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Abstract

Over the next decade, data from large Stage IV survey telescopes in-

cluding Euclid, LSST and WFIRST will provide some of the tightest

cosmological constraints.

To extract information from these surveys we take advantage of grav-

itational lensing, an effect predicted by Einstein’s general theory of

relativity. Gravitational lensing simply refers to the bending of light

rays around massive bodies. This causes small changes in the observed

ellipticity of galaxies, which is called weak gravitational lensing or —

on the largest scales — cosmic shear. By examining these shape dis-

tortions over millions, or even billions of galaxies, we can distinguish

between alternative cosmological models and measure the fundamental

cosmological parameters precisely.

While the constraining power of these upcoming data sets will improve

by more than an order of magnitude, our statistical methods are not

keeping pace. In this thesis I develop three new techniques to take full

advantage of next generation surveys.

The first of these is a method called k-cut cosmic shear. It allows us

to efficiently remove sensitivity to small scales that are too difficult to

model accurately due to complicated baryonic physics and nonlinear

structure formation.

Next I present a method called non-parametric cosmology with cosmic

shear. I show how to extract information about the growth of struc-

ture and the background expansion of the Universe with no a priori
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assumption about the underlying cosmological model. This can be

used to search for failures of the Lambda-Cold Dark Matter (LCDM)

model.

Finally I show how to perform inference with full forward models of the

cosmic shear data. This approach allows us to seamlessly propagate

all astrophysical, theoretical and instrumental systematics into the fi-

nal parameter constraints, sidestepping complicated issues including

the deconvolution of the survey mask and an assumption about the

functional form of the likelihood.
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a Gaussian likelihood. The value of the input cosmology is indicated

by the black dotted lines, and lies at the center of the contours. This

implies that the Guassian likelihood approximation does not lead

to any measurable bias in our setup. . . . . . . . . . . . . . . . . . 119
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E.1 The reduced shear correction using the bispectrum perturbative ap-

proach (see [32, 117]) and using the forward model in the lognormal

field approximation as presented in Chapter 4. The data points are

plotted at the geometric mean of the `-bin boundaries. There is mild

disagreement at intermediate `-mode. This is to be expected given

the approximations that go into the bispectrum fitting formula and

the lognormal field approximation. Nevertheless the agreement at

low-` and in the highest `-bin are striking. In the future, forward

models could be used to get around using a fitting formula for the

matter bispectrum, which could be biased due to the indeterminate

impact of baryons. The bispectrum data was provided by Anurag

Deshpande (private communication). . . . . . . . . . . . . . . . . . 135
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Chapter 1

Introduction

Far from slowing down under the attractive force of gravity, the Universe’s expan-

sion is actually accelerating. The leading explanation is that 70% of the energy

is in the form of a cosmological constant – a mysterious form of energy that has

the same density everywhere. Meanwhile, to explain why galaxies do not fly apart

under their own rotation, it is conjectured that 25% of the remaining rest en-

ergy in the Universe is in the form of dark matter – a substance that interacts

only through gravity. These assumptions form the Lambda-Cold Dark (LCDM)

paradigm. While LCDM passes nearly all current observational tests, there is no

widely accepted physical model that explains the existence of dark energy and dark

matter. Over the next decade, data from large Stage IV survey telescopes includ-

ing Euclid1 [80], the Wide Field Infrared Survey Telescope2 (WFIRST) and the

Large Synoptic Survey Telescope3 (LSST), will help us test the LCDM paradigm

and in particular determine if the Universe’s accelerated expansion is driven by

the cosmological constant – or something else. Potential alternatives include the

addition of extra fields or modified gravity. See [38] for a review.

To extract the cosmological information from Stage IV surveys we take advan-

tage of gravitational lensing, an effect predicted by Einstein’s general theory of

relativity. Gravitational lensing simply refers to the bending of light rays around

1http://euclid-ec.org
2https://www.nasa.gov/wfirst
3https://www.lsst.org
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massive bodies. This causes small changes in the observed ellipticity and size of

galaxies, which is referred to as weak gravitational lensing. By examining the

shape distortions over millions, or even billions of galaxies, we can distinguish

between cosmological models and measure cosmological parameters precisely.

A Gaussian-likelihood analysis of the two-point statistics is by far the most

popular way to extract cosmological information from large photometric survey

shear data [51, 56, 130]. The first step is to measure the ellipticity, angular position

and photometric redshift (a proxy for distance) of every galaxy in the survey.

From this, one computes the correlations in ellipticity between pairs of galaxies

in redshift bins i and j as a function of angular separation on the sky, θ. These

are called the cosmic shear two-point correlation functions and they are written

as ξij+ (θ) and ξij− (θ). The plus and minus indicate whether we take the sum or the

difference of the so called ‘tangential’ and ‘cross’ ellipticities in the frame joining

the two galaxies. Alternatively we can compute power spectra Cij
` , which expresses

the correlations between pairs of galaxy ellipticities in harmonic space.

Assuming a cosmological model with free-parameters p we infer the posterior

distribution on these parameters by Markov Chain Monte Carlo (MCMC) sam-

pling from a likelihood function, which we assume to be Gaussian. It is written

as

ln L (p) = −1

2

∑
a,b

[Da − Ta (p)]C−1
ab [Db − Tb (p)] , (1.1)

where Da is the data vector composed of the observed correlation functions, Ta (p)

is the expected value of the correlation functions given the cosmological parameters

p, C−1
ab is the inverse of the covariance matrix and the sum is over all data points

pairs (a, b). This procedure encapsulates the way that most shear analyses are

done today.

Relative to today’s current surveys, the number of measured galaxies in Stage

IV surveys will increase by two orders of magnitude [5], yet the statistical frame-

work used to extract the cosmological information is not keeping pace. With Stage

IV experiments coming online in just five years, we urgently need to address serious

24



issues with this framework. These can be divided into three broad categories:

• Issue 1 Current techniques are prone to bias: This broader problem

breaks down in two sub-issues:

A. Despite probing the large scale structure evolution of the Universe,

cosmic shear is also sensitive to the physics of small scale high-density re-

gions. The nonlinear structure growth and baryonic (non-gravitational)

physics in this regime are very difficult to model. For example, the im-

pact of winds from the massive black holes at the centre of galaxies – which

suppresses the formation of structure in a process called AGN feedback

– is very uncertain [60]. If not handled correctly, modelling uncertainties

at small scales will lead to significant bias in the dark energy measure-

ment [33, 60, 97, 115, 124].

B. To extract information about the cosmological model parameters,

M , from the shear data, D, we use Bayes’ theorem to write P (M |D) =

P (D|M)P (M) and sample from the posterior distribution, P (M |D). The

prior, P (M), is computed from other cosmological probes. Meanwhile in

current weak lensing studies the likelihood, P (D|M), is assumed to be a

Gaussian distribution. It was recently claimed that this could lead to bias in

Stage IV experiments [114], so the Gaussian likelihood approximation must

be tested or avoided altogether

• Issue 2 We are not ready for an unexpected or paradigm shifting

result: At the moment, we assume a cosmological model and then infer the

value of just a few parameters. With the increased statistical power of Stage

IV experiments it is conceivable we will make a measurement that is incon-

sistent with the cosmological constant, or in tension with other cosmological

probes. The few model parameters we measure today may not encapsulate

why LCDM has failed, making it difficult to distinguish between exciting

new physics and systematics.
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• Issue 3 We do not perform inference on full forward models of the

data: Inside the current likelihood framework we must rapidly compute the

theoretical lensing prediction for a large number of points in cosmological

parameter space to infer the underlying cosmological parameters. Instru-

mental systematics (e.g the blurring of galaxies due to the telescope’s point

spread function) must be deconvolved, and this may lead to bias. Mean-

while ‘theoretical systematics’ (e.g the reduced shear correction [32], which

is known to cause bias for next generation data) are not considered as they

are computationally expensive to compute. While it is difficult to compute

the expected impact of instrumental and theoretical, it is easy to forward

model realisations of the data which include these effects. Ideally, we need a

framework to perform cosmological inference on a small number of forward

model realisations of the data.

I propose a set of techniques which mitigates all these issues in the next three

research chapters. In Chapter 1 I present a method which overcomes Issue 1A, in

Chapter 2 I address Issue 2 and in Chapter 3 I tackle Issue 3 and investigate Issue

IB. In the remainder of this chapter I review all the relevant general relativity,

cosmology and weak lensing formalism needed to understand the remainder of the

thesis.

1.1 General Relativity

In this section I aim to concisely summarise the general relativity relevant to this

thesis.

1.1.1 General Relativity

Of the four known fundamental forces of nature, it is gravity that dominates on

cosmological scales. In general relativity, gravity is described by the Einstein field
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equations:

Gµν =
8πG

c4
Tµν , (1.2)

where G is Newton’s constant and c is the speed of light in vacuum. The left hand

side is the Einstein tensor, which is a geometric quantity that gives the curvature

of spacetime, while on the right, Tµν gives the energy-momentum tensor. In a

sense, the matter and energy on the right, tells spacetime how to curve, on the

left. It is possible to generalise the Einstein field equations to:

Gµν + Λgµν =
8πG

c4
Tµν , (1.3)

where gµν gives the metric, and Λ is the infamous cosmological constant – which

can be thought of as the energy of the vacuum if moved to the right hand side.

Finally we have the condition that energy-momentum is preserved:

∇µT
µν = 0, (1.4)

where ∇µ is the covariant derivative.

1.1.2 Deflection of Light Due to Gravity

The total travel time of a light ray between two points is given by:

t =

∫
dt =

1

c

∫
dt

c

v [x (`)]

d`

dt
=

1

c

∫
d` n [x (`)] , (1.5)

where v [x (`)] is the velocity of light along the path and n [x (`)] = c
v[x(`)]

is the

refractive index along the path. Using Fermat’s Principle and extremising the

travel time along the path in a static gravitational potential, it is possible to show

that the total deflection angle is given by:

α̂ =
2

c2

∫
dλ ∇⊥Φ, (1.6)
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where Φ is the gravitational potential, λ parametererises the path and ∇⊥ is the

gradient perpendicular to the path. Since this result is central to this thesis a full

derivation is given in Appendix A.

We can also apply the Born Approximation and integrate over the path that

the light ray would have followed if it was undeflected. Assuming the light ray

initially travels in the z-direction, the deflection angle is then given by:

α̂ =
2

c2

∫
dz ∇⊥Φ. (1.7)

It is shown in [30] that this approximation will have a negligible impact on cos-

mological parameter constraints from the two-point statistics used in this thesis.

1.2 Geometry and Distances in the Universe

In this section I give a concise overview of the cosmology relevant to this thesis.

This material is standard, so unless otherwise stated I will closely follow the review

discussions presented in [18, 26].

1.2.1 The Expanding Universe and Accelerating Universe

Edwin Hubble and Vesto Slipher discovered that the Universe is expanding – not

static. More recently it has been discovered that the expansion of the Universe is

actually accelerating [104, 109]. We describe this expansion in terms of a dimen-

sionless scale factor, a(t), which increases with time, t. The physical separation,

xphys, between two points separated by some comoving coordinate distance, r, is

then:

xphys = a(t)r. (1.8)

In an expanding universe two points separated by some comoving coordinate dis-

tance, r, will move apart at a rate, vphys. It is customary to normalise a(t) = 1

today and I will implicitly use this convention for the remainder of this thesis.
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Differentiating both sides with respect to t, and assuming that the comoving sep-

aration is invariant, implies:

vphys = H(t)xphys, (1.9)

where H(t) = ȧ/a. The value of H(t) today, with t = 0, is called the Hubble

constant and it written as H0.

The precise value of the Hubble constant is hotly debated, but current accepted

values lie in the range 65−75 (km/s) Mpc−1 [2, 19, 108]. For historical reasons, we

sometime write H0 = h0 100 (km/s) Mpc−1, where h0 is a dimensionless quantity.

The subscript is also usually omitted in this case.

1.2.2 The Cosmological Principle and the Friedmann-Robertson-

Walker Metric

Assuming the Cosmological Principle – that the Universe is spatially homogenous

and isotropic on scales larger than ∼100 Mpc – the metric for the Universe can

be written in terms of the normal spherical comoving coordinates (r, θ, φ), time

coordinate t and an evolving expansion factor, a (t), as:

ds2 = −c2dt2 + a2 (t)
[
dr2 + fk (r)2 (dθ2 + sin2θ dφ2

)]
, (1.10)

where

fk (r) ≡


k−1/2sin

(
k1/2r

)
if k > 0

r if k = 0

(−k)−1/2 sinh
(

(−k)1/2 r
)

if k < 0,

(1.11)

and k = −1, 0, 1 corresponds to negative, flat and positive spatial curvature re-

spectively. This is called the Friedmann-Robertson-Walker metric.
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1.2.3 Cosmological Redshift

The expansion of the Universe will increase the observed wavelength of light be-

tween the emitter and the observer at different cosmological times according to:

λ0 =
a(t0)

a(te)
λe. (1.12)

where λ0 is the wavelength observed from a source emitting at wavelength λe and

a(t0) and a(te) are the corresponding scale factors at the location of the observer

and emitter respectively. The redshift, z, is defined as:

z =
λ0 − λe
λe

. (1.13)

Combining equations (1.12) and (1.13) yields:

1 + z =
1

a(te)
. (1.14)

1.2.4 Distance Measures

The comoving distance, r, is not directly observable, but we can express it in terms

of the redshift which is directly measurable. On a radial null geodesic, putting c

=1,

0 = −dt2 + a2 (t) dr2. (1.15)

Rearranging, integrating and using equation (1.14) implies:

r(z) =

∫ t

0

dt′

a(t′)
=

∫ z

0

dz′

H(z′)
(1.16)

The distance measure relevant to this thesis is the angular-diameter distance. It

is defined as the ratio of an object’s physical size relative to the angle made on

the sky:

dA =
xphys

θ
=
fk (r (z)) a(z)θ

θ
= fk(r)a(z), (1.17)
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so that for a flat cosmology the comoving angular diameter distance is just the

comoving distance r(z). For this reason I will refer to the comoving distance

and comoving angular distance, dA/a(z), interchangeably for the remainder of the

thesis.

1.3 Contents of the Universe

1.3.1 The Conservation Equation and The Equation of

State

In general relativity the energy-momentum tensor for a homogenous and isotropic

fluid is:

Tµν =

(
ρ+

P

c2

)
UµUν − Pgµν , (1.18)

where ρ is the energy density and P is the pressure. Substituting into equation

(1.4) yields the conservation equation:

∂ρ

∂t
+ 3H (ρ+ P ) = 0. (1.19)

The density, ρ, pressure, P , and time-evolving Hubble parameter, H, are all im-

plicitly functions of the redshift, z, but I will use this compact notation for the

remainder of the thesis. It is now convenient to define an equation of state:

P = ωρ, (1.20)

where we have set c = 1. Plugging this into equation (1.19) and solving gives:

ρ ∝ a−3(1+ω). (1.21)
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1.3.2 Components of the Universe

The Universe has three components: matter, radiation and vacuum energy4:

• Matter: On cosmological scales we can treat matter as a cloud of massive

collisionless particles. In this approximation the pressure, P , is zero. Hence,

the equation of state is also zero. It follows from equation (1.21) that the

density of matter in the Universe goes as: ρ ∝ a−3.

• Radiation: The equation of state is: P = −ρ/3 [26]. Following the same

argument as for matter gives: ρ ∝ a−4. Since the density of radiation falls

off faster than for matter, accounting for radiation is only relevant in the

very early Universe.

• Vacuum energy: The vacuum energy density due to the cosmological con-

stant is time invariant i.e ∂ρ/∂t = 0. Plugging this into equation (1.19)

implies that P = −ρ and hence that w = −1. Thus ρ ∝ a0 and the cosmo-

logical constant becomes the dominant component in the late Universe.

1.4 Kinematics of the Universe

1.4.1 The Friedmann Equation

Substituting the metric defined in equation (1.10) and the energy momentum-

tensor for a perfect fluid defined in equation (1.18) into the field equations (1.2)

gives the first Friedmann equation (see [18] for a full derivation):

H2 =
8πG

3
ρ− k

a2
. (1.22)

Observations place the value of the curvature k extremely close to zero [2]. I will set

it to this value for the remainder of the thesis. For this to happen, equation (1.22)

4Neutrinos are also important. This is a topic in its own right so I refer the reader to the
review article [83].

32



implies that the density of the Universe must equal the critical density:

ρcrit =
3H2

0

8πG
. (1.23)

Dimensionless density parameters can then be defined in terms of the critical

density: Ωm ≡ ρm/ρcrit, Ωr ≡ ρr/ρcrit and ΩΛ ≡ ρΛ/ρcrit. Then the Friedmann

equation can be rewritten:

H2 = H2
0

[
Ωra

−4 + Ωma
−3 + ΩΛ

]
. (1.24)

1.4.2 Background Expansion of the Universe

For a single component, equation (1.24) can be solved analytically. In the case

Ωm = 1 and Ωi = 0 for all other i, the growing mode solution is:

a ∝ t2/3, (1.25)

giving an expanding, but not accelerating universe. For ΩΛ = 1, Λ > 0 and Ωi = 0

for all other components, yields the growing mode solution:

a ∝ eH0t, (1.26)

corresponding to accelerating expansion, that is ä > 0.

In practice the background expansion is driven by a combination of dark energy,

matter and radiation so we need to use a code such as Class [21] or Camb [84]

to generate a realistic expansion history, a(t). These codes automatically plug

this into equation (1.16) calculating all the cosmological distances relevant to this

thesis.
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1.4.3 Kinematics for a Generalised Dark Energy Equation

of State

To search for deviations from a simple cosmological constant, it is customary to

take the Chevallier-Polarski-Linder (CPL) parameterisation:

w (a) = w0 + wa (1− a) , (1.27)

for the dark energy equation of state proposed in [86]. This particular parame-

terisation is not theoretically motivated and it is just a Taylor expansion about

a = 1. This is part of the motivation for the method presented in Chapter 3. Nev-

ertheless, either wa 6= 0 or w0 6= −1 would imply that the accelerated expansion

of the Universe is not caused by a cosmological constant.

If the dark energy equation of state is not constant, then the first Friedmann

equation, and hence the expansion history of the universe, will also change. For a

general dark energy equation of state, equation (1.19) can be re-written:

d log (ρDE)

d log (a)
= −3 (1 + wDE [a]) . (1.28)

This has the solution:

ρDE (a) ∝ exp

[
−3

∫ a

1

d (log a′) (1 + w [a′])

]
. (1.29)

Thus for a general parameterisation of the dark energy equation of state, the first

Friedmann equation becomes:

H2 = H2
0

(
Ωra

−4 + Ωma
−3 + ΩΛ exp

[
−3

∫ a

1

d (log a′) (1 + w [a′])

])
, (1.30)

and from this Camb and Class compute the background expansion as before.
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1.5 Structure Growth

1.5.1 Linear Structure growth

Structure growth also depends on the underlying cosmology. To gain intuition I

reproduce the linear Newtonian theory below. We start with the continuity and

Euler equations for an inviscid fluid:

∂tρ+∇x · (ρu) = 0

(∂t + u · ∇x) u =− ∇xP

ρ
−∇xΦ,

(1.31)

and a Poisson equation for gravity:

∇2
xΦ = 4πGρ, (1.32)

where Φ is the Newtonian potential and all spatial components are in physical

coordinates denoted by x. Defining the fractional overdensity as:

δ ≡ ρ− ρ̄
ρ̄

, (1.33)

we expand equations (1.31) and (1.32) linearly about the mean values in u, ρ and

P . Re-expressing in comoving coordinates, and combining yields:

δ̈ + 2Hδ − c2
s

a2
∇2δ = 4πGρ̄δ, (1.34)

where cs is the sound speed with the implicit assumption of adiabatic expansion,

so that c2
s = δP

δρ
.
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1.5.2 Linear Growth of Structure: A Case Study

For a dark matter dominated universe, cs = 0 (since there is no pressure) and

equation (1.34) offers the growing mode solution:

δ ∝ a. (1.35)

Meanwhile in a Λ−dominated universe, the Laplacian of the overdensity is zero

since there is no spatial clustering. Also dropping the source term, since the

expansion term will dominate, this universe yields the growing mode solution:

δ ∝ const. (1.36)

Together, equations (1.35) and (1.36) characterise the growth of large linear scales

for most of the history of the Universe. While in the matter dominated phase,

density perturbations will grow as the scale factor, but once in the Λ−dominated

phase, perturbation growth will be ‘frozen out’.

1.6 Statistics of the Cosmological Density Field

1.6.1 Random Fields and Power Spectra

Fields are of fundamental importance in cosmology. It is not the field itself that

tells us about the underlying cosmology, but rather the statistics of the field. This

is because given a cosmology, the field we observe is one among many equally

likely configurations.

Given a random field f (x), we define the ensemble average as a functional

integral over all possible field configurations:

〈f (x)〉 ≡
∫
Df P [f ] f (x) , (1.37)

where P [f ] is the probability distribution function for fields f . Very often this does
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not contain any information (for example, 〈δ〉 = 0) and we must go to higher-order

statistics. The two-point correlation function is defined as:

〈f (x) f (x + y)〉 ≡
∫
Df P [f ] f (x) f (x + y) , (1.38)

which by homogeneity and isotropy is a function of |y| only. It is sometimes

desirable to work in harmonic space since this allows us to explicitly exclude small

scales which can not be theoretically modelled. As a concrete example, in normal

3D Euclidean space, we can take the Fourier transform of the field, given by f (k),

and compute the quantity:

〈f (k) f ? (k′)〉 =

〈∫
d3x f (x) eik·x

∫
d3x′ f (x′) e−ik

′·x′
〉

=

∫
d3xei(k−k

′)·x
∫

d3ye−ik
′·y 〈f(x)f(x + y)〉

=(2π)3δD(k− k′)P (k),

(1.39)

where we have made the substitution x′ = x + y, ∗ denotes complex conjugation,

δD denotes the 3D Dirac delta function and the power spectrum, P (k), is defined

as the Fourier transform of the two-point correlation function. This evolves over

cosmic time so we write the 3D matter power spectrum as P (k, z), where z labels

the redshift.

1.6.2 Initial Conditions

To compute the power spectrum in the late Universe we must assume a set of

initial conditions. Measurements from Planck [3] confirm that to a very good

approximation the primordial density field is Gaussian with a power law spectrum:

P (k) = Ask
ns . (1.40)

Best estimates place the value of the spectral index ns = 0.965± 0.004 [2]. In late

Universe observational cosmology the primordial amplitude, As, is not commonly
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used, and instead we introduce a new parameter, σ8, to parameterise the amplitude

of the power spectrum. It is defined by:

σ2
8 =

∫
dk P (k)W (k,R), (1.41)

where

W (k,R) =
3k2

2π2(kR)3
[sin(kR)− kR cos(kR)] , (1.42)

with R = 8h−1 Mpc. This can be interpreted as the variance of the overdensity

field, δ, on scales of R = 8h−1 Mpc. Recent measurements place σ8 ≈ 0.8, but

there is a mild tension between CMB [2] and local Universe measurements [1, 57].

1.6.3 Computing the Matter Power Spectrum

The matter power spectrum, plotted in Figure 1.1, on large linear scales can be

computed using a relativistic reformulation of the Newtonian theory encapsulated

in equation (1.34)5. In practice the public codes Camb and Class are used to

compute the power spectrum in this linear regime.

In high-density regions (k & 10−1h Mpc−1), linear perturbation theory breaks

down and the linear matter power spectrum under-predicts the true nonlinear

matter power spectrum. At z = 0 and k & 10h Mpc−1, linear theory under-

predicts the nonlinear power spectrum by nearly two orders of magnitude.

On scales k & 1h Mpc−1, baryonic physics has a large impact on the matter

power spectrum [60]. For k . 10h Mpc−1, feedback from galactic nuclei (AGN)

and supernovae suppresses the matter power spectrum while for k & 10h Mpc−1

radiative cooling enhances power [60, 116].

To compute the true matter power spectrum we must resort to emulators [50,

120] or halo model [97] codes trained on N -body simulations. Still, modelling

uncertainties due to nonlinear structure growth and baryonic physics will bias weak

lensing parameter constraints [5, 15, 81, 118] in upcoming surveys. Mitigating this

5This is beyond the scope of this thesis but more details can be found in [18]
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Figure 1.1: The linear and nonlinear power spectra at redshifts z = 0 and z = 3.
As structure collapses through cosmic time, the amplitude of the power spectrum
increases. At small scales, above k ∼ 10−1h Mpc−1, nonlinear corrections be-
come relevant. By k ∼ 2h Mpc−1, the linear power spectrum underpredicts the
nonlinear power spectrum by an order of magnitude. Cosmic shear is primarily
sensitive to structure in the range k ∈ [10−1h Mpc−1, 10h Mpc−1] [124]. The linear
power spectrum was generated using Camb [84] and the nonlinear corrections were
generated using HALOFIT [120] inside the modular framework Cosmosis [136].
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bias is the focus of Chapter 2.

1.7 Cosmic Shear

In this section I outline the theory of cosmic shear. Most of the discussion is stan-

dard so I follow the discussion in the review articles [17, 70, 98] unless otherwise

stated.

1.7.1 Weak Lensing

In what follows we work in a spatially flat universe. To generalise to a spatially

curved universe, just replace, r, with the general comoving angular diameter dis-

tance, fk (r) [126].

Imagine that light travels through a gravitational potential, Φ, between a

source and an observer. Given a source at comoving angular diameter, r, the

total deflection angle in the observer’s frame is:

α =
2

c2

∫ r

0

dr′
(r − r′)

r
∇⊥Φ (x, r′) , (1.43)

where x gives the spatial coordinate along the path, assuming the Born approxi-

mation. This is a central result so a full derivation is given in Appendix B. If θ

gives the observed location of the source on the sky, spotting that ∇⊥ is equivalent

to 1/r′∇θ, we write the components of α as:

αi =
∂φ

∂θi
, (1.44)

where the lensing potential is defined as:

φ(r) =
2

c2

∫ r

0

dr′F (r, r′)Φ(r,θ), (1.45)
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and the lensing kernel is:

F (r, r′) =
r − r′
rr′

. (1.46)

This is maximally efficient when the lens is halfway between the observer and the

source. Writing β for the angle to the source along a straight line, we have the

lens equation:

β = θ −α. (1.47)

Thus the Jacobian transformation matrix is:

Aij ≡
∂βi
∂θj

= δKij −
∂αi
∂βj

= δKij −
∂2φ

∂θi∂θj

(1.48)

where δKij is the Kronecker delta. This can be rewritten as:

A =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 , (1.49)

where the convergence is defined as

κ =
1

2
(∂1∂1 + ∂2∂2)φ, (1.50)

and the two shear components are defined by:

γ1 =
1

2
(∂1∂1 − ∂2∂2)φ

γ2 = ∂1∂2φ,

(1.51)

where the partial derivatives are with respect to the components of θ. We say that

we are in the weak lensing regime if κ < 1 and in most cases κ� 1.

The inverse of the matrix A gives the local mapping from the source to the
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image plane. It is readily found that:

A−1 = µ(1− κ)


 1 0

0 1

+ g

 cos 2ψ sin 2ψ

sin 2ψ − cos 2ψ


 , (1.52)

where the magnification, µ, is just the ratio of the size in the image plane relative

to the source plane:

µ =
1

detA
=

1

(1− κ)2 − (γ2
1 + γ2

2)
, (1.53)

the reduced shear, g, is:

g =
γ

1− κ, (1.54)

γ1 = γ cos 2ψ and γ2 = γ sin 2ψ, for some angle ψ. Equation (1.52) gives us a

good intuition of what the shear and convergence mean physically. If κ = 0, then

a circular source will be sheared into an ellipse with ellipticity (third-flattening)

e = a−b
a+b

= |γ|, where a and b are the semi-major and semi-minor axes lengths

respectively. Meanwhile if γ = 0, then a circle with radius R would be mapped to

a circle with radius R/(1− κ). The combined effect of the shear and convergence

is illustrated in Figure 1.2.

1.7.2 The Shear Field

Like the fractional overdensity, δ(r), the shear, γ(θ, z), and convergence, κ(θ, z),

are random fields which are sensitive to the underlying cosmology. Measuring

their statistics provides cosmological constraints. Of course it is impossible to find

the field values at every point in space, but it is possible to measure a galaxy’s

size, orientation and ellipticity. Since the intrinsic shape and size of a galaxy is

unknown, this only gives a noisy estimate of the shear and convergence fields. For

the remainder of this thesis, I focus on the shear signal, because it has higher signal-

to-noise. For more information about cosmological inference from the convergence

field see [10, 61].
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Source Image

Convergence + Shear

Convergence alone

Grabitational Lensing

Gravitational Lensing

Figure 1.2: The combined effect of shear and convergence. Convergence changes
the radius of a circular source while the shear changes the ellipticity. This figure
originally appears in [98].

For mathematical convenience, the shear is normally written as a complex

number

γ ≡ γ1 + iγ2. (1.55)

We say that shear is a spin two field, which means that it is invariant under local

rotations by π radians, since an ellipse has this symmetry. We write:

γ = eisψ|γ|, (1.56)

for s = 2.

Defining the ellipticity of a galaxy as:

ε =

(
a− b
a+ b

)
e2iψ, (1.57)

where a and b give the length of the semi-major and semi-minor axes and ψ gives

the angle of orientation (see Figure 1.3), one can write the observed ellipticity, εo,
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Figure 1.3: The ellipticity components γ1 and γ2. As the ellipticity rotates around
π radians, the orientation angle, ψ, rotates around 2π radians. This figure origi-
nally appears in [70].
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in terms of the ellipticity of the source, εs, by:

εo =
εs + g

1 + g∗εs
, (1.58)

using equation (1.52), where * denotes complex conjugation. Making the anzatz

that κ� 1 and Taylor expanding implies:

εo ≈ εs + γ. (1.59)

In the absence of intrinsic alignments (see Section 1.7.7), 〈εs〉 = 0 so that the

observed elipticity is an unbiased estimator for the shear: 〈εo〉 = γ. In practice the

typical shear induced by large scale structure is approximately 100 times smaller

than the intrinsic shape dispersion, thus weak lensing surveys must contain a large

number of galaxies to extract cosmological information.

1.7.3 Shape and Distance Measurements

To perform inference with real photometric data, we must generate a catalog

containing the ellipticities and redshifts of all the galaxies in the survey. Measuring

the photometric redshift (photo-z) and shape of a galaxy are topics in their own

right, so I aim to only give a brief overview of these topics in this section.

Shape measurement algorithms fall into two broad categories: model fitting

and free-form algorithms. In the model fitting case, parametric profiles are fit to

the light profiles of each galaxy. Meanwhile in the free-form case we can define

the second moments of the brightness as:

Qij =

∫
d2θ w [I(θ)] (θi − θ̄i)(θj − θ̄j)∫

d2θ w [I(θ)]
, (1.60)

where w is a weight, I(θ) is the surface brightness at θ, θ̄ is the centre of brightness

and i, j ∈ {1, 2}. The two components of the observed ellipticity are then given
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by: εo1
εo2

 =
1

Q11 +Q22 + 2 (Q11Q22 −Q2
12)

1/2

Q11 −Q22

2Q12

 . (1.61)

The point spread function (PSF) of the telescope and charge transfer inefficiency

(CTI) in the charge-coupled devices (CCDs) are the dominant systematics in shape

estimation [95]. Thorough reviews of shape measurement techniques are given

in [52, 75, 94, 100].

It is not possible to image the entire sky with a high-resolution spectrographic

instrument, so we must estimate the redshift of galaxies using a relatively small

number of photometric bands. Methods for photo-z estimation and requirements

for Stage IV surveys are discussed in [81, 90, 96, 101] and the references therein.

Acquiring a representative large spectroscopic sample of galaxies to train the

photo-z estimation algorithm is one of the primary challenges [96]. While in prac-

tice each galaxy will have a different posterior redshift distribution, in Chapter 2

and Chapter 4, I account for the photometric redshift uncertainty in each tomo-

graphic bin by smoothing by the Gaussian kernel:

p (z|zp) ≡
1

2πσz (zp)
e
− (z−ccalzp+zbias)

2

2σzp , (1.62)

with ccal = 1, zbias = 0 and σzp = A (1 + zp) with A = 0.05 [62].

1.7.4 The Generalised Lensing Spectrum

One can define the lensing spectrum, which contains the two-point information

of the observed lensing shear field in harmonic space, in much the same way that

the power spectrum does for the overdensity field δ(r). The generalised lensing

spectrum, C`(η, η
′), is defined as:

C`(η, η
′) = 〈γ`m(η)γ∗`′m′(η

′)〉δK``′δKmm′ , (1.63)
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where δK denotes the Kronecker-delta and in [124] I defined the generalised-

spherical harmonic coefficients, γ`m, as:

γ`m (η) =

√
2

π

∑
g

γg (rg,θg)W` (η, rg) 2Y`m (θg) , (1.64)

where the sum is over all galaxies g with angular coordinate θg and radial coor-

dinate rg, W` is a weight, η is an as yet arbitrary label and 2Y`m are the spin-2

spherical harmonics. It can be shown (see Appendix C) that:

Cγγ
` (η1, η2) =

9Ω2
mH

4
0

16π4c4

(`+ 2)!

(`− 2)!

∫
dk

k2
Gγ
` (η1, k)Gγ

` (η2, k) , (1.65)

where the G-matrix is:

Gγ
` (η, k) ≡

∫
dzpdz

′ n (zp) p (z′|zp)W` (η, r [z′])U` (r [z′] , k) , (1.66)

and the U -matrix, which contains the cosmological information, is:

U` (r[z], k) ≡
∫ r

0

dr′
FK (r, r′)

a (r′)
j` (kr′)P 1/2 (k; r′) , (1.67)

where n(z) is the radial distribution function, p(z|zp), defined in equation (1.62),

gives the photometric error and j`(kr) are the spherical Bessel functions.

We can make the Limber approximation derived in [88], which amounts to

making the replacement:

j`(x)→
√

π

2x
δ(x− (`+ 1/2)). (1.68)

In this approximation the U -matrix becomes:

U` (r, k) =
Fk (r, ν (k))

ka (ν (k))

√
π

2 (`+ 1/2)
P 1/2 (k, ν (k)) , (1.69)

where ν (k) ≡ `+1/2
k

. This is a good approximation for ` > 100 [76].
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1.7.5 The Tomographic Lensing Spectrum

There are many possible choices for the weight function, W` (η, r). Taking it to

be a spherical Bessel function, j`(kr), yields the spherical Bessel cosmic shear

spectrum [48]. More recently [77] considered taking the weights in photometric

colour space rather than the usual redshift space. However, by far the most popular

choice to extract the radial information of the shear field is to choose the weight

to be a top hat function in redshift space:

Wi (z) ≡


1 if z ∈ [zi, zi+1]

0 otherwise,

(1.70)

where zi and zi+1 give the boundaries of the tomographic bin i. This was first

proposed in [59] and is referred to as tomographic cosmic shear. Multiplying the

prefactor in equation (1.65) by 8π3 (this is valid provided the shot-noise, defined in

the next section, is appropriately rescaled), making the substitution k = `/r [76]

and mapping l+1/2→ ` in the Limber approximation yields the usual expression

for the tomographic lensing spectrum:

Cij
` =

∫ rH

0

dr
qi(r)qj(r)

r2
P

(
`

r
, r

)
, (1.71)

where the lensing efficiency kernel, qi is defined as:

qi(r) =
3H2

0 Ωm

2c2

r

a(r)

∫ rH

r

dr′ ni(r
′)
r′ − r
r′

, (1.72)

and the indices i and j denote the tomographic bin numbers.

1.7.6 Shot-Noise

The intrinsic dispersion of galaxies’ elliptcities, σ2
e , adds an extra shot-noise term

to the lensing spectrum. In the case of generalised-spherical cosmic shear, the
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Figure 1.4: The green ellipsoid represents a large dark matter halo. Nearby galax-
ies (red) become tidally aligned with the dark matter halo while the observed
ellipticity of background galaxies (blue) is gravitationally sheared. The intrinsic
alignments of galaxies around dark matter halos is orthogonal to the shearing effect
which supresses the cosmic shear signal. This figure originally appears in [65].

shot-noise is given by:

N`(η, η
′) =

σ2
e

2π2Aneff

∫
dz n(z)W` (η, r [z])W` (η′, r [z]) , (1.73)

where A gives the area of the survey and neff gives the number density of galaxies

in the survey. I take σe = 0.3 for the remainder of the thesis [23]. I derive this

result in Appendix D. In practice it is easier to just compute the shot-noise from

noise-only maps as in [53]. This seamlessly handles any pixelisation effects with

real data.

1.7.7 Intrinsic Alignments

Galaxies that form near large dark matter halos will tend to be tidally aligned

radially with the halo. This is shown in Figure 1.4. The large green ellipsoid

represents a massive dark matter halo and two nearby red galaxies are intrinsically

aligned with the massive halo. Meanwhile the two background blue galaxies are
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gravitationally sheared perpendicularly to the green halo. Intrinsic alignments

(IA) are an important effect in weak lensing studies and since the effect is in a

perpendicular direction to cosmic shear, intrinsic alignments dampen the cosmic

shear signal. To account for this, two additional terms must be added to the

cosmic shear power spectrum. A ‘GI’ term accounts for the cross-correlation

between cosmic shear and intrinsic alignments and an ‘II’ term accounts for the

auto-correlation of intrinsic alignments.

In the simple alignment model presented in [58], which assumes that galaxies

are distorted by the local gravitational field [28], the IA signal is:

γI = −AIC1

4πG

(
1 + z

1 + z0

)η (
∂2

1 − ∂2
2 , 2∂1∂2

)
Φp, (1.74)

where Φp denotes the gravitational potential at the time of galaxy formation (when

the intrinsic alignments were imprinted), C1 = 5 × 10−14h−2M−1
� Mpc3 is chosen

so that the value of the dimensionless intrinsic alignment amplitude, AI , is ap-

proximately unity [25]. The redshift amplitude term introduced in [91] is added to

account for the fact that the strength of the intrinsic alignment may have evolved

overtime. It is customary [130] to choose the pivot redshift, z0, to be the mean

redshift of the survey so that the redshift correction is near unity. I will take

this choice throughout the remainder of the thesis. From the Poisson equation we

have:

∇2
xΦp = 4πGρ, (1.75)

where x denotes physical coordinates. Using the relation ∇x = a−1∇r and Fourier

transforming gives:

Φp =− 4πGρ(k)k−2a2

=− 4πG
ρcritΩm

D(z)
k−2a2δlin(k, z = 0),

(1.76)

where we have used the definition of the linear overdensity field noting that the

average density of the Universe, ρ̄, is related to the critical density, ρcrit, by a factor
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of Ωm, and the dimensionless growth factor normalised to unity today, D(z), is

defined by:

Plin(k, z) = D2(z)Plin(k, z = 0), (1.77)

where Plin is the linear matter power spectrum. Replacing the linear overdensity,

δlin, with the true nonlinear overdensity field, δ, plugging equation (1.76) into

equation (1.74) and following the derivation of the shear spectrum, noting in

particular the similarity between equations (1.76) and (C.9), it follows that if we

define the II matter power spectrum as:

PII(k, z) = F 2(z)P (k, z), (1.78)

where

F (z) = −AIC1ρcrit
Ωm

D(z)

(
1 + z (r)

1 + z0

)η
, (1.79)

we can write the II spectrum as:

Cij
`,II =

∫ rH

0

dr
ni(r)nj(r)

r2
PII

(
`

r
, r

)
. (1.80)

Similarly if we define the GI matter power spectrum as:

PGI(k, z) = F (z)P (k, z), (1.81)

the GI spectrum is6:

Cij
`,GI =

∫ rH

0

dr
qi(r)nj(r) + ni(r)qj(r)

r2
PGI

(
`

r
, r

)
. (1.82)

We see that in the future we can use the rule that every time there is an II

contribution we use the kernels ni(r)nj(r) and every time there is a GI contribution

we use the kernels qi(r)nj(r)+ni(r)qj(r). Finally, the theoretical lensing spectrum,

6This implicitly includes the ‘IG’ term
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CT,ij
` , is given by the sum over the three contributions:

CT
` = Cij

`,GG + Cij
`,GI + Cij

`,II. (1.83)

I use Cosmosis [51, 136] to calculate all intrinsic alignments in this thesis.

Much like the study of photometric redshift estimation and shape measure-

ments, intrinsic alignments are a subject in their own right. The model presented

here was successfully used in [130], but for Stage IV experiments a more sophisti-

cated model which takes into account different galaxy types [111] and higher order

effects will need to be developed. See [65] for a review.

1.7.8 E/B-Modes

Since the shear components γ1 and γ2, defined in equation (1.51), originate from an

underlying potential φ, they are not independent – and not all field configurations

are possible. Defining a new vector field:

u ≡ ∇κ, (1.84)

for the convergence κ, it immediately follows that the curl of u is zero, i.e∇∧u = 0.

In combination with the definitions in equations (1.50) and (1.51), this implies the

constraint:

(∂1 − ∂2)γ2 = 0 = ∂1∂2γ1. (1.85)

We say that gravitational lensing only induces a curl-free or E-mode field. Mean-

while the curl components of the observed field are called B-modes. Full expres-

sions for the E and B-modes on the sphere are given in [74]. Checking for B-modes

is a useful test to check for systematics in the data – although by no means does

their absence imply that the data is bias free. Both types of modes are illustrated

in Figure 1.5.
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E mode

B mode

Figure 1.5: Gravitational lensing only induces E-modes like those in the top
left corner. Meanwhile the intrinsic tidal alignment of nearby galaxies (see Sec-
tion 1.7.7) cause E-modes like those in the top right corner. Measuring B-modes,
as shown in red, would suggest the presence of a systematic in the data. This
figure originally appears in [47].
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1.7.9 Current and Future Data

Since the shot-noise in weak lensing surveys goes as 1/Ng, where Ng is the number

of galaxies in the survey, the ‘constraining power’ of these surveys näıvely goes as

N
1/2
g . The quality of the shape measurements are also important, and in general

the quality of ground based images are degraded by the atmosphere.

From the first detections of cosmic shear in 2000-2001 [16, 107, 134], stud-

ies have entered the realm of precision cosmology [51, 53, 57, 73, 130]. Some

of the work in this paper uses Canada-France-Hawaii Telescope Lensing Survey

(CFHTLenS) data. This was a Stage II experiment that imaged ∼4 million galax-

ies over ∼120 deg2 [51]. Today’s leading surveys are: the Dark Energy Survey

(DES) [130], the Kilo-Degree Survey (KiDS) [56] and the Subaru Hyper Suprime-

Cam Lensing Survey [53]. These are referred to as Stage III surveys and they

all use ground based imaging. Today’s largest public data set, the DES Year 1

Release, covers ∼1, 500 deg2 with ∼25 million galaxies. DES will eventually cover

5, 000 deg2, with an effective number density of 10 galaxies per arcmin2, for a total

of ∼180 million galaxies.

The next generation of surveys becoming operational from the early to mid

2020s are called Stage IV experiments. These include: Euclid [81], Wide-Field

Infrared Space Telescope (WFIRST) [118] and the Large Synoptic Survey Tele-

scope (LSST) [15]. Euclid, a European Space Agency Mission, with a launch date

of 2022 will measure the shapes of ∼1.5 billion galaxies over ∼15, 000 deg2 in its

wide-field survey. LSST, a ground based telescope expected to be operational in

2021, will measure the shape of 4 billion galaxies over ∼20, 000 deg2. WFIRST

is a NASA mission expected to launch by the mid-2020s. The High Latitude

Imaging Survey will measure the shapes of 500 million galaxies over ∼2, 000 deg2.

Developing the tools to take advantage of these next generation data sets is the

focus for the remainder of this thesis.
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Chapter 2

k-cut Cosmic Shear

In this chapter I outline the k-cut cosmic shear technique, which I presented

in [122], closely following the presentation therein. The original idea for k-cut

cosmic shear is attributable to Francis Bernardeau, but I have realised the first

implementation and suggested using the mean redshift of the bin for the cut rather

than the minimum redshift. This means that we can still get information from the

lowest redshift bin (see below for more details). The code used to compute the

Bernardeau-Nishimichi-Taruya (BNT) Transform in this chapter was written by

Francis Bernardeau, but the remainder of the work is my own. For the remainder

of this chapter I assume the radial distribution function:

n (z) = (z/ze)
2 exp

[
− (z/ze)

3/2
]
, (2.1)

with ze = 0.9/
√

2 and 30 galaxies per arcmin2 over 15, 000 deg2, mimicking the

Euclid survey. I will also drop the tomographic index labels and just write C` for

Cij
` .

2.1 Motivation

Cosmic shear is highly sensitive to the small scale behaviour of the matter power

spectrum – down to k = 7 h Mpc−1 [124]. This is both a blessing and a curse.
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Sensitivity to these scales gives us information which can not be gleamed from

other cosmological probes. However if left unchecked, poor theoretical models for

these scales — due to baryonic physics (primarily feedback from Active galactic

Nuclei (AGN) and the radiative cooling of gas [116]) and nonlinear structure for-

mation — will bias parameter constraints in upcoming surveys. I refer to this as

the small scale sensitivity problem.

In today’s experiments the matter power spectrum is usually computed with

an emulator [82, 121] or halo model code [97] calibrated on N -body simulations.

However, current state-of-the-art emulator codes are not sufficiently accurate for

Stage IV lensing surveys [33, 60, 97, 115, 124]. To make matters worse, the power

spectra from high resolution N -body simulations are in disagreement (refer to

Figure 1 in [60]). If these differences were propagated through to the cosmological

parameter constraints, the bias would be similar to the size of the statistical

standard deviation (refer to Figure 4 in [60]).

Two possible methods are compared in [60] which deal with this issue:

• marginalising out principal components that encapsulate the difference be-

tween the full power spectrum and the dark matter only spectrum,

• marginalising over free halo parameters inside a halo model code.

Both methods fail to achieve unbiased results in some circumstances [60] and

in the former case it is difficult to know how many principle components to exclude

without knowing the true underlying matter power spectrum of the Universe.

Furthermore, even if a large suite of extremely accurate N -body simulations

could be produced, it is computationally infeasible to run the large number re-

quired to test all theories of gravity, without using the untested assumption that

nonlinear and baryonic feedback is cosmology and model independent. Indeed [93]

used the halo model code [97] trained on LCDM N-body simulations to generate

theoretical lensing spectra when testing the Horndeski class of gravity with shear

data.

56



I propose a cleaner geometric solution to the small scale sensitivity problem

that cuts the lensing spectrum’s sensitivity to small scale structure (corresponding

to high-k in the matter power spectrum). In linear theory each k-mode evolves

independently, but nonlinear and baryonic corrections couple k-modes smearing

modelling errors across a wide range in k. This is why the accuracy of leading

matter power spectrum emulators and halo model codes only vary slowly across

a large range in k. For example, the stated accuracy of HALOFIT [120] is 5%

for k ≤ 1h Mpc−1 and 10% for k ≤ 10h Mpc−1. Meanwhile COSMIC EMU [50]

report 4% accuracy for k ∈ [0.1h Mpc−1, 10h Mpc−1] and HMCode [97] report 5%

accuracy for k ∈ [0.1h Mpc−1, 10h Mpc−1]. Nevertheless it is generally the case

that small k-modes are modelled less accurately than large-k and in the absence

of an accurate physical model, it is these scales that we should aim to cut from

the shear analysis.

I refer to the procedure presented in this chapter as k-cut cosmic shear. It works

by taking a redshift-dependent `-cut after applying the Bernardeau-Nishimichi-

Taruya (BNT) nulling scheme [20] which reorganises the information in the lensing

spectrum to make the relationship between the angular scale, `, and the structure

scale, k, precise. Together this allows us to remove sensitivity to large-k. In

the remainder of this chapter I develop the theory and quantify the method’s

effectiveness at removing sensitivity to small scales before computing the Fisher

error on the dark energy equation of state, w0, for different k-cuts.

2.2 The Shell Universe Thought Experiment

Suppose we lived in a ‘shell universe’ – where all the matter lay at a comoving dis-

tance r. Further imagine we want to remove contributions from structure smaller

than some scale (denoted by a k-mode) from the projected lensing spectrum, C`.

The Limber relation (see equation (1.69)) tells us that we could simply cut angu-

lar scales ` > kr. Unfortunately in the real Universe, the lensing kernel is broad
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(see top plot in Figure 2.1), so lenses across a wide range of distances and scales

contribute power to the same `-mode [124]. This means such a strategy will not

work by itself. The information in the lensing spectrum must first be reorganized,

before taking an `-cut.

2.3 The Three-plane Solution

I now review the three-plane BNT [20] transform which re-weights the standard

tomographic C` so that each tomographic bin contains information only about the

lenses – rather than the sources – inside a small redshift range. This is generalised

to an arbitrary number of source planes in the next section. From there it is a

simple extension to apply the Limber argument in each bin to cut sensitivity to

large-k, as outlined in the previous section.

Suppose there are a discrete number of source planes at radial distances ri.

The weighted convergence, κ̃, is defined:

κ̃ =
3ΩmH

2
0

2c2

∫ ri

0

dr
δ (r)

a (r)
w (r) , (2.2)

where δ (r) and a (r) are the local matter overdensity and scale factor of the

infinitesimal lens at the radial distance r, respectively. The kernel is defined as:

w (r) =
∑
i,ri>r

pi
ri − r
ri

, (2.3)

where {pi} are a set of weights [20].

Assuming that there are just three discrete source planes: r1 < r2 < r3, the

key step in the BNT nulling scheme is to construct constant weights pi so that

w (r) = 0 for r < r1. Clearly ‘lenses’ at r′ > r3 do not contribute to κ̃. Thus

the weighted convergence is only sensitive to lenses that lie in the radial range

r ∈ [r1, r3]. In detail, spotting that the expression for the weight, w(r), can be
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rewritten:

w(r) = r2

(
1

r

∑
i,ri>r

pi −
∑
i,ri>r

pi
ri

)
, (2.4)

we require: ∑
i

pi = 0, and
∑
i

pi
ri

= 0. (2.5)

This has solution:

p2/p1 = c(2, 3, 1)/c(1, 2, 3), and p3/p1 = c(3, 1, 2)/c(1, 2, 3), (2.6)

where

c(i, j, k) = ri(rj − rk). (2.7)

I refer to this as the three-plane solution.

2.4 Constructing the Bernardeau-Nishimichi-Taruya

(BNT) Transform

For a set of N source planes the solution is no longer unique, but we can never-

theless find a solution. Given source planes at r1 < r2... < rN , which we take to

be at the mean redhsift of each tomographic bins, and imposing the conditions:

p1
1 = 1, p1

2 = −1, and p2
2 = 1, (2.8)

constructing the weights iteratively using the three plane solution, yields the so-

lution:

paa = 1

pa−1
a = c(a− 1, a− 2, a)/c(a− 2, a, a− 1)

pa−2
a = c(a− 2, a− 1, a)/c(a− 2, a, a− 1).
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It is worth noting that the first tomographic bin is not transformed with this

choice. The BNT weighted lensing efficiency kernel defined as:

qa(r) =
∑
i

piaqi(r) (2.9)

is shown in Figure 2.1, for the 10 tomographic bin case.

Defining the constant transformation matrix, M , by Mia = pia, and taking

it to be the weight in the generalise lensing spectrum (see equation (1.65)) and

the shot-noise (see equation (1.73)), we find that the BNT lensing spectrum is:

C̃` = MC`M
T 1 and the shot-noise is: Ñ` = MN`M

T , where C` and N` are the

lensing and shot-noise spectra for normal tomographic cosmic shear. The matrix,

M , has det (M) = 1, and thus is a volume preserving transform implying that the

total signal-to-noise remains unchanged. I compute the transformation matrix

using a code written by Francis Bernardeau.

2.5 k-cut Cosmic Shear

In the analysis in this thesis I compute the BNT weight matrix, M , for 10 to-

mographic bins with the same number of galaxies per bin. Then for each BNT

reweighed bin, i, I remove sensitivity to the matter power spectrum above some

kcut by cutting ` > kcutri , where ri is the mean distance to each reweighted bin. Al-

though this means that I do not entirely cut sensitivity above a given kcut, it means

that I do not have to cut the first bin entirely. I must also assume a fiducial cosmol-

ogy to go from the redshift, z, to comoving distance r(z). I assume a w0CDM cos-

mology and take the fiducial parameter values as: (Ωm,Ωk, w0,Ωb, h0, ns, As, τ) =

(0.32, 0.0,−1.0, 0.04, 0.67, 0.96, 2.1× 109, 0.08). Finally in the cross-correlation

between bins I take whichever `-cut is smaller. I refer to the joint procedure of

BNT weighting and applying a lens-redshift dependent angular scale cut as k-cut

1This applies to both the shear and convergence spectrum because the two full-sky spectra

are related by Cκκ` = `2(`+1)2

(`+2)(`+1)`(`−1)C
γγ
` . See [27].
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Figure 2.1: Top: The lensing efficiency kernels, qi(r), defined in (1.72) for standard
10-bin tomography. These are broad in z which physically means that lensing is
sensitive to lenses across a wide range of redshifts. Bottom: The same kernels
after BNT re-weighting (see equation 2.9). The kernels are much narrower in z,
and bounded below, which means that it is possible to find a much more precise
relationship between the angular wave-mode, `, and structure wave-mode, k. This
figure was produced using a script originally written by Francis Bernardeau that
I have modified slightly.
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cosmic shear.

2.6 Fisher Matrix Formalism

I now review the Fisher matrix formalism that I will use to evaluate the sensitivity

of the standard C` analysis, BNT reweighted cosmic shear, and k-cut cosmic shear

to regions of the matter power spectrum in k-z space and compare constraints on

the dark energy equation of state, w0.

For a set of parameters, p, the Fisher matrix formalism allows us to deter-

mine how tightly the parameters will be constrained before the experiment is

conducted [127]. Assuming a Gaussian likelihood (this is a good assumption for

cosmic shear, see Chapter 4) centred about a fiducial cosmology {p∗}, the Fisher

matrix is defined as:

Fαβ = −
〈

∂2L∗
∂pα∂pβ

〉
, (2.10)

where L∗ is the log-likelihood centred about the fiducial cosmology. Since this

is a measure of how quickly the likelihood falls off around the maximum like-

lihood point, its inverse, F−1, is a good estimate for the parameter covariance

matrix [127], C, and we have:

C = F−1, (2.11)

so that the anticipated error on a parameter p marginalised over all other param-

eters is given by:

σ(p) =
√

(F−1)pp . (2.12)

Assuming an isotropic Gaussian field, the expression for the Fisher matrix in

a single redshift bin is found in [127]. Taking into account the cross-correlation

between redshift bins and defining S` as the sum of the signal and the noise,

S` = C` +N`, the Fisher matrix for cosmic shear is:

Fαβ =
∑
`

2`+ 1

2
Tr
[
S−1
` C`,αS

−1
` C`,β

]
, (2.13)

62



where C`,α denotes the derivative with respect to parameter pα. I compute the

lensing spectra using my code GLaSS [126] which is integrated into Cosmosis [136],

and I choose not to include intrinsic alignments for now.

To measure the sensitivity of cosmic shear to the matter power spectrum, I

follow the analysis in my paper [124] which I now review (see [39] for an alternative

approach that suffers from interpolation errors). First, I divide the matter power

spectrum P (k, z), into logarithmically and linearly spaced grid cells in k and z,

respectively. I compute the fractional amplitude change inside each grid cell g:

Pg (k, z,A) ≡


(1 +A)P (k, z) if (k, z) in cell g

P (k, z) otherwise,

(2.14)

where A is a fixed small amplitude change that I take to be 5%. The two sided

derivative is:

C`,g =
C` [Pg (k, z,A)]− C` [Pg (k, z,−A])

2A , (2.15)

where , g denotes the derivative with respect to amplitude of cell g. Substitituting

into (2.13) gives the Fisher matrix, F , for the matter power spectrum grid cells.

Then the sensitivity to power spectrum cell g is given by the inverse error, σ−1(Ag),

which is:

σ−1(Ag) =
1√

(F−1)gg
. (2.16)

I compute the error on Ωm, τ , Ωb, H0, σ8 and w0 in a similar fashion2. I do

not compute the constraints on wa because I have found that this can be sensitive

to exactly how the derivative is defined.

2.7 Results

Using the formalism presented in the previous section I determine the sensitivity

of different analyses to regions of the matter power spectrum and compare the

2τ is the optical depth to reionization. It has a very small impact on weak lensing studies
but is included for completeness.
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constraints on the dark energy equation of state parameter w0. I consider:

• the standard cosmic shear C` approach with a large constant `max = 3000;

• a BNT re-weighed C` analysis with no `-cuts;

• k-cut cosmic shear for target kcuts of the form kcut = Acut (redshift indepen-

dent) and kcut = Acut(1+z)2. In the former case I use Acut ∈ [0.64, 1.94, 3.38],

while in the later case I consider Acut ∈ [0.2, 0.6, 2], which roughly follows

the redshift evolution of the highest k-mode in: the linear regime, a k-value

in the quasi-linear regime and a k-value in the fully nonlinear regime.

In Figure 2.2 I show the inverse error on the amplitude of power spectrum

cells for these six different analyses. Cosmic shear is most sensitive to dark blue

regions. Using the standard C` analysis (top left) ∼50% of the signal comes from

hard to model scales, above kcut = 1 h Mpc−1. The top right panel shows the case

where I have applied BNT re-weighting with no angular scale cuts. This has no

effect on the sensitivity compared to the standard case, as expected. Finally in the

last two rows I plot the sensitivity of k-cut cosmic shear for different target k-cuts.

Sensitivity to regions above the target cut is dramatically reduced to essentially

zero sensitivity, for all the cuts considered. This is true even when photometric

redshift errors defined in equation (1.62) are included in the C` computation but

not in the calculation of the BNT weight, as is the case in this analysis.

In Figure 2.3 I summarise the reduction in sensitivity to small scales plotting

the fraction of the matter power spectrum information that comes from scales

above the cut. I define this as the sum of the inverse errors (see equation (2.16))

on the cells above the cut relative to sum over all cells. Never more than 5% of

the information comes from scales above the target cut with k-cut cosmic shear

for all the cuts I have considered. This contrasts with the standard C` approach

where in some cases >50% of the structure information comes from scales above

the cut.

I plot the fraction of the power spectrum information retained using different
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k-cuts, relative to the standard approach in Figure 2.4 . I define the information

as the sum of the inverse errors on the power spectrum cells. When I take a

very conservative choice, kcut = 1.94 h Mpc−1, ∼50% of the power spectrum

information is lost. In fact for all cuts I have considered, >35% of the power

spectrum information is lost. However, most of the constraining power on the

dark energy equation of state, w0 is retained (see Figure 2.5), because information

about this parameter comes predominantly from large scales (small-k) in the power

spectrum [31] and from the background geometry [124].

In Figure 2.5 I plot the k-cut cosmic shear Fisher constraints on w0, relative to

the standard C` approach. Scale cutting results in some loss of constraining power.

However, in all but the most extreme case that I considered, this never degrades

the w0 constraint by more than a factor of 2. For example, cutting scales above

kcut = 1.94 h Mpc−1 results in a 31% increase on the size of the error. Meanwhile,

with the most aggressive cut that was considered – where I remove sensitivity to

all nonlinear scales taking kcut = 0.2(1 + z)2 – the size of the error increases by a

factor of 2.8.

2.8 Outlook and Future Prospects

In this chapter I have demonstrated that k-cut cosmic shear is a clean and efficient

way to remove sensitivity to small scales, which are not yet modelled accurately

enough for next generation surveys.

Ultimately we should strive to develop accurate models of the matter power

spectrum; there is information to be had here, which is not accessible with other

cosmological probes. But the reality is that, with data arriving from LSST and

Euclid in less than three years, we will likely need to cut scales – and k-cut cosmic

shear does this optimally. The cut-scale, k, can be gradually pushed upwards as

models of the matter power spectrum improve, or, given multiple favoured models,

the cut scale can be taken to correspond to the scale where the results derived
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Figure 2.2: The inverse error on the measured amplitude of each power spectrum
cell, σ−1 (A), using different techniques with the Fisher matrix analysis. The
technique is sensitive to regions where σ−1 (A) is high (darker blue). Top left:
The standard C` approach. Top right: BNT weighting with no `-cut. This
should not change the total sensitivity and there is at most a 0.02% fractional
in any cell relative to the standard C` approach due to numerical imprecisions
in my implementation. Centre row: k-cut lensing with a target kcut of the
form kcut = Acut. Bottom row: k-cut lensing with a target kcut of the form
kcut = Acut(1+z)2. In the bottom two rows, k-cut cosmic shear efficiently removes
sensitivity to the power spectrum above the desired k.
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by k-cut cosmic shear relative to the standard C` approach. A large share of the
power spectrum information is lost using kcut cosmic shear but by comparing with
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of state, w0, is retained. For example, when we take kcut = 1.94 h Mpc−1, the
size of error on w0 increases by ∼30%, even though ∼50% of the power spectrum
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from different power spectrum models start to diverge.

The next step is to apply the k-cut cosmic shear to data. This can be done by

applying the BNT transformation to the C` computed from the data, and dealing

with masked regions of the sky either with a forward model approach or a pseudo-

C` approach [6, 24, 133]; see Chapter 4 for more details. However, there are a few

additional considerations which must be addressed:

• Intrinsic Alignments (IA): Since the IA signal is generated with a differ-

ent kernel from the gravitational shear signal, k-cut cosmic shear does not

remove small scales from the IA contribution. This is not a major concern

because the IA contribution is (i) already very sub-dominant to the shear

signal and (ii) primarily sensitive to large scales through tidal distortions in-

duced by massive halos. Making these statements precise is left to a future

work.

• Cosmological Dependence: To make the BNT transform we must assume

a fiducial cosmology to make the mapping from redshift, z, to comoving

distance r(z). This is investigated briefly in [20] and they find this should

not be an issue, particularly since Baryonic Acoustic Oscillation and Type IA

supernovae measurements already place tight constraints on the background

expansion [4, 110].

• Covariance Matrix: It is necessary to generate a valid data covariance

matrix for the k-cut cosmic shear C`’s to perform inference on real data.

With current data this can be achieved by adapting the pipeline that I

present in Chapter 4. Alternatively we could use a likelihood-free approach

to perform the inference step, which is also presented in Chapter 4. This

is favourable because we would not have to worry about the impact of the

mask.

• Verification: In light of the issues above, we must verify that k-cut cosmic

shear really does remove sensitivity to the power spectrum above the desired
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scale. The easiest way to do this is to adapt the non-parametric technique

presented in the next chapter to check that the data does not constrain the

power spectrum above the desired k-cut.

Since in the short term k-cut cosmic shear is an efficient way to deal with small

scales that are difficult to model and because it might be the only computationally

feasible way to deal with these scales to test a large number of theories of gravity,

overcoming these remaining issues should be a priority.

71



Chapter 3

Non-parametric Cosmology with

Cosmic Shear

In this Chapter I present non-parametric cosmology with cosmic shear which I

introduced in [125], closely following the discussion therein.

3.1 Motivation

The leading cosmological model, Lambda-Cold Dark Matter (LCDM) is phe-

nomenological. With no widely accepted physical mechanism that explains the

existence of dark matter or the accelerated expansion of the Universe, in addition

to measuring the LCDM parameters to ever great precision, we must test – rather

than assume – the LCDM paradigm.

I use data from the Canada-France-Hawaii Lensing Survey (CFHTLenS) to

reconstruct the lensing amplitude AG, the linear intrinsic alignments amplitude,

AIA, the comoving distance, r (z) and the matter power spectrum, P (k, z). I will

refer to this as non-parametric cosmology with cosmic shear since this informa-

tion is always measurable without ever needing to assume a cosmological model

parametrised in terms of a small number of physical parameters. I will refer to

the information contained in these amplitudes as the non-parametric information.

By pinpointing the exact scales where discrepancies occur, this information
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will help us look for physics beyond LCDM and more importantly help localise

any discrepancies with LCDM to regions of the matter power spectrum or a given

redshift in the expansion history.

It is worth noting that although cosmic shear extracts both distance and

structure growth information, measurements of Baryonic Acoustic Oscillations

(BAO) [4] and Type Ia supernovae (SNe Ia) [110] already constrain the cosmic

distance to within a few percent at low redshifts. A disagreement in the inferred

expansion history between a non-parametric cosmic shear reconstruction and two

other two measurements would indicate the presence of systematics effects in one

or more of the experiments.

Another motivation for this study is that once the non-parametric information

is extracted, it is possible to test any cosmological model, without having to

recompute lensing observables. Although they are not too difficult to compute

at the level of precision necessary for today’s data, in the future we may have

to take into account higher order effects and detector systematics (see Chapter

4), greatly increasing computation time. Inferring cosmological parameters from

the non-parametric information can also be used to verify the fidelity of my non-

parametric reconstruction. I infer the LCDM parameters directly from the non-

parametric information and compare the results to those found using the standard

cosmic shear likelihood analysis later in the chapter.

3.2 Correlation Functions

The original CFHTLenS tomographic cosmic shear analysis [51] (hereafter H13)

used correlation functions rather than the lensing spectrum. This statistic contains

the same information as the lensing spectrum, but it is easier to deal with the

mask, although some care must be taken [129]. Since all the relevant correlation

function data products have already been computed, for convenience I choose to

use this statistic for the remainder of this chapter. However a similar analysis
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could equally well be performed with the lensing spectrum.

For pairs of galaxies the tangential and cross-ellipticity ε+,× are defined in

the frame joining a pair of galaxies {α, β}. The correlation function for angular

separation, θ, is computed from the data by:

ξ̂ij±(θ) =

∑
wαwβ

[
εi+(xα)εj+(xβ) ± εi×(xα)εj×(xβ)

]∑
wαwβ

, (3.1)

where wα and wβ are weights and i and j denote the tomographic bin number,

and the sums are over all galaxy pairs. In the limit of high-` [76], the theoretical

correlation function is related to the convergence power spectrum, Cij
`,GG, by:

ξij±,GG(θ) =
1

2π

∫
d` `Cij

`,GG J±(`θ), (3.2)

where J+(`θ) is the zeroth order Bessel function of the first kind and J−(`θ) is

the fourth order Bessel function of the first kind. This result is derived in [67]

(see also [76]). Since correlation functions are formed from the lensing spectrum

filtered by a Bessel function, physical scales do not separate as naturally as for the

lensing spectrum and not nearly as well as the BNT weighted lensing spectrum

presented in Chapter 2. Analogous expressions can be found for the ‘IG’ and ‘II’

contributions written, ξij±,GI(θ and ξij±,II(θ), by replacing Cij
`,GG with Cij

`,GI and Cij
`,II,

in the expression above. The theoretical correlation functions are found as a sum

of the contributions:

ξij±(θ) = ξij±,II(θ) + ξij±,GI(θ) + ξij±,GG(θ). (3.3)

As in H13 I assume that the intrinsic alignment amplitude has no redshift de-

pendence by setting η = 0 in equation (1.79), so that the intrinsic alignment

contribution is given by a single amplitude, AIA. Throughout the remainder of

this chapter I use Nicea [71] integrated into Cosmosis to compute the correlation

functions. I use my own code to compute the lensing spectrum, defined in equa-
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tion (1.71), after making the transformation ` = kr. This means that r(z) can be

perturbed independently without changing the matter power spectrum label.

3.3 CFHTLenS Data

The Canada-France-Hawaii Lensing Survey covers 154 deg2 in five optical bands.

The observed median redshift of galaxies in the survey is zm = 0.70 with an effec-

tive weighted number density of neff = 11 galaxies per square arcmin. Catalogs

were produced by combining weak lensing data processing from THELI [36], shear

measurements from Lensfit [99] and photometric redshift estimates were found

using the method presented in [55].

In what follows, I use the same angular bins and the same 6 tomographic bins

for galaxies in the redshift range 0.2 < z < 1.30 as in H13. Radial bins were defined

by dividing galaxies into the redshift ranges: z1 ∈ [0.2, 0.39], z2 ∈ [0.39, 0.58],

z3 ∈ [0.58, 0.72], z4 ∈ [0.72, 0.86], z5 ∈ [0.86, 1.02], and z6 ∈ [1.02, 1.30]. Bins are

smoothed by Gaussian kernel with dispersion σz = 0.04 (1 + z) to account for the

photometric redshift uncertainty.

3.4 The Non-parametric Likelihood

To extract the cosmological information from the shear catalog, I assume a Gaus-

sian likelihood:

ln L1 (p) = −1

2

∑
a,b

[Da − Ta (p)]C−1
ab [Db − Tb (p)] , (3.4)

where Da is the data vector composed of the observed ξ̂ij± and Ta (p) is formed

from the theoretical prediction of ξij± given parameters p, and C−1
ab is the inverse

of the covariance matrix; see Chapter 4 for a discussion of the Gaussian likelihood

approximation and ways to sidestep this approximation altogether.

The data and theory vectors are taken to be the correlation functions defined
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Figure 3.1: The main steps of the non-parametric reconstruction (yellow) and
the standard parametric inference (purple). It is useful for the reader to refer
back to this figure throughout the remainder of this chapter. I discuss these
techniques in detail in Sections 3.5-3.8. The non-parametric reconstruction has
a number of desirable features. 1. The expansion and structure growth history
is recovered, with no need to assume a cosmological model. 2. Once the non-
parametric information is recovered, any cosmological model can be tested without
needing to re-compute lensing observables. 3. Comparing the non-parametric and
parametric reconstructions pinpoints the precise redshifts and scales where the
cosmological model fails – if any. This could help narrow the search for previously
unidentified systematic effects (see the second paragraph of Section 3.13). After
a thorough search – if the discrepancies are believed to be physical – this would
indicate precisely how the Universe deviates from LCDM in a fully non-parametric
way.
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in equations (3.1) and (3.3). In the standard cosmic shear likelihood analysis,

the parameters p are taken to be the cosmological model parameters and a set

of nuisance parameters (e.g. the amplitude of the intrinsic alignments AIA). In

the non-parametric analysis which follows, I take the parameters {p} to be a set

of amplitudes that encode information about the lensing amplitude, the intrinsic

alignment amplitude, the comoving distance and the power spectrum (see Sec-

tions 3.6 and 3.7 for more details).

I use the publicly available covariance matrix from the CFHTLenS survey1

integrated into Cosmosis 2pt module (see [51] for more details). This covari-

ance matrix is generated from the N-body lensing simulations of [45]. I apply the

Anderson-Hartlap correction when inverting the covariance [46, 14], since the co-

variance is generated from noisy realisations. I use the Markov Chain Monte Carlo

(MCMC) sampler emcee [40] to sample the likelihood and perform the inference.

3.5 Non-parametric Information Extraction

Correlation functions (alternatively the lensing spectrum) are only sensitive to the

cosmology of the Universe through the matter power spectrum, P (k, z), the co-

moving distance, r(z) and a set of lensing amplitudes. With my choice of intrinsic

alignment model, the lensing amplitudes are: an overall shear amplitude, AG, and

an intrinsic alignment amplitude, AIA. From equations (1.65) and (1.79) we see

AG ∝ ΩmH
2
0 and AIA ∝ AIΩm.

The primary aim of this chaper is to divide the power spectrum and comoving

distance into cells/bins and simultaneously measure the amplitudes of these cells

and the lensing amplitudes. In detail, I generate a fiducial2 power spectrum,

comoving distance and lensing amplitudes using the CFHTLenS best fit cosmology

from H13. I divide the power spectrum into a set of cells in the (k,z) plane

1This covariance matrix is available for download from http://www.cfhtlens.org/

astronomers/cosmological-data-products
2I have found that all the results presented in this chapter are insensitive to changing the

fiducial cosmology parameters by up to 15%, one at a time.
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{Pi} and the comoving distance into a set of cells {ri}. Perturbing the lensing

amplitudes, the power spectrum cells and comoving distance cells, I define a vector

of amplitudes p = (A(AG),A(AIA), {A(Pi)}, {A(rj)}) where the amplitudes are

defined relative to the fiducial cosmology, so that:

A(AG) = AG/Afid
G

A(AIA) = AIA/Afid
IA

A(Pi) = Pi/P
fid
i

A(rj) = rj/r
fid
j ,

(3.5)

where Pi is the power spectrum in cell i, P fid
i is the fiducial power spectrum inside

cell i, rj is the comoving distance in cell j, and rfid
j is the fiducial comoving inside

cell j. New GG, GI and II correlation functions are defined as functions of the

amplitude vector, p, and written as ξijGG(θ, p), ξijGI(θ, p) and ξijII (θ, p). Substituting

into equation (3.3) forms the theory vector in the Gaussian likelihood defined in

equation (3.4) and I infer the posterior distribution on the amplitude vector, p.

I start by dividing the power spectrum into 100 cells on a 10 × 10 grid in k

and z. The comoving distance is divided into 10 cells in z. With the lensing

and intrinsic alignment amplitude, this leaves 112 amplitudes to measure. To

perform the inference we first compress the amplitude vector, p, down to a more

manageable size using two different data compression regimes, which are discussed

in the next two sections.

3.6 Adaptive Grid Compression

To perform the compression I employ the Fisher matrix formalism (see Section 2.6)

to first assess cosmic shear’s sensitivity to each amplitude. Since the covariance

matrix is already computed, it follows from the definition of the Fisher matrix
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(2.10) and the Gaussian likelihood (3.4) that the Fisher matrix is given by:

Fij =
∑
a,b

∂Ta
∂pi

C−1
ab

∂Tb
∂pj

, (3.6)

where Ta is the theory vector formed from the correlation functions and C−1
ab

is the covariance, while pi and pj are amplitudes in the vector p. Here I have

assumed that the covariance matrix is independent of the cosmology, which is a

good approximation in future surveys provided the likelihood is Gaussian [78]. It is

now convenient to define the information content contained in a set of amplitudes

{pi} as:

I =
∑
i∈{pi}

1/Fii. (3.7)

In my adaptive grid regime, I combine adjacent power spectrum and comoving

distance cells so that we are left with a much smaller set of cells that each contain

roughly the same amount of information, I.

Specifically, I divide the power spectrum four cells, which each contain roughly

25% of the remaining information. The cell boundaries are plotted in Figure 3.2.

Meanwhile, I divide the comoving distance into three cells in z, shown in Figure 3.3.

Each contain roughly a third of the comoving distance information. Altogether

the compressed amplitude vector, p, is formed of two lensing amplitudes, four

power spectrum cells and three comoving cells:

p = (A(AG),A(AIA), {A(Pi)}, {A(rj)}) , (3.8)

where i ∈ [1, 4] and j ∈ [1, 3].

Since this is just a proof of concept at this stage, this compression is in no way

optimal and several arbitrary choices (e.g. the number of power spectrum cells)

have been made. I leave optimising this procedure to a future work with new data.
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3.7 Principle Component Compression

As an alternative to the adaptive grid compression, I also employ the principle

component analysis (PCA) compression technique. Given a high-dimensional data

set, PCA compression works by finding an orthogonal set of vectors that contain

the majority of the variance in the data and only saves this information. In this

case, I want to solve the opposite problem and minimise the variance by finding

the linear combinations of amplitudes pi ∈ p that are the most tightly constrained

by the shear data.

The predicted variance is encoded in the Fisher matrix, F . Specifically the

covariance between amplitudes is Cp = F−1. Rotating into the eigenbasis yields:

Cp = P TDP, (3.9)

where D is a diagonal matrix of eigenvalues, {λi}, and P is a rotation matrix with

columns formed from the associated eigenvectors.

Arranging the eigenvalues in ascending order, the corresponding eigenvectors

are called the principle components (PCs). I take the first 10 PCs to form the

compressed amplitude vector:

p = ({PCi}), (3.10)

where i ∈ [1, 10].

If the lensing likelihood was exactly Gaussian, so that the Fisher matrix for-

malism applies exactly, then these components would contain 77% of the total

inverse variance. I stress again that this is an arbitrary choice which will need

fine-tuning in the future.
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3.8 Cosmological Parameter Inference from Non-

parametric Information

Normally cosmological parameters, p, are found directly from the shear data by

sampling from ln L1(p), defined in equation (3.4). I now discuss how to extract the

cosmological parameters directly from the measured non-parametric amplitudes

instead. I use this to validate the non-parametric reconstruction, but in the future

this technique could be used to test a large number of cosmological models quickly

and consistently without re-computing lensing observables.

Using the MCMC chains from the non-parametric reconstruction as data (after

removing the burn-in phase), I form the Gaussian likelihood:

ln L2 (θ) = −1

2

∑
a,b

[p̂a − Ta (θ)] Ĉ−1
ab [p̂b − Tb (θ)] , (3.11)

where p̂ is the mean of amplitude vector over all samples in the chain, and the

covariance, Ĉ, between amplitudes is given by:

Ĉab = 〈(pa − p̂a) (pb − p̂b)〉, (3.12)

and the average is taken over all samples in the chain. It is useful for the reader

to refer to the left hand side of Figure 3.1.

The theory vector, Ta (θ), depends on which compression regime was used. In

the adaptive grid case the theoretical lensing amplitudes scalars are:

ATh (AG) =
ΩmH

2
0σ8

Ωfid
mH

fid 2
0 σfid

8

ATh (AIA) =
ΩmAIσ8

Ωfid
mA

fid
I σ

fid
8

.

(3.13)

I have pulled out an overall scaling amplitude of the power spectrum, σ8, so the

theoretical power spectrum amplitude inside cell i must be appropriately rescaled.3

3I have found that if I do not do pull out an overall scaling factor, I do not accurately recover
the tails of the posterior on p, since a Gaussian does not completely describe the distribution of
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It is:

ATh (Pi) =

(
σfid

8

σ8

)2

〈Pi (θ) /P fid
i 〉, (3.14)

where I take the average over all the points sampled in the cell. Meanwhile, the

theoretical comoving distance amplitude inside cell j is given by:

ATh (rj) = 〈ri (θ) /rfid
j 〉, (3.15)

where the average is again over all points in the cell. In summary, the theory and

data vectors for the adaptive grid technique are given by:

T =
(
ATh (AG) ,ATh (AIA) , {ATh (Pi)}, {ATh (rj)}

)
p̂ = (〈A (AG)〉, 〈A (AIA)〉, {〈A (Pi)〉}, {〈A (rj)〉}) ,

(3.16)

where i ∈ [1, 4] and j ∈ [1, 3] and the averages are taken over all samples in the

reconstructed amplitude chain, which is found from sampling from ln L1(p).

In the PCA compression case, I take the theoretical amplitudes defined in

equations (3.13) - (3.15), and rotate these into PCA space using the rotation

matrix P , defined in equation (3.9). That is, I compute

APC,Th = I +R
(
ATh − I

)
. (3.17)

The first 10 rows of the rotation matrix, R, are the same as P while the remaining

rows are set to zero since I assume no contribution from the remaining PCs. The

theoretical amplitude vector, ATh, appearing in equation (3.17), is defined in terms

of the amplitudes written in equations (3.13)-(3.15) and is given by:

ATh =
(
ATh (AG) ,ATh (AIA) , {ATh (Pi)}, {ATh (rj)}

)
(3.18)

where i ∈ [1, 100] and j ∈ [1, 10] run over the original cells. Finally, I is a

dimension 112 vector with all entries equal to unity. This is subtracted before

the chains.
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rotation in equation (3.17) because the PCA amplitudes are defined relative to

unity. To summarise, the theory and data vectors for the PCA technique are:

T =
(
{APC,Th

i }
)

p̂ = ({〈Ai〉}) ,
(3.19)

for i ∈ [1, 10] and the average is defined over all samples in the chain, just like in

the adaptive grid case.

I can now sample from likelihood defined in equation (3.11), to compute the

posterior distribution on the cosmological parameters, using both compression

techniques. This is schematically represented in Figure 3.1.

3.9 Adaptive Grid Reconstruction Results

I sample from the likelihood ln L1(p), to measure 2 lensing amplitudes, 4 power

spectrum amplitudes and 3 comoving distance amplitudes, taking a broad flat

prior for each. The recovered posterior distribution of the amplitudes is plotted

in Figure 3.4. Only the lensing amplitude and the comoving distance amplitudes

are tightly constrained, while the amplitude of individual matter power spectrum

cells are hardly constrained at all.

In Figure 3.2 I show the best fit non-parametric power spectrum. For compari-

son, a parametric power spectrum generated using the best fit LCDM cosmological

parameters in H13 is shown. The two are in good agreement, particularly since

the size of the error bars on the non-parametric reconstruction are so large (see

Figure 3.4).

In Figure 3.3 I plot the non-parametric reconstruction of the comoving distance

r(z). The LCDM prediction generated with the best fit parameters from both

H13 and the Planck 2018 combined analysis (including BAO) [2] are shown for

comparison. It might appear that there is an internal inconsistency between the

non-parametric reconstruction and the parametric analysis of H13, but this is just
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Figure 3.2: Top: Best fit non-parametric reconstructed power spectrum. This is
the first non-parametric reconstruction of the time evolving matter power spec-
trum from shear data. The errors on this reconstruction are very large (see Fig-
ure 3.4), but these will shrink by a factor of ∼20−25 with a Stage IV experiment.
Bottom: Power spectrum generated by CAMB [84] and HALOFIT [120] using H13
best fit LCDM parameters. The non-parametric and parametric LCDM power
spectrum are in good agreement.

84



0.0 0.2 0.4 0.6 0.8 1.0
z

0

1000

2000

3000

4000

r(z
) [

M
pc

]

Planck Collaboration(2018) Cosmology
CFHTLenS(2013) Cosmology
2
1

Figure 3.3: The 1σ and 2σ constraints on the reconstructed non-parametric r(z).
The jumps in the constraints are due to binning. This function is fairly well
constrained with CFHTLenS data, unlike the power spectrum. I also plot the
parametric r(z) using a LCDM cosmology with the best fit parameters from H13
and the Planck 2018 combined analysis (including BAO) [2]. In H13 the Hubble
parameter, h0, is given a tight prior (see Section 3.11). Repeating the H13 analysis
with a flat prior on h0, I find it is only constrained in the range (0.4, 1.2) at the
1σ level. Since r(z) is proportional to h−1

0 , there is no internal tensions between
the non-parametric distance measurement and the parametric analysis. However,
below z = 0.4 the non-parametric reconstruction is in mild ∼1.5σ tension with
the Planck combined cosmology r(z).
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due to the choice of prior on h0 in the analysis presented in H13 (see the discussion

in the caption of Figure 3.3).

For z < 0.4, the non-parametric reconstruction of r(z) is in ∼1.5σ tension with

the Planck LCDM predictions. In the range 0.4 < z < 0.6, this drops to a ∼1σ

tension, while for z > 0.6 there is no tension at all.

The discrepancy between the non-parametric r(z) and the Planck LCDM re-

construction is unlikely to be caused by poor photometric redshift error estimation

because I would expect these to get worse at higher redshifts, not lower redshifts

where the tension occurs. It is also pointed out in [29], that positive values for the

intrinsic alignment parameter, AIA, are favoured by CFHTLenS. This is the op-

posite sign to what is expected by theory and could point to lingering systematic

effects in the shear catalog. Whatever the cause of the comoving distance tension,

I intend to investigate this further with data from other surveys.

3.10 PCA Reconstruction Results

Sampling from the likelihood ln L1(p), I also infer the first 10 PC amplitudes. I

show the posterior distribution on the amplitudes in Figure 3.5.

Possibly because the lensing likelihood is not exactly Gaussian [114], the fact

that there is numerical noise when inverting the Fisher matrix, F , and the fidu-

cial cosmology may not exactly correspond to the maximum likelihood point in

the data, the posteriors do not agree with the Fisher expectation. Degeneracies

between a few PC amplitudes (e.g between A1 and A2) are present even though

degeneracies between principle components should be absent, by construction.

Although it is possible to rotate the PC amplitudes back into the (k, z) plane

to reproduce Figures 3.2-3.3, I do not advocate this approach. The PCs are

not a spanning set, and they will not capture the variance in the unmeasured

components, leading us to underestimate the size of the error bars. To summarise:

the adaptive grid method is a complete set for r(z) and P (k, z) but it is potentially
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Figure 3.4: The reconstructed amplitude posteriors using the adaptive grid tech-
nique. I have inferred the amplitude of the lensing signal AG, the intrinsic align-
ment amplitude AIA, the amplitude of four power spectrum bins in k and z, and
the amplitude of three comoving distances bins in z. The bin boundaries for the
power spectrum and comoving distance are illustrated in Figures 3.2 and 3.3. I
intentionally plot all amplitudes on the same axes to show how tightly the lensing
amplitude and comoving distances are constrained relative to the power spectrum
cells. Only the amplitude of the lensing signal and the comoving distance are
well constrained. There is a degeneracy between the lensing amplitude and the
comoving distance amplitudes because both are strongly dependent on Ωm and h0.
I plot the Gaussian distribution that I have fit to the chains to form the likelihood
ln L1(p), in grey.
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sub-optimal (leading to large error bars). The PCA approach is not a complete set

(leading to potential biases), but is perhaps more optimal (smaller error bars). I

recommend a conservative approach favouring the adaptive grid formulation, since

it is, in general, better to be unbiased but have larger error bars than the other

way round.

3.11 Cosmological Inference from Adaptive Grid

Reconstruction

I sample from the likelihood ln L2(θ) to place constraints on the LCDM parame-

ters, θ, directly from the non-parametric information found using the adaptive grid

compression. This is compared to the results of the usual cosmic shear likelihood

analysis found by sampling from ln L1(θ). In both cases, following the analysis

of H13, I place a Gaussian prior on the Hubble constant: h0 = 0.73± 0.024. The

resulting parameter constraints are shown in Figure 3.6.

Parameter constraints from the standard likelihood analysis are shown in blue,

while constraints from the non-parametric information are in red. The non-

parametric posteriors are wider as is expected, since information is lost in the

adaptive grid compression step. Otherwise the two techniques are in good agree-

ment. Optimising the compression step is left for a future work.

3.12 Cosmological Inference from PCA Recon-

struction

Sampling from ln L1(θ), I place constraints on the LCDM parameters directly

from the non-parametric information derived using PCA compression. I show

the resulting constraints in Figure 3.7, overlaying the posteriors found using the

standard technique for comparison.

The constraints from the PCA compression are much tighter than those found
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Figure 3.5: The posterior distribution on the measured PC amplitudes. The
constraints on the first two PCs are in good agreement with those expected from
the Fisher matrix prediction, but the constraints on the other PCs are up to twice
as wide as expected. I also plot the Gaussian distribution that we have fit to the
chains to form the likelihood ln L1(p), in grey.
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Figure 3.6: The LCDM posteriors found using the standard cosmic shear likelihood
analysis (blue) and from the non-parametric information (red), using adaptive grid
compression. The two techniques are in good agreement, but the posteriors in the
later case are broader. This is unsurprising since information is lost in the adaptive
grid compression step.
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using the adaptive grid compression. They generally agree with the posteriors

from the standard cosmic shear likelihood analysis, but there is ∼1σ tension in

the σ8−Ωm plane. Discrepancies are expected in the PCA method. As previously

discussed, the PCs do not form a complete set, so we do not capture all the variance

in the unmeasured PCs. This leads us to underestimate error bars, and could also

cause a shift in the parameter constraints, which is why I do not advocate for the

use of the PCA data compression method in this case.

3.13 Conclusion and Future Prospects

In this chapter, I have shown how to reconstruct the non-parametric information

from shear data. I have applied this method to CFHTLenS shear data finding

that the majority of the information is contained in a single lensing amplitude

and the background expansion. To reduce the dimensionality of the reconstruction

problem I have employed two different data compression regimes. Although the

PCA technique is efficient, the PCs do not form a spanning set, so I conclude that

the adaptive grid is preferred. Optimising the adaptive grid compression regime is

left to a future work. The non-parametric method has a bright future. Since the

error bars shrink roughly as the square root of both the number density and the

survey area, the non-parametric constraints should shrink by a factor of ∼2 using

Dark Energy Survey Year 1 (DESY1) data [130], and by a factor of ∼20−25 with

data from a Stage IV experiment [81].

Comparing the non-parametric and parametric reconstructions can help us

identify systematic effects and search for new physics – pinpointing the precise

scale and redshift where they occur. Discrepant power spectrum measurements

might point to un-modelled baryonic physics, while a discrepant comoving dis-

tance measurement could point to redshift dependent systematic effects such as

photometric redshift errors or colour dependent shear estimates – or even a non-

constant dark energy equation of state.
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Figure 3.7: LCDM posteriors derived from the standard cosmic shear likelihood
analysis (blue) and those derived from the non-parametric information (green),
using PCA compression. The two techniques are in good agreement but there is
∼1σ tension in the σ8 − Ωm plane. Because the PCs do not form a complete set,
they do not capture all the variance leading us to underestimate error bars, and
could also cause a shift in the parameter constraints. I do not advocate the PCA
data compression method for this reason.
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In the reconstruction I have presented above, I have already identified a tension.

Below z = 0.4, the reconstruction of the comoving distance, r(z), is larger than

the Planck cosmology LCDM prediction which could be the first sign of new

physics, down to unaccounted for systematic effects or (since the tension is mild)

just statistical variance. Since distance measurements from BAO and SNe Ia

constrain the growth to within a few percent, unless there are large systematic

effects in these other two probes, the last two explanations are more likely. In

general, because BAO and SNe Ia already constrain the distance measurements so

well, ensuring the cosmic shear non-parametric distance reconstruction agrees will

become a useful zeroth order test to check for any systematics in a shear catalog.

The next step is to repeat the analysis presented here on the DESY1 data to

see if this discrepancy persists. Folding in galaxy clustering [35] and galaxy-galaxy

lensing [105] into the framework would also be informative. With a different set

of systematic effects, these techniques will serve as a useful cross-check, as well

as tightening constraints. Using the non-parametric method will also be a good

check to ensure that the k-cut technique (see Chapter 2) works as intended with

real data, by ensuring that power spectrum amplitudes above the desired cut are

poorly constrained.

In the future, large experiments could repeat the non-parametric analysis and

release the non-parametric reconstructions as a final data product. Then, anyone

could consistently test new physical theories without having to repeat the cosmic

shear analysis or model lensing observables.

The general philosophy of this chapter was to completely separate the infer-

ence of the non-parametric information – which is valid regardless of the underlying

cosmological model – from the inference of the cosmological parameters. This al-

lowed me to validate the non-parametric reconstruction by recovering the LCDM

parameters. A fully non-parametric reconstruction also enables the inference of

parameters from any cosmological model, without having to repeat the lensing

analysis. However, if the sole purpose is to search for systematics or a failure of
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the LCDM model, then it is more efficient to simultaneously infer the cosmological

parameters, θ, and a set of perturbing amplitudes {A (θ)}. After marginalising out

the cosmological parameters, any amplitude which is not consistent with unity is

a red flag for the presence of unidentified systematics or new physics. This simul-

taneous approach would allow us to get away from assuming a fiducial cosmology,

which may not be valid as error bars shrink in future surveys.
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Chapter 4

Inference from Forward Models

In this chapter I discuss how to perform inference with full forward models of the

shear data, using density-estimation likelihood-free inference (DELFI). This work

was first presented in my paper [123]. It is the first realistic cosmic shear DELFI

implementation which takes into account the non-Gaussianities of the shear field

and intrinsic alignments.

4.1 Motivation

Except for [8, 9], all existing studies of the shear two-point statistics [51, 53, 57,

73, 130] use a Gaussian likelihood analysis to infer the cosmological parameters.

This approach is far from perfect. With the improved statistical precision of next

generation data, the impact of complicated ‘theoretical systematics’ (e.g. reduced

shear [32]) and detector effects [95] will need to be propagated into the final pa-

rameter constraints. It is much easier to produce forward model realisations than

to compute the expected impact of these effects, which is required for a likelihood

analysis. Recently it was also claimed that since the true lensing likelihood is

left-skewed, not Gaussian, parameter constraints from correlation functions are

biased low in the σ8 − Ωm plane [113, 114]. This will be discussed in Section 4.3.

A new method called density-estimation likelihood-free inference (DELFI) [13,

22, 37, 7, 89, 102, 103] offers a way to overcome these issues. DELFI is used
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to estimate the posterior distribution with summary statistics (the C` statistic,

in this case) generated from full forward models of the data at different points

in cosmological parameter space. This allows us to seamlessly propagate all the

effects in a forward model into the final parameter constraints without needing

to assume a likelihood. Because this approach uses summary statistics we avoid

fitting to potentially aphysical relics in our forward models, in contrast to ‘blind’

machine learning approaches [43].

Performing inference on realisations of the data may seem computationally

challenging, but using efficient data compression [12, 13], DELFI only requires

O(103) simulations [7]. This is less than the number of simulations already re-

quired to produce a valid estimate of the inverse covariance matrix from noisy

simulations [49] in a Stage IV likelihood analysis and DELFI is also highly par-

allelisable. For these reasons DELFI is more, not less, computationally tractable

than a traditional likelihood analysis for upcoming surveys.

In light of these advantages, I present two cosmic shear forward model pipelines

for DELFI, using the publicly available pydelfi1 implementation, in this chapter.

These are summarised in Figure 4.1. Pipeline I takes advantage of all the bene-

fits of forward modelling and is intended for application to real data-sets, while

Pipeline II is intended only for comparison with the standard likelihood analy-

sis. I also consider 3 different analyses summarised in Table 4.1. DA1 is a DELFI

analysis using shear Pipeline I. Meanwhile I compare the DELFI analysis, DA2, to

the likelihood analysis, LA, to test the impact of the Gaussian likelihood approx-

imation. It will be useful for the reader to refer back to Table 4.1 and Figure 4.1

throughout the remainder of the chapter.

1https://github.com/justinalsing/pydelfi/commits/master
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DA1 DA2 LA

Inference DELFI DELFI Guassian likeli-
hood

Pipeline Pipeline I Pipeline II N/A
Number of galaxies 1.56× 109 1.56× 109 1.56× 109

Number of tomo-
graphic bins

6 2 2

Number of `-bins 15 with ` ∈
[10, 1000]

15 with ` ∈
[10, 1000]

15 with ` ∈
[10, 1000]

Field type Lognormal Gaussian N/A
Deconvolve Pixel Win-
dow

No Yes N/A

Mask Yes No N/A
Subtract shot-noise No Yes N/A

Table 4.1: The three analyses in this chapter. In DA1 I use DELFI to infer the
cosmological parameters. Since I perform inference with forward models, there is
no need to deconvolve the pixel window function, deconvolve the mask or subtract
off the shot noise. This analysis is applied to mock Stage IV data in Section 4.4. By
comparing the DELFI analysis, DA2, with the likelihood analysis, LA, I test the
impact of the Gaussian likelihood approximation. In DA2 the modelling choices
are governed by the constraint that I must match the Gaussian likelihood analysis
as closely as possible. Some of the map-level choices are not applicable to the
likelihood analysis, LA.

97



p

CT
` (p)

lognormal
realization

add random
noise

apply mask

C̃pix
`

p

CT
` (p)

Gaussian
realization

add random
noise

subtract
expected
noise

Cpix
`

C`

PipelineI PipelineII

Figure 4.1: A schematic of the two forward model pipelines presented in this
chapter. In Pipeline I I develop a forward model pipeline of cosmic shear data
that takes full advantage of the forward model paradigm. For example, there is
no need to deconvolve the mask or the pixel window function. In Pipeline II, I
use a Gaussian field, do not use a mask, subtract off the shot-noise or deconvolve
the pixel window function. These choices allow me to make a direct comparison
between DELFI and a Gaussian likelihood analysis and test the impact of the
Gaussian likelihood approximation.
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4.2 Cosmic Shear Model Choices and the Log-

normal Field Approximation

4.2.1 Cosmic Shear Modelling Choices

For the remainder of this chapter I take the same assumptions as the lensing

spectrum given by equation (1.71), where I generate the Ntomo tomographic bins,

ni(z), by dividing the radial distribution function:

n (z) ∝ a1

c1

exp

[
−(z − 0.7)2

b2
1

]
+ exp

[
−(z − 1.2)2

d2
1

]
, (4.1)

with (a1/c1, b1, d1) = (1.5/0.2, 0.32, 0.46) [131] into bins with an equal number of

galaxies per bin. I assume a simple model for the photometric redshift error given

in equation (1.62). For the intrinsic alignment contribution I use the nonlinear

alignment model reviewed in Chapter 1 and to match the analysis in current

Stage III experiments [66, 130], I allow the intrinsic amplitude, A(z), to vary as a

function of redshift so that A(z) = [(1 + z0)/(1 + z)]η [91], where z0 is the mean

redshift of the survey. This is z0 = 0.76 for the n(z) given in equation (4.1).

4.2.2 The Lognormal Field Approximation

Lognormal convergence fields [54] are computationally inexpensive to generate and

they capture the impact of nonlinear structure growth more accurately than Gaus-

sian realisations. This is because the density contrast, δ, defined in equation (1.33)

is bounded below by minus one, but has no upper bound, and this asymmetry can

not be captured by a Gaussian field. In the DESY1 [130], lognormal fields were

used to compute the covariance matrix from noisy realisations of the data. No dif-

ferences in parameter constraints were found when the covariance was computed

using lognormal fields compared with a halo model approach [79].

I use Flask [135] to generate consistent lognormal realisations [54] of the con-

vergence and shear fields – correlated between redshift slices. The procedure is
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Figure 4.2: A single masked data realisation of the convergence field, κ, and the
two observable shear components: γ1 and γ2 (including shape noise) for a typical
Stage IV experiment. I show the lowest redshift bin of six, where the effect of
non-Gaussianity is largest. The non-Gaussianity is clearly visible in the κ-map,
where the majority of pixels are very slightly negative with a small number of
pixels taking very large (positive) κ-values. Note that the colour scale in the κ-
map is not symmetric about zero, to make the non-Gaussianity as clearly visible as
possible.The mask cuts all pixels lying within 22.5 deg of the galactic and ecliptic
planes, mimicking a Euclid-like survey.
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discussed in detail in Section 5.2 of [135] (see also [92]). In particular, for each to-

mographic bin, i, Flask first generates a Gaussian realization by Cholesky decom-

posing (see [92] for more details) the convergence spectrum, CT,ij
` , into a products

of upper and lower triangular matrices2:

CT,ij
` =

∑
k∈bins

T ik`

(
T kj`

)Tr
, (4.2)

where Tr denotes the transpose and the sum is over all tomographic bins. Drawing

samples from a standard normal distribution

xk ∼ N (0, 1), (4.3)

the Gaussian field in harmonic space, g`m, is generated by taking

gi`m =
∑
k∈bins

T ik` x
k, (4.4)

for all m > 0. Transforming to configuration space yields:

gi(θ) =
`max∑
`=0

∑̀
m=−`

gi`mY`m(θ), (4.5)

where Y`m(θ) are standard spherical harmonics3. Finally, the lognormal field,

κi(θ), is generated by exponentiating and shifting the Gaussian realisation:

κi(θ) = exp
[
gi (θ)

]
− κi0. (4.6)

For each tomographic bin, i, I compute the shift parameter, κi0, by taking a

2In the flat sky approximation – which I assume throughout this chapter – the shear and
convergence spectrum are the same, but care would be needed to correctly re-scale the input
convergence spectrum by the appropriate `-factor if the flat sky approximation was dropped [27,
76].

3spin-weighted spherical-harmonics for spin 0
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weighted average of the shift parameter at each redshift:

κi0 =

∫
dz ni(z)κi0(z), (4.7)

using the fitting formula:

κi0(z) = 0.008z + 0.029z2 − 0.0079z3 + 0.0065z4, (4.8)

derived from simulations [54].

While the fitting formula will have some cosmological dependence, the shift

parameter does not affect the power spectrum of the field and will only impact

cosmological constraints through the covariance matrix. The non-Gaussian correc-

tions to the covariance matrix already have a sub-dominant impact on parameter

constraints [34, 112], thus one would expect that the dependence of these correc-

tions on the cosmology is further sub-dominant. For this reason I choose to ignore

the cosmological dependence of the shift parameter.

Once the convergence fields are generated, Flask estimates the harmonic co-

efficients of the field using the estimator [42]:

κ`m =
4π

Npix

Npix∑
p=0

Y ∗`m(θp)κ(θp), (4.9)

which is essentially an average over all pixels in the map. Defining

aE,`m =

√
(`+ 2)!

(`− 2)!

κ`m
`(`+ 1)

, (4.10)

we have [27]:

γ1,`,m = iγ2,`,m = −aE,`m, (4.11)

where γ1,`,m and γ2,`,m are the harmonic coefficients of the shear field. Then the

shear field in configuration space is found by taking the inverse spherical-harmonic

102



transform of the shear coefficients:

γ(θ) = γ1 + iγ2 =
`max∑
`=0

∑̀
m=−`

2Y`m(θ)γ`m, (4.12)

where 2Y`m(θ) are the spin-wighted spherical harmonics for spin 2.

A valid covariance matrix between data must be positive-definite, but this is

not guaranteed for correlations between tomographic lognormal fields as pointed

out in [135]. To overcome this issue, Flask perturbs the lognormal fields following

the regularisation procedure outlined in Section 3.1 of [135]. Provided that the

regularisation is applied to a small number of tomographic bins, it is found in [135]

that Creg
` /C ln

` � 1 × 10−5, where Creg
` is the recovered regularised spectrum and

C ln
` is the spectrum recovered from the un-regularised map [135]. In Section 4.5 I

verify that this will not impact Stage III parameter constraints.

In Figure 4.2 I plot a single lognormal realisation generated with Pipeline I.

I show the masked convergence and components of the shear field in the lowest

redshift bin, where the non-Gaussianities are most pronounced and clearly visible.

In the convergence map the majority of the pixels take small negative values, but

there are rare incidences of large positive convergence. These physically correspond

to collapsed high-density structures along the line-of-sight.

4.2.3 Band-limit Bias from the Lognormal Field

Unlike Gaussian fields, lognormal realisations are not band-limited in ` [135] (see

Section 5.2.2 therein). In particular, Taylor expanding the lognormal convergence

field, κi(θ), in terms of the Gaussian field, gi (θ), yields quadratic and higher order

terms in gi. In harmonic space this mixes different `-modes. When a band-limit is

imposed, this biases the lensing spectrum recovered from the map. I discuss this

issue further in Section 4.5.
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4.3 Cosmological Parameter Inference

In this section I discuss why the standard Gaussian likelihood analysis may lead

to bias, and review density-estimation likelihood-free inference.

4.3.1 The Potential Insufficiency of the Gaussian likeli-

hood Approximation in Cosmic Shear

In the standard two-point cosmic shear likelihood analysis, I assume the Gaus-

sian likelihood defined in equation (3.4) and I implicitly make the Anderson-

Hartlap [14, 46] correction for the inverse covariance matrix because I generate

the covariance matrix from noisy simulations. To see why the Gaussian likelihood

assumptions can lead to bias, I now summarise the argument given in [114]. Inside

a single bin, the unmasked lensing spectrum can be computed from a shear map

by taking an average over m-modes, so that:

C` =
1

2`+ 1

∑̀
m=−`

|γ`m|2. (4.13)

Since the harmonic coefficients, γ`m, are computed as a summation over a large

number of pixels, they are Gaussian distributed by the central limit theorem.

Squaring a Gaussian random variable gives a gamma distribution – which is left-

skewed.

Taking a Gaussian rather than a sum of gamma distributions for the likelihood

could bias parameter constraints. Since S2
8 = σ2

8(Ωm/0.3) and Ωm enter into the

shear spectrum amplitude, we would expect these parameters to be ones which

are most affected – and biased low. Only in the limit of large ` – as the C` itself

becomes the sum over a large number of m-modes – does the central limit theorem

kick in and the likelihood become Gaussian.
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4.3.2 Density-estimation Likelihood-free Overview

The discussion below closely follows the one given in [7]. All the steps, except

the data simulation step, outlined in this section are implemented in the publicly

available pydelfi code that I use throughout the remainder of this chapter. For

cosmological parameters, p, and some observed data, dobs, DELFI estimates the

posterior distribution P (p|dobs). DEFLI can be broken into three steps: a simula-

tion step, a compression step and an active learning step. In the simulation step

we take a set of points in cosmological parameter space {p} and forward model

the data, with realistic noise, to form a set of parameter-data pairs {(p, d)}. In

the specific case of this chapter, Pipeline I and Pipeline II will be used to simulate

the mock data. Since density estimation is most efficient in lower dimensional

spaces, we compress the data to a lower dimensional space while trying to min-

imise the information loss (see Section 4.3.3 for more details). After compression

one is left with the compressed observed data vector, tobs, and a set of parameter-

compressed-data pairs, {(p, t)}. DELFI then learns the conditional density P(t|p),

from the parameter-compressed-data pairs {(p, t)}, using neural density estima-

tion (see Section 4.3.5 for more details). Once this is known we find the likelihood,

P(t = tobs|p), by taking a hyper-dimensional slice of the conditional density, P(t|p).

Finally the posterior is computed by multiplying the likelihood by the prior, P(p).

I now review these steps in more detail.

4.3.3 Density-estimation Likelihood-free Compression

Through the remainder of this chapter I compress the C` summary statistic fol-

lowing the compression regime suggested in [12]. Specifically the lensing spectra

are compressed into a new vector, t, according to:

C` → t = ∇pL∗, (4.14)
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where p is the set of cosmological parameters that I am inferring, L∗ is a proposal

Gaussian likelihood centred at a fiducial set of parameters, which I take to be:

(Ωm, h0,Ωb, ns, S8, A, η) = (0.3, 0.72, 0.96, 0.79, 1., 2.8) , (4.15)

throughout the remainder of the chapter, where S8 = σ8(Ωm/0.3)0.5, A and η

are the intrinsic alignment parameters defined in Section 1.7.7 and the other pa-

rameters take their standard cosmological definitions. The Fisher information is

preserved provided the true likelihood is Gaussian [12], but if it is not, some in-

formation will be lost. This is investigated in Section 4.6. It is important to note

that although the covariance matrix appears in the compression step through the

likelihood, it will not be used in the inference step, so we do not have the strin-

gent accuracy requirements on the covariance matrix as in the standard likelihood

analysis. For this reason it may be possible to use computationally inexpensive

methods to generate the covariance matrix in the future.

4.3.4 Neural Density Estimators (NDEs) in DELFI

Taking parameter-compressed-data pairs {(p, t)} as inputs, DELFI uses a neural

network parameterised in terms of a set of node weights, w, to learn the conditional

distribution P(t|p). While a full discussion is beyond the scope of this thesis, I

highlight the key steps, as outlined in [7], below.

A particularly simple neural network architecture to understand, and one which

is used in DELFI, is a mixture density network (MDN). In this case the conditional

density is a sum over Gaussians parameterised in terms of the network weights,

w, by:

P(t|p, w) =
N∑
i=1

Ai(p, w) N [µi(p, w), Ci(p, w)] , (4.16)

where N is the number of Gaussian components with amplitudes Ai, means µi

and covariance matrices Ci. To train the network, we must define a metric for

the performance of the network also called a loss function. The Kullback-Leibler
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divergence (KL-divergence) defined by:

KL(P∗|P) =

∫
dt P∗(t|p) ln

(
P(t|p)
P∗(t|p)

)
, (4.17)

where P∗(t|p) is the true conditional density, would be a good choice. However

the target distribution P∗(t|p) is not known, so DELFI instead uses the negative

loss function:

− lnU(w) = −
Nsamples∑
i=1

lnP(ti|pi, w), (4.18)

which is a Monte-Carlo estimate of the KL-divergence up to an additive con-

stant [7]. In practice to avoid overfitting and to negate the fact that we choose

a particular network architecture, we train an ensemble of NDEs with different

network architectures. Then the final estimate for the conditional density is given

as a weighted average over all NDEs:

P(t|p, w) =
∑

i∈networks

βiPi(t|p, w), (4.19)

where Pi(t|p, w) is the estimate of the conditional density from the ith NDE and

the weights, βi, are determined by the performance of each NDE (see [7] for more

details).

4.3.5 Active Sequential Learning

DELFI divides the inference task into a set of training steps. As an initial guess

for the conditional distribution, DELFI takes the multivariate Gaussian:

P(t|p) = N (t|p, F−1), (4.20)

where F−1 is the inverse of the Fisher matrix defined in equation (3.6). At each

step thereafter, pydelfi trains each NDE on a set of parameter realisation pairs

{pi, ti} drawing samples from the conditional density of the previous step to ensure
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that the highest density regions are the most finely sampled. Ten percent of the

samples in the first step are saved as a validation set to avoid overfitting, using

early stopping. Given a large enough computer, all the simulations in each training

step could be run in parallel. In all that follows, I use 20 training steps with 100

simulations per step. Otherwise I use all the default settings in pydelfi.

4.4 The Full Forward Model

In this section I present Pipeline I before using it to generate mock Stage IV data.

I then run analysis DA1 to recover the input cosmology. This is used to verify

that I can recover the input cosmology with DELFI and to estimate the number

of simulations needed for a Stage IV experiment.

4.4.1 The Mask

I use a typical Stage IV survey mask shown in Figure 4.2. All pixels lying within

22.5 deg of either the galactic or ecliptic planes are masked. This leaves 14,490 deg2

of unmasked pixels which, as a fraction of the full sky, corresponds to fsky = 0.35.

4.4.2 Shot-Noise Model

The magnitude of the noise, γp, for each pixel, p, is drawn from a Gaussian dis-

tribution [9]:

γp ∼ N

0,
σε√
N̂P

 (4.21)

where N̂P is the number of galaxies in each pixel, the orientation is angle is drawn

from a uniform distribution, and I take the intrinsic shape dispersion as σε =

0.3 [25] and use 30 galaxies per arcmin2 throughout. Gaussian noise in each pixel

is a good approximation since in my simulations there are a large number of

galaxies in each pixel, so the central limit theorem applies.
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4.4.3 Forward Modelling the Mask

One advantage of performing inference with full forward models of the data is that

there is no need to deconvolve the mask using the pseudo-C` method [6, 24, 133].

This is both computationally simpler and avoids the risk of bias from inaccurate

deconvolution that is present in the standard likelihood analysis.

Given two masked shear fields a(θ) and b(θ), a näıve estimate of the lensing

spectrum is the pixel pseudo-C` spectrum:

C̃pix,EE
` =

1

2`+ 1

∑̀
m=−`

〈aElmbElm〉, (4.22)

where the tilde is used to denote the fact that I have not corrected for the mask,

while the ‘pix’ superscript is a reminder that I have not accounted for the pixel

window function. Analogous expressions are easily found for the EB, BE and

BB spectra.

In an unmasked field, lensing by large scale structure will only induce power

in the EE spectra, but to retain information leaked into the EB, BE and BB

spectra due to the presence of a mask, in Pipeline I, I use:

C̃pix
` = C̃pix,EE

` + C̃pix,EB
` + C̃pix,BE

` + C̃pix,BB
` , (4.23)

as the estimator. I compute this using the public code HEALpy [42, 41].

In a future pipeline it may still be desirable to use the pseudo-C` formalism

to avoid mixing between E and B-modes, allowing us to immediately remove

B-modes induced by unknown systematics. As long as the data and theory are

treated in the same way, the pseudo-C` formalism will not introduce bias, as it

could in the standard likelihood analysis.
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Figure 4.3: 68% and 95% credible region parameter constraints found with DELFI
analysis DA1 after 1000 simulations, for a mock Stage IV experiment. I confirm
that the input cosmology is recovered within statistical errors. The convergence
is plotted in Figure 4.4. In a realistic situation there may be a larger number of
nuisance parameters. One should not expect this to dramatically slow convergence
because we could ‘nuisance harden’ the data compression step, and only learn the
posterior for the parameters of interest. For more details see [11].

110



0 250 500 750 1000 1250 1500 1750 2000
number of simulations

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

ne
ga

tiv
e 

lo
g 

lo
ss

, 
 ln

 U
 

training loss
validation loss

Figure 4.4: The negative loss function defined in equation (4.18) for the training
and validation sets as a function of the number of simulations. This suggests that
O(1000) simulations are needed for a Stage IV experiment. As this is similar to the
number found in [7], which only considered a simple Gaussian field forward model
with no intrinsic alignments, the convergence rate should be fairly insensitive to
model improvements in the future in preparation for Stage IV experiments.

111



4.4.4 Mimicking a Stage IV Experiment

To estimate the number of simulations needed for a Stage IV experiment and en-

sure that pipeline recovers the input cosmology, I first generate mock data using

Pipeline I. I use 6 tomographic bins sampling 15 logarithmicly spaced `-bins in

the range ` ∈ [10, 1000]. I then run pydelfi to estimate the posterior distribution

of the cosmological parameters with this mock data. The final parameter con-

straints for a LCDM cosmology with two nuisance intrinsic alignment parameters

are shown in Figure 4.3, confirming that I recover the input parameters within

errors.

In Figure 4.4 I plot the negative loss function, defined in equation (4.18), for

the training and validation sets. Both have converged within O(1000) simulations.

This is similar to the number found in the simple Gaussian field pipeline presented

in [7], suggesting that the precise details of the forward model, and in particu-

lar the field distribution, does not significantly increase the required number of

simulations.

When working with real data in the future, one may require a large number

of nuisance parameters. This should not dramatically increase the number of

simulations needed, since we can always tune the data compression to maximise

the information retention of the parameters of interest, following the procedure

in [11].

Each simulation takes approximately 33 minutes on a single thread of a 1.8

GHz Intel Xeon (E5-2650Lv3) Processor, so if run on 100 threads in parallel,

the total simulation time during active learning is only 10 hours. Running on

even more threads would further reduce the total run-time because many of the

individual modules in the pipeline are multithreaded (e.g Flask).
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Figure 4.5: The coloured lines show the absolute value of the difference between
the average recovered cross and intra-bin spectra from 100 lognormal and 100
Gaussian realisations (4 tomographic bins, Nside = 512 and ` ∈ [10, 1535]). The
difference is due to the band-limit and regularisation bias in the lognormal field.
The combined bias is safely below 1% for nearly all data points.

4.5 Prospects for Stage III Data

In this section I discuss the viability of applying analysis DA1 to existing Stage III

data. I assume a circular mask of 4951 deg2, similar to the final coverage of the

Dark Energy Survey [128] with 10 galaxies per arcmin2, for the reminder of this

section. I also use Pipeline I throughout this section – except where modifications

are explicitly stated.

4.5.1 Validating the Lognormal Simulations

Lognormal fields were used to generate the covariance matrix in the recent Dark

Energy Survey Year 1 analysis [130]. The authors found no difference in parameter

constraints between this analysis and one which used a halo model to generate the
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covariance matrix – but to verify that Pipeline I is ready for Stage III data, one

must also ensure that the C` recovered from the maps in unbiased.

Provided an accurate input C`, the only bias in Pipeline I comes from regu-

larising the map (see Section 4.2.2). The band-limit bias of the lognormal field

should not be a problem, since imposing a band-limit would affect the data in the

same way. However this assumes that the true field is exactly lognormal, so I check

to ensure that the combined effect of regularisation and imposing a band-limit is

small. This statement is quantified by finding the difference between the average

recovered pixelated spectra from 100 Gaussian (where no band-limit bias or regu-

larisation bias is present) and 100 lognormal simulations. Each 4-tomographic bin

simulation takes approximately 15 minutes on a single thread and the difference

in the recovered spectra is shown in Figure 4.5. The bias is safely below 1% in

all but three data points. This confirms that once minor updates have been made

(see next subsection), the pipeline will be ready for use on today’s data.

4.5.2 Model Improvements

Only a small number of adjustments must be made to DA1 to apply this analysis

to existing Stage III data. These are:

• I must accurately account for baryonic physics. This can be handled using a

halo model code [97], in combination with the k-cut cosmic shear approach

presented in Chapter 2.

• Several nuisance parameters must be introduced. To match the DESY1

analysis, I must allow for free multiplicative and additive shear biases and

photo-z bias parameters in each bin. This will increase the number of nui-

sance parameters, so to avoid excessive computational costs, we must ‘nui-

sance harden’ [11] the data compression step. This means that we compress

the data in such a way that we only preserve information about the param-

eters of interest. This will allow us to continue working in a low dimensional
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data space, which is key to the DELFI technique.

4.6 Testing the Gaussian Likelihood Approxima-

tion

In this section I compare DELFI, which makes no assumption about the underlying

likelihood, to the standard Gaussian likelihood analysis by running analyses DA2

and LA, on the same mock Stage IV data. I use Pipeline II to generate the mock

data, produce the covariance matrix and generate the forward models in analysis

DA2. Because DELFI does not assume any particular likelihood, the differences

in the resulting parameter constraints are only due to the Gaussian likelihood

assumption in LA. Since it is not possible to forward model everything in analysis

LA, care must be taken to ensure that the band-limit bias, deconvolving the mask,

deconvolving the pixel window function and subtracting the shot-noise does not

lead to additional bias between the two analyses. Controlling for these effects is

described in the first subsection.

4.6.1 Modelling Choices In Pipeline II

To avoid the band-limit bias (see Section 4.2.3) I choose to use a Gaussian field,

rather than the lognormal field.

I choose not to apply a mask in DA2 as I have found that using the pseudo-C`

method [6, 24] (with the public code NaMaster [6]) can bias parameter constraints,

with my choice of HEALpix 4 Nside and `max by up to 1σ. Instead I use an unmasked

full-sky map and adjust the galaxy number density so that total number of galaxies

and hence the signal-to-noise remains unchanged, as for the Stage IV experiment

considered in Section 4.4.

In LA I take the C`, with the shot-noise subtracted as the data vector. Thus I

subtract off the expected value of the noise in DA2. This is computed by running

4https://sourceforge.net/projects/healpix/
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Figure 4.6: The absolute value of the bias, |b|, due to imperfect pixel-window
deconvolution and noise subtraction relative to the statistical error, σ, from 500
Pipeline II simulations. The bias is so small that the comparison between DELFI
and the likelihood analysis presented in Section 4.6.2 will be unaffected.

500 noise-only simulations, as in the analysis of [53].

I must also account for the fact that the shear spectra are computed on pixelised

maps – that is, I must deconvolve the pixel window function, w`, which is defined

in [64]. I compute w` using HEALpix which assumes that the scale of the signal is

large relative to the pixel scale and that all pixels are the same shape, and also

interpolates the function from a lower Nside (see the HEALpix documentation for

more information). The window-corrected spectrum, C`, is given in terms of the

spectrum computed from a pixelized map, Cpix
` , by:

C` = w−2
` Cpix

` . (4.24)

By running 500 Gaussian field simulations I have confirmed that the combined

bias from deconvolving the pixel window function and subtracting the shot-noise
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is small, so that I can make a fair comparison between DA2 and LA. This is

demonstrated in Figure 4.6 where the absolute value of the bias, |b|, is small

relative to the statistical error, σ, with |b|/σ < 0.1 for all data points.

4.6.2 Impact of the Gaussian Likelihood Approximation

To test the impact of the Gaussian likelihood approximation I first generate 1000

mock data realisations using Pipeline II. I take 15 logarithmically spaced `-bins in

the range [10, 1000] and I restrict my attention to S8−Ωm plane, where we would

expect to find a bias in the Gaussian likelihood analysis if the true likelihood was

skewed. To cut computational time, I use only two tomographic bins. Since the

parameters S8 and Ωm primarily impact the amplitude of the shear spectrum, not

too much constraining power should be lost with this choice [119, 125].

For three random data realisations, I run a DELFI and a Gaussian likelihood

analysis, and the resulting posteriors are shown in Figure 4.7. Each subplot cor-

responds to one of the three realisations.

In all three cases the DELFI and Gaussian likelihood contours are very sim-

ilar. This suggests the Gaussian likelihood assumption does not bias parameter

constraints in the S8 − Ωm plane and furthermore that no information is lost in

the compression defined in equation (4.14).

I confirm and quantify this statement by sampling the maximum likelihood

estimator (MLE) distribution assuming a Gaussian likelihood, using the 1000 data

realisations generated earlier. For each realisation, the MLE is found using the

Nelder-Mead algorithm built into scipy and wrapped into Cosmosis using the

default settings. The resulting MLE distribution is shown in Figure 4.8. The input

cosmology lies almost exactly at the centre of the 68% credible region which implies

that there is no measurable bias from the Gaussian likelihood approximation.

I stress that these conclusions only hold for the C` analysis presented in this

work. In particular, the `-binning strategy matters. By binning `-modes we are

taking a sum over random variables so, by the central limit theorem, broader bins

117



0.
26

0.
28

0.
30

0.
32

0.
34

Ωm

0.
77

6

0.
78

4

0.
79

2

0.
80

0

S
8

DELFI

Gaussian
Likelihood

0.
26

0.
28

0.
30

0.
32

0.
34

Ωm

0.
77

6

0.
78

4

0.
79

2

0.
80

0

S
8

DELFI

Gaussian
Likelihood

0.
26

0.
28

0.
30

0.
32

0.
34

Ωm

0.
77

6

0.
78

4

0.
79

2

0.
80

0

S
8

DELFI

Gaussian
Likelihood

Figure 4.7: The 68% and 95% credible region parameter constraints for three
random data realisations found using a Gaussian likelihood analysis and DELFI.
The mock data input cosmology is labeled by black dotted lines. Only in the
first realisation, does the input cosmology lie outside the 68% credible region –
but statistically this is to be expected for a small number of realisations. The
contours found using the two different analyses are very similar for all three data
realisations suggesting that the Gaussian likelihood approximation has negligible
impact. This is confirmed in Figure 4.8.
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correspond to more Gaussianised data. The Gaussian likelihood approximation

may be important for much narrower `-bins.

Similarly, the Gaussian likelihood approximation might be important in a cor-

relation function analysis (see Section 3.2). However a recent paper, appearing

after the paper on which this chapter is based, has suggested that here too this

approximation is negligible [85].

In the future, collaborations which continue to use a likelihood analysis must

also explicitly check the impact of the Gaussian likelihood approximation on the

dark energy parameters w0 and wa. These parameters are more sensitive to lower

`-modes than σ8 and Ωm where non-Gaussianity is important.

4.7 Future Prospects

I now review the main known cosmic shear systematics which must eventually be

included in the full forward model. To account for many of these effects one would

first need to take the base-model presented in this work to ‘catalog level’. This

can be done by first generating a consistent density field – either with Flask or

by taking the difference between two neighbouring tomographic bins – and then

populating the density field with a realistic population of galaxies [100] assum-

ing a biased tracer model (e.g [35]). Cosmic shear systematics break down into

four broad categories: data-processing, theoretical, astrophysical and instrumental

systematics.

On the data-processing side, accurately measuring the shape and photomet-

ric redshift of galaxies is the primary challenge. Rather than using the best fit

parameters for each galaxy, we can sample the posterior on each galaxy as in a

Bayesian hierarchical model [9] to propagate the measurement uncertainty into

the final parameter constraints, as suggested in [7].

Two important theoretical systematics are the reduced shear correction [17, 32]

and magnification bias [44, 87]. The former correction accounts for the fact that
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we measure the reduced shear γ/(1 − κ) with a weak lensing experiment. In a

likelihood analysis, this can be handled using a perturbative expansion as in [32,

117]. This is slow and requires us to rely on potentially inaccurate fitting functions

for the lensing bispectrum. I discuss an alternative approach in the Appendix E.

Meanwhile the magnification bias accounts for the fact that galaxies of the same

luminosity can fall above/below in regions of high/low lensing magnification. In

both cases, these systematics can be easily handled with full forward models of

consistent shear and convergence fields.

The two dominant instrumental systematics are the telescope’s point spread

function (PSF) [95] and the effect of charge transfer inefficiency (CTI) in the

charge-couple devices (CCDs) [95, 106]. Efforts are underway to build pipelines

which characterise these effects in upcoming experiments (e.g [132]). Integrating

these pipelines into the DELFI pipeline would enable the propagation of instru-

mental errors through to the final parameter constraints.

On the astrophysical side, the two dominant systematics are the impact of

baryons on the density field [116] and the intrinsic alignment of galaxies [58, 68].

For Stage IV data, forward models will likely have to be based on high-resolution

N-body lensing simulations [63, 69] to include the effects of baryons. Even with

today’s highest resolution simulations the impact of baryons is still uncertain [60],

so it will likely be necessary to optimally cut (see Chapter 2) or marginalise out

uncertain scales [60]. Meanwhile more sophisticated intrinsic alignment models

which account for different alignment behaviour by galaxy type [111] will need to

be included.

Eventually higher-order statistics such as peak counts and the shear bispectrum

can be added. Since DELFI automatically handles multiple summary statistics

in a unified way, the constraints will be tighter than doing the two-point and

higher-order statistic analyses separately.
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4.8 Conclusion

Even though I have found that the Gaussian likelihood approximation will have a

negligible impact on Stage IV parameters constraints, density-estimation likelihood-

free inference offers the possibility of performing rapid parallel inference on full

forward realisations of the shear data. In the future, this could be used to seam-

lessly handle astrophysical and detector systematics – at a minimal computational

cost.

I have taken the first steps towards this goal by developing a pipeline to rapidly

generate realistic non-Gaussian shear data, including the impact of intrinsic align-

ments. I have integrated this pipeline into pydelfi, to confirm that inference with

cosmic shear data using DELFI is feasible, requiring only O(1000) simulations for

Stage IV data. I have also verified that the current pipeline is accurate enough

for today’s Stage III data. Even though the lognormal field approximation will

likely need to be dropped for Stage IV data, as the pipeline is computationally

inexpensive, in the future it will be useful for quickly determining which systemat-

ics are important as an alternative to a Fisher analysis. However, unlike a Fisher

analysis, we will be able to test the impact of systematics which can not be easily

modelled analytically.

I conclude that DELFI has a promising future in cosmic shear studies. Since

developing fast simulations that fully integrate all relevant astrophysical, detector

and modelling effects is the primary hurdle, developing these simulations should

be the immediate priority.
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Chapter 5

Conclusion

A central theme of this thesis has been that we should not use yesterday’s tech-

niques on tomorrow’s data. In this spirit, I have extended the Gaussian likelihood

analysis of the shear two-point statistic in a number of important ways, in prepa-

ration for Stage IV surveys.

The k-cut cosmic shear technique is a method which efficiently removes sen-

sitivity to small poorly modelled scales. Part of the advantage of this technique

is its simplicity. It is independent of any particular baryonic feedback model and

should be easy to implement in all upcoming shear experiments. In the near fu-

ture we can handle the uncertain baryonic physics simply by taking a k-cut at the

scale where competing models start to disagree. The k-cut cosmic shear method

is no silver bullet, however. Small scales also contain cosmological information,

but this can only be accessed by improving models of baryonic physics. As mod-

els of the matter power spectrum improve, the k-cut can gradually be increased

until there is no longer and need for the method in wLCDM studies. However,

there may never be enough computational resources to compute the impact of

baryons on nonlinear structure growth for all modified gravity theories. In these

circumstances one may always need to cut scales – and k-cut cosmic shear does

this optimally.

The non-parametric technique presented in Chapter 3 offers a unique way to
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test LCDM without assuming any particular extension to the model. In the short

term the technique should be applied to the Dark Energy Survey Year 1 data to

see if the discrepancy in the expansion history at low redshifts between the non-

parametric reconstruction and other distance measurements persists, or if this is

just a systematic in the CFHTLenS shear catalog. The formalism should also

be adapted to simultaneously measure the non-parametric amplitudes and cosmo-

logical parameters, as the assumption of a fiducial cosmology may no longer be

valid as data improves. One could then marginalise out the cosmological parame-

ters to obtain the non-parametric information. This method could also naturally

be extended to photometric galaxy clustering, galaxy-galaxy lensing and CMB

lensing.

Finally I have shown that performing inference with full forward models of

the data offers a natural way to propagate the effects of systematics into the final

parameter constraints. I have confirmed this method is feasible requiring O(103)

simulations. After applying this method to real data for the first time, developing

fast accurate lensing simulations which fully integrate all known systematics effects

is the primary task for the future.
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Appendix A

Calculation of Light Deflection in

General Relativity

To compute the deflection angle due to gravity I closely follow a particularly clear

derivation given in [98] using the result from classical optics that the total travel

time of a light ray between two points is given by:

t =
1

c

∫
d` n [x (`)] , (A.1)

where n [x (`)] is the refractive index along the path and according to Fermat’s

Principle the path travelled will extremise the time so that:

δ
1

c

∫
d` n [x (`)] = 0. (A.2)

Now the metric for a static potential is given by:

ds2 = −
(

1 + 2
Φ

c2

)
c2dt2 +

(
1− 2

Φ

c2

)
dx2, (A.3)
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where Φ is the Newtonian gravitational potential and c is the speed of light in

vacuum. Along the light ray ds2 = 0. Hence,

v(x) =
dx

dt
= c

√
1 + 2 Φ

c2

1− 2 Φ
c2

≈ c

(
1 + 2

Φ

c2

)
, (A.4)

where x = |x|. Then the refractive index is:

n [x (`)] =
c

v(x)
=

1

1 + 2 Φ
c2

≈ 1− 2
Φ

c2
. (A.5)

Writing the refractive index, n, in terms of a parameter λ, equation (A.2) can be

rewritten as:

δ

∫
dλ n [x (λ)]

dx

dλ
= 0. (A.6)

The equations of motion are given by the Euler-Lagrange equations:

d

dλ

(
∂L
∂ẋ

)
− ∂L
∂x

= 0, (A.7)

where the lagrangian L = n (x (λ)) ẋ. Now,

∂L
∂ẋ

=n
ẋ

ẋ
∂L
∂x

=ẋ∇n.
(A.8)

Choosing λ so that dx
dλ

= 1, the tangent vector to the path, e, is e = ẋ. The

Euler-Lagrange Equations imply

d

dλ
(ne)−∇n = 0. (A.9)

Expanding, rearranging and applying the chain rule gives:

nė = ∇n− e · (∇n · e) . (A.10)
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We recognise the second term as the gradient of the refractive index along the

path, ∇‖n, so that after rearranging we are left with:

ė =
1

n
∇⊥n = ∇⊥ log n. (A.11)

Assuming a weak field so that Φ/c2 � 1 and Taylor expanding the logarithm to

first order yields:

ė = − 2

c2
∇⊥Φ. (A.12)

Thus the total deflection angle over the path, α̂, is given by:

α̂ =
2

c2

∫
dλ ∇⊥Φ. (A.13)
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Appendix B

Deflection angle in the observer’s

frame

We know from equation (A.13) that as viewed by the source, the differential

gravitational deflection due to matter at comoving angular diameter distance,

r′, is:

dα̂ = − 2

c2
| ∇⊥Φ | dr′, (B.1)

where we choose our coordinate system to lie in the plane of the deflection so that

we can drop the vector notation. From the observer’s perspective the perpendic-

ular displacement is:

dx = (r − r′) | dα̂ | . (B.2)

Meanwhile, assuming the small angle approximation, the deflection angle in ob-

server’s frame, dα, is:

dα ≈ tan dα =
dx

r − r′ . (B.3)

Substituting equation (B.1) into equation (B.2) and then into equation (B.3) and

integrating over the path implies:

α =
2

c2

∫ r

0

dr′
(r − r′)

r
∇⊥Φ (x, r′) , (B.4)
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where x gives the angular coordinate on the sky and we have reintroduced the

vector notation.
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Appendix C

Computation of the Lensing

Spectrum

The expectation of (1.64) can be rewritten as:

γ`m (η) =

∫
d3r n̄(r)γ(r)W` (η, r) 2Y`m (θ) , (C.1)

where n̄(r) gives the mean density of observed galaxies, θ gives the angle on

the sky, r is the radial distance and η parameterises the weight. This can be

re-expressed by:

γ`m (η) =
1

4π

∫
d2θ dz dzp p(z|zp)n(zp)γ(r)W` (η, r) 2Y`m (θ) , (C.2)

where n(zp) gives the radially distribution of galaxies in the survey and p(z|zp) de-

fined in equation (1.62) accounts for the photometric redshift error. The definition

of the shear is generalised to the celestial sphere as:

γ =
1

2
ð ðφ(r) and γ∗ =

1

2
ð ðφ(r), (C.3)
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where * denotes complex conjugation and ð is the ‘edth’ operator. See [27] for

more details. Hence,

γ`m (η) =
1

8π

∫
d2θ dz dzp p(z|zp)n(zp) [ð ðφ(r)]W` (η, r) 2Y`m (θ) . (C.4)

from which it follows that:

γ`m (η) =
1

4πc2

∫
d2θ dz dzp p(z|zp)n(zp)W` (η, r) 2Y`m (θ)

∫
dr′ F (r, r′)ð ðΦ(r),

(C.5)

using equation (1.45). Now we expand the potential, Φ, using a spherical-Bessel

transform so that:

Φ(r) =

√
2

π

∫
kdk

∞∑
`=0

∑̀
m=−`

Φ`m(k)j`(kr)Y`m(θ), (C.6)

where j`(kr) are spherical Bessel functions. In a curved cosmology we would need

to replace the Bessel functions with hyperspherical Bessel functions (see [126] for

more details). Using the Poisson equation:

∇2
rΦ (r; z) =

3ΩmH
2
0

2a (t)
δ (r; z) , (C.7)

where we have assumed a LCDM universe for the prefactor, and noting that spher-

ical harmonics and spherical Bessel functions are eigenfunctions of the Laplace

operator, so that: (
∇2
r + k2

)
j` (kr)Y`m (θ, φ) = 0, (C.8)

implies the relation:

Φ`m (k; z) = −3ΩmH
2
0

2k2a (t)
δ`m (k; z) . (C.9)
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Then using the identities:

ð ðY`m(θ) = ð ðY`m(θ) =

√
(`+ 2)!

(`− 2)!
2Y`m (C.10)

and ∫
d2θ′sY

∗
`′m′(θ)sY`m(θ) = δKss′δ

K
mm′δ

K
``′ , (C.11)

plugging equation (C.6) into equation (C.9) then into equation (C.5) and finally

into equation (1.63) and making the equal time approximation (see [72] for more

details):

P (k; z, z′) = [P (k; z)P (k; z′)]
1/2
, (C.12)

where in analogy with (1.39) we define the unequal time power spectrum by:

〈δ(k; z)δ(k; z′)〉 = (2π)3δ(k− k′)P (k; z, z′), (C.13)

we at last we arrive at the expression for the lensing spectrum given in equa-

tion (1.65).
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Appendix D

Derivation of the Shot-noise

The shot-noise in the cosmic shear power spectrum comes from Poisson sampling

the shear field at the location of observed galaxies, with source ellipticity ε. Hence

it scales as 1/Ng, where Ng is the number of observed galaxies in the survey. The

number of galaxies can be written as Ng = Aneff , where A is the area of the survey

and neff is the effective number density. Writing the variance of galaxy ellipticities

as σ2
ε = 〈εε〉 and defining:

n`m(η) =

√
2

π

∑
g

εg2Y`m(θ)W`(η, r), (D.1)

where the sum is over all galaxies g, and the shot-noise for the generalised spherical

lensing spectrum is:

N`(η, η
′) =

1

Aneff

〈n`m(η)n∗`′m′(η
′)δgg′〉δK``′δKmm′

=
2

πAneff

∫
d3rd3r′ n̄(r)〈εε′〉δ3(r − r′)δ``′δKmm′2Y`m(θ)2Y

∗
`m(θ′)W`(η, r)W`′(η

′, r′)

=
2πσ2

ε

πAneff

∫
d3r n̄(r)2Y`m(θ)2Y

∗
`m(θ)W`(η, r)W`′(η

′, r).

(D.2)

Using the orthogonality relations for the spherical-harmonics (see equation (C.11))

and writing d3r′ n̄(r) = dzd2θ n(z)/4π yields:

N`(η, η
′) =

σ2
e

2π2Aneff

∫
dz n(z)W` (η, r [z])W` (η′, r [z]) . (D.3)
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Appendix E

The Reduced Shear Correction

From Forward Models

In this Section I show how the forward modelling technique presented in Chapter

4 can be used to naturally account for the reduced shear correction (see Sec-

tion 1.7.1). This work will appear in [Deshpande et al. in prep]. I outline only

my contribution to this paper except where otherwise stated.

Using Pipeline I presented in Chapter 4, I generate 100 shot-noise-fee realisa-

tions of consistent shear and convergence fields at map-level, from which it is easy

to estimate the reduced shear spectrum. I take the same model assumptions as

in Chapter 4, but do not include intrinsic alignment contributions to the lensing

spectrum. I estimate the reduced shear correction by taking the average over all

realisations.

I compare with the results of the perturbative expansion based on the bispec-

trum, provided by Anurag Deshpande (private communication). The results are

shown in Figure E.1. I consistently bin the spectra into logarithmically spaced

`-bins in the range ` ∈ [10, 3000]. The two methods show remarkable qualitative

agreement. There is mild disagreement at intermediate `-mode, but the agree-

ment at low-` and in the highest `-bin are striking, particularly given the number

of approximations which go into each method. In the future forward models can
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Figure E.1: The reduced shear correction using the bispectrum perturbative ap-
proach (see [32, 117]) and using the forward model in the lognormal field approx-
imation as presented in Chapter 4. The data points are plotted at the geometric
mean of the `-bin boundaries. There is mild disagreement at intermediate `-mode.
This is to be expected given the approximations that go into the bispectrum fit-
ting formula and the lognormal field approximation. Nevertheless the agreement
at low-` and in the highest `-bin are striking. In the future, forward models could
be used to get around using a fitting formula for the matter bispectrum, which
could be biased due to the indeterminate impact of baryons. The bispectrum data
was provided by Anurag Deshpande (private communication).
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be used to seamlessly account for the reduced shear and other corrections without

ever needing to derive complicated corrections.
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Schäfer, Cristóbal Sifón, Michael L Brown, et al. Galaxy alignments: The-

ory, modelling & simulations. Space Science Reviews, 193(1-4):67–136, 2015.

[69] Alina Kiessling, AF Heavens, AN Taylor, and B Joachimi. Sunglass: a new

weak-lensing simulation pipeline. Monthly Notices of the Royal Astronomical

Society, 414(3):2235–2245, 2011.

[70] Martin Kilbinger. Cosmology with cosmic shear observations: a review.

Reports on Progress in Physics, 78(8):086901, 2015.

[71] Martin Kilbinger, Karim Benabed, Julien Guy, Pierre Astier, I Tereno, L Fu,

D Wraith, J Coupon, Y Mellier, C Balland, et al. Dark-energy constraints

and correlations with systematics from cfhtls weak lensing, snls supernovae

ia and wmap5. Astronomy & Astrophysics, 497(3):677–688, 2009.

[72] TD Kitching and AF Heavens. Unequal-time correlators for cosmology.

Physical Review D, 95(6):063522, 2017.

145



[73] TD Kitching, AF Heavens, J Alsing, T Erben, C Heymans, H Hildebrandt,

H Hoekstra, A Jaffe, A Kiessling, Y Mellier, et al. 3d cosmic shear: cos-

mology from cfhtlens. Monthly Notices of the Royal Astronomical Society,

442(2):1326–1349, 2014.

[74] TD Kitching, P Paykari, H Hoekstra, and M Cropper. Propagating residual

biases in cosmic shear power spectra. arXiv preprint arXiv:1904.07173, 2019.

[75] Thomas Kitching, Adam Amara, Mandeep Gill, Stefan Harmeling, Cather-

ine Heymans, Richard Massey, Barnaby Rowe, Tim Schrabback, Lisa

Voigt, Sreekumar Balan, et al. Gravitational lensing accuracy testing 2010

(great10) challenge handbook. The Annals of Applied Statistics, pages 2231–

2263, 2011.

[76] Thomas D Kitching, Justin Alsing, Alan F Heavens, Raul Jimenez, Jason D

McEwen, and Licia Verde. The limits of cosmic shear. Monthly Notices of

the Royal Astronomical Society, 469(3):2737–2749, 2017.

[77] Thomas D Kitching, Peter L Taylor, Peter Capak, Daniel Masters, and

Henk Hoekstra. Rainbow cosmic shear: Optimization of tomographic bins.

Physical Review D, 99(6):063536, 2019.

[78] Darsh Kodwani, David Alonso, and Pedro Ferreira. The effect on cosmo-

logical parameter estimation of a parameter dependent covariance matrix.

arXiv preprint arXiv:1811.11584, 2018.

[79] Elisabeth Krause and Tim Eifler. Cosmolike–cosmological likelihood anal-

yses for photometric galaxy surveys. Monthly Notices of the Royal Astro-

nomical Society, 470(2):2100–2112, 2017.

[80] Rene Laureijs, J Amiaux, S Arduini, J-L Augueres, J Brinchmann, R Cole,

M Cropper, C Dabin, L Duvet, A Ealet, et al. Euclid definition study report.

arXiv preprint arXiv:1110.3193, 2011.

146
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