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ABSTRACT

The matched subspace detector (MSD) is a classical subspace-based method for hyper-
spectral subpixel target detection. However, the model assumes that noise has the same
variance over different bands, which is usually unrealistic in practice. In this letter, we re-
lax the equal variance assumption and propose a matched subspace detector with hetero-
geneous noise (MSDH). In essence, the noise variances are different for different bands
and they can be estimated by using iteratively reweighted least squares methods. Ex-
periments on two benchmark real hyperspectral datasets demonstrate the superiority of
MSDH over MSD for subpixel target detection.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperspectral imaging in remote sensing is a technology that
collects the light intensity over a large number of narrow spec-
tral bands for each pixel in the image of a scene. For any
given material, the amount of radiation that is reflected, ab-
sorbed or emitted varies with wavelength [1]. Therefore, the
spectral characteristic of hyperspectral images (HSIs) offers po-
tential for precise identification of materials in a scene. Target
detection in hyperspectral images aims to find the location of
interested targets at the pixel level by exploiting their spectral
information, which has numerous applications in various fields.
When the target size is smaller than the ground sampling dis-
tance, a pixel containing target will be partially occupied by
background (non-target) materials; target detection in this sce-
nario is termed subpixel target detection.

Classical approaches to HSI target detection can be catego-
rized into subspace-based models and statistical models [1]. In
subspace-based models [2, 3], each spectrum is assumed to lie
in a low-dimensional subspace and represented as a linear com-
bination of subspace bases. In statistical models [4, 5], each
spectrum is assumed to follow specific probability distributions.
In both approaches, each pixel in the scene is identified as tar-
get or background via hypothesis testing. Based on these work,
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hybrid approaches have been proposed to take advantage of
both types of methods [6, 7], as well as further development
within each category, such as [8–11] for subspace-based mod-
els and [12] for statistical models. To avoid estimating sub-
spaces and distribution parameters, a series of sparse represen-
tation (SR)-based methods have been proposed, which assume
that a signal can be sparsely represented by a small number of
training samples [13, 14], and they have been combined with
classical methods [15]. More recently, methods in machine
learning have been adopted for specific purposes, such as met-
ric learning for maximising the separability between target and
background spectra [16–18], multi-instance learning for learn-
ing a target spectrum [19] and multi-task learning for removing
spectral redundancy [20].

In classical subspace-based methods, a pixel is modelled
as a linear combination of subspace bases with the additive
Gaussian white noise of equal variances over different spectral
bands. This equal-variance assumption, however, is unrealis-
tic in practice, as noise is of unequal intensities over different
bands; the unequal intensity phenomenon is often caused by
thermal noise and quantization noise [21]; and the violation of
the assumption will impair the effectiveness of subspace-based
methods. To address this issue, one solution is to apply de-
noising prior to target detection. In most denoising algorithms,
however, there is a parameter to trade off between data fidelity
and regularization on the denoised image, and determining the
optimal value of this parameter is a challenging task. Another
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solution is to estimate the noise intensity of each band [22].
However, as most classical methods produce the noise estima-
tion for the entire HSI, rather than for each pixel, its effective-
ness may be limited.

In this letter, we propose a new subpixel target detection
method called matched subspace detector with heterogeneous
noise (MSDH) to take into account of unequal noise intensi-
ties over different bands. Our MSDH method consists of three
steps. Firstly, we revise the covariance matrix of the Gaussian
noise, from an identity matrix in the classical matched subspace
method (MSD) to a diagonal matrix with unequal diagonal el-
ements. These diagonal elements characterize the noise inten-
sities over different spectral bands. Secondly, we derive the
new target detector based on the generalized likelihood ratio
test. Thirdly, we adapt an iterative reweighted least squares al-
gorithm to estimate unknown parameters in our model includ-
ing those on noise intensities. The effectiveness of MSDH is
demonstrated via empirical studies on two HSI datasets in a real
setting, as well as in a simulated setting where heterogeneous
noise is added to the original datasets.

2. The matched subspace detector (MSD)

The matched subspace detector (MSD) is a classical
subspace-based method; it assumes that a pure background
spectrum or a pure target spectrum can be represented as a
linear combination of bases from the background subspace or
from the target subspace, respectively. For subpixel target de-
tection, deciding whether a pixel contains the target is equiva-
lent to determining whether it lies in the background subspace
or in the target-background joint subspace; here, the joint sub-
space is used since subpixel targets occupy only part of the pixel
and the remaining area is filled by background material. More
formally, the target detection problem for an HSI pixel x ∈ RL

is a competition between the following two hypotheses:

H0 : x = Sbαb,0 + wb (target absent),
H1 : x = Stαt + Sbαb,1 + wt (target present),

(1)

where Sb is an L × rb matrix representing the background sub-
space, St is an L × rt matrix representing the target subspace;
wb ∼ N(0, σ2

wbI) and wt ∼ N(0, σ2
wt I) represent the Gaussian

white noise vectors; L denotes the number of spectral bands; rb

is the number of bases in the background subspace; and rt rep-
resents the number of bases in the target subspace. Moreover,
rb and rt are constrained to be smaller than L. We introduce
notations Stb = [St, Sb] and αtb = [αt, αb,1] to denote the con-
catenation of subspace matrices and that of coefficient vectors,
respectively, for later use.

The background subspace is generally unknown and may be
constructed from the training data of background. [23] sug-
gested to diagonalize the covariance matrix and select the domi-
nant eigenvectors as the bases of the background subspace. [24]
used the first few significant left-singular vectors of the data
matrix. The target subspace is either specified by the user or
constructed from the training target spectra in a way similar to
that for the background.

The coefficient vectors αb,0 and αtb and the variances σ2
wb

and σ2
wt are unknown and can be replaced by their maximum

likelihood estimators (MLE). As an example, here we estimate
the parameters under H0. The same method can be applied to
parameter estimation under H1. The MLEs are given as

α̂b,0 = (ST
b Sb)−1ST

b x,

σ̂2
wb =

1
L

(x − Sbα̂b,0)T (x − Sbα̂b,0) =
1
L

SSE(α̂b,0),
(2)

where SSE stands for the sum of squared prediction errors.
The decision on the existence of targets in x is based on the

generalized likelihood ratio (GLR): LetL denote the likelihood
function, then we have

GLR(x) =
L(α̂tb, σ̂

2
wt; x)

L(α̂b,0, σ̂
2
wb; x)

=

(
2π SSE(α̂tb)

L

)−L/2
exp(− L

2 )(
2π SSE(α̂b,0)

L

)−L/2
exp(− L

2 )

=

[SSE(α̂b,0)
SSE(α̂tb)

]L/2
=

[ xT P⊥b x
xT P⊥tbx

]L/2
,

(3)

where Pb = Sb(ST
b Sb)−1ST

b is the orthogonal projection onto the
column space of the background matrix Sb, and P⊥b = I − Pb

is the orthogonal complement; similarly Ptb = Stb(ST
tbStb)−1ST

tb
is the orthogonal projection onto the column space of the joint
target and background matrix Stb, and P⊥tb = I − Ptb is the or-
thogonal complement. Applying a monotone transformation,
the MSD becomes

DMSD = [GLR(x)2/L − 1] =
xT P⊥b x − xT P⊥tbx

xT P⊥tbx
H1

≷
H0

η, (4)

where η is the detection threshold. A pixel is labelled as target
if DMSD is larger than η and as background otherwise.

3. The matched subspace detector with heterogeneous
noise (MSDH)

Rather than assuming equal noise variances over different
bands, it is desirable to extend to unequal variances in order to
characterise more noise types. The new assumption demands an
iterative estimation of unknown parameters and results in a new
detection statistic. The differences between MSD and MSDH
are summarised in Table 1.

3.1. Formulation of MSDH
In order to model the heterogeneous noise, we relax the noise

assumption of the MSD from white noise to a multivariate
Gaussian noise whose covariance matrix is represented by a di-
agonal matrix with unequal diagonal elements.

The binary hypothesis for MSDH is as follows:

H0 : x = Sbαb,0 + wb (target absent),
H1 : x = Stαt + Sbαb,1 + wt (target present),

(5)

where wb ∼ N(0,Vb) and wt ∼ N(0,Vt), in which Vb and Vt

are diagonal covariance matrices.
As with the MSD, we estimate the coefficient vectors and the

covariance matrix via MLE. The derivation for a background
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MSD MSDH
Assumption on the noise term Equal variances over spectral bands Unequal variances over spectral bands

(identity covariance matrix) (diagonal covariance matrix)
Parameter estimation (α, σ2/V) Estimated in one step according to Eq. (2) Estimated iteratively using IRLS (Sec. 3.2)
Detection statistic Eq. (4) Eq. (9)

Table 1: Differences between MSD and MSDH.

pixel is given below; the same procedure applies to a target
pixel. The likelihood function is given by

L(αb,0,Vb; x) =
1√

(2π)Ldet(Vb)
e−

1
2 (x−Sbαb,0)T V−1

b (x−Sbαb,0), (6)

where det(Vb) denotes the determinant of Vb. Taking the log-
arithmic transformation of the likelihood function, differentiat-
ing with respect to α and V, and setting them to zero give the
estimators as follows:

α̂b,0 = (ST
b V̂−1

b Sb)−1ST
b V̂−1

b x,

V̂b = diag((x1 − Sb,1α̂b,0)2, · · · , (xL − Sb,Lα̂b,0)2),
(7)

where xi is the ith element of x and Sb,i is the ith row of Sb.
Then, we can derive the MSDH based on the GLR test:

GLR(x) =

(
det(V̂b)
det(V̂t)

) 1
2

. (8)

For numerical stability, we take a logarithmic transformation of
(8) and the MSDH is given by

DMSDH =

L∑
i=1

ln |xi − Sb,iα̂b,0| −

L∑
i=1

ln |xi − Stb,iα̂tb|
H1

≷
H0

η. (9)

3.2. Parameter estimation

The MLEs α̂ and V̂ in (7), with subscripts omitted for sim-
plicity, depend on each other and therefore we need to update
them in an iterative way. In this letter, we adapt an iteratively
reweighted least squares (IRLS) algorithm [25].

Maximising the log-likelihood function with respect to α is
equivalent to minimising (x − Sα)T V−1(x − Sα), which can be
written as a weighted least squares problem

x = Sα + ε, (10)

where ε ∼ N(0,V = diag(v1, · · · , vL)), with wi = 1/vi as the
weight of the ith band. Since a covariance matrix is positive
semi-definite, we can always find a matrix K such that KKT =

V. By defining x̃ = K−1x, S̃ = K−1S, and ε̃ = K−1ε, (10) can
be transformed into a least squares estimation (LSE) problem

x̃ = S̃α + ε̃, (11)

where ε̃ ∼ N(0, I).
The IRLS algorithm alternates between estimating the re-

gression model of (11) and estimating the weight matrix W =

diag(w1, . . . ,wL) (equivalently the covariance matrix V), as ex-
plained in the steps below:

1. Start with wi = 1 for all i;
2. Use LSE to estimate α in Eq. (11);
3. Calculate the residuals ε̂ = x − x̂ in Eq. (10) and predict

the weights w1, . . . ,wL;
4. Iterate between steps 2 and 3 until the change in the co-

efficient vector α between steps is less than a predefined
threshold, or until the number of iterations exceeds a pre-
defined value.

In step 3, the weights can be calculated directly from the resid-
uals as 1/wi = vi = ε̂2

i [26]. Alternatively, it can be predicted
based on ε̂2

i or log(ε̂2
i ), by using parametric models [27] or non-

parametric methods [28]. In this letter, we adopt the former
strategy [26]. To avoid that ε̂i = 0 in rare occasions leading to
undefined wi, we add a small constant c = 10−15 to all ε̂2

i .
The computational cost of MSDH is MN times that of MSD,

where M is the number of iterations used in the IRLS algorithm
and N is the total number of pixels to be tested. To reduce the
computational time, we only update the parameters once, i.e.
M = 1. Experiments in Sec. 4 show that updating parame-
ters once is sufficient for improving MSD. Moreover, we could
reduce the number of testing pixels by adding a pre-screening
step. Firstly, we select p percent (p < 100) of the total N pix-
els that have the largest test statistics from MSD. Pixels that are
not selected will be labelled as background. Secondly, we apply
MSDH to the selected N p pixels. In this way, the computational
cost is shrunk from N to N p. If p is large, the reduced compu-
tational cost is small; if p is too small, the pixel that contains
the target may not get selected in the first step and consequently
the target detection performance will deteriorate. In this letter,
we set p = 10%; this choice is examined in Sec. 4.

4. Experiments

We compare MSDH against MSD and some classical target
detection methods on two public HSI datasets for subpixel tar-
get detection. The first one is the HyMap dataset, a benchmark
dataset for hyperspectral target detection [29–31]. The second
dataset is the MUUFL dataset, which has been studied for im-
age fusion [32], multi-instance learning [19], and hyperspectral
unmixing [33, 34]. Two datasets differ by the number of sam-
ples available per target, and consequently we will use different
measures to evaluate the performance of target detection meth-
ods, as suggested in [29] and [19].

4.1. The HyMap dataset

4.1.1. Data description
The HyMap dataset was collected by the Rochester Institute

of Technology in July 2006 over Cooke City, MT, USA [35].
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The image has a spatial size of 280×800 with a resolution of 3m
and 126 spectral bands ranging from 450 to 2500 nm. Radiance
and reflectance images are both provided and the reflectance
image is used in this study.

The dataset includes seven targets, four of them are fabric
panels (F1, F2, F3, F4) and the other three are vehicles (V1, V2,
V3). While targets F1 and F2 have sizes of 3m × 3m that are
same as the ground sampling distance, it is less likely that the
target location exactly matches the collected pixel; therefore,
we will still treat them as subpixel targets. Targets F3 and F4
come in two sizes (2m × 2m for F3a and F4a, and 1m × 1m for
F3b and F4b) and we will detect them separately.

4.1.2. Experimental settings
As all targets locate in the central region of the HyMap im-

age, we crop a sub-image of size 100 × 300 in this experi-
ment [9, 30, 36]. The cropped image and the ground-truth lo-
cation of targets are shown in Fig. 1.

Fig. 1: Upper: The HyMap sub-image cropped from pixels (101:200, 251:550).
Lower: Ground-truth locations of seven targets are marked in different colors;
background pixels are in black.

The target location for F1, F2, F3a or F4a consists of 9 pix-
els, 1 pixel marked as ‘Full’ and 8 pixels marked as ‘Sub’ in
the ROI files provided in [35]; the target location for F3b, F4b,
V1, V2 or V3 consists of 1 pixel, marked as ‘Sub’. Informa-
tion on guard pixels is available for all targets and these pix-
els do not count into target nor false alarms [37]. Moreover,
at each time, only one target is to be detected and the other
targets are considered as background pixels. The threshold in
each hypothesis testing is selected as the largest value such that
the target could be correctly identified. The evaluation criterion
is the false alarm rate (FAR), which equals to the number of
non-target pixels having a higher value of test statistic than the
threshold, divided by the total number of pixels in the image,
i.e. 30,000 in our study. A smaller value of FAR suggests a
better detection performance.

To evaluate the effectiveness of MSDH, we compare it
with some classical and widely used target detection meth-
ods, including a full-pixel target detection method, namely
CEM [38], two statistical methods, namely AMF [4] and signed
ACE (sACE) [39], and two subspace-based methods, namely
OSP [2] and MSD [3]. Moreover, we perform noise estima-
tion prior to MSD using three classical methods, namely local

means and local standard deviations (LMLSD) [40], residual-
based noise estimation (RBNE) [41] and spectral and spatial
de-correlation (SSDC) [42], which make use of spatial, spec-
tral, and spatial and spectral information, respectively; the re-
sultant methods are termed MSD+L, MSD+R and MSD+S.
For CEM, AMF and sACE, the test statistic can be calculated
based on the formula once the target spectrum is given. For
MSD, MSDH and OSP, we need to construct background and
target subspaces. The background subspace is constructed by
using eigen-decomposition as suggested in [23]. The mean
spectrum is subtracted from all pixels in the sub-image, eigen-
decomposition is performed on the covariance matrix, and
eigenvectors for the largest few eigenvalues form the back-
ground subspace. The number of eigenvectors in the back-
ground subspace, denoted as rb, is selected from the range of
[1, 124]. The target subspace is constructed from the single li-
brary spectrum by subtracting the background mean spectrum
and normalizing to a unit length with respect to l2 norm.

For LMLSD and SSDC, the block sizes are set to 4 × 4 and
6 × 6 and the number of bins is set to 150 as suggested in [40]
and [22]. After estimating the noise covariance matrix, we cal-
culate the parameters with (7) and adopt the GLR as the de-
tection statistic. Table 2 lists the optimal value of rb used in
subspace-based methods for each target.

Table 2: Parameter rb in OSP, MSD and MSDH for the HyMap dataset.

F1 F2 F3a F3b F4a F4b V1 V2 V3
OSP 27 26 20 88 51 45 10 4 67
MSD 25 21 11 10 51 42 10 43 41
MSD+L 9 25 12 88 51 124 9 32 67
MSD+R 10 23 16 77 50 49 9 91 38
MSD+S 27 31 20 88 51 124 10 90 67
MSDH 43 23 20 79 52 43 12 20 54

4.1.3. Results and discussions
The FAR of each method is reported in Table 4. We first

notice that classical subspace-based methods (OSP, MSD) are
more effective than full-pixel (CEM) and statistical (AMF and
sACE) methods. Next, we can see that, out of nine targets,
MSDH outperforms all other methods on five targets and per-
forms equally well on two target. MSDH also achieves the min-
imal sum of FARs. Then, comparing MSDH with noise estima-
tion methods MSD+L, MSD+R and MSD+S, we see that the
latter methods are not effective in improving the performance
of MSD. While this is partially due to the low noise level of the
HyMap dataset, it also suggests that estimating the noise inten-
sity at pixel level is more effective than estimating that at image
level. Last, compared with MSD only, MSDH improves the
performance on six targets and the sum of FARs gets reduced
from 0.085 to 0.018.

Moreover, to reduce the computational time, we apply the
pre-screening method described in Sec. 3. We first apply MSD
with rb from 1 to 124, then select p = 2%, 5%, 10%, . . . , 30% of
pixels that have the highest test statistics at each rb, and finally
apply MSDH on all these selected pixels. The performance of
MSDH on the pre-screened dataset, denoted as MSDH-p%, is
listed in Table 4 and Fig. 2a. When p = 2%, the pixels that
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Table 3: False Alarm Rates (FARs) for the HyMap dataset: ‘0’ indicates that the method does not generate any FA; ‘sum’ denotes the sum of FARs; the best results
are in boldface.

F1 F2 F3a F3b F4a F4b V1 V2 V3 sum
CEM 0 0 2.62e-02 7.61e-02 3.33e-05 4.18e-02 9.23e-02 7.47e-01 3.44e-02 1.02
AMF 0 0 3.77e-02 1.38e-01 3.33e-05 8.50e-02 1.85e-01 4.44e-01 5.80e-02 9.48e-01
sACE 0 0 3.36e-02 7.60e-02 0 8.88e-02 8.58e-02 7.73e-01 1.52e-02 1.07
OSP 0 0 1.90e-03 4.97e-03 0 3.83e-03 2.14e-02 4.27e-02 4.50e-03 7.93e-02
MSD 0 0 9.00e-04 1.10e-02 0 7.20e-03 1.46e-02 4.54e-02 5.93e-03 8.50e-02
MSD+L 0 0 4.50e-03 1.23e-02 0 2.67e-04 3.92e-02 4.66e-02 8.43e-03 1.11e-01
MSD+R 0 0 4.07e-03 1.88e-02 0 5.63e-03 4.43e-02 3.85e-02 1.56e-02 1.27e-01
MSD+S 0 0 4.43e-03 1.63e-02 0 2.33e-04 5.34e-02 6.07e-02 1.51e-02 1.50e-01
MSDH 0 0 6.67e-05 9.53e-03 3.33e-05 2.00e-04 1.73e-03 5.43e-03 1.30e-03 1.83e-02

contain certain targets are not selected and the MSDH will not
work in this case. When p = 5%, the FAR even reduces for
three targets compared with the plain MSDH (i.e. without pre-
screening). The reason is that MSD is relatively effective and
it helps pre-screen out some pixels that are unlikely to contain
the target. When p further increases, the performance on tar-
get detection becomes more similar to the plain MSDH; de-
tailed results are omitted due to the space limit. In the experi-
ment, we select p = 10%, a choice that saves the computational
time and guarantees the performance of the MSDH. Another
way to reduce the computational time is to use fewer iterations.
Fig. 2b shows that the performance of MSDH-10% with differ-
ent numbers of iterations; MSDH-10% is used instead of the
plain MSDH for computational efficiency. While the sum of
FARs fluctuates slightly when the iteration number is from one
to four, they all perform better than the MSD. Using one it-
eration gives a relatively good performance and is used as the
default setting in our experiments.

(a) (b)

Fig. 2: HyMap dataset: (a) evaluation of the percentage of pre-screened pixels,
i.e. p; (b) evaluation of the number of iterations, i.e. M.

4.1.4. Simulation study

The unknown type and magnitude of noise in the HyMap
dataset may limit us from understanding the full capacity of
MSDH. To confront with this problem, we carry out a simula-
tion study where MSD and MSDH are evaluated on the dataset
with more additive heterogeneous Gaussian noise added; this
noise type satisfies the assumption of MSDH. The variance of
the Gaussian white noise at band i is determined via the signal-

to-ratio (SNR), which is defined as

SNRdB = 10 log10

σ2
image,i

σ2
noise,i

.

In our experiment, we calculate σ2
image,i from all pixels at band

i and select SNR = 5, which gives the noise variance as
σ2

noise,i = 10−
1
2σ2

image,i. The plain MSDH is applied, i.e. us-
ing one iteration and without the pre-screening. Experiments
are run for ten times and the performance in FAR (the lower the
better) is summarised by using the boxplots in Fig. 3.

V1 V2 V3

F3b F4a F4b

F1 F2 F3a
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Fig. 3: FARs of MSD (left, in red) and MSDH (right, in blue) for the HyMap
dataset with simulated heterogeneous Gaussian noise added. Lower FARs indi-
cate the superiority of MSDH.

The MSDH reduces the mean and variance of FAR for all
targets. This demonstrates that MSDH would be a more suitable
method in the existence of heterogeneous noise.

4.2. The MUUFL Gulfport Collection

4.2.1. Data description
The MUUFL dataset was collected over the campus of the

University of Southern Mississippi – Gulfport, located in Long
Beach, Mississippi [43]. Three images are available and this
experiment selects Gulfport Campus Flight 1. The image con-
tains 325 × 337 pixels with a spatial resolution of 1m and 72
spectral bands ranging from 367.7 to 1043.4 nm.
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Table 4: Evaluation of pre-screening p percent of total pixels prior to MSDH. ‘NA’ indicates that none of the pre-selected pixels include the target.

FAR F1 F2 F3a F3b F4a F4b V1 V2 V3 sum
2% 0 0 3.33e-05 5.97e-03 0 1.67e-04 1.67e-03 NA 9.67e-04 NA
5% 0 0 6.67e-05 8.40e-03 0 2.00e-04 1.73e-03 4.70e-03 1.20e-03 1.63e-02
10% 0 0 6.67e-05 9.17e-03 3.33e-05 2.00e-04 1.73e-03 5.23e-03 1.27e-03 1.77e-02

There were 64 targets of different colours, sizes, visibility
and occlusion in the MUUFL collection. Targets were prepared
in three sizes, namely 0.5m × 0.5m, 1m × 1m, and 3m × 3m.
By nature of MSD, our experiment only focuses on subpixel
targets and hence targets of size 0.5m × 0.5m and 1m × 1m
are chosen. In total, we have the following four types of tar-
gets: brown (BR, 10 samples), dark green (DG, 10 samples),
pea green (PG, 10 samples), vineyard green and faux vineyard
green (VG, 2 samples and FVG, 8 samples). Note that there
is a mistake for vineyard green, where 1/5 of fabrics use the
originally chosen fabric and the other 4/5 of the fabric was a
different green [43]. The hyperspectral image and ground-truth
target locations are shown in Fig. 4.

Fig. 4: The MUUFL Gulfport dataset in RGB and ground-truth locations of 40
targets in different colours.

4.2.2. Experimental settings
For each subpixel target, a 5-by-5 square region around the

ground-truth location defines its ROI so as to match the ac-
curacy of the GPS device. When a subpixel target is being
detected, pixels that locate in the ROI of the full-pixel target
with the same type do not count into target nor false alarms; the
ROI region is defined by a 7-by-7 square for full-pixel targets.
All pixels which do not belong to the specified type are treated
as the negative class. Since multiple samples are available for
each type of target, we could calculate the false alarm rate and
the detection power as the threshold η varies and it would be
more informative to use the area under the receiver operating
characteristic curve (AUC) statistic as the evaluation measure
than a single FAR. The maximal detection score in each ROI is
recorded as the score of positive class. A larger value of AUC
suggests a better detection performance.

The background and target subspaces are constructed by us-
ing the same procedure as the Hymap dataset. For faux vine-
yard green, the library spectrum of vineyard green is used. The
number of eigenvectors rb is selected from the range of [1, 70]
and the optimal value for each target is listed in Table 5.

Table 5: Parameter rb in OSP, MSD and MSDH for the MUUFL dataset.

BR DG PG VG FVG
OSP 39 38 58 11 22
MSD 23 38 40 27 22
MSD+L 48 38 43 12 38
MSD+R 39 39 42 70 36
MSD+S 39 34 42 10 22
MSDH 7 10 64 33 58

4.2.3. Results and discussions
The AUC of each method is listed in Table 6. Once again,

subspace-based methods show their effectiveness in subpixel
target detection over full-pixel and statistical methods. The
MSDH outperforms all other methods on three targets and
achieves the highest average AUC. By using MSDH instead of
MSD, the performance on four targets gets improved and the
average of AUCs increases from 0.988 to 0.989.

Table 6: Area Under the Receiver Operating Characteristic Curve (AUCs) for
the MUUFL dataset: ‘avg’ denotes the average of AUCs; the best results are in
boldface.

BR DG PG VG FVG avg
CEM 0.960 0.957 0.963 0.977 0.938 0.959
AMF 0.964 0.969 0.971 0.982 0.929 0.963
sACE 0.982 0.954 0.950 0.955 0.940 0.956
OSP 0.992 0.981 0.974 0.996 0.971 0.983
MSD 0.991 0.985 0.982 0.996 0.985 0.988
MSD+L 0.975 0.987 0.977 0.994 0.976 0.982
MSD+R 0.981 0.973 0.974 0.990 0.963 0.976
MSD+S 0.984 0.971 0.971 0.991 0.962 0.976
MSDH 0.988 0.987 0.984 0.998 0.987 0.989

The pre-screening method is also applied to the MUUFL
dataset. As shown in Fig. 5a, MSDH-5% performs worse than
the MSD since pixels that contain some targets are not se-
lected, MSDH-10% maintains the superiority of the MSDH,
and MSDH-15%, . . . , 30% behaves more similarly to the plain
MSDH. The pattern is consistent with that observed for the
HyMap dataset. Moreover, we evaluate the effect of using more
iterations on MSDH-10% and observe substantial increase in
the average AUC from Fig. 5b.

4.2.4. Simulation study
We apply the same simulation setting as the HyMap dataset

and add an independent multivariate Gaussian noise with an
SNR of 5 at each band to the MUUFL dataset. Boxplots of
AUC (the higher the better) of MSD and MSDH are shown in
Fig. 6. The MSDH achieves higher mean and median AUC
and lower variance than the MSD on all targets except VG. The
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(a) (b)

Fig. 5: MUUFL dataset: (a) evaluation of p; (b) evaluation of M.

result again suggests that MSDH is promising in handling het-
erogeneous noise.
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Fig. 6: AUCs of MSD (left, in red) and MSDH (right, in blue) for the MUUFL
dataset with simulated heterogeneous Gaussian noise. Higher AUCs indicate
the superiority of MSDH.

5. Conclusions and future work

This letter is aimed to introduce heterogeneous noise with
unequal intensities over different bands to MSD, a classical
subspace-based target detection method. We relaxed the noise
assumption of MSD from equal variances to unequal ones and
proposed a new target detection method termed MSDH. Ex-
periments and simulation studies on the HyMap and MUUFL
datasets show that MSDH gives a performance boost over
MSD, highlighting the importance of modelling heterogeneous
noise. The MSDH improves target detection performance at a
cost of computational time. To reduce this side effect, we pro-
posed a simple pre-screening method using MSD. Other fast
and effective target detection methods could also be applied.

This work suggests the potential of addressing heteroge-
neous noise in HSI target detection through directly modelling
the noise in the detector. Further investigation of spectrally-
correlated noise and non-Gaussian noise is our future work.
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