Nanoscale

View Article Online

CORRECTION

Cite this: Nanoscale, 2019, **11**, 12723

Correction: CuCo₂S₄ nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation

Xing Zhang,^a Junchao Liu,^a Xinrui Yang,^a Guanjie He,^b Bo Li,*^a Jinbao Qin,*^a Paul R. Shearing,^b Dan J. L. Brett,^b Junqing Hu*^{a,c,d} and Xinwu Lu*^a

DOI: 10.1039/c9nr90141h

Correction for $^{\prime}CuCo_2S_4$ nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation' by Xing Zhang *et al.*, *Nanoscale*, 2019, **11**, 9733–9742.

The authors have noticed that an incorrect image was used for the 'Control' liver image in Fig. 7. A corrected version of Fig. 7 is therefore given below.

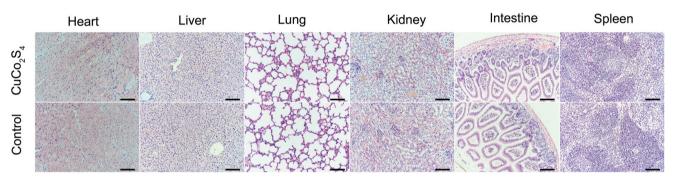


Fig. 7 Representative images of HE staining of the main visceral organs in the Apo E -/- mice treated with the $CuCo_2S_4$ NCs after the PTT. There were no significant differences in the heart, liver, spleen, lung, kidney and intestine between the $CuCo_2S_4 + NIR$ group and PBS control group, and no obvious lesions such as injury or inflammation were observed. All scale bars = 100 μ m.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^cCollege of Materials Science and Engineering, Donghua University, Shanghai, 201620, China

^dCollege of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen 518118, China. E-mail: hu.junqing@dhu.edu.cn

^aDepartment of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. E-mail: boli@shsmu.edu.cn ^bElectrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK