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1 | INTRODUCTION contribute to fetal conditions amenable for therapy such as singletons

at high risk for fetal growth restriction (FGR) through early recogni-
Magnetic resonance imaging (MRI) of the placenta has been part of tion, appropriate management, and monitoring response to treatment
clinical practice for many years but is most commonly performed to and monochorionic twin pregnancies for planning surgery and
aid in the diagnosis and management of abnormally adherent placen- counselling for selective growth restriction and transfusion conditions.

tation. However, there is a growing field investigating imaging of the

placenta for other applications (Figure 1). This is down to the tech-

nique's ability not only to image structure but also to provide quanti- 1.1 | Fetal growth restriction

tative measures that relate to the tissue properties and function.

Several techniques are sensitive to the vascular structure and to prop- Placental insufficiency leads to FGR, where a fetus fails to reach their
erties such as oxygenation and blood flow and thus reveal functional genetic growth potential. Poor fetal nutrition and hypoxia result,
information. Combinations of these techniques have much to with increased risk of cognitive impairment, in cerebral palsy and in
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lifelong metabolic consequences®. The condition is associated with
up to two-thirds of stillbirths in the United Kingdom.2* FGR can
be challenging to diagnose as placental function cannot currently
be directly measured. Surrogate markers, such as abnormal fetal
growth trajectory or abnormal blood flow to the placenta,®”” are
used with varying success. At present, there is no treatment for
FGR, or the associated condition pre-eclampsia; however, trials are
exploring several new therapeutic avenues, including sildenafil,”
esomeprazole,10 metformin,*? pravastatin,12 and vascular endothelial
growth factor maternal gene therapy.'>** Developing new tech-
nigues to assess placental function and response to management is
therefore essential.1>18

FGR is typically divided into early and late-onset, most frequently
defined as diagnosis before or after 32 weeks of gestation.>1%2°
These have relatively different clinical phenotypes, with early-onset
FGR being relatively less common, but with a high incidence of placen-
tal pathology, and late-onset being more common, but with a variety
of aetiologies. Clinical challenges in these groups also differ. In early-
onset FGR, the difficulty is in balancing in utero mortality and morbid-
ity against the associated complications of iatrogenic preterm birth,2"
23 whereas in late-onset FGR, the primary issue is detection and delin-
eation from normal small fetuses. Chronic hypoxia is a critical feature
of FGR.*24 |t is possible that measurement of fetal or placental oxy-
gen saturation or oxygen exchange may be useful in differentiating the
normal small fetus from one with early or late-onset FGR and might
predict outcome.

Placental insufficiency is generally considered to be as a conse-
quence of inadequate spiral artery remodeling from insufficient tro-
phoblast invasion in early pregancy.?®> The most common abnormal
histological finding is patchy placental infarcts.)? Lesions relating to
hypoxia and therefore suggestive of reduced maternal perfusion are
seen more commonly than in normally grown pregnancies. These
include syncytiotrophoblast knots, excess cytotrophoblast cells, thick-
ened basement membranes, villous fibrosis, and hypovascular terminal
villi, with reduced villous volume, reduced intervillous space, and non-
specific inflammatory lesions.?® Understanding this pathophysiology
is key to timely diagnosis and management of FGR. Imaging the pla-
centa is therefore important to our understanding and ability to man-
age FGR.>18

2 | COMPLICATED MONOCHORIONIC
TWIN PLACENTAS

2.1 | Twin-to-twin transfusion syndrome

In monochorionic twin pregnancies, the two fetuses are intrinsically
linked through connections between their circulatory system within
the placenta.2”~3% Twin-to-twin transfusion syndrome (TTTS) is caused
by haemodynamic unbalance through these vascular connections,®!
resulting in one hypovolaemic and one hypervolaemic fetus. If man-
aged conservatively, the overall survival rate for TTTS is around
30%.3? Laser surgery to coagulate the anastomosing vessels along

What is already known about this topic?

e Placental function is responsible for significant
morbidity and mortality in fetal growth restriction and
in  monochorionic twin pregnancies complicated by
selective growth restriction and transfusion conditions.

e Our ability to diagnose placental dysfunction in utero is
currently limited, with implications for clinical decision
making.

e MRI is capable of imaging the whole human placenta at
any gestational age and has been shown to demonstrate
differences between normally functioning placentas and

those with growth restriction.

What does this study add?
e This review summarises up-to-date research on placental
function that has been carried out using different MRI

modalities.

e We discuss how combinations of these techniques have
much to contribute to fetal conditions amenable for
therapy such as singletons at high risk for FGR through
early recognition, appropriate management, and
monitoring response to treatment and monochorionic
twin pregnancies for planning surgery and counselling
for selective growth restriction and transfusion conditions.

the placental equator has been shown to be the most effective man-
agement option for severe TTTS.32 Increasing information on the loca-
tion of the vascular equator and the flow mismatch between twins
may help clinicians in managing these pregnancies and in planning
intervention.

There are limited studies of the villous structure and microcircula-
tion, so placental vascular function is poorly understood. Histological
studies have found no difference in histomorphometric variables
between shared and nonshared lobules of uncomplicated monochorionic
pregnancies.>*3> In TTTS however, the donor has reduced average
terminal villous diameter, smaller capillaries, reduced vascularization, and
larger feto-maternal diffusion distance, compared with the recipient
twin,2*% likely due to the haemodynamic imbalance between the twins.

2.2 | Selective FGR

Selective FGR (sFGR) is usually regarded as the combination of one
twin less than 10th centile for estimated fetal weight (EFW) and a
growth discordance between monochorionic twins of greater than
20% to 25% and occurs in 7% to 11% of monochorionic pregnan-
cies.3¢38 |t is an important cause of morbidity and mortality.3%4°
Selective growth restriction provides unique challenges to the obste-
trician. Premature delivery comes at the cost of prematurity for the

normally grown twin. In some cases, selective reduction of the growth
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FIGURE 1 Use of MRI in human placental conditions other than
accreta, papers discussed in this review. Abbreviations in text
[Colour figure can be viewed at wileyonlinelibrary.com]

restricted twin is offered in order to optimise the chances for the nor-
mally grown fetus. Laser surgery to divide the placentas can also be
used, to give both fetuses a chance, whilst protecting the normally
grown fetus from harm should the smaller twin die. There is limited
information for the clinician on which management option is likely to
be the most beneficial for any given situation.

Fetuses with the greater share of the placenta have faster growth
velocity than fetuses with the smaller share, unless an arterio-venous
anastomosis is present with net transfusion towards the fetus with the
smaller territory which will equalize growth velocities.?? Additionally,
the presence of an arterio-arterial anastomosis has been linked to
unequal growth in twins with unequal placental share, and absence
of an arterio-arterial anastomosis breaks the association** although
this is thought to have a protective association for TTTS. Conversely,
an increased proportion of arterio-venous anastomoses, although rare,
is linked with twin anemia polycythemia sequence (TAPS).*? Thus,
studies suggest a combination of the volume of placental tissue
available to each fetus, and the degree and balance of transfusion
between them, is responsible for the development of selected growth

restriction.*®

3 | MAGNETIC RESONANCE IMAGING

3.1 | Structural Imaging of placenta size and shape

The placenta can easily be visualized on MRI, with a clear boundary
against the amniotic fluid, and a less clear placental-uterine boundary
(Figure 2). The entire placenta can be imaged at any gestational age,
measuring the anatomical size, shape, and vascular properties across
the whole organ. MRl is safe in pregnancy.** T2 weighted structural
imaging shows a homogenous structure with relatively high T2 signal
intensity, giving it a light grey appearance. The T2 value falls in placen-
tal insufficiency, giving the placenta a darker appearance, with more
heterogeneity, possibly due to areas of infarction and fibrosis.*> The
placenta is smaller in FGR compared with normally grown controls
and has a thickened, globular appearance.*® In twin pregnancies, the
two cord locations can be seen, and the larger chorionic vessels iden-
tified, allowing identification of the vascular equator. Superresolution
reconstruction techniques can be used to combine data from 2D
stacks acquired in multiple planes into a single 3D volume.*” This tech-
nique has been applied widely to the fetal brain, and extensions of this
technique, although made substantially more complicated by non-rigid
motion, are being used for other abdominal organs.*® For placenta
size, shape, and thickness estimation, these techniques are likely to
represent the best way to acquire data.*®*?->% 3D reconstruction of
structural MRI data has already been shown to have potential in

surgical planning for laser division in TTTS,>*>>

and as imaging and
reconstruction techniques improve is likely to play an increasingly

important role.

3.2 | Diffusion weighted imaging

Diffusion weighted imaging (DWI) is widespread in all areas of medical
MRI. The sensitisation of the MRI signal to water movement means

that the local tissue structure can be measured by changing the

FIGURE 2 MRI of placenta from a normally
grown (left) and FGR (right) fetus. The
placenta are marked with white stars. Note
the difference in appearance in T2 weighted
imaging, with the normal placenta appearing
lighter in colour and more homogeneous
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parameters of the diffusion pulses. An apparent diffusion coefficient
(ADC) value is calculated for each voxel within an image, and this is
displayed as a parametric ADC map (Figure 3A). Voxels with higher
ADC values represent a greater degree of water diffusion such as
within fluid, whereas voxels with low ADC values represent restricted
and hindered diffusion, such as within cellular tissue. The ADC there-
fore depends on the tissue being imaged, and if pathology is present,
and thus, the accuracy and the precision of this value depend on the
experimental parameters used.>®

Several studies have looked at DWI of the growth-restricted pla-

centa,>”8

with placental ADC values being found to be significantly
lower in the placentas of FGR pregnancies compared with normal con-
trols and in sSFGR.> This suggests the micro-architectural disturbance
in FGR placentas is measurable with MRI.

When DWI is performed in well perfused vascular tissues, the
measured signal attenuation at low diffusion sensitisation is due to
not only free water diffusion in tissue but also from microcirculation
within the capillary network.®® Intra-voxel incoherent motion
(IVIM)®? is the traditional variant of DWI applied to perfused organs.
It can be used in the assessment of capillary flow without the need
for injecting contrast agents.®®> As movement of blood within capil-
laries has no specific orientation and is dependent on the vascular
architecture and velocity of the blood it is termed pseudodiffusion.
The IVIM model has two compartments, relating to the solid tissue dif-
fusivity and the tissue perfusion, or pseudodiffusivity. The proportion
of each signal is given by the perfusion fraction. Naturally, the product
of this perfusion fraction with the pseudodiffusivity is a correlate of
blood flow. Although the model fitting is prone to noise, several
authors have attempted to make fitting more robust.5¢4465

Surgically reduced uterine blood flow in animal models can be
observed with IVIM imaging,66 and in humans, the perfusion fraction

has been repeatedly shown to be reduced in placental insufficiency

3x10-3mm?s-

compared with normal placentas.®’”7° Caution however should be
applied when interpreting quantitative results from single-contrast
MRI which can be confounded by choice of other imaging parameters
if not held-constant; in both the liver and the placenta, quantification
of the vascular density is affected by the choice of other image acqui-
sition parameters.”%”? Specifically, it has been found that the esti-
mated perfusion fraction in IVIM is dependent on the chosen echo
time.”* This problem may be overcome using joint models, fitting
DWI alongside T2, or T2* relaxation measurements.®%”3

Diffusion measurements of this type can be enhanced by includ-

ing directional sensitisation,®>”4

and this has been used frequently in
other organs to reveal the organisation of the tissue structure, espe-
cially the brain.”® In the placenta, the directional sensitivity might
reveal information about the structure of the villous tree and how
this changes in pathology such as FGR where insufficient spiral
artery remodelling is thought to lead to mechanical damage and
immaturity in the fetal villous tree which may reduce the measured
diffusion of water. In the human haemomonochorial placenta, the
technique may be limited by in vivo motion and pulsatility in con-
trast to the complicated structural exchange interfaces seen in other
mammals. The technique is also, in principle, sensitive to water per-
fusion. There is now some evidence of directionality in flow in the
placenta, particularly near to the chorionic plate®® and this is likely
to be associated with net differences in flow properties between
chorionic arteries and veins.

Although, to date, most research has been performed investigating
singleton growth restriction, in the future, perfusion imaging may be
useful to quantify placental perfusion mismatch between twins and
the functional volume of placental tissue. This may guide the best
location for laser coagulation, ensuring each twin has sufficient func-
tioning tissue to survive, or demonstrate that this is not possible, mak-

ing selective reduction the safest management option.

FIGURE 3 Example of placental single-compartment ADC and T2 maps generated by linear least-squares fitting [Colour figure can be viewed at

wileyonlinelibrary.com]
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3.3 | Relaxometry

Relaxometry is the measurement of the signal decay rate in MR by
both longitudinal (T1) and transverse (T2/T2*) decay. These contrasts
can be explored independently by careful choice of pulse sequence.
Theoretically, if not practically, these times correspond to independent
physical properties of the tissue.

T2 relaxometry is the quantitative measure of hydrogen proton
relaxation following excitation with a radio frequency pulse. The rate
of relaxation is different for each tissue; tissue has a short T2 relaxa-
tion time, whilst blood has a much longer T2 relaxation time”%77
(Figure 3B). Tissues with greater all over surface area, whether in
the form of cellular membranes or intracellular or extracellular fibrillary
macromolecules, tend to have shorter T2 values. In the placenta, T2
relaxation time decreases with increasing gestation,”® possibly
because of the proportional increase in villous tissue compared with
intervillous space, and increasing fibrin volume density.”” T2 relaxa-
tion times are significantly reduced in placentas from pregnancies
complicated by FGR compared with those with appropriate growth,
possibly due to increases in fibrosis, necrosis, and infarcts within the

8983 and reduced fetal oxygen saturation.?*””

77,84,85.
’

placental parenchyma

T2 values are dominated by the level of oxygen saturation
higher oxygen saturation values result in higher T2 values. MRI may
provide a useful indirect measurement for feto-placental oxygenation
since oxygen saturation is difficult to measure directly and invasive
methods carry a risk of miscarriage. MRI relaxometry provides a
non-invasive way to measure feto-placental oxygen levels, which has
been partially validated in sheep.8%%” Oxygen saturation in the feto-
placental system is typically quite low when compared with healthy
adult measures of oxygen saturation and is found to be significantly
lower in growth restricted fetuses.?+%8

Blood oxygenation level dependent (BOLD) MRI is a T2*-weighted
sequence that is able to detect changes in the proportion of
deoxyhaemoglobin and hence reflects tissue oxygen saturation. This
technique has found much use for mapping brain function where spatial
patterns are used to understand functional networks®??° but is increas-
ingly finding other applications outside of the brain for its ability, in com-
bination with other flow measurements, to measure oxygen extraction
and thus efficiency.”* However, the interpretation of the placental
BOLD signal is complex, with signal changes dependent on other factors
including blood flow, blood volume fraction, and haematocrit.819293

BOLD and T2* measurements are often conflated in the literature.
The T2* value cannot be directly related to tissue oxygenation as tis-
sue morphology also affects the T2* value, with a reduction in T2* of
the placenta with increasing gestation®® (Figure 4). This gestational
relationship may be related to the histological maturation of the pla-
centa and the decrease in placental oxygenation as pregnancy
advances.”® During a maternal oxygen-challenge (hyperoxia), the dif-
ference in the absolute T2* value (AT2*) signals the change in placental
oxygenation independent of baseline conditions, thus demonstrating
tissue oxygen saturation. Changes in BOLD signal with controlled
hyperoxia and in FGR have been demonstrated in the placenta and

other fetal organs.?®?” However, a difference in AT2* has not been

demonstrated in cases of placental dysfunction related to FGR to date

despite conflicting animal data.81-98-100

78103102 the signal

In T1-weighted oxygen-enhanced (OE) MR
change related to the maternal oxygen-challenge reflects changes in
tissue pO2, due to the paramagnetic properties of dissolved oxygen.
Compared with BOLD, the absolute signal change seen in OE MRI
declines with gestational age and is significantly lower in pregnancies
with FGR.?8191 This is thought to support the theory of a relative pla-
cental hypoxia in FGR related to placental dysfunction, as more of the
dissolved oxygen becomes bound to deoxyhaemoglobin, and hence,
less becomes dissolved within the tissue.

The potential to estimate fetal oxygen saturations non-invasively
has obvious potential in the management of singleton and twin growth
restriction. It could inform on response to treatment, and also on
timing of delivery and might relate to placental function, allowing
assessment of each lobule of the placenta. The dependence of T2 on
haematocrit may also be useful in assessment of TTTS, and if TAPS
is suspected.

3.4 | Multicompartment multicontrast models

Conventional T1, T2, and T2* relaxometry are limited having no phys-
iological correlate outside of MRI and an often unknown or intractable
dependence on physiological properties of interest such as blood flow,
saturation, haematocrit, or cellular composition. Pure tissue regions
such as fluid can sometimes be used to infer properties directly,*°®
but these are more often the exception rather than the rule. Most
regions of tissue within an imaging voxel will be mixed, particularly
in the heterogenous placenta where fetal blood, maternal blood, and
tissue are present within any given voxel. Using joint acquisition pro-
tocols, it can be possible to separate the signal contributions from

different tissue types.”*”® This approach does allow physiological

FIGURE 4 T2 weighted structural image of axial slice through
maternal abdomen, demonstrating uterine cavity, fetus, and placenta.
Superimposed R2* map of the placental ROI (s™*) [Colour figure can be
viewed at wileyonlinelibrary.com]
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properties of the tissue to be inferred, providing the window for
potential histological, complementary, or invasive validation methods.

Multicompartment multicontrast models of the type used in DWI can
also be generated. The first multicompartment placental specific model is
DECIDE,”? which separates the different T2 values of fetal and maternal
blood from the background tissue compartment (Figure 5). Doing this
results in a mechanism, under certain assumptions, to measure the fetal
blood oxygen saturation. This model can also be applied to combined
DWI and T2* data. Multicontrast models of this type represent a para-
digm shift in the use of MRI for FGR, giving a non-invasive measurement
of placental function.”>”® Models such as these carry their own assump-
tions about the physics and physiology of the signal generation process
and so researchers should be aware of the limitations of each model for
specific pathologies. In general, they carry the same goal of scanner-
independence as for single-compartment models of T2 or diffusivity, in
principle allowing the combination and comparison of data between sites
and populations but additionally allowing further validation work because

of their physical motivation.

3.5 | MRI flow and metabolic measurement

A key area of MR research is the measurement of the vascular proper-
ties of a tissue. The gold-standard technique for this uses an injected
para-magnetic contrast agent that makes it unsuitable for fetal and
maternal clinical MRI except in the most extreme circumstances.*°410>
Dynamic contrast enhanced (DCE) MRIE%€7:1%¢ does have the capabil-
ity to reveal the pharmaocokinetics of the placenta including the input
of blood to the uterus and placenta and the exchange of contrast
agent into the trophoblast and across to the fetus (Figure 6). Common

models describe the delivery of contrast to the maternal side of the

FIGURE 5 Physiological model-fitting of the
placenta.”? Parametric maps can be produced
corresponding to fetal and maternal perfusion
fractions (bottom row) simultaneously to
conventional ADC and T2 maps (top row)
[Colour figure can be viewed at
wileyonlinelibrary.com]

Chorionic Perfusion
Fraction

placenta and the transfer of contrast agent into the fetal blood pool,
thus having the potential to improve our understanding of how these
processes are affected in different pathologies.’®>1071%8 However,
the decision to use contrast to image complex pregnancies is
challenging.

Flow can be measured with phase contrast MRI, an imaging tech-
nigue that encodes the blood flow velocity in large arteries, typically
of several millimetres in diameter, directly into the MR imaging data.
In combination with knowledge of the vessel area, this gives a quanti-
tative estimate of blood flow.'°?**° Due to the readily available use of
Doppler ultrasound, there is little work in this area.?%112

Arterial spin labeling is a further imaging technique that magneti-
cally labels blood water to visualise larger arterial vessels and blood
perfusion.®”113114 Arterial blood water is magnetically labelled just
below the region of interest using a radiofrequency inversion pulse.
This magnetised tracer flows into the slice of interest, reducing the
total tissue magnetisation, and consequently reducing the MR signal
and image intensity. The difference between a labelled and unlabelled
control image provides a measure of perfusion.'*> ASL is exquisitely
sensitive to motion and can be relatively time consuming to acquire
due to the low average signal. However, its key strength is the ability
to acquire multiple different labels with differing postlabel delays or
different velocity encodings, thus revealing much about the dynamic
perfusion of the placenta. A comparison of IVIM and ASL to assess
placental perfusion in the second trimester in normal and FGR preg-
nancies showed a significant reduction in basal plate ASL signal
between normally grown and FGR pregnancies. Basal plate, central
placental, and whole placental IVIM vascular density was also different
between normally grown and FGR pregnancies.®” As with IVIM, this
technique could be useful in monitoring response to treatment in

FGR placentas and also perfusion differences in twin pregnancies.

Maternal Perfusion
Fraction

85U8017 SUOWILLOD dA TR0 3|eal|dde ayy Aq pausenob ae sooiie YO ‘8sn Jose|n. 10} ARiq1T 8UlUO AB]IM UO (SUOTIPUD-PUB-SWBH WD A8 |IM Afelq 1 U1 |UO//STIU) SUORIPLOD pUe SWis | 83U} 89S *[5202/20/0€] Uo ARiqiauliuo Ae|im ‘ssoines AreiqiT 1ON uopuoabe|oD AiseAlun Ag 9265 Pd/Z00T 0T/10p/Lioo A3 1M Areuq 1 puluo uABgoy/sdny wouy pepeojumod ‘T ‘0202 ‘€220260T


http://wileyonlinelibrary.com

AUGHWANE ET AL.

#__| \A/|LEY-PRENATAL DIAGNOSIS

FIGURE 6 Dynamic enhancement of the placenta with DCE-MRI. Baseline image (1), arrival and wash-in (2-4), wash-out (5-6)

TABLE 1 Future applications of MRI in placental conditions amenable to therapy

Technique MRI Signal Sensitivity Future Applications
T2 weighted Structural features, fluid boundaries, volumetrics Placental share in complicated twins, cord insertions, chorionic
vessel mapping, computer assisted surgical planning
DWI Diffusivity, microarchitecture, fluid not specific to Microvascular structural differences in FGR/PET/sFGR
oxygenation/flow.
IVIM Diffusivity, microvasculature, fluid, perfusion. Chorionic Functional share in complicated twins. Flow changes in FGR.
flow. Non-specific to oxygenation Post-intervention redistribution + outcome prediction.
T2weighted Sensitive to oxygenation, tissue compartments Changes in fetal oxygenation functional redundancy and capacity
T2* Sensitive to oxygenation, tissue compartments Changes in fetal oxygenation, functional redundancy and capacity
BOLD Sensitive to functional change in oxygenation Changes in function, and tissue redundancy and capacity over time
T1 Sensitive to oxygenation Maternal blood flow changes in FGR. Redistribution postlaser TTTS

MRS and metabolic Transfer rates, tissue maturation

ASL Sensitive to flow and perfusion

DCE Sensitive to flow and transfer rate

The benefit of this technique is that it is a more direct measurement of
perfusion; however, it is challenging to apply in practice.

Placenta metabolites can be measured in principle using MRI via
proton magnetic resonance spectroscopy which has been investigated
in the placenta. However, high acquisition failure rates and difficulty in
interpreting the signal mean this is a relatively immature technique
within the placenta.t41”

Lastly, although to the best of our knowledge, it has not yet been
tested in humans, hyperpolarised MRI represents a unique way to
assess the placental barrier and its metabolic behaviour and perme-
ability.**® The use of different hyperpolarized metabolites could reveal
a range of information on different pathways and pathology far
beyond that obtained from pharmacokinetic studies of Gadolinium

chelates or other heavy contrast molecules.

4 | CONCLUSION

The ability of MRI to detect changes in placentas of severely
growth restricted fetuses with abnormal Doppler's is well
established.”®”88%94 However, the ability of MRI to measure placental

Therapeutic changes in transfer and exchange
Maternal blood flow changes in FGR. Redistribution postlaser TTTS

Changes in maternal flow and transfer kinetics.

function more broadly has yet to be fully realized or investigated (Table
1). With further development, MRl is likely to increase our understanding
of abnormal placental function, improve diagnostic accuracy, and help
guide intervention and monitor response. The advances currently being
made in the examination of placentas from pregnancies affected by
growth restriction will find application in wider conditions such as compli-
cated twin pregnancies, invasive placentation, chorioangioma, caesarean
scar pregnancies, and the function of other fetal organs.

One of the limitations to the practical use of placental MRl is the
relative rarity of some of the conditions being investigated. This can
make it difficult to establish studies with sufficient numbers to fully
investigate new imaging techniques and hence make recommenda-
tions about clinical practice. Enhanced coordination of studies
between centres and the sharing of clinical and technical expertise
alongside imaging data are essential when investigating these condi-

tions'1?

and will help to establish the most useful imaging technolo-
gies for each pathology. This will speed up the pace of future feto-
placental research for conditions that for the ubiquity of pregnancy
remain quite rare but have lifelong impact.

The future of placental MRI is exciting; the use of multiple con-

trasts and new models to boost the capability of MRI to measure
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oxygen saturation’? and placental exchange

105118 \uill enhance the

understanding of placental function in complicated pregnancies.
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