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Abstract

There is renewed interest in formulating integration as a statistical inference prob-
lem, motivated by obtaining a full distribution over numerical error that can be
propagated through subsequent computation. Current methods, such as Bayesian
Quadrature, demonstrate impressive empirical performance but lack theoretical
analysis. An important challenge is therefore to reconcile these probabilistic in-
tegrators with rigorous convergence guarantees. In this paper, we present the first
probabilistic integrator that admits such theoretical treatment, called Frank-Wolfe
Bayesian Quadrature (FWBQ). Under FWBQ, convergence to the true value of
the integral is shown to be up to exponential and posterior contraction rates are
proven to be up to super-exponential. In simulations, FWBQ is competitive with
state-of-the-art methods and out-performs alternatives based on Frank-Wolfe op-
timisation. Our approach is applied to successfully quantify numerical error in the
solution to a challenging Bayesian model choice problem in cellular biology.

1 Introduction

Computing integrals is a core challenge in machine learning and numerical methods play a central
role in this area. This can be problematic when a numerical integration routine is repeatedly called,
maybe millions of times, within a larger computational pipeline. In such situations, the cumulative
impact of numerical errors can be unclear, especially in cases where the error has a non-trivial
structural component. One solution is to model the numerical error statistically and to propagate
this source of uncertainty through subsequent computations. Conversely, an understanding of how
errors arise and propagate can enable the efficient focusing of computational resources upon the
most challenging numerical integrals in a pipeline.

Classical numerical integration schemes do not account for prior information on the integrand and,
as a consequence, can require an excessive number of function evaluations to obtain a prescribed
level of accuracy [21]. Alternatives such as Quasi-Monte Carlo (QMC) can exploit knowledge on
the smoothness of the integrand to obtain optimal convergence rates [7]. However these optimal
rates can only hold on sub-sequences of sample sizes n, a consequence of the fact that all function
evaluations are weighted equally in the estimator [24]. A modern approach that avoids this problem
is to consider arbitrarily weighted combinations of function values; the so-called quadrature rules
(also called cubature rules). Whilst quadrature rules with non-equal weights have received compar-
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atively little theoretical attention, it is known that the extra flexibility given by arbitrary weights can
lead to extremely accurate approximations in many settings (see applications to image de-noising
[3] and mental simulation in psychology [13]).

Probabilistic numerics, introduced in the seminal paper of [6], aims at re-interpreting numerical
tasks as inference tasks that are amenable to statistical analysis.1 Recent developments include
probabilistic solvers for linear systems [14] and differential equations [5, 28]. For the task of com-
puting integrals, Bayesian Quadrature (BQ) [22] and more recent work by [20] provide probabilistic
numerics methods that produce a full posterior distribution on the output of numerical schemes. One
advantage of this approach is that we can propagate uncertainty through all subsequent computations
to explicitly model the impact of numerical error [15]. Contrast this with chaining together classical
error bounds; the result in such cases will typically be a weak bound that provides no insight into the
error structure. At present, a significant shortcoming of these methods is the absence of theoretical
results relating to rates of posterior contraction. This is unsatisfying and has likely hindered the
adoption of probabilistic approaches to integration, since it is not clear that the induced posteriors
represent a sensible quantification of the numerical error (by classical, frequentist standards).

This paper establishes convergence rates for a new probabilistic approach to integration. Our re-
sults thus overcome a key perceived weakness associated with probabilistic numerics in the quadra-
ture setting. Our starting point is recent work by [2], who cast the design of quadrature rules as
a problem in convex optimisation that can be solved using the Frank-Wolfe (FW) algorithm. We
propose a hybrid approach of [2] with BQ, taking the form of a quadrature rule, that (i) carries a
full probabilistic interpretation, (ii) is amenable to rigorous theoretical analysis, and (iii) converges
orders-of-magnitude faster, empirically, compared with the original approaches in [2]. In particular,
we prove that super-exponential rates hold for posterior contraction (concentration of the posterior
probability mass on the true value of the integral), showing that the posterior distribution provides
a sensible and effective quantification of the uncertainty arising from numerical error. The method-
ology is explored in simulations and also applied to a challenging model selection problem from
cellular biology, where numerical error could lead to mis-allocation of expensive resources.

2 Background

2.1 Quadrature and Cubature Methods

LetX ⊆ Rd be a measurable space such that d ∈ N+ and consider a probability density p(x) defined
with respect to the Lebesgue measure on X . This paper focuses on computing integrals of the form∫
f(x)p(x)dx for a test function f : X → R where, for simplicity, we assume f is square-integrable

with respect to p(x). A quadrature rule approximates such integrals as a weighted sum of function
values at some design points {xi}ni=1 ⊂ X :∫

X
f(x)p(x)dx ≈

n∑
i=1

wif(xi). (1)

Viewing integrals as projections, we write p[f ] for the left-hand side and p̂[f ] for the right-hand side,
where p̂ =

∑n
i=1 wiδ(xi) and δ(xi) is a Dirac measure at xi. Note that p̂ may not be a probability

distribution; in fact, weights {wi}ni=1 do not have to sum to one or be non-negative. Quadrature
rules can be extended to multivariate functions f : X → Rd by taking each component in turn.

There are many ways of choosing combinations {xi, wi}ni=1 in the literature. For example, taking
weights to be wi = 1/n with points {xi}ni=1 drawn independently from the probability distribution
p(x) recovers basic Monte Carlo integration. The case with weights wi = 1/n, but with points cho-
sen with respect to some specific (possibly deterministic) schemes includes kernel herding [4] and
Quasi-Monte Carlo (QMC) [7]. In Bayesian Quadrature, the points {xi}ni=1 are chosen to minimise
a posterior variance, with weights {wi}ni=1 arising from a posterior probability distribution.

Classical error analysis for quadrature rules is naturally couched in terms of minimising the worst-
case estimation error. Let H be a Hilbert space of functions f : X → R, equipped with the inner

1A detailed discussion on probabilistic numerics and an extensive up-to-date bibliography can be found at
http://www.probabilistic-numerics.org.
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product 〈·, ·〉H and associated norm ‖ · ‖H. We define the maximum mean discrepancy (MMD) as:

MMD
(
{xi, wi}ni=1

)
:= sup

f∈H:‖f‖H=1

∣∣p[f ]− p̂[f ]
∣∣. (2)

The reader can refer to [29] for conditions onH that are needed for the existence of the MMD. The
rate at which the MMD decreases with the number of samples n is referred to as the ‘convergence
rate’ of the quadrature rule. For Monte Carlo, the MMD decreases with the slow rate ofOP (n−1/2)
(where the subscript P specifies that the convergence is in probability). Let H be a RKHS with
reproducing kernel k : X ×X → R and denote the corresponding canonical feature map by Φ(x) =
k(·, x), so that the mean element is given by µp(x) = p[Φ(x)] ∈ H. Then, following [29]

MMD
(
{xi, wi}ni=1

)
= ‖µp − µp̂‖H. (3)

This shows that to obtain low integration error in the RKHS H, one only needs to obtain a good
approximation of its mean element µp (as ∀f ∈ H: p[f ] = 〈f, µp〉H). Establishing theoretical
results for such quadrature rules is an active area of research [1].

2.2 Bayesian Quadrature

Bayesian Quadrature (BQ) was originally introduced in [22] and later revisited by [11, 12] and [23].
The main idea is to place a functional prior on the integrand f , then update this prior through Bayes’
theorem by conditioning on both samples {xi}ni=1 and function evaluations at those sample points
{fi}ni=1 where fi = f(xi). This induces a full posterior distribution over functions f and hence over
the value of the integral p[f ]. The most common implementation assumes a Gaussian Process (GP)
prior f ∼ GP(0, k). A useful property motivating the use of GPs is that linear projection preserves
normality, so that the posterior distribution for the integral p[f ] is also a Gaussian, characterised by
its mean and covariance. A natural estimate of the integral p[f ] is given by the mean of this posterior
distribution, which can be compactly written as

p̂BQ[f ] = zTK−1f. (4)

where zi = µp(xi) and Kij = k(xi, xj). Notice that this estimator takes the form of a quadrature
rule with weights wBQ = zTK−1. Recently, [27] showed how specific choices of kernel and design
points for BQ can recover classical quadrature rules. This begs the question of how to select design
points {xi}ni=1. A particularly natural approach aims to minimise the posterior uncertainty over the
integral p[f ], which was shown in [16, Prop. 1] to equal:

vBQ
(
{xi}ni=1

)
= p[µp]− zTK−1z = MMD2

(
{xi, wBQ

i }
n
i=1

)
. (5)

Thus, in the RKHS setting, minimising the posterior variance corresponds to minimising the worst
case error of the quadrature rule. Below we refer to Optimal BQ (OBQ) as BQ coupled with design
points {xOBQ

i }ni=1 chosen to globally minimise (5). We also call Sequential BQ (SBQ) the algorithm
that greedily selects design points to give the greatest decrease in posterior variance at each iteration.
OBQ will give improved results over SBQ, but cannot be implemented in general, whereas SBQ is
comparatively straight-forward to implement. There are currently no theoretical results establishing
the convergence of either BQ, OBQ or SBQ.

Remark: (5) is independent of observed function values f . As such, no active learning is possible in
SBQ (i.e. surprising function values never cause a revision of a planned sampling schedule). This
is not always the case: For example [12] approximately encodes non-negativity of f into BQ which
leads to a dependence on f in the posterior variance. In this case sequential selection becomes an
active strategy that outperforms batch selection in general.

2.3 Deriving Quadrature Rules via the Frank-Wolfe Algorithm

Despite the elegance of BQ, its convergence rates have not yet been rigorously established. In brief,
this is because p̂BQ[f ] is an orthogonal projection of f onto the affine hull of {Φ(xi)}ni=1, rather than
e.g. the convex hull. Standard results from the optimisation literature apply to bounded domains, but
the affine hull is not bounded (i.e. the BQ weights can be arbitrarily large and possibly negative).
Below we describe a solution to the problem of computing integrals recently proposed by [2], based
on the FW algorithm, that restricts attention to the (bounded) convex hull of {Φ(xi)}ni=1.

3



Algorithm 1 The Frank-Wolfe (FW) and Frank-Wolfe with Line-Search (FWLS) Algorithms.
Require: function J , initial state g1 = ḡ1 ∈ G (and, for FW only: step-size sequence {ρi}ni=1).

1: for i = 2, . . . , n do
2: Compute ḡi = argming∈G

〈
g, (DJ)(gi−1)

〉
×

3: [For FWLS only, line search: ρi = argminρ∈[0,1]J
(
(1− ρ)gi−1 + ρ ḡi

)
]

4: Update gi = (1− ρi)gi−1 + ρiḡi
5: end for

The Frank-Wolfe (FW) algorithm (Alg. 1), also called the conditional gradient algorithm, is a convex
optimization method introduced in [9]. It considers problems of the form ming∈G J(g) where the
function J : G → R is convex and continuously differentiable. A particular case of interest in this
paper will be when the domain G is a compact and convex space of functions, as recently investigated
in [17]. These assumptions imply the existence of a solution to the optimization problem.

At each iteration i, the FW algorithm computes a linearisation of the objective function J at the
previous state gi−1 ∈ G along its gradient (DJ)(gi−1) and selects an ‘atom’ ḡi ∈ G that minimises
the inner product a state g and (DJ)(gi−1). The new state gi ∈ G is then a convex combination of
the previous state gi−1 and of the atom ḡi. This convex combination depends on a step-size ρi which
is pre-determined and different versions of the algorithm may have different step-size sequences.

Our goal in quadrature is to approximate the mean element µp. Recently [2] proposed to frame
integration as a FW optimisation problem. Here, the domain G ⊆ H is a space of functions and
taking the objective function to be:

J(g) =
1

2

∥∥g − µp∥∥2H. (6)

This gives an approximation of the mean element and J takes the form of half the posterior variance
(or the MMD2). In this functional approximation setting, minimisation of J is carried out over
G = M, the marginal polytope of the RKHS H. The marginal polytope M is defined as the
closure of the convex hull of Φ(X ), so that in particular µp ∈ M. Assuming as in [18] that Φ(x) is
uniformly bounded in feature space (i.e. ∃R > 0 : ∀x ∈ X , ‖Φ(x)‖H ≤ R), thenM is a closed
and bounded set and can be optimised over.

In order to define the algorithm rigorously in this case, we introduce the Fréchet derivative of J ,
denoted DJ , such that for H∗ being the dual space of H, we have the unique map DJ : H → H∗
such that for each g ∈ H, (DJ)(g) is the function mapping h ∈ H to (DJ)(g)(h) =

〈
g − µ, h

〉
H.

We also introduce the bilinear map 〈·, ·〉× : H × H∗ → R which, for F ∈ H∗ given by F (g) =
〈g, f〉H, is the rule giving 〈h, F 〉× = 〈h, f〉H.

A particular advantage of this method is that it leads to ‘sparse’ solutions which are linear com-
binations of the atoms {ḡi}ni=1 [2]. In particular this provides a weighted estimate for the mean
element:

µ̂FW := gn =

n∑
i=1

( n∏
j=i+1

(
1− ρj−1

)
ρi−1

)
ḡi :=

n∑
i=1

wFW
i ḡi, (7)

where by default ρ0 = 1 which leads to all wFW
i ∈ [0, 1] when ρi = 1/(i+1). A typical sequence of

approximations to the mean element is shown in Fig. 1 (left), demonstrating that the approximation
quickly converges to the ground truth (in black). Since minimisation of a linear function can be
restricted to extreme points of the domain, the atoms will be of the form ḡi = Φ(xFW

i ) = k(·, xFW
i )

for some xFW
i ∈ X . The minimisation in g over G from step 2 in Algorithm 1 therefore becomes a

minimisation in x over X and this algorithm therefore provides us design points. In practice, at each
iteration i, the FW algorithm hence selects a design point xFW

i ∈ X which induces an atom ḡi and
gives us an approximation of the mean element µp. We denote by µ̂FW this approximation after n
iterations. Using the reproducing property, we can show that the FW estimate is a quadrature rule:

p̂FW[f ] :=
〈
f, µ̂FW

〉
H =

〈
f,

n∑
i=1

wFW
i ḡi

〉
H

=

n∑
i=1

wFW
i

〈
f, k(·, xFW

i )
〉
H =

n∑
i=1

wFW
i f(xFW

i ). (8)

The total computational cost for FW is O(n2). An extension known as FW with Line Search
(FWLS) uses a line-search method to find the optimal step size ρi at each iteration (see Alg. 1).
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Figure 1: Left: Approximations of the mean element µp using the FWLS algorithm, based on n =
1, 2, 5, 10, 50 design points (purple, blue, green, red and orange respectively). It is not possible to
distinguish between approximation and ground truth when n = 50. Right: Density of a mixture
of 20 Gaussian distributions, displaying the first n = 25 design points chosen by FW (red), FWLS
(orange) and SBQ (green). Each method provides well-spaced design points in high-density regions.
Most FW and FWLS design points overlap, partly explaining their similar performance in this case.

Once again, the approximation obtained by FWLS has a sparse expression as a convex combination
of all the previously visited states and we obtain an associated quadrature rule. FWLS has theoreti-
cal convergence rates that can be stronger than standard versions of FW but has computational cost
in O(n3). The authors in [10] provide a survey of FW-based algorithms and their convergence rates
under different regularity conditions on the objective function and domain of optimisation.

Remark: The FW design points {xFW
i }ni=1 are generally not available in closed-form. We follow

mainstream literature by selecting, at each iteration, the point that minimises the MMD over a finite
collection of M points, drawn i.i.d from p(x). The authors in [18] proved that this approximation
adds a O(M−1/4) term to the MMD, so that theoretical results on FW convergence continue to
apply provided that M(n)→∞ sufficiently quickly. Appendix A provides full details. In practice,
one may also make use of a numerical optimisation scheme in order to select the points.

3 A Hybrid Approach: Frank-Wolfe Bayesian Quadrature

To combine the advantages of a probabilistic integrator with a formal convergence theory, we pro-
pose Frank-Wolfe Bayesian Quadrature (FWBQ). In FWBQ, we first select design points {xFW

i }ni=1
using the FW algorithm. However, when computing the quadrature approximation, instead of using
the usual FW weights {wFW

i }ni=1 we use instead the weights {wBQ
i }ni=1 provided by BQ. We denote

this quadrature rule by p̂FWBQ and also consider p̂FWLSBQ, which uses FWLS in place of FW. As
we show below, these hybrid estimators (i) carry the Bayesian interpretation of Sec. 2.2, (ii) per-
mit a rigorous theoretical analysis, and (iii) out-perform existing FW quadrature rules by orders of
magnitude in simulations. FWBQ is hence ideally suited to probabilistic numerics applications.

For these theoretical results we assume that f belongs to a finite-dimensional RKHSH, in line with
recent literature [2, 10, 17, 18]. We further assume that X is a compact subset of Rd, that p(x) > 0
∀x ∈ X and that k is continuous on X ×X . Under these hypotheses, Theorem 1 establishes consis-
tency of the posterior mean, while Theorem 2 establishes contraction for the posterior distribution.

Theorem 1 (Consistency). The posterior mean p̂FWBQ[f ] converges to the true integral p[f ] at the
following rates:∣∣∣p[f ]− p̂FWBQ[f ]

∣∣∣ ≤ MMD
(
{xi, wi}ni=1

)
≤

{
2D2

R n−1 for FWBQ√
2D exp(− R2

2D2n) for FWLSBQ
(9)

where the FWBQ uses step-size ρi = 1/(i+1),D ∈ (0,∞) is the diameter of the marginal polytope
M and R ∈ (0,∞) gives the radius of the smallest ball of center µp included inM.
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Note that all the proofs of this paper can be found in Appendix B. An immediate corollary of The-
orem 1 is that FWLSBQ has an asymptotic error which is exponential in n and is therefore superior
to that of any QMC estimator [7]. This is not a contradiction - recall that QMC restricts attention to
uniform weights, while FWLSBQ is able to propose arbitrary weightings. In addition we highlight a
robustness property: Even when the assumptions of this section do not hold, one still obtains atleast
a rate OP (n−1/2) for the posterior mean using either FWBQ or FWLSBQ [8].

Remark: The choice of kernel affects the convergence of the FWBQ method [15]. Clearly, we expect
faster convergence if the function we are integrating is ‘close’ to the space of functions induced by
our kernel. Indeed, the kernel specifies the geometry of the marginal polytope M, that in turn
directly influences the rate constant R and D associated with FW convex optimisation.

Consistency is only a stepping stone towards our main contribution which establishes posterior con-
traction rates for FWBQ. Posterior contraction is important as these results justify, for the first time,
the probabilistic numerics approach to integration; that is, we show that the full posterior distribution
is a sensible quantification (at least asymptotically) of numerical error in the integration routine:

Theorem 2 (Contraction). Let S ⊆ R be an open neighbourhood of the true integral p[f ] and let
γ = infr∈SC |r− p[f ]| > 0. Then the posterior probability mass on Sc = R \ S vanishes at a rate:

prob(Sc) ≤


2
√
2D2

√
πRγ

n−1 exp
(
− γ2R2

8D4 n
2
)

for FWBQ
2D√
πγ

exp
(
− R2

2D2n− γ2

2
√
2D

exp
(
R2

2D2n
))

for FWLSBQ
(10)

where the FWBQ uses step-size ρi = 1/(i+1),D ∈ (0,∞) is the diameter of the marginal polytope
M and R ∈ (0,∞) gives the radius of the smallest ball of center µp included inM.

The contraction rates are exponential for FWBQ and super-exponential for FWLBQ, and thus the
two algorithms enjoy both a probabilistic interpretation and rigorous theoretical guarantees. A no-
table corollary is that OBQ enjoys the same rates as FWLSBQ, resolving a conjecture by Tony
O’Hagan that OBQ converges exponentially [personal communication]:

Corollary. The consistency and contraction rates obtained for FWLSBQ apply also to OBQ.

4 Experimental Results

4.1 Simulation Study

To facilitate the experiments in this paper we followed [1, 2, 11, 18] and employed an exponentiated-
quadratic (EQ) kernel k(x, x′) := λ2 exp(−1/2σ2‖x − x′‖22). This corresponds to an infinite-
dimensional RKHS, not covered by our theory; nevertheless, we note that all simulations are
practically finite-dimensional due to rounding at machine precision. See Appendix E for a finite-
dimensional approximation using random Fourier features. EQ kernels are popular in the BQ lit-
erature as, when p is a mixture of Gaussians, the mean element µp is analytically tractable (see
Appendix C). Some other (p, k) pairs that produce analytic mean elements are discussed in [1].

For this simulation study, we took p(x) to be a 20-component mixture of 2D-Gaussian distribu-
tions. Monte Carlo (MC) is often used for such distributions but has a slow convergence rate in
OP (n−1/2). FW and FWLS are known to converge more quickly and are in this sense preferable to
MC [2]. In our simulations (Fig. 2, left), both our novel methods FWBQ and FWLSBQ decreased
the MMD much faster than the FW/FWLS methods of [2]. Here, the same kernel hyper-parameters
(λ, σ) = (1, 0.8) were employed for all methods to have a fair comparison. This suggests that the
best quadrature rules correspond to elements outside the convex hull of {Φ(xi)}ni=1. Examples of
those, including BQ, often assign negative weights to features (Fig. S1 right, Appendix D).

The principle advantage of our proposed methods is that they reconcile theoretical tractability with
a fully probabilistic interpretation. For illustration, Fig. 2 (right) plots the posterior uncertainty due
to numerical error for a typical integration problem based on this p(x). In-depth empirical studies
of such posteriors exist already in the literature and the reader is referred to [3, 13, 22] for details.

Beyond these theoretically tractable integrators, SBQ seems to give even better performance as
n increases. An intuitive explanation is that SBQ picks {xi}ni=1 to minimise the MMD whereas

6
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Figure 2: Simulation study. Left: Plot of the worst-case integration error squared (MMD2). Both
FWBQ and FWLSBQ are seen to outperform FW and FWLS, with SBQ performing best overall.
Right: Integral estimates for FWLS and FWLSBQ for a function f ∈ H. FWLS converges more
slowly and provides only a point estimate for a given number of design points. In contrast, FWLSBQ
converges faster and provides a full probability distribution over numerical error shown shaded in
orange (68% and 95% credible intervals). Ground truth corresponds to the dotted black line.

FWBQ and FWLSBQ only minimise an approximation of the MMD (its linearisation alongDJ). In
addition, the SBQ weights are optimal at each iteration, which is not true for FWBQ and FWLSBQ.
We conjecture that Theorem 1 and 2 provide upper bounds on the rates of SBQ. This conjecture is
partly supported by Fig. 1 (right), which shows that SBQ selects similar design points to FW/FWLS
(but weights them optimally). Note also that both FWBQ and FWLSBQ give very similar result.
This is not surprising as FWLS has no guarantees over FW in infinite-dimensional RKHS [17].

4.2 Quantifying Numerical Error in a Proteomic Model Selection Problem

A topical bioinformatics application that extends recent work by [19] is presented. The objective is
to select among a set of candidate models {Mi}mi=1 for protein regulation. This choice is based on a
datasetD of protein expression levels, in order to determine a ‘most plausible’ biological hypothesis
for further experimental investigation. EachMi is specified by a vector of kinetic parameters θi (full
details in Appendix D). Bayesian model selection requires that these parameters are integrated out
against a prior p(θi) to obtain marginal likelihood terms L(Mi) =

∫
p(D|θi)p(θi)dθi. Our focus

here is on obtaining the maximum a posteriori (MAP) model Mj , defined as the maximiser of the
posterior model probability L(Mj)/

∑m
i=1 L(Mi) (where we have assumed a uniform prior over

model space). Numerical error in the computation of each term L(Mi), if unaccounted for, could
cause us to return a model Mk that is different from the true MAP estimate Mj and lead to the
mis-allocation of valuable experimental resources.

The problem is quickly exaggerated when the number m of models increases, as there are more
opportunities for one of the L(Mi) terms to be ‘too large’ due to numerical error. In [19], the number
m of models was combinatorial in the number of protein kinases measured in a high-throughput
assay (currently ∼ 102 but in principle up to ∼ 104). This led [19] to deploy substantial computing
resources to ensure that numerical error in each estimate of L(Mi) was individually controlled.
Probabilistic numerics provides a more elegant and efficient solution: At any given stage, we have
a fully probabilistic quantification of our uncertainty in each of the integrals L(Mi), shown to be
sensible both theoretically and empirically. This induces a full posterior distribution over numerical
uncertainty in the location of the MAP estimate (i.e. ‘Bayes all the way down’). As such we can
determine, on-line, the precise point in the computational pipeline when numerical uncertainty near
the MAP estimate becomes acceptably small, and cease further computation.

The FWBQ methodology was applied to one of the model selection tasks in [19]. In Fig. 3 (left) we
display posterior model probabilities for each of m = 352 candidates models, where a low number
(n = 10) of samples were used for each integral. (For display clarity only the first 50 models
are shown.) In this low-n regime, numerical error introduces a second level of uncertainty that we
quantify by combining the FWBQ error models for all integrals in the computational pipeline; this is
summarised by a box plot (rather than a single point) for each of the models (obtained by sampling
- details in Appendix D). These box plots reveal that our estimated posterior model probabilities are
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Figure 3: Quantifying numerical error in a model selection problem. FWBQ was used to model
the numerical error of each integral L(Mi) explicitly. For integration based on n = 10 design
points, FWBQ tells us that the computational estimate of the model posterior will be dominated by
numerical error (left). When instead n = 100 design points are used (right), uncertainty due to
numerical error becomes much smaller (but not yet small enough to determine the MAP estimate).

completely dominated by numerical error. In contrast, when n is increased through 50, 100 and 200
(Fig. 3, right and Fig. S2), the uncertainty due to numerical error becomes negligible. At n = 200
we can conclude that model 26 is the true MAP estimate and further computations can be halted.
Correctness of this result was confirmed using the more computationally intensive methods in [19].

In Appendix D we compared the relative performance of FWBQ, FWLSBQ and SBQ on this prob-
lem. Fig. S1 shows that the BQ weights reduced the MMD by orders of magnitude relative to FW
and FWLS and that SBQ converged more quickly than both FWBQ and FWLSBQ.

5 Conclusions

This paper provides the first theoretical results for probabilistic integration, in the form of posterior
contraction rates for FWBQ and FWLSBQ. This is an important step in the probabilistic numerics re-
search programme [15] as it establishes a theoretical justification for using the posterior distribution
as a model for the numerical integration error (which was previously assumed [11, 12, 20, 23, 27,
e.g.]). The practical advantages conferred by a fully probabilistic error model were demonstrated on
a model selection problem from proteomics, where sensitivity of an evaluation of the MAP estimate
was modelled in terms of the error arising from repeated numerical integration.

The strengths and weaknesses of BQ (notably, including scalability in the dimension d of X ) are
well-known and are inherited by our FWBQ methodology. We do not review these here but refer
the reader to [22] for an extended discussion. Convergence, in the classical sense, was proven here
to occur exponentially quickly for FWLSBQ, which partially explains the excellent performance
of BQ and related methods seen in applications [12, 23], as well as resolving an open conjecture.
As a bonus, the hybrid quadrature rules that we developed turned out to converge much faster in
simulations than those in [2], which originally motivated our work.

A key open problem for kernel methods in probabilistic numerics is to establish protocols for the
practical elicitation of kernel hyper-parameters. This is important as hyper-parameters directly affect
the scale of the posterior over numerical error that we ultimately aim to interpret. Note that this prob-
lem applies equally to BQ, as well as related quadrature methods [2, 11, 12, 20] and more generally
in probabilistic numerics [28]. Previous work, such as [13], optimised hyper-parameters on a per-
application basis. Our ongoing research seeks automatic and general methods for hyper-parameter
elicitation that provide good frequentist coverage properties for posterior credible intervals, but we
reserve the details for a future publication.
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Supplementary Material

Appendix A: Details for the FWBQ and FWLSBQ Algorithms

A high-level pseudo-code description for the Frank-Wolfe Bayesian Quadrature (FWBQ) algorithm
is provided below.

Algorithm 2 The Frank-Wolfe Bayesian Quadrature (FWBQ) Algorithm
Require: function f , reproducing kernel k, initial point x0 ∈ X .

1: Compute design points
{
xFW
i

}n
i=1

using the FW algorithm (Alg. 1).
2: Compute associated weights

{
wBQ
i

}n
i=1

using BQ (Eqn. 4).
3: Compute the posterior mean p̂FWBQ[f ], i.e. the quadrature rule with

{
xFW
i , wBQ

i

}n
i=1

.
4: Compute the posterior variance vBQ

(
{xFW

i }ni=1

)
using BQ (Eqn. 5).

5: Return the full posterior N
(
p̂FWBQ, vBQ({xFW

i }ni=1)
)

for the integral p[f ].

Frank-Wolfe Line-Search Bayesian Quadrature (FWLSBQ) is simply obtained by substituting the
Frank-Wolfe algorithm with the Frank-Wolfe Line-Search algorithm. In this appendix, we derive
all of the expressions necessary to implement both the FW and FWLS algorithms (for quadrature)
in practice. All of the other steps can be derived from the relevant equations as highlighted in
Algorithm 2 above.

The FW/FWLS are both initialised by the user choosing a design point xFW
1 . This can be done either

at random or by choosing a location which is known to have high probability mass under p(x). The
first approximation to µp is therefore given by g1 = k(·, xFW

1 ). The algorithm then loops over the
next three steps to obtain new design points {xFW

i }ni=2:

Step 1) Obtaining the new Frank-Wolfe design points xFW
i+1.

At iteration i, the step consists of choosing the point x̄FW
i . Let {w(i)

l }
i−1
l=1 denote the Frank-Wolfe

weights assigned to each of the previous design points {xFW
l }

i−1
l=1 at this new iteration, given that

we choose x as our new design point. The choice of new design point is done by computing the
derivative of the objective function J(gi−1) and finding the point x∗ which minimises the inner
product:

arg ming∈G
〈
g, (DJ)(gi−1)

〉
× (11)

To do so, we need to obtain an equivalent expression of the minimisation of the linearisation of J
(denotedDJ) in terms of kernel values and evaluations of the mean element µp. Since minimisation
of a linear function can be restricted to extreme points of the domain, we have that

arg ming∈G
〈
g, (DJ)(gi−1)

〉
× = arg minx∈X

〈
Φ(x), (DJ)(gi−1)

〉
×. (12)

Then using the definition of J we have:

arg minx∈X
〈
Φ(x), (DJ)(gi−1)

〉
× = arg minx∈X

〈
Φ(x), gi−1 − µp

〉
H, (13)

where 〈
Φ(x), gi−1 − µp

〉
H =

〈
Φ(x),

i−1∑
l=1

w
(i−1)
l Φ(xl)− µp

〉
H

=

i−1∑
i=1

w
(i−1)
l

〈
Φ(x),Φ(xl)

〉
H −

〈
Φ(x), µp

〉
H

=

i−1∑
l=1

w
(i−1)
l k(x, xl)− µp(x).

(14)

Our new design point xFW
i is therefore the point x∗ which minimises this expression. Note that this

equation may not be convex and may require us to make use of approximate methods to find the
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minimum x∗. To do so, we sampleM points (whereM is large) independently from the distribution
p and pick the sample which minimises the expression above. From [18] this introduces an additive
error term of size O(M−1/4), which does not impact our convergence analysis provided that M(n)
vanishes sufficiently quickly. In all experiments we tookM between 10, 000 and 50, 000 so that this
error will be negligible.

It is important to note that sampling from p(x) is likely to not be the best solution to optimising this
expression. One may, for example, be better off using any other optimisation method which does not
require convexity (for example, Bayesian Optimization). However, we have used sampling as the
result from [18] discussed above allows us to have a theoretical upper bound on the error introduced.

Step 2) Computing the Step-Sizes and Weights for the Frank-Wolfe and Frank-Wolfe Line-Search
Algorithms.

Computing the weights {w(i)
l }nl=1 assigned by the FW/FWLS algorithms to each of the design points

is obtained using the equation:

w
(i)
l =

i∏
j=l+1

(
1− ρj−1

)
ρl−1 (15)

Clearly, this expression depends on the choice of step-sizes {ρl}il=1. In the case of the standard
Frank-Wolfe algorithm, this step-size sequence is a an input from the algorithm and so computing
the weights is straightforward. However, in the case of the Frank-Wolfe Line-Search algorithm, the
choice of step-size is optimized at each iteration so that gi minimises J the most.

In the case of computing integrals, this optimization step can actually be obtained analytically. This
analytic expression will be given in terms of values of the kernel values and evaluations of the mean
element.

First, from the definition of J

J
(
(1− ρ)gi−1 + ρΦ(xi)

)
=

1

2

〈
(1− ρ)gi−1 + ρΦ(xi)− µp, (1− ρ)gi−1 + ρΦ(xi)− µp

〉
H

=
1

2

[
(1− ρ)2

〈
gi−1, gi−1

〉
H + 2(1− ρ)ρ

〈
gi−1,Φ(xi)

〉
H

+ 2ρ2
〈
Φ(xi),Φ(xi)

〉
H − 2(1− ρ)

〈
gi−1, µp

〉
H

− 2ρ
〈
Φ(xi), µp

〉
H +

〈
µp, µp

〉
H

]
.

(16)

Taking the derivative of this expression with respect to ρ, we get:

∂J
(
(1− ρ)gi−1 + ρΦ(xi)

)
∂ρ

=
1

2

[
− 2(1− ρ)

〈
gi−1, gi−1

〉
H + 2(1− 2ρ)

〈
gi−1,Φ(xi)

〉
H

+ 2ρ
〈
Φ(xi),Φ(xi)

〉
H + 2

〈
gi−1, µp

〉
H − 2

〈
Φ(xi), µp

〉
H

]
= ρ

[〈
gi−1, gi−1

〉
H − 2

〈
gi−1,Φ(xi)

〉
H +

〈
Φ(xi),Φ(xi)

〉
H

= ρ
∥∥gi−1 − Φ(xi)

∥∥2
H −

〈
gi−1 − Φ(xi), gi−1 − µp

〉
H.

(17)

Setting this derivative to zero gives us the following optimum:

ρ∗ =

〈
gi−1 − µp, gi−1 − Φ(xi)

〉
H∥∥∥gi−1 − Φ(xi)

∥∥∥2
H

. (18)

Clearly, differentiating a second time with respect to ρ gives ‖gi−1−Φ(xi)‖2H, which is non-negative
and so ρ∗ is a minimum. One can show using geometrical arguments about the marginal polytope
M that ρ∗ will be in [0, 1] [17].
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The numerator of this line-search expression is〈
gi−1 − µp, gi−1 − Φ(xi)

〉
H

=
〈
gi−1, gi−1

〉
H −

〈
µp, gi−1

〉
H

−
i−1∑
l=1

w
(i−1)
l k(xl, xi) + µp(xi)

=

i−1∑
l=1

i−1∑
m=1

w
(i−1)
l w(i−1)

m k(xl, xm)

−
i−1∑
l=1

w
(i−1)
l

[
k(xl, xi) + µp(xl)

]
+ µp(xi).

(19)

Similarly the denominator is∥∥gi−1 − Φ(xi)
∥∥2
H =

〈
gi−1 − Φ(xi), gi−1 − Φ(xi)

〉
H

=
〈
gi−1, gi−1

〉
H − 2

〈
gi−1,Φ(xi)

〉
H +

〈
Φ(xi),Φ(xi)

〉
H

=

i−1∑
l=1

i−1∑
m=1

w
(i−1)
l w(i−1)

m k(xl, xm)− 2

i−1∑
l=1

w
(i−1)
l k(xl, xi) + k(xi, xi).

(20)

Clearly all expressions provided here can be vectorised for efficient computational implementation.

Step 3) Computing a new approximation of the mean element.

The final step consists of updating the approximation of the mean element, which can be done
directly by setting:

gi = (1− ρi)gi−1 + ρiḡi (21)

Appendix B: Proofs of Theorems and Corollaries

Theorem (Consistency). The posterior mean p̂FWBQ[f ] converges to the true integral p[f ] at the
following rates:∣∣∣p[f ]− p̂FWBQ[f ]

∣∣∣ ≤ MMD
(
{xi, wi}ni=1

)
≤

{
2D2

R n−1 for FWBQ√
2D exp(− R2

2D2n) for FWLSBQ

where the FWBQ uses step-size ρi = 1/(i+1),D ∈ (0,∞) is the diameter of the marginal polytope
M and R ∈ (0,∞) gives the radius of the smallest ball of center µp included inM.

Proof. The posterior mean in BQ is a Bayes estimator and so the MMD takes a minimax form [16].
In particular, the BQ weights perform no worse than the FW weights:

MMD
({
xFW
i , wBQ

i

}n
i=1

)
= inf

w∈Rn
MMD

({
xFW
i , wi

}n
i=1

)
≤ MMD

({
xFW
i , wFW

i

}n
i=1

)
. (22)

Now, the values attained by the objective function J along the path {gi}ni=1 determined by the
FW(/FWLS) algorithm can be expressed in terms of the MMD as follows:

J(gn) =
1

2

∥∥µ̂FW − µp
∥∥2
H =

1

2
MMD2

({
xFW
i , wFW

i

}n
i=1

)
. (23)

Combining (22) and (23) gives∣∣∣p[f ]− p̂FWBQ[f ]
∣∣∣ ≤ MMD

({
xFW
i , wBQ

i

}n
i=1

)∥∥f∥∥H ≤ 21/2J1/2(gn), (24)

since ‖f‖H ≤ 1. To complete the proof we leverage recent analysis of the FW algorithm with steps
ρi = 1/(n+ 1) and the FWLS algorithm. Specifically, from [2, Prop. 1] we have that:

J(gn) ≤
{

2D4

R2 n
−2 for FW with step size ρi = 1/(i+ 1)

D2 exp(−R2n/D2) for FWLS
(25)

whereD is the diameter of the marginal polytopeM andR is the radius of the smallest ball centered
at µp included inM.
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Theorem (Contraction). Let S ⊆ R be an open neighbourhood of the true integral p[f ] and let
γ = infr∈SC |r− p[f ]| > 0. Then the posterior probability mass on Sc = R \ S vanishes at a rate:

prob(Sc) ≤


2
√
2D2

√
πRγ

n−1 exp
(
− γ2R2

8D4 n
2
)

for FWBQ, ρi = 1/(i+ 1)

2D√
πγ

exp
(
− R2

2D2n− γ2

2
√
2D

exp
(
R2

2D2n
))

for FWLSBQ

where D ∈ (0,∞) is the diameter of the marginal polytopeM and R ∈ (0,∞) gives the radius of
the smallest ball of center µp included inM.

Proof. We will obtain the posterior contraction rates of interest using the bounds on the MMD
provided in the proof of Theorem 1. Given an open neighbourhood S ⊆ R of p[f ], we have that
the complement Sc = R \ S is closed in R. We assume without loss of generality that Sc 6= ∅,
since the posterior mass on Sc is trivially zero when Sc = ∅. Since Sc is closed, the distance γ =
infr∈Sc

∣∣r−p[f ]
∣∣ > 0 is strictly positive. Denote the posterior distribution byN (mn, σ

2
n) where we

have that mn := p̂FWBQ[f ] where p̂FWBQ =
∑n
i=1 w

BQ
i δ(xFW

i ) and σn := MMD({xFW
i , wBQ

i }ni=1).
Directly from the supremum definition of the MMD we have:∣∣∣p[f]−mn

∣∣∣ ≤ σn∥∥f∥∥H. (26)

Now the posterior probability mass on Sc is given by

Mn =

∫
Sc

φ(r|mn, σn)dr, (27)

where φ(r|mn, σn) is the p.d.f. of the posterior normal distribution. By the definition of γ we get
the upper bound:

Mn ≤
∫ p[f ]−γ

−∞
φ(r|mn, σn)dr +

∫ ∞
p[f ]+γ

φ(r|mn, σn)dr (28)

= 1 + Φ
( p[f ]−mn

σn︸ ︷︷ ︸
(∗)

− γ

σn

)
− Φ

( p[f ]−mn

σn︸ ︷︷ ︸
(∗)

+
γ

σn

)
. (29)

From (26) we have that the terms (∗) are bounded by ‖f‖H ≤ 1 <∞ as σn → 0, so that asymptot-
ically we have:

Mn . 1 + Φ
(
− γ/σn

)
− Φ

(
γ/σn

)
(30)

= erfc
(
γ/
√

2σn
)
∼
(√

2σn/
√
πγ
)

exp
(
− γ2/2σ2

n

)
. (31)

Finally we may substitute the asymptotic results derived in the proof of Theorem 1 for the MMD σn
into (31) to complete the proof.

Corollary. The consistency and contraction rates obtained for FWLSBQ apply also to OBQ.

Proof. By definition, OBQ chooses samples that globally minimise the MMD and we can hence
bound this quantity from above by the MMD of FWLSBQ:

MMD
({
xOBQ
i , wBQ

i

}n
i=1

)
= inf
{xi}ni=1∈X

MMD
({
xi, w

BQ
i

}n
i=1

)
≤ MMD

({
xFW
i , wBQ

i

}n
i=1

)
. (32)

Consistency and contraction follow from inserting this inequality into the above proofs.

Appendix C: Computing the Mean Element for the Simulation Study

We compute an expression for µp(x) =
∫∞
−∞ k(x, x′)p(x′)dx′ in the case where k is an

exponentiated-quadratic kernel with length scale hyper-parameter σ:

k
(
x, x′

)
:= λ2 exp

(−∑d
i=1(xi − x′i)2

2σ2

)
= λ2(

√
2πσ)dφ

(
x
∣∣x′,Σσ), (33)
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where Σσ is a d-dimensional diagonal matrix with entries σ2, and where p(x) is a mixture of d-
dimensional Gaussian distributions:

p(x) =

L∑
l=1

ρl φ
(
x
∣∣µl,Σl). (34)

(Note that, in this section only, xi denotes the ith component of the vector x.) Using properties of
Gaussian distributions (see Appendix A.2 of [26]) we obtain

µp(x) =

∫ ∞
−∞

k(x, x′)p(x′)dx′

=

∫ ∞
−∞

λ2(
√

2πσ)dφ
(
x′
∣∣x,Σσ)× ( L∑

l=1

ρl φ
(
x′
∣∣µl,Σl))dx′

= λ2(
√

2πσ)d
L∑
l=1

ρl

∫ ∞
−∞

φ
(
x′
∣∣x,Σσ)× φ(x′∣∣µl,Σl)dx′

= λ2(
√

2πσ)d
L∑
l=1

ρl

∫ ∞
−∞

a−1l φ
(
x′
∣∣cl, Cl)dx′

= λ2(
√

2πσ)d
L∑
l=1

ρla
−1
l .

(35)

where we have:

a−1l = (2π)−
d
2

∣∣Σσ + Σl
∣∣− 1

2 exp
(
− 1

2

(
x− µl

)T (
Σσ + Σl

)−1(
x− µl

))
. (36)

This last expression is in fact itself a Gaussian distribution with probability density function
φ(x|µl,Σl + Σσ) and we hence obtain:

µp(x) := λ2
(√

2πσ
)d L∑

l=1

ρl φ
(
x|µl,Σl + Σσ

)
. (37)

Finally, we once again use properties of Gaussians to obtain∫ ∞
−∞

µp(x)p(x)dx =

∫ ∞
−∞

[
λ2
(√

2πσ
)d L∑

l=1

ρl φ
(
x|µl,Σl + Σσ

)]
×
[ L∑
m=1

ρm φ
(
x
∣∣µm,Σm)]dx

= λ2
(√

2πσ
)d L∑

l=1

L∑
m=1

ρlρm

∫ ∞
−∞

φ
(
x|µl,Σl + Σσ

)
φ
(
x
∣∣µm,Σm)dx

= λ2
(√

2πσ
)d L∑

l=1

L∑
m=1

ρlρma
−1
lm

= λ2
(√

2πσ
)d L∑

l=1

L∑
m=1

ρlρmφ
(
µl|µm,Σl + Σm + Σσ

)
.

(38)

Other combinations of kernel k and density p that give rise to an analytic mean element can be found
in the references of [1].

Appendix D: Details of the Application to Proteomics Data

Description of the Model Choice Problem
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The ‘CheMA’ methodology described in [19] contains several elements that we do not attempt to
reproduce in full here; in particular we do not attempt to provide a detailed motivation for the
mathematical forms presented below, as this requires elements from molecular chemistry. For our
present purposes it will be sufficient to define the statistical models {Mi}mi=1 and to clearly specify
the integration problems that are to be solved. We refer the reader to [19] and the accompanying
supplementary materials for a full biological background.

Denote by D the dataset containing normalised measured expression levels yS(tj) and y∗S(tj) for,
respectively, the unphosphorylated and phosphorylated forms of a protein of interest (‘substrate’) in
a longitudinal experiment at time tj . In addition D contains normalised measured expression levels
y∗Ei

(tj) for a set of possible regulator kinases (‘enzymes’, here phosphorylated proteins) that we
denote by {Ei}.
An important scientific goal is to identify the roles of enzymes (or ‘kinases’) in protein signaling;
in this case the problem takes the form of variable selection and we are interested to discover which
enzymes must be included in a model for regulation of the substrate S. Specifically, a candidate
model Mi specifies which enzymes in the set {Ei} are regulators of the substrate S, for example
M3 = {E2, E4}. Following [19] we consider models containing at most two enzymes, as well as
the model containing no enzymes.

Given a dataset D and model Mi, we can write down a likelihood function as follows:

L(θi,Mi) =

N∏
n=1

φ

y∗S(tn+1)− y∗S(tn)

tn+1 − tn

∣∣∣∣∣∣ −V0y
∗
S(tn)

y∗S(tn) +K0
+
∑

Ej∈Mi

Vjy
∗
Ej

(tn)yS(tn)

yS(tn) +Kj
, σ2

err

 . (39)

Here the model parameters are θi = {K,V, σerr}, where (K)j = Kj , (V)j = Vj , φ is the normal
p.d.f. and the mathematical forms arise from the Michaelis-Menten theory of enzyme kinetics. The
Vj are known as ‘maximum reaction rates’ and theKj are known as ‘Michaelis-Menten parameters’.
This is classical chemical notation, not to be confused with the kernel matrix from the main text. The
final parameter σerr defines the error magnitude for this ‘approximate gradient-matching’ statistical
model.

The prior specification proposed in [19] and followed here is

K ∼ φT
(
K
∣∣1, 2−1I

)
, (40)

σerr|K ∼ p(σerr) ∝ 1/σerr, (41)

V|K, σ ∼ φT
(
V
∣∣1, Nσ2

err

(
X(K)TX(K)

)−1)
, (42)

where φT denotes a Gaussian distribution, truncated so that its support is [0,∞) (since kinetic
parameters cannot be non-negative). Here X(K) is the design matrix associated with the linear
regression that is obtained by treating the K as known constants; we refer to [19] for further details.

Due to its careful design, the likelihood in Eqn. 39 is partially conjugate, so the following integral
can be evaluated in closed form:

L(K,Mi) =

∫ ∞
0

∫ ∞
0

L(θi,Mi)p(V, σerr|K)dVdσerr. (43)

The numerical challenge is then to compute the integral

L(Mi) =

∫ ∞
0

L(K,Mi)p(K)dK, (44)

for each candidate modelMi. Depending on the number of enzymes in modelMi, this will either be
a 1-, 2- or 3-dimensional numerical integral. Whilst such integrals are not challenging to compute on
a per-individual basis, the nature of the application means that the values L(Mi) will be similar for
many candidate models and, when the number of models is large, this demands either a very precise
calculation per model or a careful quantification of the impact of numerical error on the subsequent
inferences (i.e. determining the MAP estimate). It is this particular issue that motivates the use of
probabilistic numerical methods.

Description of the Computational Problem
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We need to compute integrals of functions with domain X = [0,∞)d where d ∈ {1, 2, 3} and the
sampling distribution p(x) takes the form φT (x|1, 2−1I). The test function f(x) corresponds to
L(K,Mi) with x = K. This is given explicitly by the g-prior formulae as:

L(K,Mi) =
1

(2π)N/2
1

(N + 1)d/2
Γ

(
N

2

)
b
−N

2

N , (45)

bN =
1

2

(
YTY +

1

N
1TXTX1−VT

NΩNVN

)
, (46)

VN = Ω−1N

(
1

N
XTX1 + XTY

)
, (47)

ΩN =

(
1 +

1

N

)
XTX, (48)

(Y)n =
y∗S(tn+1)− y∗S(tn)

tn+1 − tn
, (49)

(50)

where for clarity we have suppressed the dependence of X on K. For the Frank-Wolfe Bayesian
Quadrature algorithm, we require that the mean element µp is analytically tractable and for this
reason we employed the exponentiated-quadratic kernel with length scale λ and width scale σ pa-
rameters:

k(x, x′) = λ2 exp

(
−
∑d
i=1(xi − x′i)2

2σ2

)
. (51)

For simplicity we focussed on the single hyper-parameter pair λ = σ = 1, which produces:

µp(x) =

∫ ∞
0

k(x, x′)p(x′)dx′ (52)

=

∫ ∞
0

exp

(
−

d∑
i=1

(xi − x′i)2
)
φT
(
x′
∣∣1, 2−1I

)
dx′ (53)

= 2−d/2
(
1 + erf(1)

)−d d∏
i=1

exp

(
− (xi − 1)2

2

)(
1 + erf

(
xi + 1√

2

))
, (54)

where φT is the p.d.f. of the truncated Gaussian distribution introduced above and erf is the error
function. To compute the posterior variance of the numerical error we also require the quantity:∫ ∞

0

∫ ∞
0

k(x, x′)p(x)p(x′)dxdx′ =

∫ ∞
0

µp(x)p(x)dx =

{
0.629907... for d = 1
0.396783... for d = 2
0.249937... for d = 3

, (55)

which we have simply evaluated numerically. We emphasise that principled approaches to hyper-
parameter elicitation are an important open research problem that we aim to address in a future
publication (see discussion in the main text). The values used here are scientifically reasonable and
serve to illustrate key aspects of our methodology.

FWBQ provides posterior distributions over the numerical uncertainty in each of our estimates for
the marginal likelihoods L(Mi). In order to propagate this uncertainty forward into a posterior
distribution over posterior model probabilities (see Figs. 3 in the main text and S2 below), we
simply sampled values L̂(Mi) from each of the posterior distributions for L(Mi) and used these
samples values to construct posterior model probabilities L̂(Mi)/

∑
j L̂(Mj). Repeating this pro-

cedure many times enables us to sample from the posterior distribution over the posterior model
probabilities (i.e. two levels of Bayes’ theorem). This provides a principled quantification of the
uncertainty due to numerical error in the output of our primary Bayesian analysis.

Description of the Data

The proteomic dataset D that we considered here was a subset of the larger dataset provided in [19].
Specifically, the substrate S was the well-studied 4E-binding protein 1 (4EBP1) and the enzymes
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Ej consisted of a collection of key proteins that are thought to be connected with 4EBP1 regulation,
or at least involved in similar regulatory processes within cellular signalling. Full details, including
experimental protocols, data normalisation and the specific choice of measurement time points are
provided in the supplementary materials associated with [19].

For this particular problem, biological interest arises because the data-generating system was pro-
vided by breast cancer cell lines. As such, the textbook description of 4EBP1 regulation may not
be valid and indeed it is thought that 4EBP1 dis-regulation is a major contributing factor to these
complex diseases (see [30]). We do not elaborate further on the scientific rationale for model-based
proteomics in this work.
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Figure S1: Comparison of quadrature methods on the proteomics dataset. Left: Value of the
MMD2 for FW (black), FWLS (red), FWBQ (green), FWLSBQ (orange) and SBQ (blue). Once
again, we see the clear improvement of using Bayesian Quadrature weights and we see that Sequen-
tial Bayesian Quadrature improves on Frank-Wolfe Bayesian Quadrature and Frank-Wolfe Line-
Search Bayesian Quadrature. Right: Empirical distribution of weights. The dotted line represent the
weights of the Frank-Wolfe algorithm with line search, which has all weights wi = 1/n. Note that
the distribution of Bayesian Quadrature weights ranges from −17.39 to 13.75 whereas all versions
of Frank-Wolfe have weights limited to [0, 1] and have to sum to 1.
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Figure S2: Quantifying numerical error in a model selection problem. Marginalisation of model
parameters necessitates numerical integration and any error in this computation will introduce error
into the reported posterior distribution over models. Here FWBQ is used to model this numerical
error explicitly. Left: At n = 50 design points the uncertainty due to numerical error prevents us
from determining the true MAP estimate. Right: At n = 200 design points, models 16 and 26 can
be better distinguished as the uncertainty due to numerical error is reduced (model 26 can be seen
to be the MAP estimate, although some uncertainty about this still remains even at this value of n,
due to numerical error).
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Appendix E: FWBQ algorithms with Random Fourier Features

In this section, we will investigate the use of random Fourier features (introduced in [25]) for the
FWLS and FWLSBQ algorithms. An advantage of using this type of approximation is that the
cost of manipulating the Gram matrix, and in particular of inverting it, goes down from O(n3) to
O(nD2) for some user-defined constant D which controls the quality of approximation. This could
make Bayesian Quadrature more competitive against other integration methods such as MCMC or
QMC. Furthermore, the kernels obtained using this method lead to finite-dimensional RKHS, which
therefore satisfy the assumptions required for the theory in this paper to hold. This will be the aspect
that we will focus on. In particular, we will show empirically that exponential convergence may be
possible even when the RKHS is infinite-dimensional.

We will re-use the 20-component mixture of Gaussians example with d = 2 from our simulation
studies, but using instead a random Fourier approximation of the exponentiated-quadratic (EQ) ker-
nel k(x, x′) := λ2 exp(−1/2σ2‖x− x′‖22) with (λ, σ) = (1, 0.8) and M = 10000.

Following Bochner’s theorem, we can always express translation invariant kernels in Fourier space:

k(x, x′) =

∫
W
g(w) exp

(
jw(x− x′)

)
dw = E

[
exp

(
jwTx

)
exp

(
jwTx′

)]
(56)

where w ∼ g(w) for g(w) being the Fourier transform of the kernel. One can then use a Monte
Carlo approximation of the kernel’s Fourier expression with D samples whenever g is a p.d.f.. Our
approximated kernel will then lead to a D-dimensional RKHS and will be given by:

k(x, x′) ≈ 1

D

D∑
j=1

zwj ,bj (x)zwj ,bj (x′) = k̂D(x, x′) (57)

where zwj ,bj (x) =
√

2 cos(wTj x + bj) and bj ∼ [0, 2π] uniformly. Random Fourier features ap-
proximations are unbiased and, in the specific case of a d-dimensional EQ kernel with λ = 1, we
have to samples from the following Fourier transform:

g(w) =
(2π

σ2

)− d
2

exp
(
− σ2‖w‖22

2

)
(58)

which is a d-dimensional Gaussian distribution with zero mean and covariance matrix with all diag-
onal elements equal to (1/σ2).

The impact on the MMD from the use of random Fourier features to approximate the kernel for both
the FWLS and FWLSBQ algorithms is demonstrated in Figure S3. In this example, the quadrature
rule uses the kernel with random features but the MMD is calculated using the original H-norm.
The reason for using thisH-norm is to have a unique measure of distance between points which can
be compared.

Clearly, we once again have that the rate of convergence of the FWLSBQ is much faster than FWLS
when using the exact kernel. The same phenomena is observed for the method with high number of
random features (D = 5000). This suggests that both the choice of design points and the calculation
of the BQ weights is not strongly influenced by the approximation. It is also interesting to notice
that the rates of convergence is very close for the exact and D = 5000 methods (atleast when n is
small), potentially suggesting that exponential convergence is possible for the exact method. This is
not so surprising in itself since using a Gaussian kernel represents a prior belief that the integrand of
interest is very smooth, and we can therefore expect fast convergence of the method.

However, in the case with a smaller number of random features is used (D = 1000), we actually
observe a very poor performance of the method, which is mainly due to the fact that the weights are
not well approximated anymore.

In summary, the experiments in this section suggest that the use of random features is a potential
alternative for scaling up Bayesian Quadrature, but that one needs to be careful to use a high enough
number of features. The experiments also give hope of having very similar convergence for infinite-
dimensional and finite-dimensional spaces.
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Figure S3: Random Fourier Features (RFF) for Bayesian Quadrature. RFF are used to approximate
the EQ kernel in the example of the simulation study. The MMD2 is plotted in the case where the
EQ kernel is used (FWLS: blue; FWLSBQ: black), as well as when a using random features with
D = 1000 (FWLS: red; FWLSBQ: purple) and D = 5000 (FWLS: orange; FWLSBQ: green).
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