
Current Applications and Future Promises of
Machine Learning in Diffusion MRI

Daniele Ravi[0000−0003−0372−2677], Nooshin Ghavami[0000−0002−4310−1245],
Daniel C. Alexander[0000−0003−2439−350X], and Andrada

Ianus[0000−0001−9893−1724]

University College London d.ravi@ucl.ac.uk

Abstract. Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI)
explores the random motion of diffusing water molecules in biological tis-
sue and can provide information on the tissue structure at a microscopic
scale. DW-MRI is used in many applications both in the brain and other
parts of the body such as the breast and prostate, and novel computa-
tional methods are at the core of advancements in DW-MRI, both in
terms of research and its clinical translation. This article reviews the
ways in which machine learning and deep learning is currently applied
in DW-MRI. We will also discuss the more traditional methods used for
processing diffusion MRI and the potential of deep learning in augment-
ing these existing methods in the future.
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1 Introduction to diffusion MRI

DW-MRI probes the random motion of diffusing water molecules in biological tis-
sue [1]. Since the diffusion pattern is influenced by the presence of cellular mem-
branes and their configuration, DW-MRI is an indirect probe of tissue structure
at the microscopic scale [2]. Standard DW-MRI measurements are made by ap-
plying a pair of magnetic field gradients with opposite polarities, usually referred
to as diffusion gradients, which encode displacement along their direction [1].

In DW-MRI contrast, the larger the molecular displacement, the more the
signal is attenuated. Thus, tissues with highly packed cells, such as some tu-
mours, appear bright, and areas where water diffuses freely, such as cerebral
spinal fluid, appear dark [3, 4]. DW measurements are often described in terms
of their gradient orientation and b-value, which reflects the diffusion weighting
power and depends on the gradient strength, duration and diffusion time [2].

The simplest DW-MRI technique is mapping the Apparent Diffusion Co-
efficient (ADC), which requires at least two measurements, with and without
diffusion gradients. The contrast in an ADC map is inverted from the DW-MRI
contrast. Thus areas of low ADC values correspond to tissue with tightly packed
cells, while high ADC values correspond to areas where molecules can diffuse
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more. The simple ADC model assumes isotropic diffusion, thus it is often used
in stroke and cancer imaging [3, 4].

In order to probe neural tissue, which is highly anisotropic in white matter,
DW-MRI techniques need to account for anisotropic diffusion. Thus, a methodol-
ogy commonly applied for brain imaging is Diffusion Tensor Imaging (DTI) [5],
which is an extension of the diffusion coefficient in three dimensions, and re-
quires at least 6 DW measurements with non-colinear gradient directions to be
estimated. DTI can report on the main fibre orientation and provides scalar
metrics which reflect diffusion properties of the tissue, for instance, axial and
radial diffusivity or fractional anisotropy. DTI is employed in a wide range of
applications involving brain [6] and central nervous system [7] imaging. Such
applications include mapping white matter tracts [8], studying development [9]
and ageing [10] as well as investigating various diseases, such as, Multiple Sclero-
sis (MS), Alzheimer’s disease, diffuse axonal injury, etc [11, 12]. Although DTI is
simple and robust, it cannot describe multiple fibre populations and/or diffusion
in a more complex environment with restricting barriers [13].

Over the last decades, a significant effort has been made to improve the
measurement protocols and data analysis tools for DW-MRI in order to have
better sensitivity and specificity to various tissue characteristics, while keeping
the acquisition time clinically feasible [14–16].

Novel computational methods, alongside improvements in scanner capabili-
ties, are at the core of advancements in DW-MRI, both in terms of research and
its clinical translation. The rest of the paper will look at the different methods
currently used for acquiring, processing and applying DW-MRI, with a focus on
machine learning which is becoming an important tool used to efficiently solve
computational problems in this wide range of applications.

2 Mathematical vs Computational Modelling

Current research on DW-MRI includes the development of methods for the entire
imaging pipeline, for instance designing better acquisitions [17], image recon-
struction [18], microstructure parameter mapping [19, 20], super-resolution [21],
tractography [22], parcellation [23], detection of lesions [24], monitoring treat-
ment response [25], etc. State-of-the-art methods on DW-MRI can be divided
into two main categories: those based on mathematical modelling and the others
based on machine learning, as shown in Figure 1. Usually, mathematical mod-
elling exploits a set of assumptions or theoretical foundations [26, 27] to model
some physical property of the DW-MRI. Instead, the methods in the latter cat-
egory are data-driven computational methods that model the output from its
input while making the smallest number of assumptions possible.

In general, mathematical models are used when the process that needs to be
described is partly or completely known (e.g. in the case of image reconstruction
or mapping parameters in DTI). However, sometimes accurate mathematical
models that express relationships to the DW-MRI signal are intractable. In such
situations, as well as when a more complex and largely unknown phenomenon
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Fig. 1. Main models used in the processing and analysis of DW-MRI.

is under examination, computational methods and especially machine learning
methods are more adequate. In particular, in the last few years, a sub-category
of machine learning called deep learning has become very popular [28].

The theoretical principles behind deep learning are based on the Artificial
Neural Network (ANN) concepts. The main difference between the basic ANN
and advanced deep learning is that the latter exploits more hidden neurons,
more layers and new training paradigms to process a larger amount of data.
This results in an effective high-level abstraction enabling automatic feature
extraction, which otherwise would have to be done by explicitly deriving a set
of hand-crafted features before applying the model.

Rapid improvements in computational power, fast data storage, and paralleli-
sation have contributed to making deep learning very popular. This also applies
to the field of DW-MRI and is confirmed from our analysis shown in Figure 2.
In Figure 2 a) we can see that the number of papers published today exploit-
ing machine learning or deep learning methods is comparable to the number of
papers based on mathematical modelling, and, as explicitly illustrated in Fig-
ure 2 b), since 2010 their numbers increased much faster compared to the papers
based on mathematical approaches which instead have remained approximately
unaltered.
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Fig. 2. a) Distribution of published papers in the field of DW-MRI. b) Percentage
of increased publications with respect to 2010. The results are obtained from Google
Scholar; the search phrase is defined using the key word DW-MRI plus the name of
popular models in the correlated category e.g., ”DW-MRI” ”Deep learning” OR CNN
OR Autoencoder.

For this reason, in this chapter, we focus our analysis mainly on methods
based on machine and deep learning, (i.e. the orange section of Figure 1) pro-
viding a comprehensive up-to-date overview of the current state-of-the-art in
DW-MRI. Both the machine learning and deep learning parts will be subdivided
into different methods, within which a variety of applications will be described,
as summarised in Table 1.

3 Standard Machine Learning Models

In this section, we focus our analysis on the main machine learning methods
used for processing DW-MRI. We will divide the section up into the different
methods and describe the applications that each is used for.

3.1 Linear Regression

Linear regression is the simplest machine learning approach, which linearly mod-
els the response of a dependent variable to one or more independent variables.
It can be subdivided into simple linear regression (when there is only one in-
dependent variable), or multiple linear regression (which as the name suggests
involves more than one independent variable). In the following paragraphs, we
will describe some of the applications in DW-MRI.

Linear regression is mainly used to fit many of the standard models to DW-
MR data such as ADC, DTI, etc. [29] and it has shown to be particularly useful
to study changes in diffusion metrics, for instance with disease or ageing. One
application of this method is for distinguishing benign and malignant tumours
in the breast as described in [24]. Linear regression was used in this last paper
to compare mean ADC values and cellularity values between the different types
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of tumours and was able to show statistically significant differences between the
malignant and benign tumours for both measures.

Another application of this method was demonstrated in [30] for rectal can-
cer. The authors use the fact that ADC values of water in a tumour can show
how much necrosis there is, to find a correlation between these ADC values and
responses of a tumour to chemotherapy treatment. Using the regression model,
the authors report a negative correlation between ADC values before and after
chemotherapy. Finally, the authors in [31] focus on the age-related microstruc-
tural differences through DTI. By computing diffusion parameter maps and using
a mass-univariate linear regression model on these maps as part of the analysis,
fractional anisotropy in white matter area was shown to decrease with age in a
linear fashion.

These class of models do come with a few limitations. Firstly, as the name
suggests, they are limited to only modelling linear relationships, and this isn’t
necessarily the case with many data. In addition to this, the method is also
limited by the fact that it can be very sensitive to outliers, and these outliers
can significantly affect the regression results.

3.2 Random Forest

Random Forests (RF) are an ensemble learning method and a type of super-
vised learning algorithm which can be used for both classification and regression
tasks. It works by constructing a number of decision trees (forest) during train-
ing, one to each bootstrap sample drawn from the full set of training data. Once
trained, the model typically outputs the ’majority’ class in classification tasks
or the ’mean’ class for regression over the full set of trees in the forest. RF
has been used in a wide range of applications, such as super-resolution, correla-
tion of biomarkers with disease/ageing, classification of lesions, microstructure
parameter mapping etc.

Initially, RF has been employed to tackle the intractability for some of the
mathematical models of DW-MRI, such as in the microstructural parameter
mapping task. For example, Nedjati-Gilani first in [32] and later in [20], proposed
an RF approach to map permeability in the brain. In particular, they highlight
that traditional mathematical models of diffusion through semi-permeable mem-
branes assume strong mixing, i.e. the average diffusing particle spends time in
multiple environments during the experiment. However, this assumption breaks
down with typical brain-compartment sizes and diffusion times in DWI. The
computational model encoded in the RF is able to learn an implicit model from
Monte-Carlo simulations thereby providing a mechanism to solve the inverse
problem of estimating tissue parameters from measurements. Computation times
prevent usage of the simulation directly for this purpose. A similar approach is
presented in [33] to map axon diameter from DW-MRI with a RF trained on
matching histological data.

Other DW-MRI related applications of RF are for studying biomarker changes.
For example, [34] assesses the correlation between cognitive impairment and
structural damage in the central nervous system for MS. RF has been shown to
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be useful not only for diseased states but also in healthy ageing as can be seen
in [35] which use a Conditional Inference RF on DTI to investigate reductions
in white matter integrity with age.

In [36] a RF classifier has been combined with a voting procedure to directly
processing raw diffusion-weighted signal intensities and obtain fibre tractogra-
phy. Quantitative and qualitative evaluation show the potential of this tech-
nique in comparison with the tractography pipelines that rely on mathematical
modelling. RF has been also used to solve classification problems, for example
to segment lesion volumes on multiparametric-MRI (mp-MRI), including ADC
maps, in patients following ischemic stroke, as detailed in Mitra et al. [37]. RF
classifiers showed high accuracy for the detection of these lesion areas.

An emerging application enabled by the use of RF is the Image Quality
Transfer (IQT) [21]. In this context, Alexander proposed a method to learn and
transfer the fine structural detail of images in high-quality data sets, which have
longer acquisition times, to enhance lower quality data sets, which have more
standard acquisition times. Later in [38] the same authors used the proposed
method on the Human Connectome Project (HCP) showing, in more details
the benefits of this quality transfer for both brain connectivity mapping and
microstructure imaging. However, the aforementioned approaches do not give
any indication of confidence in the output, which can be a significant barrier to
adopting IQT in clinical practice. For this reason, Tanno et al. [39], presented a
Bayesian formulation of RF which enables efficient and accurate quantification
of uncertainty in terms of enhanced super-resolution performance.

Even with the many applications of RF described, this machine learning
model does have its shortcomings. The main limitation of RF is its poor gener-
alisability outside the training set, due to overfitting, particularly when presented
with noisy data.

3.3 Bayesian Models

Bayesian modelling, also known as Bayesian inference, relies on Bayes’ theo-
rem for updating the probability of a hypothesis as more evidence is obtained.
Bayesian modelling is especially useful when data is limited, allows the prob-
lem of overfitting to be avoided and is also useful as an approach for modelling
uncertainty [40, 41]. For example, Reisert et al. [19] have proposed a supervised
machine learning approach based on a Bayesian estimator to disentangle the
microscopic cell properties of the human brain from the effects of the meso-
scopic structure. Bayesian approaches also have an application in the field of
tractography. The model presented in [42] is used to investigate the uncertainty
associated with estimated white matter fibre paths, in addition to computing
the probability of connections between different brain areas. The model is both
simple to implement and has the ability to handle noise.

The main limitation when it comes to Bayesian approaches is the require-
ment of a prior, which can sometimes be very difficult to formulate. In terms of
the computation power, this approach also requires a high computational cost,
especially for more complex models with a large number of parameters.
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Table 1. Table containing references and applications that use machine learning and
deep learning for DW-MRI.

Class Target Method Task Ref.

M
a
ch

in
e

L
ea

rn
in

g
Breast Linear regression Lesions classification [24]

Rectum Linear regression Malignant tumour classification [30]
Brain Linear regression Age-related microstructural differences [31]
Brain RF Permeability map [32, 20]
Brain RF Assess biomarkers correlation [34]
Brain RF Investigate brain changes [35]
Brain RF Tracrography [36]
Brain RF Lesion classification [37]
Brain RF Image quality transfer [21, 38]
Brain Bayesian model Estimate microstructural properties [19]
Brain Bayesian model Investigate uncertainty in tractography [42]
Brain SVM Survival time prediction [43]
Brain SVM Classification of high angular resolution [44]
Brain SVM Decoding gender dimorphism [45]

Prostate CRF Cancer localization [46]
Prostate RVM Cancer localization [47]

D
ee

p
L

ea
rn

in
g

Brain ANN Predicting ischemic infarction [48]
Brain ANN Parameter mapping [49]
Brain DNN Image acquisition [50, 51]
Brain DNN Permeability estimation [52]
Brain DNN Survival time prediction [53]
Brain DNN Cancer detection [54]
Brain CNN Estimation of fiber orientations [55]

Rectum CNN Cancer detection [56]
Brain CNN White matter tract segmentation [57]

Prostate CNN Cancer segmentation [58]
Brain 3D-CNN Survival time prediction [59]

Kidney U-net Image registration [60]
Brain Bayesian CNN Image quality transfer [61]
Brain CNN Image quality transfer [62]

Prostate Deep autoencoder Cancer grade groups [63]
Brain Deep autoencoder Spatio-temporal denoising [64]

Kidney Deep autoencoder Classification of renal rejection types [65, 66]
Brain VAE Detection of q-space abnormalities [67]
Brain GAN Spatial super-resolution [68]

Prostate GAN Semantic segmentation [69]

3.4 Support Vector Machines

One of the most popular machine learning approaches is the class of Support
Vector Machines (SVMs). SVMs are supervised learning models used for both
classification and regression, based on the concept of finding the best set of
hyperplanes in a high dimensional feature space that best separates the different
classes. Intuitively, a good separation is achieved by the hyperplanes with the
largest distance to the nearest training data point of any class. One of the main
advantages of SVMs over the other methods described so far is its ability to
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generalise well and avoid overfitting. This is due to the fact that once the SVM
has found the optimum hyperplane, any small changes to the data won’t be able
to greatly affect the hyperplane.

SVMs have been widely used in brain and cancer imaging for many applica-
tions, such as to estimate the survival rates in patients with grade II-IV gliomas
from diffusion and perfusion-weighted MRI [43] or to classify High Angular Res-
olution Diffusion Imaging (HARDI) in vivo data [44]. In this last approach the
SVM was trained to discriminate between six different classes: parallel neuronal
fibre bundles in white matter, crossing neuronal fibre bundles in white matter,
grey matter, partial volume between white and grey matter, background noise
and cerebrospinal fluid. The features used were rotation invariant and obtained
by exploiting a spherical harmonic decomposition of the HARDI signal.

Another interesting approach based on SVM was developed in [45], in or-
der to perform multimodal classification and exploit the relative strengths of
each modality. The paper is based on the idea that female brains contain a
larger proportion of grey matter tissue, whereas the male brain consists of more
white matter, and this can be used to study dimorphism of the human brain.
However, the authors show that a single imaging modality is not enough and
instead mp-MRI, through the use of T1, T2, and DW-MRI, is required to ob-
tain good performance. The results from their study show that combining these
different modalities yields a significantly higher balanced classification accuracy
than using a single one. On the same wave is the approach developed in [46]
for localizing cancer within the prostate, also through the use of mp-MRI that
includes Dynamic Contrast Enhanced (DCE) MRI, DW-MRI and T2-weighted
MRI. Here, the authors developed a new segmentation method that combines
a Conditional Random Field (CRF) with a cost-sensitive framework. The CRF
is a class of statistical modelling methods used in machine learning to include
structural information in the prediction. For the similar task of prostate cancer
localization, Ozer et al. [47] propose, instead, to combine the pharmacokinetic
parameters derived from DCE MRI with T2 MRI and DW-MRI. To process
these images, they use a Bayesian formulation of the SVM called Relevance Vec-
tor Machines (RVM). The accuracy obtained by the RVM has been compared
with the SVM and results showed that it can produce more accurate and more
efficient segmentation.

Although SVMs have been used in many applications, they suffer from an
interpretability problem, with both the final model and the variable weights be-
ing hard to understand. SVMs, as well as the other ’classical’ machine learning
methods described so far, also suffer from a few general limitations. Firstly, an
important issue is scalability. Even when these classical methods work well on
small amounts of data, they fail to give the same accuracy on larger datasets and
would require significantly larger computational power to analyse. Another big
limitation is the need for complex feature engineering, a challenging task which
requires a significant amount of time and effort for finding the best features.
Moreover, these features are often limited in terms of adaptability or transfer-
ability to other domains/applications and extensive study within each different
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area may be required to transfer their usability. All of these major limitations
can be overcome by the introduction of deep learning, which is the focus of the
rest of the paper.

4 Deep Learning

In the last few years, requests of processing large amount and complexity of
data, have driven the evolution of machine learning to the so-called deep learn-
ing paradigm. Although deep learning is a relatively new field, many different
models have already been proposed. The design of a deep learning model mainly
depends on: i) the amount of data available during the training and the re-
lated data-dimensionality (e.g. scalar data, images, 3D images), ii) the training
procedure (supervised or unsupervised), iii) the desired goal (e.g. classification,
regression, segmentation), and iv) last but not least, the computation resources
(cloud computing, Graphics Processing Units (GPU), memory, Central Process-
ing Units (CPU), etc.).

4.1 Artificial Neural Network

Before starting to describe the advanced methods of deep learning we will briefly
overview the foundation behind it which comes from the ANN theory. An ANN
is an ensemble of perceptrons, where a perceptron is defined by a non-linear
transfer function f and by two set of parameters: W (the weights) and b (the
bias). The output of each neuron is the linear combination of the input x with
the W added to the bias b, followed by the application of the transfer function
(i.e. sigmoid or hyperbolic tangent function). One of the most popular ANNs
is the Multi-Layered Perceptrons (MLP) that organizes the neurons in many
different layers.

ANNs are usually trained through different steps, where at each step a new
input sample or batch of samples are presented to the network. In this process,
the weights are adjusted using a delta rule and a back-propagation function.
Initially, random values are usually assigned to the network parameters and
through this iterative training process, the parameters are updated to minimize
the difference between the network predictions and the desired outputs.

In DW-MRI, ANN has been successfully used, for example, to determinate
a voxel-by-voxel forecast of the chronic T2-Weighted images with the purpose
of predicting ischemic infarction [48] or for a voxelwise parameter estimation of
the combined intravoxel incoherent motion and kurtosis model in [49].

4.2 Deep Neural Network

To abstract more complex concepts or extract more sophisticated features, many
hidden layers can be added to an ANN, defining a deep architecture referred to
as a Deep Neural Network (DNN). Training a DNN is not always trivial, mainly
due to possible numerical instabilities that could make the updated weights
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negligible (vanishing gradient problem), and adequate training countermeasures
must be considered to avoid these issues.

DNN in DW-MRI was used in many applications from improving acquisi-
tion to parameter mapping and studying patient outcome. For example, [50]
combined a DNN with spherical harmonics to learn a non-linear mapping that
makes it possible to augment existing shells exploiting shells already acquired.
This can be particularly useful to reduce the acquisition time of HARDI data.
On a similar task, Golkov et al. [51] proposed a method called q-space deep
learning which allows mapping scalar parameters, such as diffusion kurtosis or
orientation dispersion from significantly reduced acquisitions and detecting ab-
normalities without the intermediate steps of diffusion models.

The authors in [54] proposed a Deep Learning Diffusion Fingerprinting (DLDF)
method based on DNN and used to classify DW-MRI voxels. The authors showed
that this model can learn even with limited training samples, and the method is
capable to segment brain tumours, distinguish between young and older tumours
and detect whether or not a tumour has been treated with chemotherapy. The
paper concluded also that DLDF can localize changes in the underlying tumour
microstructure, which are not evident using conventional measurements of the
ADC. Mapping tissue microstructure features, especially permeability, is also in-
vestigated in [52], where the authors show that the results provided by the DNN
are better than those obtained from a RF regressor model. DNN has also been
used to post-process DW-MRI images and predict, for example, survival time in
amyotrophic lateral sclerosis using as input data the structural connectivity and
brain morphology [53].

4.3 Convolutional Neural Network

The main limitation of DNNs is that they do not scale well with multidimensional
inputs, such as an image. The reason for this is that the number of nodes and
the number of parameters required by a DNN in these cases could become very
large, and therefore, their use is not practical. Convolutional Neural Networks
(CNNs) have been proposed exactly to overcome these issues and today they are
the most successful models for image analysis in deep learning. The design of a
CNN is largely inspired by the neurobiological model of the visual cortex and
can be summarized in three main steps: i) The input image is convolved using
several small kernels, ii) the output of the previous step is subsampled and iii)
the first 2 steps are repeated until high-level features are extracted. Differently
from DNNs, CNNs use shared weights -the kernels- to perform the convolutions.
This enables the network to process efficiently multidimensional data such as
medical images. In the field of DW-MRI, CNNs are mainly used in the post-
analysis step, for example, to perform tractography, for tissue segmentation or
for predicting survival time.

In [55] a CNN is used to reconstruct fibre orientation, which is useful for
studying brain connectivity. Rather than fitting a diffusion model, the authors
proposed to solve a voxel classification problem in order to estimate the fibre
orientation. In [56], instead, a CNN was trained for segmentation of tumours
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in patients with rectal cancer on mp-MRI, classifying each voxel into a tumour
or non-tumour class. On a similar task, Clark et al. [58] proposed a CNN to
delineate the prostate gland. The proposed algorithm first detects the slices that
contain a portion of the prostate gland within the three-dimensional DW-MRI
volume and then uses this information to segment the prostate gland and the
related transition zone.

TractSeg proposed by Wasserthal et al. in [57] is also a method based on
CNNs for fast and accurate white matter tract segmentation. This novel frame-
work directly segments tracts in the field of fibre orientation distribution function
peaks without using tractography, image registration or parcellation. This allows
to speed up the computational time with respect to traditional methods while
providing unprecedented accuracy.

Many extensions of the CNN have been proposed in the literature. In [59], the
authors use a 3D-CNN that processes multi-modal preoperative brain images and
learns a set of supervised features processed by a SVM to predict survival time in
patients with high-grade glioma. Another interesting framework based on CNN is
the U-net [70], which is developed mainly for biomedical image segmentation and
is able to work with few training images or to provide better accuracy. In [60] the
U-net is used to segment the kidney and improve the registration accuracy while
avoiding artefacts during the free-breathing multi-b-value DW-MRI acquisition.

Similarly to the previous work based on RF, Tanno et al. in [61] show that
IQT is a highly ill-posed problem, and training a standard CNN could create
inevitable ambiguity in the learning procedure. For this reason, they propose
to model uncertainty through a per-patch heteroscedastic noise and Bayesian
inferences that extend the standard CNN concept. They show that this leads to
obtaining convincing super-resolved DW-MRI and produces tangible benefits in
downstream tractography.

Finally, a particular formulation of the CNN developed to control memory
usage during network training was proposed in [62]. This framework, evaluated
in the paradigm of IQT, is able to improve the prediction results by exploiting
a deeper network which, however, requires only a slight memory increase.

4.4 Deep Autoencoder

Most of the approaches described so far use a supervised learning strategy to
train the networks. This means that each sample has a label used as ground truth
during the training. However, in some cases, labels are missing or only partially
available and the models need to be trained in an unsupervised fashion. An
autoencoder is a special ANN designed exactly for this purpose. In this network,
the number of input and output nodes are the same, and the training procedure
doesn’t require any labels. Instead, it is based on recreating the input data rather
than assigning a class label to it. This procedure enables to encode the data in a
lower dimensional space and extract the most discriminative features. With the
recent advances in deep learning, many autoencoders can be stacked together to
create a deep autoencoder architecture.
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An example of this framework was proposed in [64] for a spatio-temporal
denoising of contrast-enhanced MRI sequences, nevertheless, it could be applied
to DW-MRI data as well. Here, each autoencoder on the stack is trained on a
specific subset of the input space to accommodate different noise characteristics
and curve prototypes. Spatial dependencies of the pharmacokinetic dynamics
are captured by incorporating the curves of neighbouring voxels in the entire
process. A stack autoencoder was also used in [65, 66] which propose a new non-
invasive approach for early classification of renal rejection types after transplant.
The developed framework mainly consists of three steps: 1) data co-alignment
using a 3D B-spline-based approach and segmentation of kidney tissue with an
evolving geometric deformable model guided by a voxel-wise stochastic speed
function, 2) construction of a cumulative empirical distribution of ADC at low
and high b-values of the segmented kidney taking into account blood perfusion
and water diffusion, and 3) classification of acute renal transplant rejection types
based on a deep autoencoder with non-negative constraints.

A computer-aided classification method of prostate cancer grade groups using
a stacked sparse autoencoder for mpMRI was also proposed in [63]. This special
deep framework based on the extraction of high-level features from hand-crafted
texture features achieved the first place in a related challenge, winning over 43
methods submitted by 21 groups.

In [67] instead, a Variational Autoencoder (VAE), that is a particular formu-
lation of the standard autoencoder where strong assumptions are made on the
distribution of latent variables, was proposed to detect diffusion-space abnor-
malities in DW-MRI scans of MS patients. Here, only samples from the normal
class are available during the training, while test samples are classified as normal
or abnormal through the assignment of a novelty score efficiently computed by
VAE.

4.5 Generative Adversarial Network

A Generative Adversarial Network (GAN) is a deep framework that is partic-
ularly useful when the training set is only partially labelled. GAN is a class of
ANN which train two separate models that challenge each other in a zero-sum
game: the first model is a generative model G, and the second is a discriminative
model D. The first model is trained to learn how to generate data that looks
like the real available data, and the second is trained to discriminate the sample
generated by G between the real one. Since the aim of G is to understand how
to fool the D network this leads to a better generation of realistic samples.

In medical imaging, GAN has shown its success in generating synthetic under-
represented data or for the super-resolution task applied to different image
modalities, such as for endomicroscopy images [71], or DW-MRI [68]. Specifi-
cally, in this last study, GAN was used to obtain high-resolution images without
requiring larger magnetic fields or long scan times. Apart from these examples,
GAN has been also used for generating realistic segmentation such as in [69]
where an adversarial network which discriminates between expert and generated
annotations is used to detect aggressive prostate cancer. This framework, which
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combines an adversarial training with the U-Net model, obtains good results on
segmenting the prostates regions along with the targeted cancer nodules.

5 Discussion and Future Perspectives

In this review, we have described the current trends and main methods used
in machine learning and deep learning for DW-MRI. We have shown that many
machine learning methods have already been successfully applied to solve a large
variety of problems in DW-MRI, for instance designing better acquisitions and
reconstruction tools, mapping microstructure parameters, classifying biomarkers
or predicting disease outcomes. We have organized this paper by grouping the
methods according to the main methodological classes, explaining their applica-
tions and stating where and why that class can be particularly useful. Specifi-
cally, in the last few years, a sub-field of machine learning called deep learning has
shown a large interest in research and has been employed in many applications,
including in the field of DW-MRI. The most likely reason for its success in this
area is that DW-MRI has high dimensionality and/or is often coupled with other
MRI contrasts, leading to a very large amount of data to be processed, that stan-
dard machine learning methods are not able to handle. Moreover, handcrafted
features can be difficult to extract in these scenarios since they may be suitable
for only one single modality but not adequate for the others. Deep learning -a
technique based on the ANN principles- seems particularly suitable to process a
large amount of data allowing the model itself to automatically extract the best
features. This characteristic seems particularly important to improve the final
results of a model.

In conclusion, in the most recent methods described in this review, we report
the use of deep learning, not as a single black box, but rather integrated with
mathematical modelling to improve the training procedure. For this reason, we
believe that in the near future we will see more hybrid models where characteris-
tics of deep learning and traditional modelling are combined together for better
analysis and results.
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Menzel, P. A. Gómez, A. Haase, T. Brox, et al., “q-space deep learning for
twelve-fold shorter and model-free diffusion mri scans,” in International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention, pp. 37–44,
Springer, 2015.

52. I. D. Hill, M. Palombo, M. D. Santin, F. Branzoli, A.-C. Philippe, D. Wassermann,
M.-S. Aigrot, B. Stankoff, H. Zhang, S. Lehericy, et al., “Deep neural network based
framework for in-vivo axonal permeability estimation,”

53. H. K. van der Burgh, R. Schmidt, H.-J. Westeneng, M. A. de Reus, L. H. van den
Berg, and M. P. van den Heuvel, “Deep learning predictions of survival based on
mri in amyotrophic lateral sclerosis,” NeuroImage: Clinical, vol. 13, pp. 361–369,
2017.

54. T. A. Roberts, B. Hipwell, G. Agliardi, A. d’Esposito, V. Taylor, M. F. Lyth-
goe, and S. Walker-Samuel, “Deep learning diffusion fingerprinting to detect brain
tumour response to chemotherapy,” bioRxiv, p. 193730, 2017.

55. S. Koppers and D. Merhof, “Direct estimation of fiber orientations using deep
learning in diffusion imaging,” in International Workshop on Machine Learning in
Medical Imaging, pp. 53–60, Springer, 2016.

56. S. Trebeschi, J. J. van Griethuysen, D. M. Lambregts, M. J. Lahaye, C. Parmer,
F. C. Bakers, N. H. Peters, R. G. Beets-Tan, and H. J. Aerts, “Deep learning for
fully-automated localization and segmentation of rectal cancer on multiparametric
mr,” Scientific reports, vol. 7, no. 1, p. 5301, 2017.

57. J. Wasserthal, P. Neher, and K. H. Maier-Hein, “Tractseg-fast and accurate white
matter tract segmentation,” NeuroImage, vol. 183, pp. 239–253, 2018.

58. T. Clark, J. Zhang, S. Baig, A. Wong, M. A. Haider, and F. Khalvati, “Fully
automated segmentation of prostate whole gland and transition zone in diffusion-
weighted mri using convolutional neural networks,” Journal of Medical Imaging,
vol. 4, no. 4, p. 041307, 2017.

59. D. Nie, H. Zhang, E. Adeli, L. Liu, and D. Shen, “3d deep learning for multi-
modal imaging-guided survival time prediction of brain tumor patients,” in Inter-
national Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 212–220, Springer, 2016.

60. J. Lv, W. Huang, J. Zhang, and X. Wang, “Performance of u-net based pyrami-
dal lucas-kanade registration on free-breathing multi-b-value diffusion mri of the
kidney,” The British journal of radiology, vol. 91, no. 1086, p. 20170813, 2018.

61. R. Tanno, D. E. Worrall, A. Ghosh, E. Kaden, S. N. Sotiropoulos, A. Criminisi,
and D. C. Alexander, “Bayesian image quality transfer with cnns: Exploring un-
certainty in dmri super-resolution,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 611–619, Springer, 2017.

62. S. B. Blumberg, R. Tanno, I. Kokkinos, and D. C. Alexander, “Deeper image
quality transfer: Training low-memory neural networks for 3d images,” in Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pp. 118–125, Springer, 2018.



18 Daniele Ravi, Nooshin Ghavami, et al.

63. B. Abraham and M. S. Nair, “Computer-aided classification of prostate cancer
grade groups from mri images using texture features and stacked sparse autoen-
coder,” Computerized Medical Imaging and Graphics, vol. 69, pp. 60–68, 2018.

64. A. Benou, R. Veksler, A. Friedman, and T. R. Raviv, “Ensemble of expert deep neu-
ral networks for spatio-temporal denoising of contrast-enhanced mri sequences,”
Medical image analysis, vol. 42, pp. 145–159, 2017.

65. M. Shehata, F. Khalifa, E. Hollis, A. Soliman, E. Hosseini-Asl, M. A. El-Ghar,
M. El-Baz, A. C. Dwyer, A. El-Baz, and R. Keynton, “A new non-invasive approach
for early classification of renal rejection types using diffusion-weighted mri,” in
Image Processing (ICIP), 2016 IEEE International Conference on, pp. 136–140,
IEEE, 2016.

66. M. Shehata, F. Khalifa, A. Soliman, M. Ghazal, F. Taher, M. A. El-Ghar,
A. Dwyer, G. Gimel’farb, R. Keynton, and A. El-Baz, “Computer-aided diagnos-
tic system for early detection of acute renal transplant rejection using diffusion-
weighted mri,” IEEE Transactions on Biomedical Engineering, 2018.

67. A. Vasilev, V. Golkov, I. Lipp, E. Sgarlata, V. Tomassini, D. K. Jones, and D. Cre-
mers, “q-space novelty detection with variational autoencoders,” arXiv preprint
arXiv:1806.02997, 2018.

68. E. Albay, U. Demir, and G. Unal, “Diffusion mri spatial super-resolution using
generative adversarial networks,” in International Workshop on PRedictive Intel-
ligence In MEdicine, pp. 155–163, Springer, 2018.

69. S. Kohl, D. Bonekamp, H.-P. Schlemmer, K. Yaqubi, M. Hohenfellner,
B. Hadaschik, J.-P. Radtke, and K. Maier-Hein, “Adversarial networks for the
detection of aggressive prostate cancer,” arXiv preprint arXiv:1702.08014, 2017.

70. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

71. D. Rav̀ı, A. B. Szczotka, D. I. Shakir, S. P. Pereira, and T. Vercauteren, “Adver-
sarial training with cycle consistency for unsupervised super-resolution in endomi-
croscopy,” 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/332180426

