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Abstract

The rapid growth of mobile computing, encouraged by ever-decreasing
size and weight of hardware, has led to a spectrum of computing environ-
ments. Use of portables while in transit (e.g., on a train or a plane), or
when movement is in the nature of business (e.g., travelling salesmen) has
become a commonplace and is no longer remarked upon.

Common to all mobile users is a frequently-changing working environ-
ment. In order to utilize local resources fully, mobile users have to adjust
their quality of service (QoS) requirements perceived according to local
conditions. It enables them to fully utilize resources available in their
current working environment. Hitherto, mobile users lack infrastructural
support for such dynamic resource management.

This paper describes Magnet, a model of dynamic information ex-
change. Applied as a resource manager, it permits dynamic update of
resource information and user-dened QoS-based resource selection, en-
abling transparent reconguration.

1 Introduction

The enormous growth of mobile computing in recent years has been driven by
three factors: improvements and aordability of wireless communication, de-
creasing hardware size and weight, and other, qualitative, advances in hardware
technology (e.g., the invention of the colour LCD display). Owing to a combina-
tion of these advances, portable computers are frequently used during transport
(e.g., on a train or plane), or when movement is the nature of business (e.g.,
mobile salesmen, members of sta working in dierent company branches, etc.)
A characteristic of the portable is that it is stationary but transportable, usu-
ally running classical operating systems and applications, but constrained by
hard-disk space and battery life [14].

In this paper, we focus on the problems encountered by mobile users who fre-
quently change their computing environment, rather than lower-level problems
due to changes in physical location and degree of connectivity. The fundamental
problem imposed by the variation in computing environments is lack of support
for dynamic adaptation to the change in resource conguration.

In this paper we describe Magnet, an information pool which provides an
environment for resource location based on a user-dened QoS description. We
illustrate its utility by an example of a mobile user working on a portable in a
changing environment.

The next section discusses our motivations in greater detail, focussing on the
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characteristics of the mobile environment and support for dynamic information1

update. Section 3 presents the Magnet design. In section 4, we demonstrate
the role of Magnet in a typical `mobile oce'. Section 5 summarizes related
work in comparison to our approach. Section 6 describes Magnet's current
status and discusses directions of future reseach. Finally, section 7 contains our
concluding remarks.

2 Motivations

In this section we describe the mobile computing environment and our motiva-
tions to investigate services supporting dynamic information exchange. Unlike
the classical QoS approach dealing with unreliability of wireless computing, we
extend the denition of QoS to all `characteristics' of resources (e.g., QoS pro-
vided by a printer can be described in terms of: black&white printer versus
colour one, laser printer versus matrix or ink-jet ones, resolution, speed etc.)
Finally, we elaborate the requirements of the information-sharing infrastructure.

2.1 Characteristics of Mobile Environment

By `mobility' we mean frequent changing of users' physical location which cause
the volatility of information such as the location of the nearest server, local
hardware environment, and location-dependent information (e.g., the local time,
a useable ISP, etc.).

We distinguish several degrees of connectivity forming a wide spectrum of

communication environments extending from: totally disconnected, through
weakly-connected (e.g., low-speed IR networks), to fully-connected by Ethernet
or optical bre networks (FDDI, ATM) [3].

Recent research has focused on adaptable systems which react to achieve
a predened level of QoS. This was to overcome the problems associated with
mobile communications systems. However, in recent years we have observed
enormous improvements in speed, reliability and coverage of wireless commu-
nications resulting in the need for reactive services decreasing. Expecting this
process to continue, weakly-connected (via dial-up) systems will no longer suf-
fer from signicantly low bandwidth, high error-rates, speed uctuation and
frequent disconnection. Consequently, this trend has decreased the demand for
so-called reactive services [13] which deal with the rapid uctuations in QoS of
the underlying communication infrastructure of weakly-connected networks [1].
On the other hand, this issue of QoS is still important for specic applications
which require continuous data transmission (e.g., runtime multimedia applica-
tions). We complement that research by exploring the advantages to be gained
from the use of reactive services which support conguration, reconguration
and location dependent data requests to achieve QoS at a higher-level.

1By `information' we mean the data characterizing components of an application required
to satisfy a request whether it be a request; for a location-dependent resource (e.g., printer)
or for location dependent data (e.g., tourist information).
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2.2 Support for up-to-date information exchange

The improvement in low-level wireless communications motivate us to focus
on a residual problem | service support for dynamically-updated information
for applications requiring location and time-aware information (such as tourist
navigation software running on personal digital assistants (PDAs), and portable
applications using local resources in dierent oces, etc.) The crucial problem
for portables no longer is the uctuation in the quality of connection to their
home services (while dialing-in) but an inability to adapt dynamically to the
resource conguration in environments where they have just arrived. In order
to fully utilize access to local resources, current mobile users have to manually
adjust their QoS requirements to local conditions.

Resource QoS changes in two dimensions. Firstly, it varies with time (e.g.,
uctuation of local throughput and error-rate of networks, contention for devices
such as printers), secondly, it changes with location (e.g., there is a colour ink-jet
printer in this new oce, which a portable should be able to use).

Due to performance restrictions and the requirement of heterogeneity, com-
puting environments are no longer course-grained and monolithic. System el-
ements at all levels (hardware, software, and data) are becoming ne-grained,
componentised and more independent of one another. This environment, sup-
ported by dynamic services, enables applications to tailor the environment using
only the required components. This is essential in a mobile computing environ-
ment where computer power is constrained by the capacity of the battery.

2.3 Information-sharing Infrastructure Requirements

Above we described the changing spectrum of environments and identied the
lack of service support to meet the needs of dynamic mobile users. In order to
provide an information-sharing infrastructure (which we term a `pool') enabling
users to exchange up-to-date information (which we term a `tuple'), we need to
dene its high-level requirements.

To achieve full generality, the infrastructure should not dene any format for,
or pose any restrictions on, information placed into the pool. The pool should
be distributed, in order to prevent a centralized element becoming a bottleneck
of the entire system. In addition, it must be scalable to the extent required by
mobile applications (e.g., mobile users travelling into dierent company branches
| presumably abroad | still require access to the pool information).

High volatility of information in mobile environments imposes a fundamental
requirement on mobile applications | support for dynamic information update.
Classical two-party 1:1 interaction (such as in a traditional client-sever sys-
tems, where one service satises a particular request) is not suited to the multi-
component nature of dynamic mobile applications. That is, they require multi-

party communication (m:n interaction, where m sources communicate with n

sinks) enabling dynamic service choice.
Finally, in order to enable the actual communication in the pool, tuples

must interact | match. If requirements can be expressed exactly then `white-
pages' matching can be carred out. Two tuples are termed matching if, and
only if, their corresponding actual paramenters are of equal type and value, and
formal parameters are of equal type. White-pages matching is unsuitable for
situations where requirements on resources are parametrized, requiring `yellow-
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pages' matching (that is, two tuples match if, and only if, all structured cor-
responding parameters `match', where the matching function has user-dened
semantics) [12]. This level of freedom leads to a crucial requirement on the
dynamic information exchange service: in addition to providing fundamental
white-pages matching, it must also provide a general mechanism for incorporat-
ing user-dened matching algorithms. Current research has not addressed this
issue as yet.

3 Dynamic Information Exchange Infrastructure

Design

The infomation exchange framework, called Magnet, consists of three key ele-
ments: information pool, matching functions, and Magnet Server. The infor-
mation pool, the data structure is the shared tuple repository enabling data to
be inserted and withdrawn. Application-specic trading functions match service
oers against requests. Access to each pool is controlled by a Magnet Server
which communicates with users, with other Magnet Servers, and is responsible
for distribution and scalability.

3.1 Information pool

The design of the information pool was inspired by a communication environ-
ment called the tuplespace. Tuples (record-like data structures) can be dynam-
ically inserted in, or removed from, a shared data structure, the tuplespace.
This is typically distributed, and can be accessed by various applications. Ac-
tual communication occurs by exchanging information in tuples that match

(currently, white-pages matching is only supported) [8].
The xed semantics of the classical operations dened in the tuplespace

paradigm are too restrictive to satisfy requirements of mobile applications. Nev-
ertheless, Magnet's information pool has properties of the classical tuplespace:
decoupling of the communicating parties, free-naming, asynchronous and multi-

party communication, and, nally, stateless character of tuples.

The key feature, which our information pool shares with tuplespace, is the
decoupling of the communicating parties (traditionally client and server). Any
server component can generate a tuple of interest to any client component,
which allows communication to proceed anonymously. This essential character-
istic enables the pool to support free-naming (that is, communication can be
performed without previous knowledge of the peer's actual identity). If naming
is required, it can be encapsulated as a parameter of a tuple.

Asynchronous communication is another characteristic of the model, sparing
applications unnecessary synchronization. The information pool acts as a shared
`noticeboard' enabling multi-party communication of dynamically-formed groups
of components | any component can join or leave a group at any time without
aecting other parties.

At the pool level, all tuples are stateless | state is encapsulated within the
tuple as a parameter. Therefore, there is no need for the pool to provide a
state-maintenance mechanism (e.g., checkpointing). This concept improves the
generality and clarity of the system while contributing to system reliability.
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In contrast to the classical tuplespace, Magnet permits time-constrained

operations to be performed on applications that are unwilling to wait until a
required item becomes available. This feature contrasts to classical tuples which
persist forever even if the required matching tuple has not been inserted.

In addition to user-originated binding, Magnet provides a framework for
third-party binding. It allows; in exceptional cases; a `human manager' to in-
terfere with the matching process, in order to enforce a binding which could
not have been established. In addition to classical operations for insertion and
removal, Magnet provides a mechanism for the actual communication | the

matching of tuples.

3.2 Application-Specic Trading

Magnet, as a general framework, does not restrict the format of data items
placed into the pool. In the previous section 2.3, we discussed the need for
white-pages and yellow-pages matching which leads to one of Magnet's key
addvantages: the implemention of QoS-based user-dened functions. To de-
ne a universal unambiguous matching function for unconstrained parametrized
matching is impossible because data parameters (e.g., resource features) cannot
be linearly ordered without application-dened preferences. For this reason,
QoS matching functions must be provided by the applications themselves.

Magnet solves this problem by enabling a parametrized matching func-
tion to be dynamically `inserted' into the pool. However, enabling user-dened
extensions to execute their code on the information pool adds the problem of
data security in the pool, and it now becomes impossible to estimate a time in
which a match can be achieved. As for the security, section 3.4 discusses this
issue in more detail. The problem of time complexity of user-dened match-
ing functions has been theoretically proven as algorithmically unsolvable (it is
equivalent to the halting problem). Therefore, it is impossible for Magnet to
incorporate a `nality check' of user-dened functions before they are inserted
into the information pool. We approach this issue by enabling parallel process-
ing of matching functions (each function is activated as an independent thread of
control) preventing other applications from being blocked by incorrectly dened
functions.

In order to make the construction of the matching function more tractable,
Magnet encourages applications to predene the matching functions typically
required by the parties involved (users requiring resources, tourists asking for
information, etc). Fundamental predened QoS matching functions are: rst-t

(rst appropriate matching tuple is returned), and best-t (the most suitable
tuple according to QoS requirements is returned). Applications with require-
ments not covered by predened functions have to implement matching functions
themselves. Magnet treats both classes of matching functions (predened and
user-dened) equally.

3.3 The MAGNET Server

The Magnet Server is an active process controlling the information pool. By
exporting the pool operations (e.g., insert, withdraw, etc.), it denes a fur-
ther set of supported operations available to users. In addition, it handles

5



time-constrained operations (for example, it resumes blocked components when
their timeout expires), and implements the appropriate strategy which manages
QoS matching functions (their activation, parallelization and coordination), and
plays an essential role in the distribution of the information pool.

In order to achieve the scalability and tuple information sharing, the infor-
mation pool is physically distributed into `local pools'. The semantics of the
distribution is dened by the actual application, and is irrelevant for high-level
Magnet design. Local pools can be disconnected, or connected to other local
pools. Each one is running its Magnet Server which communicates with other
Magnet Servers in order to achieve data location and distribution transparency
in the information pool.

To join the information pool, the Magnet Server of a disconnected unit must
locate other Magnet Servers with which to communicate. Intercommunication
between Magnet Servers is implemented using a multicast group.

Figure 1 illustrates the high-level Magnet structure: the information pool
with tuples placed into it, three predened matching functions, and the Magnet
Server controlling it. For clarity, the physical distribution of the information
pool and the Magnet Server is not visible at this level. Magnet forms an
environment for communication between three components advertising the in-
formation (such as resource oers, tourist information etc.), and two components
requesting the information (such as requests for resources, tourists information
queries etc.)

information3

information1

predefined ’best-fit’

matching function

predefined ’first-fit’

matching function

MAGET Server

Information Pool

information2

request1

request2

predefined white-pages

matching function

MAGNET

Figure 1: The Magnet Structure

3.4 Security Issues

As all interconnectivity between system components is achieved through the
information pool, security is an issue. The pool itself does not provide any se-
mantics for security and therefore it is possible for untrusted matching functions
to corruptly use the information in the pool. Furthermore, unrestricted infor-
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mation pool scaling can result in undesirable users joining the pool through an
unauthorized Magnet Server.

Information in tuples is the responsibility of the user therefore security is-
sues are addressed at the user level. There are two mechanisms which facilitate
the protection of tuples in the information pool. Firstly, they can encapsulate
a `signature' parameter in their tuples, therefore matching with non-signed tu-
ples will not be achieved. Secondly, user-dened matching functions can also
incorporate a protection policy.

4 Example: The Mobile Oce

In this section, we demonstrate the role of Magnet on the problem of a typical
mobile user requiring dynamic adaptation to dierent local environments (a
base oce, a train, and another branch of the company).

4.1 Problem Description

Users, such as travelling salesmen, work on portable computers and often travel
between their base oce and other branches of the company. They may also use
the portable while commuting on a train. Furthermore, in other branches, they
can give a presentation, or attend a seminar, both using the same portable.

Currently, the user has to perform manual adaptation to the local computing
environment. That is, having arrived to an oce, the user has to nd out
information about local resources (printers, le systems, etc.) then recongure
and reboot the portable. Also the QoS requirements need adjusted according
to characteristics of the available resources. Futher, the user needs to carry out
extra functions, e.g., to check the e-mail, he has to login remotely into his base
oce mail server, he cannot just use mail without explicitly stating where the
mail is stored. Ideally, the user wants to take the portable, connect it into the
new environment and continue working without recongurating, rebooting or
running special applications (e.g., for network, printers setup, etc). The next
few sections describe our solution to this.

4.2 MAGNET support for Dynamic Resource Recongu-
ration

In this section, we illustrate how Magnet ensures transparent adaptation to
diverse local environments saving the user from manual reconguration. The
example environments illustrate the functionality of a portable operating in
the base oce, on a train, and in a remote oce. Further, we discuss these
environments in terms of two resources; printers and le systems.

For simplicity, we assume a command, print, which sends a job into a
print queue; and a command, mail, which enables the reading of a personal
mail-box. (In this example we focus on remote sharing of the mail-box, and
omit sending e-mail, which involves other issues, such as support for buering
messages written while the portable was disconnected, connecting to local mail
servers etc.) At this level, we assume security and protection checks are not an
issue. For lucidity, illustrating gures presented below, are only schematic and
expose only the relevant resources which we discuss.
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4.2.1 In a home oce

When the user connects the portable to the network, the Magnet Server run-
ning on the portable establishes a communication with other Magnet Servers
enabling access to local resources, (for example, a printer, or local le system
into which the portable le system is mounted). Performing a print command
sends the job into the local printer queue as predened by the user printer
matching function. Correspondingly, the Mail command initializes the mail
matching function and locates the mail-box in the le system enabling it to be
accessed. Figure 2 illustrates the base oce conguration.

portable

printer

FS

mail-boxes

priner matching function

mail matching function

MATCH

MATCH

Information Pool

PRINT

MAIL

Figure 2: The MAGNET conguration in the base oce

4.2.2 On a train

On a train, the portable is disconnected from the information pool and relies
on the local resources only (e.g. local le system). When a Print or mail
command is issued the print and mail matching functions detect that requested
resources cannot be used. That is, tuples matching the request cannot be found
in the local information pool. Consequently, the commands are rejected when
a timeout is set by the user-dened print or mail matching functions expire.
Figure 3 represents the situation.

portable

priner matching function

mail matching function

NO MATCH

NO MATCH

Local Pool

PRINT

MAIL

Figure 3: The MAGNET conguration on a train

4.2.3 Remote branch

Finally, in another branch of the company, the user connects the portable to the
local network. The initialization process (connecting into the information pool)
is performed in the same manner as the base oce. Only, in this example, the
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user-dened matching function invoked by the print command matches the re-
quest with a colour ink-jet printer available there, instead of an ordinary printer.
This process demonstrates adjusting QoS requirements according to the local
resource availability. That is, a range of accepted requirements in the matching
function is incorporated (a black&white printer is considered acceptable, but
the colour ink-jet printer is prefered). A Mail command invokes the matching
function requesting the user's base oce mail-box. To enable the mail match-
ing function to nd the requested tuple (the base oce le system containing
the user's mail box) the remote Magnet Server communicates with the base
oce Magnet Server. Once the mail-box is located, transparent access via the
network is enabled. (Service infrastructure support enabling the transparent
access is not predened by Magnet). Figure 4 illustrates this case.

portable

colour ink-jet

printer

FS

mail-boxes

priner matching function

mail matching function

MATCH

MATCH

Information Pool

PRINT

MAIL

printer

Figure 4: The MAGNET conguration in remote branch

4.3 Other issues

To implement the examples discussed in previous sections Magnet's resource
recongurator must employ exible lazy binding. This is, it only requests re-
sources at the moment they are actually required. Which also improves eciency
and exibility of the matching process.

Furthermore, matching functions can be dened so that the QoS corresponds
with the more disconnected environment, (e.g., an automated battery saving
regime is activated, when the matching function discovers the absence of a
mains power supply, etc.)

The issue of locality is explicitly expressed in the matching functions (e.g.,
the function matches a local printer, instead of a remote one). Furthemore, the
added advantage of the pool is that the local pool is searched rst, therefore
implicitly the local resource is chosen.

Problems concerning the infrastructural communicational support for adapt-
ability (support for IP address migration, compatibility of le systems and net-
work protocols, etc.) are beyond the scope of Magnet, and in this example
we assume they are not an issue. We aim to address this issue in our further
research.
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5 Related Work

The construction of systems using components, and the use of exible commu-
nications mechanisms, are two areas well-explored by contemporary research.
Nevertheless, systems which provide the functionality required by mobile appli-
cations to allow dynamic reconguration and adaptability, have not been widely
investigated.

Linda was the rst system to support a generative communication model [8],
providing several important features (see section 3), but its xed tuple format
and semantics do not provide the exibility we require. A question-based system
Osprey [5], which was motivated by Linda, implemented application-server
coupling using tuple-based interaction. It added a level of exibility through
utilizing a result-based tuple naming scheme and by replicating tuples over many
nodes, but it did not address issues concerning user-dened matching.

Blair et.al. [2] investigated the tuplespace approach to QoS support in a
mobile environment. It extends the traditional tuplespace with QoS manage-
ment providing support for monitoring and adaptation for applications using
heterogeneous networking environments. Unlike Magnet, its emphasis is on
QoS monitoring and adaptation to changes in network connectivity, and not
user-dened QoS-based resource allocation and conguration.

Support for non-stop dynamic data object communication has been explored
in \The Information Bus Architecture" [6], based on principles such as self-
describing, anonymous communications and minimal semantic communication
protocols. Nevertheless, this approach restricts data access to subject-based
addressing, unlike Magnet which permits both white-pages and yellow-pages
naming.

The problem of dynamic adaptation to a change in environment has been
successfully addressed by the Personal Computer Memory Card International
Association. Pcmcia ethernet cards can be add and removed from the system
without powering-o or rebooting the computer. The Linux kernel daemon

is another successful attempt, enabling operating system kernel adaptation by
adding or removing modules transparently on demand [10]. Incidently, both
these dynamic adaptation approaches can be implemented using Magnet (they
are additional examples of dynamic resource reconguration).

The Magnet approach has been adopted in a component based operating
system called Bits exploring the construction of an entire operating system from
independent components [4]. Magnet is a dynamic resource manager in Bits
which underlies a universal dynamically congurable computing environment
[7].

6 Project Status and Future Work

We are adopting a combined approach to protection of pooled data. Currently,
data can be protected by `signatures' or by user-dened matching functions. We
are investigating how Magnet Servers can restrict or disable data sharing with
untrusted local pools according to a user-dened policy.

Magnet is part of PhD research, and is currently being implemented in the
Regis [9] distributed programming environment.
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7 Conclusion

This paper has examined the problem of adjusting the QoS where dynamic
conguration is necessary in response to changes of user location, and computing
environment. Through examples, we have shown that mobile users are the major
category which benet the most from such dynamic recongurable systems.

The paper has provided a exible solution based on a current information
exchange model, Magnet. This has illustrated that a distributed information
pool can provide dynamic matching of resource requests to service oers as a
function of the user-dened QoS-based preferences and the current environment
conguration. An automatically adapting portable computer allows the mobile
user to concentrate on the task at hand without having to manually adapt the
computer to frequent changes in the computing environment.
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