the equation of motion of the whole system-environment density

matrix ρG is:

ρ̇G(t) =−i [HG,ρG(t)] (2.22)

Considering that realistic environments often consist of an infinite bath of QHOs,

Equation 2.22 has many degrees of freedom and is intractable. Instead several meth-

ods have been developed to solve the dynamics of the reduced density matrix of the

system: ρ̇S(t) = TrE {ρ̇G(t)} that takes into account the effects of the environment

but does not keep explicit information on them. The methods can be split into

two main branches: Markovian, where the environment is assumed to relax on a

time-scale much faster than the system therefore is essentially unchanged by any

system interaction and is considered ‘memory-less’; and non-Markovian where the

environment can interact with the system coherently and its state is changed by its

interaction with the system. In the following section we focus only on the former

whilst in Chapter 5 we introduce the latter.
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2.3.1 Markovian Environment: The Master Equation

A very successful and widely used approximation of the interaction of a reduced

system density matrix with an environment is the Lindblad master equation. Its

derivation is standard in many quantum mechanics textbooks [6, 47] so here we

only state the important approximations and end result. Firstly the derivation as-

sumes that the reduced density matrix ρS(t) is separable from the state of the envi-

ronment ρE at all times. This means there are no correlations between the system

and environment and is known as the Born approximation. Secondly it assumes

that the environment relaxes much faster than the system, i.e. the environment state

is unchanged by interactions with the system at any time, therefore the state of the

system or environment never depends on a past state of the environment and it is

considered ‘memory-less’. This is known as the Markov approximation. Using

these approximations and a secular approximation the reduced system equation of

motion can be cast in the Lindblad form:

ρ̇S(t) =−i [HS,ρS(t)]+D [ρS(t)] (2.23)

where the Lindblad-form superoperators are:

Dν [ρ] = Γν

(
OνρO†

ν −
1
2

ρO†
νOν −

1
2

O†
νOνρ

)
(2.24)

and the choice of operators Oν at rates Γν can phenomologically describe a variety

of environment effects. Finally we note that this model is valid in the regime of

weak system-environment coupling relative to the inter-site coupling. In the fol-

lowing sections we introduce two commonly used environment-induced processes.

2.3.2 Pure Dephasing

A particular form of interaction with an environment can be derived in which the

system energies are not changed. These processes are known as pure dephasing

[6, 28, 47] and can be interpreted from a microscopic perspective as elastic system-

environment collisions which only act to shift the phase of the system. For the
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Exciton-Vibration Dimer this environment effect is applied to the onsite excited

electronic states and has corresponding Lindblad transition operators |e1〉〈e1| and

|e2〉〈e2|. Pure dephasing is expected to exponentially decay coherences with the

rate Γph and in the long time limit it predicts equalisation of all system populations.

This latter effect arises from the derivation assuming an infinite temperature bath

of harmonic oscillators. Figure 2.4 displays an illustration of the effects of Pure
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Figure 2.4: Demonstration of the action of Pure Dephasing on the
exciton populations and inter-exciton coherence of a
TLS. Γdeph=[0.1 ps]−1. Initial state: |E1〉〈E1| = 0,
|E2〉〈E2|= 1, |E1〉〈E2|= 1, |E2〉〈E1|= 0.

Dephasing on the populations and coherences of an isolated excitonic system. As

expected an equal mixing of the two states is formed when initialised in the upper

excitonic state |E2〉.

The choice of dephasing rate is of vital importance to accurately simulate a

bio-inspired dimer as it determines the coherence lifetime of the electronic degrees

of freedom. Studies of algal protein PC645 at cryogenic temperatures provides ex-

perimental evidence of electronic coherence on the timescale of 500 fs [65]. Other

studies of PE545 have detected quantum beating on the order of hundreds of fem-

toseconds [14, 74]. It is reasonable therefore to choose a decay rate of Γdeph =[0.1

ps]−1.
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2.3.3 Thermal Relaxation

It is often desirable to model the effect of an environment at a specific temperature

with which the system can equilibrate. In the Exciton-Vibration Dimer we couple

each intramolecular modes to a separate thermal reservoirs at 298 K. This is rep-

resented by transition operators b1 and b2 at rate Γth(1+B) and b†
1 and b†

2 at rate

ΓthB. Here B=
(

e
ω

kBT −1
)−1

is the mean number of quanta in a thermally occupied

mode of frequency ω , and Γth =[1 ps]−1 is the rate at which modes equilibrate [6].
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Figure 2.5: Demonstration of the thermal relaxation of a mode of
frequency 1111 cm−1 with a bath at temperature 298 K
at rate Γth = [1 ps]−1. Initial state is a thermal distribu-
tion at 900 K.

The lifetime of vibrational coherence in chromophores has been measured to

be on the order of picoseconds [82]. Here we follow other recent works [58] in

choosing an equilibration rate of Γth = [1 ps]−1. Figure 2.5 displays the average

occupation number 〈n〉= Tr
{

b†bρvib(t)
}

of one of the system modes as a function

of time, in the absence of coupling to the electronic system and presence of thermal

relaxation. The occupation exponentially relaxes from an initial thermal state at 900

K to equilibrium with the bath at 298 K. We note that for the modes of frequency

ω = 1111 cm−1 in PE545 parameters, the ambient temperature 298 K = 207.1 cm−1

corresponds to a low occupation number.
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2.3.4 Relaxation to steady state

The total Markovian environment contributions in the Exciton-Vibration Dimer

model are pure dephasing at equal rates Γdeph on the electronic sites and thermal

relaxation on the modes at equal rates Γth. These environment-induced processes

are pictured schematically as coloured ovals in Figure 2.1. Their combined effect

is to decohere the coherent evolution of the system (see Figure 2.3) and evolve it

towards a new quasi-equilibrium steady state. Here quasi-equilibrium refers to the

fact that we are focusing only on the ultra-fast ET process and have not included

spontaneous emission which occurs on the nanosecond timescale. It is argued that

the rates of decoherence and dissipation in the natural parameter regime of light-

harvesting complexes place ET in the optimal regime where coherent contributions

to the dynamics do not vanish fully [58].

0 2 4 6 8 10 12 14
Time (ps)

0.0

0.2

0.4

0.6

0.8

1.0

|E1 E1|
|E2 E2|
||E1 E2||

Figure 2.6: Open system evolution of exciton populations and abso-
lute value of inter-exciton coherence. Initial state Equa-
tion 2.18 and PE545 parameters listed in Table 2.1.

Figure 2.6 and Figure 2.7 display the open system evolution of exciton pop-

ulations and mode occupation numbers from initial state Equation 2.18. We can

see numerical evidence that the initial dynamics (0−0.5 ps) are dominated by co-

herent transitions. This is evidenced both by the sharp transfer of population to
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Figure 2.7: Open system evolution of mode average occupation
numbers. Initial state Equation 2.18 and PE545 param-
eters listed in Table 2.1.

lower exciton |E1〉 and growth of inter-exciton coherence in Figure 2.6 and by the

sharp growth in occupation number of both modes in Figure 2.7. The dynamics

during the next picosecond have contributions from both incoherent and coherent

processes. From approximately 1.5 ps the dynamics are dominated by incoherent

processes, characterised by exponential growth and decay, until steady state of all

populations is reached at around 10 ps.

Examining the dynamics of mode occupation numbers of Figure 2.7 more

closely we see that both initiate from thermal equilibrium with the bath, gain en-

ergy from the electronic system and then relax to a new equilibrium of the combined

system. It is in this complex interplay between coherent and incoherent processes

during relaxation to the steady state that presents a unique setting within which we

will investigate synchronisation in Chapter 3.

2.3.5 Solving Numerically efficiently by vectorising

Equation 2.23 can be expressed in a linearised form to optimise the numerical cal-

culation time. In this case we define a superoperator known as the Liouvillian which

captures all the operations acting on our system density matrix but flattened into a
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vector |ρ(t)〉〉.

|ρ̇(t)〉〉= L |ρ(t)〉〉 (2.25)

where L is the Liouvillian superoperator and |ρ(t)〉〉 are flattened density matrices.

To find this form of the dissipator we make use of an identity of the Kronecker

product. An equation of matrices ABC =D can be expressed as |D〉〉=
(
A⊗CT) |B〉〉

where |B〉〉 is a vector constructed in row order from matrix B. This allows us to

express:

[H,ρ] = Hρ1−1ρH =⇒
(
H⊗1T −1⊗HT) |ρ〉〉 (2.26)

and for a general dissipator:

D[ρ] =Γ

(
OρO†− 1

2
ρO†O− 1

2
O†Oρ

)
=⇒ Γ

(
O⊗ (O†)T − 1

2
1⊗ (O†O)T − 1

2
O†O⊗ (1)T

)
|ρ〉〉

=⇒ Γ

(
O⊗O∗− 1

2
1⊗OT O∗− 1

2
O†O⊗1

)
|ρ〉〉

(2.27)

We solve this ordinary differential equation in Python 3 with packages NumPy and

SciPy and author generated scripts.



Chapter 3

Quantum Synchronisation and

Coherence

In this chapter we study the synchronisation of molecular motions in a bio-inspired

vibronic dimer where the dynamics of electronic excitation is mediated by coherent

interactions with intramolecular vibrational modes. We show that the synchroni-

sation dynamics of the displacement of these local modes exhibit a rich behaviour

which arises directly from the distinct time-evolutions of different vibronic quantum

coherences. Furthermore, our study shows that coherent energy transport in this

bio-inspired system is concomitant with the emergence of positive synchronisation

between mode displacements. This work provides further understanding of the re-

lations between quantum coherence and synchronisation in open quantum systems

and suggests an interesting role for coherence in biomolecules, that is promoting the

synchronisation of vibrational motions driven out of thermal equilibrium. Content

from this chapter has been published in a journal paper by the author [75].
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3.1 Introduction
The mechanisms of how synchronisation phenomena manifest in the quantum

regime are yet to be completely determined. Recent works have shown that inves-

tigating the dynamics of synchronisation in open quantum systems can give insight

into this issue. As mentioned in Section 1.1 the emerging picture is that the specific

forms of the decoherence channels and of the interactions among quantum subsys-

tems play a pivotal role in reaching synchronisation. However, exactly how the

interplay between coherent dynamics and decoherence enables synchronisation in a

particular time scale, or how coherences may relate to synchronisation is not fully

understood.

The results of this chapter form an understanding of synchronisation from the

point of view of exciton-vibration eigenstates and decoherence processes that is

both referred to and built upon throughout the entire thesis. It is the central contri-

bution this thesis makes.

This chapter is organised as follows: In Section 3.2 we introduce and char-

acterise the measure of synchronisation we use. In Section 3.3 we introduce

our exciton-vibration coherences description of synchronisation by considering the

purely coherent dynamics of the dimer. In Section 3.4 we show that when dissi-

pative processes are included, spontaneous synchronisation of the displacements of

intramolecular modes in exciton-vibration dimers emerges and it is accompanied

by a negatively synchronised transient. We illustrate how this synchronisation can

be understood as the dominance of a specific exciton-vibration coherence over a set

of competing coherences that contribute to oscillatory dynamics in the position of

the modes. Finally we provide a qualitative explanation for the dominance of one

coherence over others. In Section 3.6 we discuss and summarise.
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3.2 Quantifying Synchronisation
As discussed in Chapter 1, the form of synchronisation we study here is transient,

spontaneous and between two oscillators only. We are interested in unravelling

the influence of coherence and decoherence on the emergence of synchronisation.

In order to do this effectively we require a quantitative measure that can both tell

us whether synchronisation has occurred and give us information about the early-

time dynamics before synchronisation is reached. A review of multiple different

measures [24] suggests that the Pearson correlation factor is a good choice for this

scenario. It is widely used in the quantum synchronisation literature, gives clear

indication of synchronisation and shows some information about the timescales in-

volved. However, in the form it is presented in [24] it does not give much informa-

tion about the early-time transient dynamics before synchronisation is reached, only

indication of when it has occurred. Here we present a modification to the measure

that allows it to be used as a continuous measure of phase difference and therefore

reveal information about the early times and the emergence of synchronisation.

Defined generally for any two time dependent functions f1(t) and f2(t):

C f1, f2 (t|∆t) =
∫ t+∆t

t δ f1δ f2dt(∫ t+∆t
t δ f 2

1 dt
∫ t+∆t

t δ f 2
2 dt
)1/2 (3.1)

where δ f = f − f̄ , f̄ = 1
∆t
∫ t+∆t

t f (t ′)dt ′ is a time average and ∆t is the averag-

ing window. In ref [24] the Pearson correlation factor is said to return a value of

1 for positive synchronisation (in-phase), −1 for negative synchronisation (π out

of phase) and 0 for asynchrony. Here we note that by an careful choice of ∆t

to be as close as possible to time period T of the dominant frequency in f1 then

C f1, f2 (t|∆t = T ) in fact is a continuous measure of phase difference between the

two oscillating signals. This function returns a continuous value in the range of −1

to 1 corresponding to a phase shift between f1 and f2 of π to 0. We derive this rela-

tion analytically for two example sinusoids in the following. Choosing f1 = sinωt

and f2 = sin(ωt +φ) such that the two oscillations have identical frequencies and

amplitudes lie within the same range. With the choice of ∆t = 2π

ω
it is straightfor-
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ward to show that both f̄1 and f̄2 are zero:

f̄1 =
ω

2π

∫ t ′+ 2π

ω

t ′
sinωtdt =

ω

2π

[
−cosωt

ω

]t ′+ 2π

ω

t ′
= 0 (3.2)

f̄2 =
ω

2π

∫ t ′+ 2π

ω

t ′
sin(ωt +φ)dt =

ω

2π

[
−cos(ωt +φ)

ω

]t ′+ 2π

ω

t ′
= 0 (3.3)

In general the functions f1 and f2 may be more complex and have different ampli-

tudes or be displaced from zero. In these cases the values f̄1 and f̄2 are not zero,

the function δ f1 = f1− f̄1 acts to subract the average value of f1 and center any

oscillations around zero. This has the effect of emphasising the fluctuations around

the mean and allows more accurate measurement of phase. The integral of their

product is the main measure of synchronisation:

∫ t ′+ 2π

ω

t ′
δ f1δ f2dt =

∫ t ′+ 2π

ω

t ′
sin(ωt)sin(ωt +φ)dt

=

[
1
2

t cosφ − sin(2ωt +φ)

4ω

]t ′+ 2π

ω

t ′

=
π cosφ

ω

(3.4)

This shows that for a sliding window of one time period T = 2π

ω
and two perfect si-

nusoids, the time dependence disappears. For any value of t, the measure returns a

constant value that depends only on the phase difference between the signals φ . Fi-

nally, the role of the denominator in Equation 3.1 is to normalise the measure to the

limits of 1 and −1. It is straightforward to show that for our example oscillations:(∫ t+∆t
t δ f 2

1 dt
∫ t+∆t

t δ f 2
2 dt
)1/2

= π

ω
. Together, this finally results in:

C f1, f2 (∆t = T ) = cosφ (3.5)
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Figure 3.1: Value of synchronisation measure C f1, f2 for two identi-
cal sinusoids as a function of their phase shift φ . f1 =
sin(at), f2 = sin(at +φ), ∆t = 1/a.

A characterisation of this relationship is presented in Figure 3.1 where the

value of the synchronisation function is plotted as a function of constant phase dif-

ference φ . The synchronisation measure for three different scenarios is illustrated in

Figure 3.2. We observe that for two waves of different frequency, C f1, f2 (t|∆t = T1)

does not stabilise and oscillates as the phase relationship shifts over time. The fre-

quency of oscillation is proportional to the frequency difference between the two

oscillators.

These effects can be understood by analysing the form of Equation 3.4. For any

two functions, Equation 3.4 has a maximum when they are identical, and therefore

has a maximum value of 1. For any phase shift or frequency shift the integral of

their product will be less than the square root of the product of their integrals.

At the time of writing this measure had not been explicitly applied as a dynamic

phase measure between two signals elsewhere in the literature. It has only been used

as an indicator of positive (value of +1, zero phase difference) or negative (value

of −1, π phase difference) synchronisation. The only modification we made was to

specify a choice of ∆t. We emphasise that this choice is critical to the performance

of this function as a dynamic phase measure.
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Figure 3.2: Value of synchronisation measure C f1, f2 for three sets of
two uncoupled sinusoids of different frequencies ∆ω =
ω2/ω1.

Other attempts to develop a real-time phase measure between two oscillat-

ing signals have been conducted along the lines of sliding-window discrete Fourier

transform methods [56], Hilbert transforms with data extension [71] and other cor-

relation functions [70].

This measure is used repeatedly throughout the thesis as a dynamic measure of

phase and allows us to connect synchronisation to system dynamics in novel ways.
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3.3 Coherent Evolution

In order to understand the dynamical emergence of synchronisation between the

positions of intramolecular modes we begin by exploring the time dependence of

the expected values of the position operators, 〈Xi=1,2(t)〉.

In its eigenstate basis the density matrix of the exciton-vibration system reads

ρ(t) = ∑ j,k ρ jk(t)|ψ j〉〈ψk| with ρ jk(t) = 〈ψ j|ρ(t)|ψk〉. The expectation value

〈Xi(t)〉 is then:

〈Xi(t)〉= Tr
{

Xiρ(t)
}

= ∑
l
〈ψl|

(
Xi ∑

j,k
ρ jk(t)|ψ j〉〈ψk|

)
|ψl〉

= ∑
j,k

ρ jk(t)〈ψk|Xi|ψ j〉

= ∑
j,k

ρ jk(t)Xi,k j

(3.6)

where Xi,k j = 〈ψk|Xi|ψ j〉. Equation 3.6 indicates that the time-evolution of local

positions are given by the matrix elements ρ jk(t), yet the ability to exhibit synchro-

nised behaviour depends critically on the form of Xi,k j as it is the only source of

difference between 〈X1(t)〉 and 〈X2(t)〉.

To explore the consequences of Equation 3.6 in more detail we analyse whether

synchronisation can occur in the closed quantum system whose dynamics is solely

given by the system Hamiltonian H. Let us denote ρH(t) as the density matrix of

the closed system, which evolves according to:

ρ
H(t) = ∑

j,k
ρ jk(0)eiΩk jt |ψ j〉〈ψk| (3.7)

Here ρ jk(0) = 〈ψ j|ρ(0)|ψk〉 are the populations ( j = k) and coherences ( j 6= k) of

the initial state while Ωk j = εk− ε j where ε j are the eigenenergies of H. One can

therefore see that in a closed quantum dynamics only coherences will contribute

oscillatory components, with specific frequencies Ωk j, to the dynamics of 〈Xi(t)〉.

To exhibit synchronisation we require oscillations in 〈X1(t)〉 to align in fre-
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quency and phase with 〈X2(t)〉 for an extended period of time. Using Equations 3.6

and 3.7 this requires the equality:

∑
j,k

ρ jk(0)eiΩ jktX1,k j = ∑
j,k

ρ jk(0)eiΩ jktX2,k j (3.8)

for the oscillating components j 6= k. Equation 3.8 is trivially true if the initial state

is an eigenstate of H. However this cannot be considered synchronised as there

will be no time evolution at all. Hence Equation 3.8 can only be satisfied (and be

non-zero) if the initial state ρ(0) is such that element ρ jk(0) is zero when elements

X1,k j 6= X2,k j. The only ρ(0) that can fulfil these criteria contains either a single (or

a specific combination of) eigenstate coherence(s), |ψ j〉〈ψk|.

|ψ0〉〈ψ2| |ψ0〉〈ψ3| |ψ1〉〈ψ4| |ψ1〉〈ψ5| |ψ3〉〈ψ7| |ψ3〉〈ψ8| |ψ1〉〈ψ3|
Ωk j (cm−1) 1111.0 1125.0 1102.6 1111.0 1111.0 1119.2 81.0
〈ψk|X1|ψ j〉 0.707 -0.637 0.767 0.707 0.707 -0.935 -0.174
〈ψk|X2|ψ j〉 0.707 0.637 -0.767 0.707 0.707 0.935 0.174

Table 3.1: Seven largest amplitude exciton-vibration coherences.
Top row is the associated oscillation frequency from
Equation 3.6. The remaining rows are the matrix el-
ements corresponding to coherence |ψ j〉〈ψk| of differ-
ent operators which represent the coupling to position of
mode 1 and coupling to position of mode 2.

For the system under consideration, we identify the seven largest position ma-

trix elements Xi,k j contributing to the position dynamics and present their associ-

ated exciton-vibration coherences |ψ j〉〈ψk| and frequencies, Ωk j, in Table 3.1. Ex-

amining these values shows that in the parameter regime considered (specifically

ω1 = ω2, see Section 3.6 for more details) the position matrix elements fall into two

distinct groups: those for which X1,k j = X2,k j and those for which X1,k j = −X2,k j.

For the latter set, the amplitude scaling of −1 results in a phase factor of π between

〈X1(t)〉 and 〈X2(t)〉.

Consider an example ρ(0)=α|A〉〈A|+(1−α)|B〉〈B|. If |A〉= |ψ1〉+ |ψ5〉 and

|B〉= |ψ3〉+ |ψ7〉, then the only coherences would be |ψ1〉〈ψ5| and |ψ3〉〈ψ7| and the

resulting dynamics would consist of oscillations of frequency 1111.0 cm−1 with no

phase separation between 〈X1(t)〉 and 〈X2(t)〉. Similarly, if |A〉 = |ψ1〉+ |ψ4〉 and
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|B〉= |ψ3〉+ |ψ8〉 then the only coherences would be |ψ1〉〈ψ4| and |ψ3〉〈ψ8|, result-

ing in oscillations at a frequency between 1102.6 cm−1 and 1109.2 cm−1 except

with a constant phase separation of π . Both of these scenarios can be identified as

synchronised as there is a constant phase difference over time: in the former the

displacements are positively synchronised and in the latter they are negatively syn-

chronised. A combination of the two groups of coherences however would create

interferences yielding a cyclic phase change between 〈Xi(t)〉.

Whilst it is possible to find an initial state in which the dynamics of 〈Xi(t)〉

evolve in a synchronised way, this cannot be classed as spontaneous synchronisa-

tion as it has not emerged from an initially non-synchronised state. In the closed

system evolution, the ratio of these coherences is determined only by the initial

state ρ(0) thereby fixing the frequency composition and precluding that there can

be no dynamical emergence of synchronisation. The fact that synchronisation can-

not emerge in the closed quantum system concurs with previous studies of coupled

TLSs which show that synchronisation cannot occur in the presence of dephasing

alone and some energy loss is required [27]. This analysis allows us to postulate a

mechanism for synchronisation in the open system which is as follows: in the pres-

ence of dissipation we would expect one (or a set) of coherences to emerge with a

significantly larger amplitude than the others allowing it to dominate the dynamics

of 〈Xi(t)〉 and produce a constant phase difference in 〈Xi(t)〉.

Figure 3.3 displays the numerical results of evolution of 〈Xi(t)〉 and the cor-

relation measure C〈X1〉〈X2〉(t) in the closed system with initial state ρ(0) (Equation

2.18). As expected, we see a large range of frequency oscillations in 〈Xi(t)〉. The

value of C〈X1〉〈X2〉(t) changes in a cyclic pattern, indicating a continuous change

in phase between the between the oscillations and a clear difference in frequency

compositions.

The frequency components in each 〈Xi(t)〉 can be resolved by taking the real

part of the Fourier Transform (FT) which we present in Figure 3.4. We note here

how the frequencies present are exactly those in Table 3.1 and that the frequencies

that correspond to negative synchronisation can be clearly seen as those which have
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Figure 3.3: Coherent evolution of expectation value of intramolec-
ular mode positions 〈Xi(t)〉 and their synchronisation
C〈X1〉,〈X2〉(t).
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Figure 3.4: Real part of Fourier Transform of full time 〈Xi(t)〉 under
coherent evolution.

opposite sign in the FT.

Figure 3.5 displays the short-time dynamics of the real parts of the five exciton-

vibration coherences that dominate the evolution of 〈Xi(t)〉 (see Equation 3.6),

weighted by their associated position matrix elements. Interference between these
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Figure 3.5: Coherent evolution of Real part of exciton-vibration co-
herences scaled by their coupling to 〈X1(t)〉 (top half)
and 〈X2(t)〉 (bottom half).

coherences generate the overall 〈Xi(t)〉 signals. Coherences |ψ1〉〈ψ5| and |ψ3〉〈ψ7|

(bold lines) have identical frequencies and remain in phase throughout, whereas

coherences |ψ1〉〈ψ4| and |ψ3〉〈ψ7| (dotted lines) begin to accumulate a phase dif-

ference due to their differing frequencies. The phase shift over time manifests as an

oscillation in 〈Xi(t)〉 at a frequency equal to the differences between the pairs of Ωk j

involved. These are 8 cm−1 (time period of 4.2 ps) and 17 cm−1 (time period of 1.9

ps) which explains the approximate 2 ps periodicity seen in Figure 3.3. The oscilla-

tion of period 0.4 ps is due to interference with low frequency coherence |ψ1〉〈ψ3|

(dotted line slowly changing). It is clear that no single coherence dominates the

dynamics and that synchronisation does not emerge from the chosen initial state in

the closed system evolution.
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3.4 Open System Dynamics and the Emergence of

Synchronisation
To understand how a synchronised state can emerge from a non-synchronised state

we must understand the form of ρ jk(t) in the open quantum system. Solving Equa-

tion 2.23 for an element jk results in a set of coupled differential equations (see

Appendix A for detailed derivation):

ρ̇ jk(t) = iΩ jkρ jk(t)+ ∑
α,α ′

R j,k,α,α ′ρα,α ′(t) (3.9)

where R j,k,α,α ′ is commonly known as the Redfield tensor which captures the de-

pendence of each ρ j,k on all other matrix elements as induced by the local dis-

sipators. In this case we cannot say that the time dependence of each coherence

|ψ j〉〈ψk|(t) consists of only one single oscillation frequency Ω jk. However, our

numerical results show that the oscillatory dynamics of each of the seven coher-

ences in Table 3.1 are in fact dominated by the coherent component and that the

latter terms in Equation 3.9 contribute mainly a decaying dynamics. It is this decay

that allows a change in ratio of coherences and the potential for synchronisation to

emerge.

Figure 3.6 reports the synchronisation of 〈X1(t)〉 and 〈X2(t)〉 in the first two

picoseconds of evolution. Inspection of the fast oscillations in the positions reveal

an almost π phase difference between 〈Xi(t)〉 at 0.15 ps and exactly in phase os-

cillations after 1 ps. This observation is captured quantitatively with C〈X1〉,〈X2〉(t)

dipping to −0.75 towards negative synchronisation at 0.15 ps and then up to 1 for

positive synchronisation at 1 ps. These numerical results show that synchronisa-

tion indeed occurs between the displacements of intramolecular modes of exciton-

vibration dimers during the energy transfer process. To understand the underlying

mechanism we perform an analysis similar to the previous section.

Figure 3.7 displays the FT of 〈Xi(t)〉 at 0.15 ps and 1.50 ps. Synchronisation

can be seen again in this figure as the change in frequency distribution between the

two time points. At 0.15 ps the FT resembles that of the coherent case in Figure
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Figure 3.6: Evolution of the expectation value of intramolecu-
lar mode positions 〈Xi(t)〉 and their synchronisation
C〈X1〉,〈X2〉(t). Initial state is Equation 2.18 and relevant
parameters are listed in Table 2.1.

3.4 which indicates at this time coherent dynamics are dominating. The presence

of negatively synchronised frequency 1102.6 cm−1 at a magnitude comparable to

positively synchronised frequency 1111.0 cm−1 results in an interference and a non-

stationary phase. This is reflected in C〈X1〉,〈X2〉(t) in Figure 3.6 at early times (0 –

1 ps) where the measure is continuously changing. At 1.5 ps we see the domi-

nant frequency become 1111.0 cm−1 which has equal amplitude in both 〈Xi(t)〉 and

corresponds to the value of 1 in C〈X1〉,〈X2〉(t).

Although it is useful for understanding the dynamics of synchronisation, this

FT picture does not allow us to understand why the frequency composition of 〈Xi(t)〉

changes over time. To do so we must consider the underlying exciton-vibration

coherence dynamics which we present in Figure 3.8. Initially we observe that the

dominant frequency in the oscillation of each coherence is indeed the coherent part

Ω jk as can be evidenced by comparison to Figure 3.5. Figure 3.8a presents the first

0.30 ps of evolution of coherences where the two signals are measured as being

towards negatively synchronised. Figure 3.8b presents the same coherences at 1.35

ps where they are measured as positively synchronised. We can immediately see
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Figure 3.7: Real part of Fourier Transform of 〈Xi〉 at 0.15 ps (top
half) and 1.50 ps (bottom half) during open system evo-
lution.

how a change in the amplitude of the coherences has occurred in the latter case

and the two signals appear much more similar. The dominant contributions come

from the three positively synchronised coherences |ψ0〉〈ψ2|, |ψ1〉〈ψ5| and |ψ3〉〈ψ7|

(solid lines). These coherences constructively interfere to dominate the oscillations

seen in 〈Xi(t)〉 and therefore a value of 1 in C〈X1〉,〈X2〉(t). It is this change in the ratio

of coherences over time that determines the emergence of synchronisation.

In previous studies [27] the mechanism for synchronisation has been related

to a difference in the decay rates of eigenmodes of the Liouvillian superoperator,

L . The reasoning is that synchronisation occurs when one eigenmode of L , that is

equally coupled to the operators of interest such that their evolutions are synchro-

nised, significantly outlives the other eigenmodes, transiently dominates the dynam-

ics, and holds the operators in a synchronised state. Recently this explanation has

been consolidated analytically with an exact treatment of a single dissipating qubit

coupled to a probe qubit [26]. In the original case these normal modes are found

by diagonalising L and finding the conjugate pair of eigenvectors that have eigen-

values with real parts closest to zero and which couple significantly to the desired

operator. Applying this process here results in an eigenmode of the Liouvillian that
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(a)

(b)

Figure 3.8: Evolution of Real part of exciton-vibration coherences
in the open system scaled by their coupling to 〈X1(t)〉
(top halves) and 〈X2(t)〉 (bottom halves) at times (a) 0 –
0.30 ps (b) 1.35 – 1.65 ps.

consists almost entirely of exciton-vibration coherence |ψ0〉〈ψ2|. This analysis cor-

roborates with our results which we present by plotting the absolute value of each

coherence in Figure 3.9. We find coherence |ψ0〉〈ψ2| is indeed longest lived.
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Figure 3.9: Complex magnitude of exciton-vibration coherences
scaled by the absolute value of their corresponding po-
sition matrix element in the open quantum system evo-
lution. |X1, jk|= |X2, jk|.

The Liouvillian eigenmode analysis provides a straightforward prediction of

the emergence of synchronisation at long times, but it does not facilitate an under-

standing of the early transient synchronisation dynamics. Neither does it provide

understanding of why certain eigenmodes survive longer than others. The tracking

of coherences we present in this paper however is capable of giving us insight into

these early transients. In addition it allows us to give a qualitative explanation of

why certain coherences survive longer in the presence of dissipation and dephasing.

|ψ0〉〈ψ2| |ψ0〉〈ψ3| |ψ1〉〈ψ4| |ψ1〉〈ψ5| |ψ3〉〈ψ7| |ψ3〉〈ψ8| |ψ1〉〈ψ3|
〈ψk|σx|ψ j〉 0.000 0.385 0.340 0.000 0.000 0.384 0.196
〈ψk|G12|ψ j〉 0.161 -0.144 -0.131 0.133 0.032 0.026 -0.351

Table 3.2: Seven largest amplitude exciton-vibration coherences and
the values of operator matrix elements. First row: cou-
pling to inter-exciton coherence. Second row: coupling
to ground state of both modes where G12 = |01〉〈01| ⊗
|02〉〈02|.
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We expect pure dephasing to result in exponential decays in excitonic coher-

ences and thermal dissipation to cause exponential decays in the population of

modes [6]. In Table 3.2 we consider the matrix elements of an operator relating

to excitonic coherences only σx = |E1〉〈E2|+ |E2〉〈E1|, and the combined vibra-

tional ground-state projector operator G12 = |01〉〈01|⊗ |02〉〈02|. Exciton-vibration

coherences that result in a large matrix element for σx will be more affected by the

fast electronic dephasing. Similarly coherences that result in largest values for the

projector of the ground vibrational states would last the longest due to thermal dis-

sipation operating on a longer timescale and preferentially populating such ground

states.

Out of the set of coherences considered the one that has the lowest exciton co-

herence component and the largest ground-state vibrational component is |ψ0〉〈ψ2|.

Referring again to Figure 3.9 we find indeed that |ψ0〉〈ψ2| is the longest lived co-

herence. In fact Figure 3.9 reveals that the timescale at which |ψ0〉〈ψ2| becomes

the dominant coherence is the same timescale at which the synchronisation mea-

sure reports positive synchronisation. This figure gives a clear perspective on the

competition between positively and negatively synchronised coherences mentioned

above. At early times the total magnitude of negatively synchronised coherences

outweighs that of the positively synchronised coherences. During the open system

evolution, the negatively synchronised coherences decay and positively synchro-

nised coherence is generated. Between 0.5 – 1 ps the total magnitude of positive

synchronised coherences overtakes the negative and the phase shifts to positive syn-

chronisation.
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Figure 3.10: Complex magnitude of exciton-vibration coherences
scaled by the absolute value of their corresponding po-
sition matrix element for modified dephasing Γel = [0.2
ps]−1 and dissipation Γth = [0.1 ps]−1 rates.
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Figure 3.11: Expectation value of mode positions and their synchro-
nisation measure C〈X1〉,〈X2〉 for modified dephasing Γel
= [0.2 ps]−1 and dissipation Γth = [0.1 ps]−1 rates.

Finally, we present further evidence for this mechanism of synchronisation

with a numerical test. We set the thermal dissipation rate to Γth = [0.1 ps]−1 and
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the dephasing rate to Γel = [0.2 ps]−1 and repeat the analysis of before. In this

case we would expect eigenstate coherences containing a larger excitonic coherence

component to survive longer as the electronic dephasing is slower relative to the

thermal dissipation. Indeed we find that the coherences |ψ0〉〈ψ3| and |ψ1〉〈ψ3| are

much longer lived in this regime and compete with |ψ0〉〈ψ2|. The results of this

investigation are summarised in Figures 3.10 and 3.11. Figure 3.10 shows that the

contribution to mode position oscillations from negatively synchronised coherences

outweighs that of positively synchronised coherences in the long time regime. This

manifests in the negative synchronisation of Figure 3.11 when C〈X1〉,〈X2〉(t) falls to

−1 after 2 ps. We also note that due to the increased thermal dissipation rate, the

mode position oscillations are much smaller. This effect can be observed even in

tiny oscillations.

In summary we have shown how the interplay between exciton-vibration dy-

namics and the different noise sources considered lead to a rich synchronisation

dynamics for the local modes and shown how said dynamics maps directly to the

evolution of exciton-vibration coherences.
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3.5 The Role of Coherent Energy Transfer in Syn-

chronisation
Thus far we have described the coherent and dissipative contributions to the dynam-

ics of exciton-vibration coherences and therefore to the dynamics of synchronisa-

tion. Presently we turn our attention to the electronic energy transfer dynamics of

the light-harvesting unit considered, its coherent character and its relation to syn-

chronisation of local displacements.

We can intuitively understand how ET is essential for the synchronisation of

local displacements in the prototype dimers studied by recalling both the quasi-

localised nature of the excitons for the parameter regime considered and the local

nature of the electronic-vibration interactions. Trivially, ET between excitons must

occur for the intramolecular modes to become effectively coupled, exchange energy

and synchronise. However the precise relations between the degree of coherent elec-

tronic ET and synchronisation is less obvious. In our synchronisation analysis so far

we observe that the ET period (0 - 0.5 ps) is concomitant with the negatively syn-

chronised transient of Figure 3.6. It appears that during this energy transfer period

the displacements of the modes tend towards being negatively synchronised. This

suggests a signature of coherent ET could be found in a measure of synchronisation

of local mode displacements, which we discuss further in Section 3.6.

To investigate the relationship between coherent ET and synchronisation quan-

titatively, we compare scenarios in which the resonance condition between exciton

energy splitting and mode energy quanta is kept fixed but the degree of delocalisa-

tion of excitons is increased such that coherent ET transfer is enhanced. We also

analyse the case in which the frequency of the modes are detuned from the exciton

energy splitting to illustrate the fundamental role of the energy matching condition

both for ET and for synchronisation.

The energy difference between exciton splitting and vibrational energies, i.e.

∆ = ∆E−ω; the coupling strength between local vibrational and electronic degrees

of freedom g; and the exciton size or delocalisation θ which depends on the ratio

η = 2|V |/∆E all influence the coherent character of ET. An approximate indicator
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of the degree of coherent ET is derived from the transition probability between

the two exciton-vibration states dominating electronic ET in our prototype dimer

[57]. The indicator is an estimate of the maximum amplitude A for the population

oscillations and is given by:

A =
1

1+
(

∆

2gsin(2θ)

)2 (3.10)

The base parameter regime used throughout this work (see Section 2.1.4) cor-

responds to A = 0.76. For the off-resonant modes we choose a frequency of

1500 cm−1 (a mode at this frequency is also present in PE545 [81]), resulting in

A = 0.04. For increased exciton delocalisation we choose η = 0.5 but keep the

energy resonance condition ∆ fixed, resulting in A = 0.95.

η = 0.5 PEB50/61 ω = 1500

Figure 3.12: Changes in eigenenergies for three different transport
regimes characterised by the measure A. From left
to right: modified exciton localisation η = 0.5 with
A = 0.95, unmodified PE545 parameters correspond-
ing to Table 2.1 with A = 0.76 and modified mode fre-
quencies ω = 1500 cm−1 with A = 0.04.

The changes to the system in these three parameter regimes is usefully repre-

sented by the change in eigenenergies which we present in Figure 3.12. We can see

that in the detuned regime ω = 1500 cm−1 the eigenenergies are much further sep-

arated and therefore coherent transitions between eigenstates are less probable. In
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the more delocalised regime η = 0.5 the resonance is preserved but the quasi-local

compositions of eigenstates is significantly different. In general the eigenstates have

larger contributions from both of the exciton states therefore transitions between

them transfer more exciton population and ET is enhanced. We choose to show

numerical evidence of the changes in ET in Figure 3.13 by presenting the lowest

exciton population dynamics (operator |E1〉〈E1|) alongside the dynamics of syn-

chronisation and the selected exciton-vibration coherences (as in Figure 3.9 from

the previous analysis) for each regime. Together these plots allow us to compare

the three different ET regimes and consider their effects on synchronisation.

Firstly we note the clear change in magnitude of coherent ET from high in

Figure 3.13a, to low in Figure 3.13c and that the time taken for synchronisation

to occur appears to follow the same pattern. Positive synchronisation is achieved

in 0.5 ps when A = 0.95, 1 ps when A = 0.76 and is not reached in the 2 ps win-

dow presented when A = 0.04. This correlation is also reflected in the exciton-

vibration coherence evolutions in Figures 3.13(d–f) (note we have removed two of

the seven exciton-vibration coherences for clarity). When A = 0.95 (Figure 3.13d)

negatively synchronised coherences (plotted with shape markers) decay faster than

when A = 0.76 (Figure 3.13e). This results in the positively synchronised coher-

ences (solid lines) dominating from an earlier time and hence the earlier emer-

gence of positive synchronisation. When A = 0.04 (Figure 3.13f) we observe that

positively and negatively synchronised coherences have almost identical amplitude

throughout the evolution and therefore neither can dominate. Small differences are

amplified and interferences prevent synchronisation in the time scale considered.

Positive synchronisation only emerges at around 10 ps (not shown) when positive

synchronised coherences finally outlive the negative synchronised ones however by

this time the oscillation amplitudes have nearly decayed to zero.

Additionally we identify that the eigenstate coherence |ψ1〉〈ψ3| can be used

as an indicator of the magnitude of coherent ET. In the three regimes considered

its amplitude appears correlated with the amplitude of coherent ET. This can be

understood by considering the composition of the eigenstates involved and their
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Figure 3.13: Comparison of dynamics of ET with synchronisation
of 〈Xi(t)〉 and the magnitude of exciton-vibration co-
herences for three different parameter regimes: (b)(e)
for central PEB dimer in PE545 (parameters in Table
2.1) corresponding to A=0.76; (a)(d) modified param-
eters η = 0.5 corresponding to A=0.95; (c)(f) modified
parameters ω = 1500 cm−1 corresponding to A=0.04.

energy splitting. Firstly, the eigenstates |ψ1〉 and |ψ3〉 have an energy splitting

of only 81 cm−1 � ω which leads to resonance energy transfer between them.

Secondly, in the quasi-local basis {|Ed,n1,n2〉}, these eigenstates have the following
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approximate compositions:

|ψ1〉 ≈ 0.3|E1〉(|01〉− |10〉)+0.9|E200〉−0.2|E201〉

|ψ3〉 ≈ 0.6|E1〉(|01〉− |10〉)−0.4|E200〉+0.1|E201〉
(3.11)

which shows that a transition between them would transfer exciton population. To-

gether this suggests the coherence |ψ1〉〈ψ3| is part of the ET mechanism and ex-

plains why its amplitude scales in accordance with the changes in ET.

Our analyses clearly highlight a correlation between the amplitude of coherent

excitation transport and the time it takes for mode displacements to synchronise.

This is significant as it suggests that a degree of control of quantum synchronisa-

tion can be achieved by adjusting only coherent exciton-vibration interactions and

specifically without changing the environment-induced dissipation or dephasing.

The relationship we observe can be understood as follows: parameter changes

that increase ET effectively increase the coupling between the subsystems and allow

a faster exchange of energy; the electronic subsystem ‘overshoots’ its equilibrium

position and ET oscillations occur; the damping of pure exciton coherences acceler-

ates and in turn the decay of negatively synchronised exciton-vibration coherences

accelerates; the system becomes dominated by positive synchronised coherences in

a shorter time scale and exhibits the shorter synchronisation times we observe.

Spectroscopic analysis of pigment-protein complexes have revealed possible

signatures of synchronised vibrational motion. In a fluorescence depolarisation

study of Light-Harvesting Complex 1 from Rhodobacter Sphaeroides, in phase os-

cillations were observed between parallel and perpendicular signals [5]. This be-

haviour was later reproduced in a theoretical model suggesting that the origin of

the in-phase oscillations were synchronised vibrational motions [13]. The theoreti-

cal analysis of the synchronisation dynamics presented in this chapter corroborates

these early signatures of synchronisation in photosynthetic pigment-protein com-

plexes.
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3.6 Summary and Discussion

The results of Sections 3.4 and 3.5, indicate negative synchronisation is concomi-

tant with coherent energy transport. Moreover, our analysis of the exciton-vibration

coherences that are negatively synchronised showed that they all have a large com-

ponent of excitonic coherence. This raises the question: can we conclude that the

negative synchronisation of local mode displacements is a signature of the survival

of excitonic coherence? A transient shift towards negative synchronisation persists

in all different initial preparations of exciton state (except for an initial state equal

to the the steady state), and the shift becomes less pronounced as coherent exciton

population transport inhibited. Additionally, as reported in Section 3.4, if dephas-

ing rates are slower than thermal relaxation i.e. excitonic coherence is longer lived,

we find that the length of this negative synchronisation period extends to the steady

state. Altogether this suggests that, for the system considered, a negatively synchro-

nised transient in the positions of intramolecular modes can indeed be a signature

of excitonic coherence and coherent energy transfer.

The parameter regime studied throughout this chapter is for the special case of

ω1 = ω2. This restriction allowed us to focus on the complex relationship between

synchronisation, coherence and dissipation. However, it also raises some interesting

points.

Firstly, a classical view of two coupled oscillators with ω1 = ω2 might lead

one to expect synchronisation to trivially always occur. We have shown that in the

quantum setting, due to the exciton-vibration nature of the complex, the frequencies

at which the local mode positions may oscillate are not equal and, in fact, change

over time. This effect cannot be thought of classically. On the other hand, the re-

lationship between ET and synchronisation can be thought of as analogous to how

increasing the coupling strength between two classical oscillators allows them to

synchronise faster. Our intramolecular modes are coupled to local electronic states

that exchange energy through electronic coupling. Increasing ET involves increas-

ing the electronic coupling which leads to a stronger effective coupling between the

modes.
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Secondly, as mentioned in Section 3.4, the exciton-vibration coherences we

study have precisely equal or opposite values in Xi,k j. We can explain this result

by examining our Hamiltonian for differences between X1 and X2. Whilst ω1 = ω2,

swapping Xi would result in no changes to Hvib and a sign change on excitonic

coherences in Hexc−vib i.e. 〈E2|Θ1|E1〉 = −〈E2|Θ2|E1〉. This −1 scaling is the

source of the differences between X1,k j and X2,k j seen in this investigation. If ω1 6=

ω2, Hvib is no longer symmetric upon exchange of Xi. We expect this detuning

would result in a wide range of Xi,k j and therefore contributions of different phases

to the dynamics. We explore this further in the next chapter.

To summarise we have predicted the transient spontaneous synchronisation of

the displacements of intramolecular modes on neighbouring molecules in a bio-

inspired vibronic dimer. Until now, synchronisation had not been investigated in a

hybrid quantum system where excitonic and vibrational coherence overlap in such a

way. We have presented an understanding of the mechanism for synchronisation as

the survival of specific exciton-vibration coherences, and detailed how coherences

are selected for by dissipation. This analysis may provide a perspective from which

we can understand synchronisation in other dissipating hybrid quantum systems

such as larger multi-chromophore systems.

We showed that both dissipative and coherent dynamics play an important role

in the formation of synchronisation in these systems. Coherent ET is positively

correlated with the time scale in which synchronisation is achieved. Dissipation

is required for the decay of exciton-vibration coherences to allow one to dominate

and can control the form of synchronisation that occurs. The parameter regime that

most closely resembles a real photosynthetic dimer appears to be one where there is

a balance between coherent and dissipative dynamics in which synchronisation can

emerge before the steady state is reached. Our work highlights a novel possible role

for exciton-vibrational coherence in biomolecular complexes, namely supporting

the synchronisation of out-of-equilibrium vibrational motions.



Chapter 4

Synchronisation Phase as an

Indicator of Quantum Correlations

Between Subsystems

In this chapter we explore the dynamics of synchronisation in a bio-inspired exci-

ton vibration dimer as a function of the difference between the natural frequencies

of the synchronising molecular motions. We show that there exists a window of

frequency difference (detuning) within which synchronisation is achieved with a

constant non-zero phase difference between mode oscillations. This ‘synchronisa-

tion phase’ increases as the mode detunings increase, up to a breaking point where

synchronisation is no longer achieved. We show that this synchronisation phase

is fundamentally different to those predicted elsewhere [48]. We explain how this

phase difference arises from the asymmetric participation of modes in long-lived

synchronised eigenstates. Lastly we connect the synchronisation phase as a func-

tion of detuning to the degree of quantum correlations between the synchronising

subsystems. We postulate that this synchronisation phase could be used as an indi-

cator of quantum correlations.
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4.1 Introduction

So far in our investigation of synchronisation of molecular motions in bio-inspired

vibronic dimers we have considered only the case of identical mode frequencies,

i.e. ω1 = ω2. This allowed us to focus our analysis on the effects of coherent and

dissipative processes on the dynamics of synchronisation. When the two modes are

detuned from one another, more complex phase dynamics become possible, and this

is what we explore in this chapter.

In the classical literature, the ‘robustness’ of synchronisation is often measured

by the ability of oscillators to lock in phase despite their natural frequencies being

different. Generally there exists a range of detunings for which the resultant fre-

quencies of the oscillators match, and that this resultant frequency lies somewhere

between the two undisturbed oscillator frequencies. Naturally, the quantum litera-

ture has attempted to recreate this using quantum oscillators. The behaviour is found

to be mostly the same [27] with a notable exception: one study of coupled van der

Pol oscillators revealed that, contrary to classical expectations, some detuning can

enhance synchronisation [43].

The equation of motion for the phase difference between two weakly coupled

classical oscillators, to first order, is [61]:

d∆φ(t)
dt

=−∆ν + ε f (∆φ(t)) (4.1)

where ∆φ(t) is the difference between the phases of two oscillators, ∆ν is the differ-

ence between their natural frequencies, ε is a constant proportional to their coupling

strength and f (∆φ(t)) is a time-dependent periodic function of ∆φ(t). Synchroni-

sation occurs for the stationary solutions of Equation 4.1, all of which fulfil the

condition:

∆ν < max |ε f (∆φ(t))| (4.2)

Therefore Equation 4.1 predicts synchronisation in the presence of non-equal fre-

quencies to occur at a constant non-zero phase. From here on we refer to this phase

difference as the synchronisation phase.
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Despite detuning being a well studied parameter for synchronisation and syn-

chronisation phase being predicted classically, the detailed phase dynamics of syn-

chronisation with detuning is not well explored in the quantum regime. One signif-

icant review of the literature states that measures need to be improved to account

for synchronisation without exactly positive or negative phase but does not formally

investigate it [24]. Synchronisation phase is described as ‘delayed synchronisation’

in Ref. [3] where it is noted to arise from detuning but again is not investigated in

depth. Analytic equations similar to the form of Equation 4.1 have been derived in

non-linear many-body quantum systems [86] and in exciton-polariton condensates

[89]. Synchronisation phase has been shown in linear quantum systems compara-

ble to bio-inspired vibronic dimers [48]. However they derive an analytic expres-

sion for the phase which unusually does not have any mode frequency dependence.

The question of whether detuning results in synchronisation phase in linear open

quantum systems such as the Exciton-Vibration Dimer with Markovian dissipation

remains unanswered.

This chapter is organised as follows: in Section 4.2.1 we introduce a modifica-

tion to the system Hamiltonian to accurately account for detuning; in Section 4.2.2

we present the results of detuning on synchronisation in the bio-inspired vibronic

dimer; in Section 4.2.3 we study an alternative model which exhibits a synchroni-

sation phase; in Section 4.2.4 we explain the mechanism for the observed synchro-

nisation phase; in Section 4.3.1 we introduce quantum correlation measures and in

Sections 4.3.2 and 4.3.3 we present a connection between synchronisation phase

and quantum correlations. Finally in Section 4.4 we summarise the results.
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4.2 Synchronisation in the Presence of Detuning

4.2.1 Reorganisation Energy Contributions to the Hamiltonian

In order to accurately account for the effects of different frequency modes on the

dynamics of the Exciton-Vibration Dimer, we must include reorganisation energy

contributions to the Hamiltonian [47, 64, 76]. In the following we derive these

changes.

The Hamiltonian for a two level electronic system, with intersite interaction

and where each site is locally coupled to a vibrational mode has the general form

[64]:

H =

(
e1 +

1
2

ω
2
1 (x̂1−d1)

2
)
|e1〉〈e1|

+

(
e2 +

1
2

ω
2
2 (x̂2−d2)

2
)
|e2〉〈e2|

+V (|e2〉〈e1|+ |e1〉〈e2|)

+
1
2

p̂2
1 +

1
2

p̂2
2

(4.3)

where e1 and e2 are the energies of the bare electronic states, x̂1 and p̂1 are the

position and momentum operators of mode 1 coupled to site 1, and d1 is the dis-

placement of the equilibrium position of mode 1 due to electronic state |e1〉. This

displacement is effectively the site-mode coupling strength. Expanding and rear-

ranging we have:

H =+

(
e1 +

1
2

ω
2
1 d2

1

)
|e1〉〈e1|+

(
e2 +

1
2

ω
2
2 d2

2

)
|e2〉〈e2|

+
1
2

ω
2
1 x̂2

1 +
1
2

p̂2
1 +

1
2

ω
2
2 x̂2

2 +
1
2

p̂2
2

−ω
2
1 x̂1d1|e1〉〈e1|−ω

2
2 x̂2d2|e2〉〈e2|

+V (|e2〉〈e1|+ |e1〉〈e2|)

(4.4)

Now we can define the reorganisation energy λi =
1
2ω2

i d2
i = ωiSi contribution of the

mode to the site energy, where Si is the Huang-Rhys factor which is experimentally

observable through measurements of the Stokes shift [47]. If ω1 = ω2 and d1 = d2
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the site energies are both shifted by the same amount and the reorganisation energy

has no affect on dynamics. Here however, we are interested in ω1 6= ω2 and the

reorganisation energy contributions to site energies cannot be discarded. Introduc-

ing the position and momentum operators in terms of the creation and annihilation

operators: x̂i =
1√
2

√
1
ωi

(
b†

i +bi

)
and p̂i =

i√
2

√
ωi

(
b†

i −bi

)
and substituting into

the previous expression, we obtain:

H =+(e1 +ω1S1) |e1〉〈e1|+(e2 +ω2S2) |e2〉〈e2|

+ω1

(
b†

1b1 +
1
2

)
+ω2

(
b†

2b2 +
1
2

)
−ω1

√
S1

(
b†

1 +b1

)
|e1〉〈e1|−ω2

√
S2

(
b†

2 +b2

)
|e2〉〈e2|

+V (|e2〉〈e1|+ |e1〉〈e2|)

(4.5)

which we then rotate into a new frequency-dependent exciton basis with ma-

trix U(θ̃(ω1,ω2)) where U is a rotation matrix of the form of Equation 2.5 and

θ̃(ω1,ω2) =
1
2 arctan

(
2|V |

(e2+ω2S2)−(e1+ω1S1)

)
. This results in a Hamiltonian:

H =+E1(ω1,ω2)|E1〉〈E1|+E2(ω1,ω2)|E2〉〈E2|

+ω1b†
1b1 +ω2b†

2b2

+ω1
√

S1Θ̃1X1 +ω2
√

S2Θ̃2X2

(4.6)

where we have shifted the ground state energies of mode 1 by ω1
2 and mode 2 by ω2

2 .

We define a new Θ̃ = U
(
θ̃(ω1,ω2)

)
|ei〉〈ei|U† (θ̃(ω1,ω2)

)
in the same way as in

Section 2.1.1. The exciton eigenenergies are now also mode frequency dependent:

E1(ω1,ω2) =
1
2

(
(e1 +ω1S1)+(e2 +ω2S2)−

√
∆e2(ω1,ω2)+4V 2

)
E2(ω1,ω2) =

1
2

(
(e1 +ω1S1)+(e2 +ω2S2)+

√
∆e2(ω1,ω2)+4V 2

) (4.7)

where ∆e(ω1,ω2) = (e2 +ω2S2)− (e1 +ω1S1). We note that for large detunings

this new formulation will have a significant effect on the coherent dynamics of the

dimer. The detunings considered in the following investigation are small enough
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for the effect to be subtle but it must still be included for more physically accurate

results.

4.2.2 Detuning in a Bio-Inspired Dimer

We define the detuning ∆ω = ω2/ω1 and choose to change the frequency of ω2

only. This choice allows us to fix the time window of the synchronisation measure

C〈X1〉,〈X2〉(t|∆t) as ∆t = 2π

ω1
whilst still probing detuning.

Using the initial state Equation 2.18 and system parameters from Table 2.1 we

show in Figure 4.1 the effects on the synchronisation measure C〈X1〉,〈X2〉(t) for two

different regimes of detuning, ∆ω = 1.002 and ∆ω = 1.02. These are chosen to

illustrate two distinct scenarios in synchronisation dynamics, namely synchronised

and not synchronised. These results are best understood by first reminding oneself

of the characterisation of the synchronisation function in Section 3.2.
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Figure 4.1: Synchronisation measure C〈X1〉,〈X2〉(t) of expectation
value of mode positions for two regimes of detuning:
∆ω = 1.002 where synchronisation occurs and ∆ω =
1.02 where it does not.

We find that for ∆ω = 1.02, the synchronisation measure C〈X1〉,〈X2〉(t) oscil-

lates, indicating the phase between the two oscillators is continuously changing, in

turn showing that the frequencies at which the observables 〈X1〉 and 〈X2〉 oscillate
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are different and have not synchronised. If we plot higher detunings (not shown) we

find that the frequency of these phase oscillations is correlated with the increased

detuning. This is what we would expect from classical dynamics of Equation 4.1.

The phase relationship ∆φ(t) outside the synchronisation region would change at a

rate proportional to their detuning d with periodic fluctuations from εq(∆φ(t)).

The case of small detuning tells a different story. The straight line for

∆ω = 1.002 in Figure 4.1 indicates that there is a constant, non-zero phase rela-

tionship between 〈X1〉 and 〈X2〉. Their frequencies have synchronised but they are

not perfectly aligned in phase. This result also agrees with the predictions of Equa-

tion 4.1 within the synchronisation region.

0 2 4 6 8 10 12 14
Time (ps)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
x 1

x 2

= 1.001
= 1.002
= 1.003
= 1.004
= 1.005

Figure 4.2: Synchronisation measure C〈X1〉,〈X2〉(t) of expectation
value of mode positions revealing synchronisation phase
as a function of detuning. Detuning parameters listed in-
figure.

To take a closer look at this relationship we calculate the synchronisation dy-

namics for a range of detunings. Investigating only the detunings for which a syn-

chronised state is reached i.e. a constant C〈X1〉,〈X2〉(t) value, we produce the results in

Figure 4.2. We see a clear negative relationship between the magnitude of detuning

and the stable value of C〈X1〉,〈X2〉(t) reached i.e. increasing detuning increases the

synchronisation phase, up to a breaking point where synchronisation is not reached.
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The overall dynamics of C〈X1〉,〈X2〉(t) for the detunings presented in this section

are similar to what would be expected in the classical case. There exists a window

of detunings within which synchronisation occurs and the time taken to reach a syn-

chronised state increases with detuning. The quantum mechanism for this observed

behaviour is explained fully in Section 4.2.4. In order to do so with clarity, we first

explore synchronisation phase as investigated in a different system [48] and analyse

its origins.

4.2.3 Militello et al. Case Study

The investigation by Militello et al. [48] demonstrates synchronisation phase in a

relaxing quantum system comparable to the Exciton-Vibration Dimer. In the fol-

lowing we aim to clarify that the origin of synchronisation phase they present is

distinct from the detuning mechanism presented in the previous section. Further-

more, the similarities between the quantum systems studied may provide insight

into the mechanism producing a synchronisation phase in the previous section.

Militello et al.’s model consists of a TLS and two QHOs with a Jaynes-

Cummings interaction Hamiltonian which, using the same notation as for the

Exciton-Vibration Dimer, has the form:

H =+ e1|e1〉〈e1|+ e2|e2〉〈e2|

+ω1b†
1b1 +ω2b†

2b2

+g1

(
eiφ1b1 + e−iφ1b†

1

)
σx +g2

(
eiφ2b2 + e−iφ2b†

2

)
σx

(4.8)

where σx = |e1〉〈e2|+ |e2〉〈e1| and φ1,2 are variables in the range 0 ≤ φ ≤ π that

control the coupling between the TLS and the QHOs. The electronic subsystem is

coupled to a zero-temperature reservoir the effects of which are modelled by the

master equation:

ρ̇(t) =−i[H,ρ(t)]+Dσ−[ρ(t)] (4.9)

where Dσ− is a Lindblad-type dissipator of the form described in Section 2.3.1 with

transition operator σ− = |e1〉〈e2| and rate Γσ− . The modes do not experience any

direct dissipation.
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A key finding of their work is that when synchronisation occurs, the constant

phase difference between the two mode oscillations φS is determined by the param-

eters φ1 and φ2 from their Hamiltonian:

φS = π− (φ1−φ2) (4.10)

This equation is derived by approximating the effects of dissipation on an initial

coherent state of the modes. We note how the synchronisation phase they predict

has no dependence on detuning. They investigate the synchronisation phase as a

function of variables φ1 and φ2 only. Here we show that we can sufficiently predict

the synchronisation phases of Equation 4.10 simply by analysing their Hamiltonian,

Equation 4.8. Furthermore we can do so without taking into account any detuning or

asymmetric coupling i.e. from the case of ω1 = ω2 and g1 = g2. This demonstrates

a clear distinction between Militello et al.’s analysis and the results of the previous

section.

Firstly, by fixing φ2 = 0 we can see that changing φ1 controls the form of

coupling between mode and electronic subsystems:

HI(φ1 = 0) =gσx (X2 +X1)

HI

(
φ1 =

1
4

π

)
=gσx

(
X2−

X1√
2
− P1√

2

)
HI

(
φ1 =

2
4

π

)
=gσx (X2 +P1)

HI

(
φ1 =

3
4

π

)
=gσx

(
X2 +

X1√
2
+

P1√
2

)
HI(φ1 = π) =gσx(X2−X1)

(4.11)

where P1 is the dimensionless momentum operator for mode 1. Evolution in each of

these scenarios would result in synchronisation of the mode observables 〈Xi〉 with

a different phase difference φS. As we know the only source of dissipation in their

model is the transition operator |e1〉〈e2| on the electronic subsystem, the dynamics

of the modes depend critically on which operators enter this interaction. In the case

of φ1 = 0 we can see that the sum of the mode position operators, also known as the
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collective ‘centre-of-mass’ mode X+ = X1 +X2 is directly coupled to the electronic

subsystem. In this case it is easy to see that the orthogonal ‘relative-displacement’

mode X−=X1−X2 is completely decoupled from the electronic system and is there-

fore free from dissipation. When evolving from an initial coherent state that con-

tains some amplitude in both these modes, the centre-of-mass mode would decay

rapidly and the relative-displacement mode would remain indefinitely. Survival of

only this collective mode would trivially appear as synchronisation with a constant

π phase between 〈X1〉 and 〈X2〉. Indeed Equation 4.10 predicts φS = π−(0−0)= π .
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Figure 4.3: Synchronisation measure C〈X1〉,〈X2〉(t) of expectation
value of mode positions for a different values of φ1 as
shown in Equation 4.11 for Militello et al.’s model. Ini-
tial state: ρ0 = |e1〉〈e1|⊗ρvacuum⊗ρcoherent . Parameters
∆e = e2− e1, ω = ∆e, g = ∆e, Γσ− = 0.2∆e [48].

The same logic can be applied to all the in-between phases. In each of the cases

there exists some collective mode orthogonal to the one entering the interaction

Hamiltonian. E.g. for φ1 =
2
4π the collective mode P2−X1 is decoupled from the

electronic subsystem and, as position and momentum have a phase difference of 1
2π

this is in agreement with the predictions of Equation 4.10: φS = π−
(2

4π−0
)
= 1

2π .

We reproduce their model and use the synchronisation function to measure the phase

dynamics of evolution under the five example interaction Hamiltonian phases and
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present in Figure 4.3. Using the characterisation of the synchronisation function

presented in Figure 3.1 we can see that our calculations predict exactly the phases

that Militello et al. predict.

4.2.3.1 Detuning in Militello et al.’s model

We have been able to reproduce the synchronisation phase dynamics demonstrated

in Militello et al’s study without allowing for any detuning. One question that re-

mains is whether their system can produce the synchronisation phase as a func-

tion of detuning that we demonstrated in the Exciton-Vibration Dimer. In order to

test this numerically we fix φ2 = 0 and φ1 = π and detune the mode frequencies

∆ω = ω2/ω1. In Figure 4.4 we show that we can produce a behaviour that closely

resembles that of Figure 4.1. This behaviour reveals that even under Militello et al’s

different interaction we still see the detuning and synchronisation phase effect. An
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Figure 4.4: Synchronisation measure C〈X1〉,〈X2〉(t) of expectation
value of mode positions for two regimes of detuning
in Militello et al.’s model: ∆ω = 1.2 where synchro-
nisation occurs and ∆ω = 1.35 where it does not. Ini-
tial state: ρ0 = |e1〉〈e1|⊗ρvacuum⊗ρcoherent . Parameters
∆e = e2− e1, ω = ∆e, g = ∆e, Γσ− = 0.2∆e [48].

important conclusion can be drawn from this result. Militello et al.’s model does

not account for reorganisational energy changes to the coupling strengths of modes
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or site energies when detuning mode frequencies, which we introduced to the dimer

model in Section 4.2.1. Despite this we still see the same effect of detuning cre-

ating a phase difference which suggests that reorganisation energy changes are not

the origin of the phase difference. Furthermore their model does not have any mode

frequency dependence in its interaction Hamiltonian. This suggests the origin is not

the interaction. To arrive at a satisfactory explanation for the origin of this phase

difference we compare the two models studied so far in the following section.

4.2.4 Origin of Synchronisation Phase with Detuning

To begin we expand the interaction Hamiltonian of our dimer model to include

sigma matrices for the exciton basis:

Θ1 =U(θ)|e1〉〈e1|U†(θ) =
1
2
(1− cos2θσz− sin2θσx) (4.12)

Θ2 =U(θ)|e2〉〈e2|U†(θ) =
1
2
(1+ cos2θσz + sin2θσx) (4.13)

where we used trigonometric identities: cos2 θ = 1+cos2θ

2 , sin2
θ = 1−cos2θ

2 and

sinθ cosθ = sin2θ

2 . This results in:

HI(dimer) = g(cos2θσz + sin2θσx)(X2−X1) (4.14)

where we have dropped the frequency dependence of the mode coupling strengths

and the excitonic operators for now. As θ is small for the parameters of the bio-

inspired dimer, this can be approximated as largely a σz interaction. Choosing φ1 =

π in Militello et al’s model — as this results in the positive synchronisation with no

detuning — we have:

HI(φ1 = π) = gσx(X2−X1) (4.15)

Comparing the two shows that the main difference is the electronic operator σx vs

σz. As mentioned above Militello et al.’s model does not account for frequency

dependence of the mode couplings and is still able to produce the synchronisation

phase when detuned therefore we can deduce that both a σx and σz coupling can pro-

duce the effect. Even though the Exciton-Vibration Dimer adaptation introduced in
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Section 4.2.1 has a HI that changes with detuning, it is clear that the main contribu-

tion to synchronisation phase does not arise from the interaction Hamiltonian alone,

unlike the effect presented in Militello et al.’s study.

This leads us to considering the change in the vibrational Hamiltonian —

which is identical in both models — and the resultant effect on the vibronic eigen-

states that are formed in the system. An in-depth analysis of the role of vibronic

eigenstates in synchronisation was discussed in Chapter 3 and so here we repeat

only the fundamental points and expand. Recall the equations of motion for each

mode’s average position:

〈X1〉= ∑
j,k

ρ jk(t)X1,k j

〈X2〉= ∑
j,k

ρ jk(t)X2,k j

(4.16)

where Xi,k j = 〈ψk|Xi|ψ j〉. When ω1 =ω2, the values of Xi,k j were restricted to either

equal or opposite upon switching of X i.e. each mode participated equally or oppo-

sitely in every vibronic coherence (see Table 3.1). As synchronisation is the result

of one vibronic coherence significantly out-living others, the resultant synchronisa-

tion phase was either 0
(
C〈X1〉,〈X2〉 = 1

)
or π

(
C〈X1〉,〈X2〉 =−1

)
depending on which

coherence(s) dominated. Breaking the symmetry of ω1 6= ω2 would lead to asym-

metric participation of each mode in the vibronic eigenstates. In the far detuning

extreme, one mode may be so far off-resonance with the system energy scales that

it does not participate in system dynamics at all and synchronisation cannot occur.

In the smaller detuning regime the eigenstates that are formed are not restricted to

symmetric and anti-symmetric values in X1, jk and X2, jk and will instead have a range

of amplitudes. The time dependent parts of Equation 4.16 remain equal for 〈X1〉 and

〈X2〉 but the weights of each oscillating component changes. Within the region of

synchronisation, these amplitude differences are small and manifest as a constant

phase difference between the oscillations of each 〈Xi〉. This can be seen clearly by

expressing each amplitude as an exponential: Xi,k j = eκi,k j . When an amplitude is

negative, κ is a complex number and contributes a phase to the signal. Outside the
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region of synchronisation, these differences are large, the signals are composed of

different frequencies and have an unstable phase difference.



4.3. Quantum Correlations 70

4.3 Quantum Correlations

One of our aims in investigating synchronisation in the quantum regime is to high-

light any uniquely quantum properties of the phenomena. In the previous chapter

we presented a fully quantum mechanism for synchronisation, as measured by the

correlation function C〈X1〉,〈X2〉(t). We connected synchronisation to the interferences

between quantum coherences, a subset of which contributed a relative-displacement

collective motion to the dynamics and were also connected with increased magni-

tude of ET. This relative-displacement mode has previously been identified as ex-

hibiting non-classical thermal fluctuations during ET [58]. Together this provides

a good foundation of evidence of the quantum nature of synchronisation in these

complexes. However, in an effort to quantify how ‘quantum’ this synchronisation

is, in the following sections we investigate the dynamics of quantum correlations

between the synchronising subsystems.

The quantum mutual information quantifies the total correlation between two

subsystems and the quantum discord quantifies how much of this correlation is

purely quantum. The quantitative relations between quantum synchronisation and

quantum discord have been previously investigated. In the first study of sponta-

neous quantum synchronisation [25] the emergence of synchronisation was corre-

lated with preservation of quantum discord. Since then it has been investigated in a

range of quantum synchronisation settings [1, 3, 23, 25, 27, 44, 45, 86, 91]. Later

it was shown that synchronisation is correlated with the generation of entanglement

from an initially unentangled state [3]. Quantum mutual information has even been

proposed as a measure of synchronisation that is capable of being used in both deep

quantum and semi-classical regimes [1].

In the following we add evidence to the connection between synchronisation

and quantum correlations. The detailed phase information provided by our adapted

synchronisation measure introduced in Chapter 3, combined with the quantum cor-

relation measures introduced in the next section, provides us with a unique per-

spective from which to relate the two properties. Specifically, we reveal that the

synchronisation phase of the previous section indicates a change in magnitude of
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quantum discord between the synchronising subsystems. This is of interest as it is

evidence that our adapted synchronisation measure may be used to quantify a purely

quantum feature.

4.3.1 Quantum Correlation Measures

The quantum mutual information I(A : B) is a measure of the total correlations

between two subsystems A and B of a larger quantum system AB [49] and is defined

as:

I(A : B) = S(ρA)+S(ρB)−S(ρAB) (4.17)

where S(ρ) =−Tr{ρlogρ} is the von Neumann entropy and density matrices ρA =

TrB {ρAB}, ρB = TrA {ρAB} are subsystems of ρAB. We want to know how much of

this shared information is classical and how much is quantum. An efficient way

to achieve this starts by evaluating the classical information one subsystem has of

the other [30]. This method calculates the difference in von Neumann entropy of a

subsystem before and after a measurement is acted on the other subsystem:

J(B|A) = max
A†

i Ai

{
S(ρB)−∑

i
piS(ρ i

B)

}
(4.18)

where

ρ
i
B =

TrA

{
A†

i AiρAB

}
TrAB

{
A†

i AiρAB

} (4.19)

is the residual state of B after measurement of A†
i Ai — which are positive operator

valued measurements (POVM) — on subsystem A and pi is the probability of this

outcome. The measurements A†
i Ai are generated in a random order and continue

until the sum of 4.18 satisfactorily converges on its maximum. Note that this equa-

tion would be different for the classical correlations from subsystem A to B, which

we would label J(A|B).

The remaining portion of the mutual information that is not classical must be
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quantum [55]. The simplest way of evaluating this computationally is:

D(B|A) = I(A : B)− J(B|A) (4.20)

where D(B|A) is called the quantum discord.

4.3.2 Synchronisation and Quantum Correlations

Using Equations 4.18, 4.17 and 4.20 to calculate the quantum correlations between

mode subspaces is relatively straightforward. By reminding ourselves of the struc-

ture of our dimer model in Section 2.1.1 we can see that density matrices for the

subsystems are easily accessible. Intuitively we would expect some mutual infor-

mation between modes to be maintained in a synchronised state as, if they were

completely uncorrelated, then they should oscillate at independent frequencies and

phases. Indeed from the analysis of Chapter 3 we know that, in the systems con-

sidered, synchronisation requires vibronic eigenstates with sufficient participation

from both modes. We also postulate that these quantum correlations would not per-

sist in the long-time limit if synchronisation is not achieved. The detuning scenarios

introduced in the first half of this chapter provide the ideal regime to test this.

Figure 4.5 shows numerical calculations of the mutual information, quan-

tum discord and classical information between the two intramolecular modes with

PE545 parameters and for two different scenarios: Figure 4.5a shows a detuning

of ∆ω = 1.002 in which synchronisation occurs and in Figure 4.5b a detuning of

∆ω = 1.02 in which synchronisation does not occur.

Firstly we notice a sharp increase in all correlations from uncorrelated initial

state at 0 ps to a peak at around 0.4 ps. This is significant as we can state that the

correlations do not originate from the initial state and are generated by the coherent

interactions in our system. The peak at 0.4 ps exactly coincides with the coher-

ent ET period that is characteristic of the dynamics in these bio-inspired vibronic

dimers (see Figure 3.13b). We know the ET mechanism involves transitions be-

tween vibronic eigenstates which involve both modes, therefore it makes sense that

the quantum correlations between the modes peak here too.
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Figure 4.5: Dynamics of quantum mutual information, quantum dis-
cord and classical information between mode subsys-
tems in the Exciton-Vibration Dimer model with PE545
parameters (Table 2.1) and initial state Equation 2.18
for two detuning scenarios (a) where synchronisation is
achieved ∆ω = 1.002 and (b) where it is not ∆ω = 1.02.

Secondly we note the decay in correlations from 0.4 ps onward. This behaviour

is due to the decay of coherent dynamics and the dominance of incoherent pro-
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cesses. In the synchronising case of Figure 4.5a we see that the modes remain

significantly correlated in the long time limit whereas in Figure 4.5b we see that

correlations decay rapidly to a much lower value. This clear correlation between

synchronisation and the preservation of quantum correlations is in agreement with

previous findings.

Thirdly we note that in the synchronising case the majority fraction of the

mutual information is quantum, as characterised by the quantum discord. In the

non-synchronising case however, we see that there exists a time period within which

classical information is greater than quantum discord. This leads us to hypothesise a

novel connection between synchronisation and quantum correlations: for quantum

synchronisation to occur, the quantum discord must always be greater than classical

information, whereas for non-synchronising cases there may exist periods where

the greater fraction of correlations are classical.

So far we have considered only the cases of synchronising and non-

synchronising. Next we turn our attention to the in-between detuning regime that

exhibits a synchronisation phase as found in the first half of this chapter. We mea-

sure the long-time stable value of quantum discord for a range of detuning regimes

that exhibit a synchronisation phase. Figure 4.6 presents the long-time constant

C〈X1〉,〈X2〉(t) value against the long-time stable quantum discord value (normalised

to discord at no detuning) for two coherent regimes of our dimer model. The blue

line is for the standard PE545 parameters and detunings from Figure 4.2, whereas

the orange line is for the modified η = 0.5 regime from Section 3.5. This graph

reveals that a larger synchronisation phase as measured by C〈X1〉,〈X2〉(t) indicates

weaker quantum correlations between the modes. This is significant as we have

given evidence that our modified synchronisation measure is able to infer a change

in quantum discord between subsystems. Before further discussing the implications

of this connection we show a similar behaviour in the model of Militello et al.

introduced above.
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Figure 4.6: Long-time stable value of quantum discord between
mode subsystems plotted against long-time stable value
of synchronisation measure C〈X1〉,〈X2〉(t) of expectation
value of mode positions. Each data point corresponds to
a value of detuning and quantum discord is normalised
to 1 for zero detuning. Two parameter regimes of the
Exciton-Vibration Dimer are shown: standard param-
eters for PE545 (Table 2.1) and modified parameters
η = 0.5 from Section 3.5. Linear regressions are plotted
using standard methods to emphasise the relationship.

4.3.3 Quantum Correlations in Militello et al.’s Model

In the following we measure the quantum correlations between modes synchro-

nising with a constant phase as produced by Militello et al.’s original interaction

Hamiltonian changes. We previously showed the phases produced to be different

from the effects we see with detuning. As the changes in φ1 and φ2 only change the

mode observables and not the coupling strengths or frequencies of the modes, we

expect that there will be no change in the quantum correlations between modes for

all values of φ1.

In Figure 4.7 we plot the long-time stable values of mutual information, clas-

sical information and quantum discord for a range of φ1 alongside the long-time

stable value of C〈X1〉,〈X2〉(t) which indicates the phase. Indeed we find that the long

time correlations are unchanged by the phase introduced by the interaction Hamil-
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tonian. The C〈X1〉,〈X2〉(t) dynamics presented as a function of φ1 is exactly what we

would expect from two sine waves with a constant phase shift between, as can be

seen in the characterisation of our synchronisation function presented in Figure 3.1.
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Figure 4.7: Long-time limit stable values of quantum mutual infor-
mation, quantum discord and classical information be-
tween mode subsystems and long-time limit stable value
of synchronisation function C〈X1〉,〈X2〉(t) of expectation
values of mode positions. Both calculated as a function
of φ1 in Militello et al.’s interaction Hamiltonian (Equa-
tion 4.11) [48].

Finally we investigate the presence of synchronisation and quantum correla-

tions in Militello et al’s model for synchronising and non-synchronising regimes.

We produce Figure 4.8 which is of the same form as Figure 4.5. We find the same

qualitative relationship as in Exciton-Vibration Dimer model with detuning. It adds

further evidence to our hypothesis that for a synchronising case the quantum discord

is always larger than the classical information, whereas in the non-synchronising

case classical information can, for some time periods, outweigh quantum discord.
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Figure 4.8: Dynamics of quantum mutual information, quantum dis-
cord and classical information between mode subsys-
tems in Militello et al.’s model for two detuning sce-
narios: (a) where synchronisation is achieved ∆ω = 1
and (b) where it is not ∆ω = 1.35. Initial state: ρ0 =
|e1〉〈e1| ⊗ ρvacuum⊗ ρcoherent . Parameters ∆e = e2− e1,
ω = ∆e, g = ∆e, Γσ− = 0.2∆e [48].
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4.4 Summary and Discussion

In this chapter we investigated the dynamics of synchronisation as a function of

detuning in a bio-inspired vibronic dimer with Markovian dissipation and explored

what forms of information about the synchronising subsystems can be captured by

our synchronisation measure.

Firstly, we revealed that in the natural parameter regime synchronisation can

occur with some detuning but with a constant phase difference in the synchronised

state (which we call synchronisation phase). We showed that the origin of this

synchronisation phase can be traced back to the vibrational Hamiltonian and the

asymmetric participation of modes in vibronic eigenstates. We explained how the

asymmetric coupling of vibronic eigenstates to local position operators introduced

a phase between the expectation value of operators. We showed that the origin

of synchronisation phase presented in an alternate model is different to what we

observe, but also that the synchronisation phase as a function of detuning can be

reproduced there. This suggests that the mechanism for synchronisation phase is a

more general feature of synchronising quantum systems.

Secondly, we explored the relationship between synchronisation and quantum

correlations. We showed that in the synchronising cases studied, the shared infor-

mation between synchronising subsystems always has a majority share of quantum

discord, whereas in the non-synchronising cases classical information is, at times,

greater than the quantum discord. This is further evidence of the quantum nature of

the synchronisation mechanism presented in this thesis. Furthermore we presented

a novel connection between synchronisation phase and the degree of quantum corre-

lations between synchronising subsystems. Quantum discord between synchronis-

ing subsystems decreases linearly as the synchronisation measure decreases from

1. This final result is worth emphasising. This effect is observable because of the

adapted synchronisation measure we introduced in Chapter 3. The results here sug-

gest that this measure is capable of capturing information about a purely quantum

property of synchronising subsystems. This adds motivation to the use of synchro-

nisation as a tool for exploring the quantum properties of a range of systems.
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Generally in photosynthetic pigment-protein complexes there are multiple

other quasi-coherent intramolecular modes that have different frequencies and cou-

pling strengths to the system [18, 53]. Whilst many of these will be off-resonant

with the system energy scales, there may be some that are harmonically resonant

i.e. an integer multiple of the main frequency. These modes may participate in

eigenstates and may be capable of exhibiting a form of synchronisation. This ques-

tion is reserved for future work.



Chapter 5

Synchronisation Dynamics under

non-Markovian Decoherence Effects

In this chapter we explore the effects of a non-Markovian environment on the dy-

namics of synchronisation of molecular motions in a bio-inspired exciton-vibration

dimer. We reveal that the non-Markovian behaviour of the environment can have

a positive or negative impact on synchronisation times depending on the system-

environment coupling. Under moderate system-environment coupling, the time

taken for synchronisation to emerge is positively correlated with the relaxation rate

of the environment. However, under weak system-environment coupling, slow re-

laxation can have a stabilising effect on synchronisation. We propose a mechanism

for the detrimental effects of a slowly relaxing environment on synchronisation by

considering an effective mode representation of the environment and its effects on

ET, which has been previously connected with synchronisation. Finally, we show

that the synchronisation phase can be reproduced and is negatively correlated with

the environment relaxation rate.
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5.1 Introduction

So far we have seen that the form of dissipation in synchronising quantum systems

is critical to the emergence of synchronisation. A natural question therefore is what

effects would a non-Markovian environment and its associated complex decoher-

ence processes have on the dynamics of synchronisation? As far as we are aware,

this is unexplored in the quantum synchronisation literature.

For the majority of this thesis we have defined the combined TLS and modes

(Exciton-Vibration Dimer) as our system of interest, allowing us to solve the joint

electronic-vibrational dynamics and to develop a deep understanding the role of

exciton-vibration coherence in the synchronisation process. We treated the environ-

ment as a perturbation to the system dynamics in the Markovian master equation

(Equation 2.23). While this approach allowed us to capture the importance of de-

coherence in achieving synchronisation, it did not capture the full quantitative and

qualitative influence of the thermal environments for the systems of interest. In re-

cent years considerable effort has been put into deriving methods that are able to

extend to arbitrarily strong system-environment couplings and to treat the system-

environment interactions exactly [16].

One approach that is commonly used for solving excitation transfer dynam-

ics in photosynthetic pigment-protein complexes is the Hierarchical Equations of

Motion (HEOM) [80]. It is particularly useful as it can capture the effects of a reor-

ganisation process of a complex solvent environment and is valid in the full range

of system-environment coupling strengths [35, 78, 79].

There have been many studies which analyse the role of complex environments

on a TLS. A common approach is to re-cast the bath into an effective single mode

[34] or chain of modes [9, 8, 12, 32, 46, 62, 88]. The single mode picture allows the

non-Markovianity of the environment to be included in a new larger system which

then evolves under a modified Markovian master equation [34]. The chain modes

picture allows efficient numerical techniques such as the time-adaptive Density Ma-

trix Renormalisation Group to be applied [62]. By representing the environment as

effective modes one can apply knowledge of interacting QHOs to gain a physical
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insight into the effects on the system dynamics. Other methods such as the varia-

tional polaron approach have explained how system parameters such as the inter-site

coupling are rescaled due to coupling to a bath [73] therefore altering the coherent

dynamics.

In this chapter we use the HEOM method to explore the dynamics of syn-

chronisation in a bio-inspired vibronic dimer. However, to provide physical insight

we make use of a mapping of the environment as a chain of effective modes when

interpreting the results.

The chapter is organised as follows: in Section 5.2.1 we introduce a description

of environments with spectral density and correlation functions; in Section 5.2.2 we

introduce the HEOM method for solving system dynamics; in Section 5.2.3 we

show how environment correlations can be extracted from HEOM; in Section 5.2.4

we describe a representation of the Exciton-Vibration Dimer in non-Markovian en-

vironments; and in Section 5.2.5 we explain how we solve the HEOM numerically.

The remaining sections are results: in Section 5.3.1 we report the effects of non-

Markovian environments on the short time dynamics of synchronisation; in Section

5.3.2 we connect these synchronisation dynamics to the dynamics of the collective

bath mode and ET; in Section 5.3.3 we show how the effects of the non-Markovian

environment can be understood qualitatively with the use of an effective modes

representation; in Section 5.3.4 we explore the effects of a non-Markovian environ-

ment on synchronisation phase as reported in Chapter 4. Finally in Section 5.4 we

summarise and discuss.
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5.2 Theoretical Formulation

5.2.1 Environment Correlation Function and Spectral Density

In the master equation formalism described in Section 2.3.1 the precise form of the

environment HE and its interactions with the system of interest HI (see Equation

2.21) were not explicitly stated. Instead we constructed Lindblad-form dissipators

which can phenomenologically describe a variety of environment effects. Here we

describe a correlation-function approach which describes more complex structured

environments.

The influence of a general environment on the system can be represented by

a correlation function of the form: C j j(t + ∆t) = 〈E j(t + ∆t)E j(t)〉 where E j is

the environment operator coupled to system operator S j. Assuming linear system-

environment coupling and a general bosonic environment the interaction Hamilto-

nian takes the form: HI = ∑ j S j ⊗∑ jq g jq

(
b jq +b†

jq

)
where S j is an operator of

the electronic system, E j = ∑ jq g jq

(
b jq +b†

jq

)
is the environment operator, and(

b jq +b†
jq

)
is the position operator of the local harmonic mode q. For this interac-

tion the correlation functions take a well-known form [47]:

C(t) =∑
q

g2
q
(
(1+B)eiωqt +Be−iωqt)

=
1
π

∫
∞

0
dωJ(ω)

(
coth

ω

2kBT
cosωt− isinωt

) (5.1)

where B is the mean number of quanta in a thermally occupied mode (as specified

in Section 2.3.3) and the function J(ω) is known as the spectral density which cap-

tures the coupling strength gq of a continuum of environment QHOs of different

frequencies ωq to the system of interest and in general can be represented mathe-

matically as J(ω) = π ∑q g2
qδ (ω−ωq). We have suppressed subscripts j j here (and

from here on) as we only consider identical, local and uncorrelated environments

coupled to system operators S j.

In the context of bio-inspired vibronic dimers as described so far, an accurate

environment is well captured by a combination of spectral densities of different

forms. The effects of damped motions of the solvent and protein scaffold are often
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represented by a power law rise in coupling strength followed by a decay after a cut-

off frequency [51], however the most appropriate form of this cut-off still debated

[38]. Here we choose a Drude-Lorentz cut-off to form the spectral density for its

wide use in bio-inspired ET calculations [35, 77, 79]:

JD(ω) = 2λDω
γD

ω2 + γ2
D

(5.2)

where λD is the reorganisation energy of the environment, γD is the cut-off fre-

quency and we restrict to ω > 0. From here on we refer to this type of environment

as a Drude bath.

This broad continuum of frequencies is often combined with narrow peaks to

more accurately represent a bio-inspired environment. These narrow peaks repre-

sent strongly-coupled intramolecular motions of the chromophores and their prop-

erties can be determined from fluorescence spectroscopy [15, 60, 85]. These have

spectral densities of the form:

Jq(ω) = 2λqω
2
q

γqω(
ω2−ω2

q
)2

+ γ2
q ω2

(5.3)

where mode q has frequency ωq, reorganisation energy λq, and is underdamped at

rate γq, and again we restrict to ω > 0.

The associated correlation functions for these spectral densities can be expo-

nentially expanded. For the Drude bath this has the form:

CD(t) = c(0)D e−γDt +
∞

∑
m=1

c(m)
D e−vmt (5.4)

where c(0)D = γDλD

(
cot γD

2kBT − i
)

and cm
D = 4kBT λDγDvm

v2
m−γ2

D
and Matsubara frequencies

are vm = 2πkBT m. For the underdamped modes it has the form:

Cq(t) = c+q e−v+q t + c−q e−v−q t +
∞

∑
m=1

c(m)
q e−vmt (5.5)

where c±q = ±i
λqω2

q

2
√

ω2
q−γ2

q/4

(
cot

v±q
2kBT − i

)
and c(m)

q =
−4kBT λqγqω2

q vm

(ω2
q+v2

m)
2−γ2

q v2
m

and v±q =
γq
2 ±
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i
√

ω2
q − γ2

q/4.

We note that the dominant exponential in the expansion of the correlation func-

tion for a Drude bath has exponent −γDt. This means that the inverse of the cut-off

frequency characterises the main timescale of dissipation of the environment reor-

ganisation energy, in other words, the relaxation rate of the bath. This is a useful

parameter for exploring non-Markovianity as it effectively determines the timescale

in which non-Markovian effects can take place. Shorter relaxation times are closer

to a memory-less Markovian approximation.

5.2.2 Hierarchical Equations of Motion for Open Quantum Sys-

tems Dynamics

The Hierarchical Equations of Motion (HEOM) method for calculating the dynam-

ics of a reduced system makes use of the exponential form of environment cor-

relation functions introduced above. It is formed of a set of coupled differential

equations each of which tracks part of the system-environment interaction. The

solutions of the equations are often presented as an interconnected pyramid of aux-

iliary density matrices (ADOs), where the system density matrix is at the top and

descending down the pyramid contains contributions from system-environment in-

teractions of increasing order. The derivation, based on path-integrals, is given fully

elsewhere [35, 77, 79] and here we present and explain the general form:

σ̇n(t) =−i[HS,σn(t)]−∑
jk

n jkv jkσn(t)

−i∑
jk

(
S jσn+jk

(t)−σn+jk
(t)S†

j

)
−i∑

jk
n jk

(
c jkS jσn−jk

(t)−σn−jk
(t)c∗jkS†

j

) (5.6)

where S j is the system operator that couples the system to the environment in HI ,

where v jk are the exponents and c jk are the amplitudes of each exponential in the

expansion of the environment correlation functions (Equation 5.4 and 5.5). The

multi-index n is a vector of length j× k that records an order value for each jk ele-

ment and is used to label each auxiliary density matrix in the hierarchy. For example
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if we consider two environments j = {1,2} that both require two exponential terms

k = {1,2}, the vector n then has 4 elements corresponding to (n11,n12,n21,n22)

which each take an integer value corresponding to the order that each exponential is

taken to. The notation σn±jk
refers to an auxiliary matrix where one vector element

n jk differs by ±1 from the element in n from σn.

We can dissect Equation 5.6 into its contributions from different levels of the

hierarchy. For any ADO, the dynamics can be broken down into the following

contributions: the first line is the action of the system Hamiltonian plus exponen-

tial decays due to the environment character; the second line is contributions from

higher order matrices in the hierarchy and the third line is contributions from lower

order matrices. This equation produces a complex inter-connected set of equations

of motion that must all be solved in parallel. The HEOM can be organised by group-

ing the auxiliary matrices by their tier value: Tn = ∑ jk n jk. These ‘tiers’ represent

corrections in the system-environment coupling to the order of at least 2Tn. Using

the example environments given above we notate each density matrix as σ
n11n12
n21n22 . In

this example first three tiers of the hierarchy would look like:

Tn = 0 =⇒ σ
00
00 ,

Tn = 1 =⇒ σ
00
10 σ

00
01 σ

10
00 σ

01
00 ,

Tn = 2 =⇒ σ
00
20 σ

00
11 σ

00
02 σ

10
10 σ

01
01 σ

01
10 σ

10
01 σ

20
00 σ

11
00 σ

02
00

(5.7)

5.2.3 Environment Observables within HEOM

Previous works have shown that the first tier of the ADOs in the HEOM contains

information on the system-environment correlations [37, 41, 69, 92]. The origi-

nal derivation extracted the expectation value of the general environment operator

[37] but more recently the extraction of contributions from individual environment

components was detailed [69]. This is derived in the following.

The equation of motion for the system can be derived by tracing out the envi-
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ronment from a global state ρG and its Hamiltonian HG:

ρ̇S(t) =TrE {−i[HG,ρG]}

=− i[HS,ρS]− iTrE [HI,ρG]

=− i[HS,ρS]− i∑
j
[S j,TrE{E jρG}]

(5.8)

Since ρG here is a density operator defined in the full Hilbert space, the partial trace

TrE{E jρG} returns an operator on the system Hilbert space. An equation for the

system can also be determined from the HEOM at zeroth order. From Equation 5.6

we have:

ρ̇S(t) = σ̇
00
00 (t) =−i[HS,σ

00
00 ]− i∑

jk

[
S j,σn(Tn = 1)

]
(5.9)

where σn(Tn = 1) restricts the sum to only the first tier of ADOs. Comparing the

two equations we can find that:

∑
j

TrE{E jρG}= ∑
jk

σn(Tn = 1) (5.10)

which shows that information about the environment operator is contained in the

first tier of ADOs. As the expected value of the environment operator E j coupled

to the system is given by: 〈E j〉= TrS
{

TrE
{

E jρG
}}

we must trace out the system

from the ADOs. For the environments considered we defined E j = g j

(
b j +b†

j

)
=

g jX j meaning that this extracted environment operator is proportional to the position

operator, which is what we want to study in synchronisation. Thus we can arrive at

equations for the expectation values of position operators which are comparable to

those used in previous chapters. Furthermore by careful ordering of the exponen-

tial terms in C(t) that enter the HEOM we can extract the ADO that contains the

contribution from a specific sub-environment.
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5.2.4 Representing the Exciton-Vibration Dimer

VΔe

|e1⟩

|e2⟩
TLS

JD(ω)

Jq(ω)

JD(ω)

Jq(ω)

Figure 5.1: Schematic illustration of a bio-inspired vibronic dimer
coupled to non-Markovian environments. Each site
|ei〉 is coupled to an environment described by a broad
Drude-Lorentz spectral density JD(ω) and a narrow
peaked spectral density Jq(ω).

We aim to construct a HEOM that represents the exciton-vibration dimer stud-

ied throughout this thesis. As shown in the previous section it is possible to extract

environment observables from the HEOM. This eliminates the need to include the

synchronising modes in our system of interest and drastically reduces computation

time (see Section 5.2.5). We consider separate environments on each site of our

system, each having a spectral density that is a combination of a Drude bath and a

single underdamped intramolecular mode:

C(t) = c(0)D e−γDt +∑
m

c(m)
D e−vmt + c+q e−v+q t + c−q e−v−q t +∑

m′
c(m

′)
q e−vm′ t (5.11)

where m and m′ are the counters for Matsubara terms in the Drude bath and under-

damped mode spectral densities respectively.
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We can extract the desired environment observables by using Equation 5.10:

〈X1〉=TrS

{
σ1kq+

+σ1kq−
+∑

m′
σ1km′

}

〈X2〉=TrS

{
σ2kq+

+σ2kq−
+∑

m′
σ2km′

} (5.12)

where we have labelled the ADOs with the exponential terms from our specific

environment correlation function (Equation 5.11). We are also interested in the

position of the collective coordinate of the Drude bath:

〈XD2〉= TrS

{
σ2kD +∑

m
σ2km

}
(5.13)

The parameter regime we investigate is inspired by the central dimer PEB50/61

of pigment-protein complex PE545 which is introduced in Section 2.1.4. Here

we repeat the important values for reference: inter-site energy splitting ∆e =

1042 cm−1; inter-site coupling V = 92 cm−1; mode energies initially set equal at

ω2 = ω1 = 1111 cm−1 where reorganisation energies λ1 = λ2 = ω1S1 = 64 cm−1

(see Section 4.2.1); we consider identical Drude bath environments on each site

with reorganisation energy λD = 110 cm−1 [57] and cut-off frequencies γD =100

cm−1 = [0.053 ps]−1. These parameters correspond to a low temperature regime

i.e. the important energy scales are larger than the thermal temperature ∆e
kBT ≈ 5 and

ω

kBT ≈ 5. This has implications for the numerical implementation which we discuss

in the next section. We fix our initial state of the system as the higher energy ex-

citon state and the environments at equilibrium with the system in its ground state.

This choice is equivalent to the initial state of previous chapters which we justi-

fied in Section 2.1.3 and it allows us to compare results between Markovian and

non-Markovian regimes.
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5.2.5 Numerical Implementation

In the following we give an example to unpack the form of Equation 5.6 and explain

how this can be calculated. Choosing σ00
10 as an example ADO we can see how

Equation 5.6 works:

σ̇
00
10 (t) =−i[HS,σ

00
10 (t)]− ((0)v11 +(0)v12 +(1)v21 +(0)v22)σ

00
10

−i
(
S1σ

10
10 +S1σ

01
10 +S2σ

00
20 +S2σ

00
11
)

+i
(

σ
10
10 S†

1 +σ
01
10 S†

1 +σ
00
20 S†

2 +σ
00
11 S†

2

)
−i
(
(0)c11S1σ

00
10 +(0)c12S1σ

00
10 +(1)c21S1σ

00
00 +(0)c22S1σ

00
10
)

+i
(

σ
00
10 (0)c

∗
11S†

1 +σ
00
10 (0)c

∗
12S†

1 +σ
00
00 (1)c

∗
21S†

1 +σ
00
10 (0)c

∗
22S†

1

)
(5.14)

which, noting the n jk elements that are zero, can be reduced to:

σ̇
00
10 (t) =−i[HS,σ

00
10 (t)]− v21σ

00
10

−i
(
S1σ

10
10 +S1σ

01
10 +S2σ

00
20 +S2σ

00
11
)

+i
(

σ
10
10 S†

1 +σ
01
10 S†

1 +σ
00
20 S†

2 +σ
00
11 S†

2

)
−i
(

c21S1σ
00
00 −σ

00
00 c∗21S†

1

)
(5.15)

We note that each ADO has dimensions equal to that of the system. Numerical

implementation of the HEOM requires construction of all the ADO equations of

motion and simultaneously solving. The inclusion of a large number tiers is desir-

able for accuracy but rapidly becomes computationally intractable. It is therefore

desirable to use the smallest necessary system size, the minimum number of ex-

ponential terms in the correlation function expansion of the environments and the

minimum number of tiers the HEOM is calculated to, whilst maintaining accuracy.

Treating the underdamped modes as part of the environment allowed us to keep

the system size small and computationally accessible whilst maintaining access to

the desired environment information. A reduction can be made in the number of

exponential terms in each environment by combining the Matsubara terms of the

Drude bath and underdamped mode [79]. This provides a computational benefit but
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also means that the contributions from Matsubara terms in Equations 5.12 and 5.13

are all contained in one term and cannot be separated as we have shown. However,

in the parameter regimes we explore we find that the contributions from each Mat-

subara term are negligible in comparison to the other terms in Equations 5.12 and

5.13. In this case we may discard the Matsubara terms in the calculation of envi-

ronment observables, allowing their combination in the correlation functions and

providing a computational speed up whilst maintaining accuracy. We emphasise

that this does not affect the Matsubara term contributions to the dynamics of the

system or other ADOs.

The numerical implementation we use here makes use of two convergence im-

provements for the number of tiers required: firstly a rescaling of all density matri-

ces is implemented such that the higher tier matrices become vanishingly small and

enable earlier truncation [72]; and secondly a Markovian truncation which replaces

correlation functions in the penultimate tier with delta functions [36]. The latter is

particularly useful for accuracy in low temperature regimes, where the characteris-

tic energy scales of the system are larger than the environment temperature which

we have in the case studied in this thesis. The code used to solve the HEOM was

originally written by Richard Stones in Python 3 and is adapted by the author of this

work.
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5.3 Results
In the following sections we numerically explore the dynamics of synchronisa-

tion of intramolecular mode displacements during the ET process of the exciton-

vibration dimer in the presence of non-Markovian decoherence processes.

We vary the system-bath interaction via the reorganisation energy λD and cut-

off frequency γD whilst keeping all other parameters constant. λD and γD alter

the shape of the bath spectral density and therefore the correlation function that

enters the HEOM. We select two reorganisation energy regimes: the first represents

moderate system-bath coupling where λD = 110 cm−1 is comparable to inter-site

coupling of the dimer V = 92 cm−1 and mode reorganisation energy λq = 64 cm−1

and the second representing weak system-bath coupling where λD = 11 cm−1 <

λq < V . In both these regimes we then vary the relaxation time of the Drude bath

with the cut-off frequency: γD =100 cm−1 = [0.053 ps]−1, γD =400 cm−1 = [0.013

ps]−1 and γD =1600 cm−1 = [0.003 ps]−1.

We expect the dynamics of synchronisation and ET to be different to the

Markovian case for two main reasons. Firstly, we recall from the results of Chapter

3 that the emergence of synchronisation depends on a separation of timescales of

electronic and vibrational coherence. Coupling the system to a non-Markovian bath

introduces a complex multi-exponential decoherence process which may disrupt the

balance necessary for synchronisation. Secondly, these processes may also inhibit

the ET mechanism, which, also from the results of Chapter 3 we know would inhibit

synchronisation.
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5.3.1 Effects of non-Markovian Environments on Synchronisa-

tion Dynamics
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Figure 5.2: Expectation value of mode positions and their synchro-
nisation C〈X1〉〈X2〉(t) for the bio-inspired dimer with non-
Markovian environments as described in Section 5.2.4.

Using the parameters specified in Section 5.2.4, we calculate the dynamics of

synchronisation and display our results in Figure 5.2. We observe that positive syn-

chronisation is still achieved but its emergence is delayed until around 8 ps. We find

the characteristic negative synchronisation dip that we showed to be concomitant

with coherent energy transfer and vibronic coherence involving the two excitons as

discussed in Chapter 3. This suggests that the same ET mechanism is still present.

Figure 5.3a displays the synchronisation dynamics for the three values of γD

and the same reorganisation energy as Figure 5.2. We observe that the dynamics

follow the same profile but synchronisation is reached within a shorter timescale

for faster bath relaxation. For faster relaxation the dynamics approach that of the

Markovian regime of Figure 3.6 which is expected. This behaviour suggests that

slow relaxation of the bath is detrimental to synchronisation time. However, the

picture for λD = 11 cm−1 in Figure 5.3b reveals that under weak system-bath cou-

pling slower bath relaxation can be beneficial for synchronisation. For fast bath
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relaxation
(
γD = 1600 cm−1) the synchronisation measure oscillates in a pattern

reminiscent of the purely coherent vibronic dimer of Figure 3.3 and does not reach

a stable phase in the timescale presented. This result is what would be expected

from a Markovian regime with weak system-bath coupling (slow dephasing rate).

For slower bath relaxation γD = 100, 400 cm−1 the phase dynamics are more stable

and positive synchronisation emerges in the timescale presented. This suggests that

in certain regimes slow bath relaxation can be beneficial to synchronisation.

Furthermore by comparing the lines of equal γD in Figure 5.3b and 5.3a we

can see the effect of increasing the system-bath coupling strength alone on the syn-

chronisation dynamics. In the weaker system-bath coupling of Figure 5.3b synchro-

nisation emerges on a shorter timescale. In this regime the system-mode coupling

is stronger than the system-bath coupling and therefore dynamics of the system

becomes more dominated by interaction with the modes. We postulate that this re-

duces synchronisation times by enhancing ET and we will show evidence for this

in the next section.

Overall the results of Figure 5.3 show that the non-Markovian nature of an

environment coupled to a synchronising complex can have a positive and negative

impact on synchronisation times. In order to gain more insight into the mecha-

nism behind its effect on synchronisation we analyse the dynamics of ET and the

expectation value of the environment operator in the next section.
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Figure 5.3: Synchronisation dynamics of mode positions as a func-
tion of Drude bath relaxation rate (cut-off frequency
γD) and for two regimes of system-bath coupling (a)
λD = 110 cm−1 (b) λD = 11 cm−1. Values of γD labelled
in-figure in units of cm−1.
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5.3.2 Bath Displacement and Excitation Transport Dynamics

At t = 0 the ADOs in HEOM are set to zero which corresponds to the environments

being at equilibrium with the system’s ground state. In the first instant after the

system is excited the environments coupled to each site are displaced and begin

to relax towards a new equilibrium position with the system. At early times, the

rate at which this relaxation takes place is dominated by γD. As the bath relaxation

timescales we consider here [0.003 - 0.05 ps]−1 are shorter than the characteristic

coherent ET timescale [0 - 1 ps], we can witness the bath relaxation by examining

the average value of the collective bath operator at early times. The initial state for

the system is almost entirely excited on a single site and therefore the Drude bath

coupled to this site will be displaced towards a new equilibrium position at a rate

proportional to γD. This behaviour can be observed in the expectation value of the

bath operator which we labelled 〈XD2〉 in Equation 5.13. In Figure 5.4 we show the

dynamics of 〈XD2〉 over the synchronisation period for both system-bath coupling

regimes and bath relaxation times described in the previous section.

In the insets of both Figure 5.4a and 5.4b we display the short time displace-

ments of 〈XD2〉. Immediately we can see that they follow an exponential decay with

decay constants approximately equal to γD = 100 cm−1 = [0.053 ps]−1, γD = 400

cm−1 = [0.013 ps]−1 and γD = 1600 cm−1 = [0.003 ps]−1. This is numerical as-

surance that the cut-off frequency characterises the timescale of reorganisation of

the bath due to the changes in the system. It corroborates our understanding that

high cut-off frequencies have faster synchronisation times as they are closer to the

Markovian approximation of instantaneous bath reorganisation.

However, this is not the only effect of changing the cut-off frequency. The

dynamics of 〈XD2〉 on a longer time-scale change dramatically as a function of γD

in both the strong and weak coupling regimes. To help us understand this behaviour

we finally turn to analysing the electronic system. In particular we measure the

population of the higher energy exciton state |E2〉 as a function of γD and both

system-bath coupling regimes and present our results in Figure 5.5.
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Figure 5.4: Expectation value of Drude bath environment operator
as a function of Drude bath relaxation rate γD and for
two regimes of system-bath coupling (a) λD = 110 cm−1

(b) λD = 11 cm−1. Values of γD labelled in-figure in
units of cm−1.
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Figure 5.5: Population of higher energy exciton state |E2〉 as a func-
tion of Drude bath relaxation rate γD and for two regimes
of system-bath coupling (a) λD = 110 cm−1 (b) λD = 11
cm−1. Values of γD labelled in-figure in units of cm−1.
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We observe that ET, represented here by the change in population of |E2〉, also

changes as a function of bath relaxation rate. The changes follow the same pattern as

that of the synchronisation of mode positions in Figure 5.3. As mentioned above this

is what we expect if we consider the connection between ET and synchronisation

in the exciton-vibration dimer with Markovian environments of Chapter 3. We can

use the understanding gained from these works to infer a mechanism for the effects

of non-Markovian bath we see here.

Firstly, the oscillation pattern in exciton population for γD = 1600 cm−1 in

Figure 5.5b can be identified as the same coherent oscillation as observed for the

closed system evolution of the Exciton-Vibration Dimer in Figure 2.3. This is clear

evidence that the HEOM reproduces the same coherent ET dynamics that has been

studied throughout this thesis. These oscillations are what would be expected from

the Exciton-Vibration Dimer evolving under weak electronic dephasing. Fast bath

relaxation, γD = 1600 cm−1, and weak system-bath coupling approximates to this.

The oscillation in C〈X1〉〈X2〉(t) of Figure 5.3b is exactly what would be expected of

this very coherent regime. Furthermore we can see that the oscillations in 〈XD2〉 at

high γD are a reaction to the site population oscillations. The bath is relaxing almost

instantaneously to its new equilibrium and thus follows the change in population of

|E2〉.

Secondly when the system-bath coupling is increased, which is presented in

Figure 5.5a, coherent ET is suppressed. As mentioned in the previous section, the

balance between reorganisation energies of modes and Drude baths determines how

much each component contributes to the system dynamics. From Chapter 3 we

know that the coherent ET mechanism requires system-mode interaction. When the

system interacts more strongly with the Drude bath, the ability for the system to in-

teract with the modes is inhibited. This suppresses coherent ET mechanism which,

also from the results of Chapter 3, we know slows the emergence of synchronisa-

tion.

Finally, we observe that lower cut-off frequencies destroy the coherent ET in

both the weak and moderate system-bath coupling regimes, which as we expect also
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slows synchronisation. However, in the weak system-bath coupling regime this is

beneficial as it acts to stabilise ET and synchronisation.

Demonstrating the effects of slow bath relaxation on the coherent ET mecha-

nism helped us understand the effects on synchronisation however it does not sat-

isfactorily explain the mechanism. In order to gain further insight we consider the

effective modes representation of the Drude bath in the following section.



5.3. Results 101

5.3.3 Drude Bath and Effective Modes Picture

As mentioned in the introduction to this chapter, several works [9, 8, 12, 32, 46,

62, 88] have shown that it is possible to exactly map a complex non-Markovian

environment to a chain of modes. Each new mode has an effective frequency and

effective coupling strength to its neighbour in a one dimensional (1D) chain. This

then allows the dynamics to be solved using, for example, the time-adaptive Den-

sity Matrix Renormalisation Group technique [62]. In the following we show that

considering a 1D chain representation of the non-Markovian environment provides

a clearer physical perspective from which to understand its effects on synchronisa-

tion.

Figure 5.6 is a schematic diagram of the system-environment complex with the

Drude bath cast into a series of modes. The nearest neighbour coupling strengths

gcn and chain mode frequencies ωcn can be found analytically for specific spectral

densities [12] but for a Drude bath they are calculated numerically [62]. As we

are not interested in calculating exact dynamics here and only require a qualitative

picture, we use the analytic formulas for an ohmic spectral density with exponential

cut-off in the following discussion: ωcn ≈ γD(2n+2) [12].

The first point to note from viewing the bath as a chain of modes is the change

of overall picture from two underdamped modes interacting via a TLS with complex

decoherence processes, to many modes competing for interaction with the TLS. If

the effective bath modes are near resonant with the system energy splitting then

they are able coherently interact and exchange energy with the system in a similar

way the the quasi-coherent underdamped modes. If the effective bath modes are

more strongly coupled to the system than the underdamped modes, then the inter-

action between system and underdamped modes would be reduced. As explained

in the previous section this would result in an inhibition of the ET mechanism and

therefore a slowing of synchronisation. We find that this mechanism can explain the

results observed for different bath relaxation rates in the previous section.

Firstly we consider the case of γD = 1600 cm−1 where we have shown the dy-

namics of synchronisation are similar to the Exciton-Vibration Dimer under Marko-
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Figure 5.6: Schematic representation of the system-environment
complex with Drude baths represented as chains of
modes. Each site |e1(2)〉 of a TLS is coupled to an un-
derdamped mode of energy ω1(2) with strength g1(2) and
a 1D chain of modes where coupling to the first mode
of energy ωc0 is gc0 . Coupling strengths of remaining
modes in chain are between nearest neighbours only.
Dotted line shows the boundary of the Exciton-Vibration
Dimer introduced in Chapter 2.

vian decoherence processes. In this case the first bath mode would have a frequency

of approximately 2γD = 3200 cm−1. This frequency is much larger than the system

energy splitting of ∆e = 1048 cm−1 which means it is not likely to coherently in-

teract with the system. The next mode in the chain would have an even larger

frequency of approximately 4γD and would participate even less. Hence the interac-

tion with the quasi-resonant underdamped modes dominates the coherent dynamics,

and this regime more closely resembles that of the Exciton-Vibration Dimer.
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For a more slowly relaxing bath however, multiple modes in the chain must be

considered. For γD = 100 cm−1 the bath mode frequencies along the chain ωc0 =

200, ωc1 = 400, ωc2 = 600, ωc3 = 800, ωc4 = 1000 cm−1 become closer to the system

energies. In this case the system will interact with multiple modes along the chain

and therefore its interaction with the underdamped modes is decreased. The same

logic again applies: less interaction with underdamped modes, leads to inhibited

ET, which leads to slower synchronisation.
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5.3.4 Synchronisation Dynamics of Detuned Modes with non-

Markovian Environments
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Figure 5.7: Synchronisation measure of expectation value of mode
positions for a range of mode frequency detunings. Pa-
rameters listed in Section 5.2.4 except for γD = 400.

In this final section we investigate the effects of bath relaxation rates on the

ability of detuned modes to synchronise. Firstly we demonstrate that we are able to

reproduce the synchronisation phase as a function of detuning as seen in Chapter 4.

This is displayed in Figure 5.7 for moderate system-bath coupling λD = 110 cm−1

and cut-off frequency γD = 400 cm−1. The fact that we observe the same relation-

ship as seen in the Markovian regime consolidates the results of both chapters. It is

evidence that the synchronisation phase observed is not an artefact of a simplified

Markovian environment and arises under more complex decoherence processes. It

also provides further numerical assurance that including the underdamped modes

as part of the environment in the HEOM produces results equivalent to calculating

the quantum dynamics of the full exciton-vibration dimer.

In order to probe the effects of the non-Markovian bath on the synchronisa-

tion phase we fix the detuning ∆ω = 1.002 we vary γD and present the dynamics in

Figure 5.8. We find that faster bath relaxation times, which are beneficial to syn-
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Figure 5.8: Synchronisation measure of expectation value of mode
positions for a range of bath relaxation rates γD and fixed
mode frequency detuning ∆ω = 1.002. Other parame-
ters listed in Section 5.2.4.

chronisation time in this regime, decrease the synchronisation phase. We know from

the results of Chapter 4 that stronger system-mode interaction reduces the synchro-

nisation phase produced by detuning. In other words it makes the synchronisation

more robust to detuning. As discussed in the previous section, the effect of a slower

relaxing bath is to introduce competing bath modes into the system-environment

complex which weakens the interaction between system and underdamped modes.

The results here corroborate our findings in the previous section. Applying the re-

sults of Chapter 4 one step further, we postulate that slower bath relaxation rates

also reduce the quantum correlations between underdamped modes. We discuss

this further in the following section.



5.4. Summary and Discussion 106

5.4 Summary and Discussion

Throughout this chapter we have used the physical insight gained from studying the

dynamics of the Exciton-Vibration Dimer in the Markovian regime to help us in-

terpret results in the non-Markovian regime. This is justified as the HEOM method

is exact in its treatment of system-environment interactions. Any interactions be-

tween system and underdamped modes that are present in the Markovian regime

are accounted for in the non-Markovian regime. Indeed the fact that we observe the

same features such as the negative synchronisation period in Figure 5.2, the coher-

ent ET oscillations in Figure 5.5b and the synchronisation phase of Figure 5.7 all

suggest that the Exciton-Vibration mechanisms identified with the Master equation

approach are also present in our HEOM approach. However, in our implementation

of the HEOM method we do not track the full quantum state of the underdamped

modes. This means we cannot determine the presence of Exciton-Vibration coher-

ences using the same approach as the previous chapters. Furthermore, in Section

5.3.4 we postulated that a slower bath relaxation rate reduces the quantum corre-

lations between the modes. Again we are not able to use the same method as in

previous chapters to measure this. To obtain full quantum states of the modes with

the HEOM method would be too computationally expensive. Obtaining more infor-

mation about state of the environments from the HEOM ADOs has been shown to

be possible [69] and could be a focus of future work.

The results of this chapter contribute to two distinct fields of research. To the

field of bio-inspired energy transfer it provides further evidence that synchronisa-

tion is a useful perspective from which to view the complex electronic-vibrational

interactions of vibronic dimers. We have shown that the phenomena persists in the

presence of more realistic non-Markovian environments.

To quantum synchronisation studies, the results can be viewed as an inves-

tigation of synchronisation of two QHOs coupled through a single TLS which is

coupled to independent non-Markovian baths. It is shown that the properties of the

non-Markovian baths can control synchronisation of the QHOs, specifically affect-

ing the time taken for synchronisation to emerge and the robustness to detuning.
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Furthermore it shows that the results of Chapter 4 persist in the presence of non-

Markovian environment couplings which suggests that the synchronisation phase

as a function of detuning and the reported mechanism is a more general feature of

quantum synchronisation.

To summarise we have investigated the synchronisation dynamics of the dis-

placements of modes in a bio-inspired vibronic dimer during energy transfer in

non-Markovian environments. As far as we are aware, this has not been explored

before. We have presented numerical evidence that a slowly relaxing bath is detri-

mental to synchronisation, except in the regime where ET is very coherent, where

slow relaxation can have a stabilising effect. This suggests that the properties of a

subset of non-Markovian environments can be used to control synchronisation of

other environment operators which are coupled to the same TLS. Furthermore we

showed that the non-Markovian environment weakens the robustness of synchroni-

sation to detuning. These effects can be understood qualitatively by considering the

competition between underdamped modes and effective chain modes of the slowly

relaxing bath for interaction with the system.



Chapter 6

Summary

In this final chapter we summarise the main results of the thesis and highlight the

key contributions made.

In Chapter 3 we presented an in-depth analysis of the mechanism of quan-

tum synchronisation between two molecular vibrations in a bio-inspired vibronic

dimer experiencing Markovian dissipation and decoherence. We presented a novel

adaptation to a well-established synchronisation measure that enabled us to estab-

lish previously unreported connections between the synchronisation of molecular

motions and electronic energy transfer. Specifically we revealed that the mecha-

nism of quantum synchronisation is fundamentally a decoherence-mediated compe-

tition between interfering quantum coherences. The exciton-vibration coherences

that support coherent excitation transfer also drive the vibrations towards a neg-

atively synchronised state. Hence we revealed that the presence of a negatively

synchronised transient between molecular vibrations is an indicator of excitonic co-

herence. Lastly, we showed that enhanced energy transfer is correlated with faster

emergence of synchronisation. This demonstrated that quantum synchronisation

between molecular motions could be controlled by adjusting the electronic system

they are coupled to.

In Chapter 4 we demonstrated how information about the quantum correlations

between synchronising subsystems can be captured by our adapted synchronisation

measure. We presented an analysis of the dynamics of synchronisation as a func-

tion of detuning in the same system as Chapter 3 and revealed that, as seen in the
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classical regime, synchronisation can occur with a non-integer phase difference be-

tween the oscillations. We presented a quantum mechanism for this phase based

on the asymmetric participation of molecular vibrations in vibronic eigenstates. By

measuring quantum correlations between the synchronising subsystems we consol-

idated previous reports of a positive relationship between the preservation of quan-

tum discord and a synchronised state. Our unique contribution was to reveal that

the synchronisation phase we measure can capture information about the degree of

quantum correlations between synchronising subsystems.

In Chapter 5 we presented the first investigation of the influence of non-

Markovian environment effects on synchronisation in a bio-inspired vibronic dimer.

We showed that the presence of a slowly relaxing bath is detrimental to the emer-

gence time of synchronisation. However, under weak system-bath coupling, a

slowly relaxing bath can have a beneficial stabilising effect on synchronisation. We

demonstrated that this effect can be understood physically by considering the com-

petition between molecular vibrations and effective bath vibrations for interaction

with the system.

Overall this thesis investigated in-depth the synchronisation of molecular mo-

tions in a bio-inspired vibronic dimer. It emphasises the physical insight that can

be gained from exploring quantum synchronisation phenomena in these settings.

It contributes further understanding to both the quantum dynamics of bio-inspired

dimers and the fundamental mechanisms involved in quantum synchronisation.



Appendix A

Analytics of Markovian Master

Equation

In this appendix we detail the form of the time evolution of an element of our density

matrix under Markovian dissipation. The full master equation is as follows:

ρ̇(t) =− i
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Hρ−ρH
)

+Γdeph
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(A.1)

We solve for each element separately. The Hamiltonian evolution contributes:

− i〈ψ j|
(

Hρ−ρH
)
|ψk〉=−iΩ jkρ jk. (A.2)
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The pure dephasing on site 1 (site 2 is easily substituted) has the form:
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The elements for thermal dissipation have the form:
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and:
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(A.5)

From here we can see that all the dissipator terms can be cast into the same
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form and gathered together, resulting in:

ρ̇ jk(t) =−iΩ jkρ jk(t)+ ∑
α,α ′

R j,k,α,α ′ρα,α ′(t), (A.6)

where the factors R j,k,α,α ′ contain the dissipation rates. This equation makes clear

that the time evolution of element ρ jk depends on its Hamiltonian solution plus con-

tributions from every other element represented by the set α,α ′. This is a complex

set of coupled differential equations.
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