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Abstract 

Recent debate about the reliability of psychological research has raised concerns 

about the prevalence of false positives in our discipline. However, false negatives can be 

just as concerning in areas of research that depend on finding support for the absence of an 

effect. This risk is particularly high in unconscious learning experiments, where 

researchers commonly seek to demonstrate that people can learn to perform a task in the 

absence of any explicit knowledge of the information that drives performance. The fact 

that some unconscious learning effects are typically studied with small samples and 

unreliable awareness measures makes false negatives especially likely. In the present 

article we focus on a popular unconscious learning paradigm, probabilistic cuing of visual 

attention, as a case study. Firstly, we show that, at the meta-analytic level, previous 

experiments reveal positive signs of participant awareness, although individual studies are 

severely underpowered to detect this. Secondly, we report the results of two empirical 

studies in which participants’ awareness was tested with alternative and more sensitive 

dependent measures, both of which manifest positive evidence of awareness. We also show 

that, based on the predictions of a formal model of probabilistic cuing and given the 

reliabilities of the dependent measures collected in these experiments, any statistical test 

aimed at detecting a significant correlation between learning and awareness is doomed to 

return a non-significant result, even if at the latent level both constructs are actually related 

and participants’ knowledge is completely explicit. 

 

Keywords: computational modeling; false negatives; implicit learning; meta-

analysis; probabilistic cuing; unconscious learning. 
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In the few years that have passed between the “crisis of confidence” in psychological 

research (Pashler & Wagenmakers, 2012) and “psychology’s renaissance” (Nelson, 

Simmons, & Simonsohn, 2018) we have learned that many of the scientific findings that 

we took for granted might actually reflect false positives, entirely attributable to the 

selective publication of significant findings, questionable research practices, and a poor 

understanding of statistical methods (Franco, Malhotra, & Simonovits, 2014; Kerr, 1998; 

Simmons, Nelson, & Simonsohn, 2011). What this debate has largely overlooked, though, 

is that researchers are not always interested in establishing the reliability of a positive 

effect. In many areas of psychology, key findings depend on reporting the absence of an 

effect (Rouder, Speckman, Sun, Morey, & Iverson, 2009). 

For instance, researchers might be interested in showing that the different groups of 

an experiment do not differ in a crucial confounding variable or in their pre-test scores 

(e.g., Hilgard, Engelhardt, Bartholow, & Rouder, 2017), or that suicide rates associated 

with a drug treatment for depression are no higher than in a placebo control group 

(Fergusson et al., 2006). Finding out whether these null results are true negatives is just as 

important as assessing the reliability of positive findings (Hartgerink, Wicherts, & van 

Assen, 2017), perhaps even more so, given that Null Hypothesis Significance Testing 

(NHST), as regularly implemented in psychological research, is poorly suited to assess the 

plausibility of the null hypothesis (Dienes, 2011, 2015; Hoekstra, Finch, Kiers, & Johnson, 

2016). Furthermore, given the average low power of psychological research (Sedlmeier & 

Gigerenzer, 1989; Smaldino & McElreath, 2016), finding a null result is hardly surprising 

and often uninformative as to the veracity of the null hypothesis. 

The present study addresses the scale of this problem in an area of research that relies 

extensively on garnering support for the null hypothesis, namely, implicit (or unconscious) 

learning (Berry & Dienes, 1993; Greenwald & De Houwer, 2017; Shanks, 2005). Although 
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different implicit learning paradigms are based on a range of different methods, a common 

strategy to show that a learning effect is unconscious consists in finding positive evidence 

of learning in a behavioural task together with the absence of evidence of awareness of the 

stimuli or the statistical regularities that drive performance (Dienes, 2015). For instance, in 

a classical implicit learning effect known as contextual cuing (Chun & Jiang, 1998; Chun 

& Turk-Browne, 2008), participants are presented with a series of visual search displays 

where they have to find a rotated T among a series of L-shaped distractors. Some of the 

search displays are presented repeatedly across the experiment while others are random 

arrangements of distractors that occur just once (participants are not told about this 

manipulation). Search times usually reveal that participants learn something about the 

repeating patterns, as they find the target much more easily in repeated than in random 

search displays. However, when directly asked to identify the repeating patterns, 

participants’ performance, it is claimed, does not differ significantly from chance. This 

dissociation between significant evidence of learning and non-significant evidence of 

explicit recognition is interpreted as strong support for unconscious learning (Chun & 

Jiang, 2003). 

In a recent meta-analysis of the literature on contextual cuing (Vadillo, 

Konstantinidis, & Shanks, 2016), we showed that, in truth, participants’ performance in 

these awareness tests is actually above chance on average, although the effect is too small 

(Cohen’s dz = 0.31) to be detected with the typical samples tested in most of these 

experiments (usually, N = 16). Furthermore, there are good reasons to suspect that the 

small effect size of awareness is related to methodological limitations of the measurement 

procedure rather than to an intrinsically weak degree of awareness. In our review, studies 

that assessed awareness using longer tests with many trials were more likely to find 

significant evidence of awareness (see also Smyth & Shanks, 2008). In other words, 
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attributing contextual cuing to unconscious learning processes might be the product of a 

statistical illusion created by the use of poor measures of awareness in combination with 

underpowered samples. 

As explained above, reliance on NHST to establish the absence of awareness is not 

exclusive to contextual cuing studies and there are good reasons to think that unreliable 

measures and underpowered samples may affect other implicit cognition paradigms in the 

same manner. Chance-level performance in a recognition or discrimination test is a typical 

criterion for unconsciousness in other implicit learning and unconscious perception 

paradigms (e.g., Hedger, Gray, Garner, & Adams, 2016; Reed & Johnson, 1994; Shang, 

Fu, Dienes, Shao, & Fu, 2013) and our meta-analysis on contextual cueing is not the only 

one to suggest that studies relying on this strategy tend to be underpowered (e.g., Hedger et 

al., 2016). The goal of the present article is to explore this problem in another implicit 

learning task, probabilistic cuing of visual attention (Druker & Anderson, 2010; Geng & 

Behrmann, 2002; Jiang, 2018), which is in many ways closely related to contextual cuing. 

In a typical probabilistic cuing experiment, participants are instructed to perform a 

visual search task, superficially identical to the one used in contextual cuing studies. 

Participants are asked to find a visual target among a number of distractors in a series of 

search displays. Unlike in contextual cuing experiments, however, the key experimental 

manipulation is not that some displays are repeated, but that the target tends to appear more 

frequently in a specific region of the search display (usually a quadrant, such as top left) 

than in the other regions. Across trials, participants become faster at finding the target 

when it appears in the ‘rich’ region than in any of the ‘sparse’ regions. However, this 

learning effect is considered implicit because, after the experiment, participants do not 

report any awareness of this spatial regularity and, when asked to guess which region 

contained the target most frequently, the total number of participants selecting the rich 
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region is not significantly above chance (e.g., Jiang, Capistrano, Esler, & Swallow, 2013; 

Jiang, Swallow, Rosenbaum, & Herzig 2013). 

As in the case of contextual cuing, this analytic strategy is statistically misleading: 

The fact that the number of participants selecting the rich region is not significantly 

different from chance does not mean that it is genuinely at chance, particularly if this 

inference is based on a small number of participants and few observations per participant. 

In this sense, the standard awareness test used in probabilistic cuing experiments is even 

more problematic than the comparable test in contextual cuing experiments. While in the 

latter awareness is usually assessed by means of an explicit recognition test comprising 

several trials (typically, around 24), in probabilistic cuing awareness is assessed with a 

single-item test: Participants are invited just once to select the region that they think 

contained the target most often, guessing if necessary. Extrapolating from the results of our 

meta-analysis in the domain of contextual cuing, we think there are good reasons to 

suspect that false negatives are particularly likely under these conditions. 

Other peculiarities of probabilistic cuing experiments could also undermine the 

informativeness of awareness tests conducted at the end of the experiment. It is well 

known that visual search is influenced by target location repetitions. When the target 

appears in two spatially close locations on consecutive trials, reaction times are usually 

faster on the second trial, an effect known as repetition priming (Maljkovic & Nakayama, 

1996). This effect is particularly problematic in probabilistic cuing experiments because, 

unless careful measures are taken, repetition priming and location probability will naturally 

be confounded with each other: If the target appears more frequently in one region than in 

the others, then there will also be more repetitions in the former than in the latter (Walthew 

& Gilchrist, 2006). 
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The confounding contribution of repetition priming can be cancelled out statistically. 

For instance, researchers can show that probabilistic cuing is observed independently in 

trials with and without repetitions (Jiang & Swallow, 2013). An alternative solution is to 

use a two-stage design in which participants are first trained in the visual search task with 

the targets appearing more frequently in one region and then tested in a subsequent stage in 

which the targets appear with the same probability in all regions (Jiang, Capistrano et al., 

2013). If reaction times are faster for the rich region even in the unbiased testing stage, this 

cannot be attributed to repetition priming and, consequently, it must be attributed to a 

learned attentional bias developed over the initial training stage. 

Although this approach is methodologically sound when it comes to establishing the 

reliability of probabilistic cuing, it can negatively affect the results of any awareness test 

conducted at the end of the experiment. If participants are first exposed to a training stage 

and then to an unbiased testing stage, it is likely that the attentional biases learned during 

the former will become diluted or vanish entirely across the latter (e.g., Jiang, Capistrano et 

al., 2013; Jiang & Won, 2015, Experiment 1). When participants are then asked to select 

the region that contained the target most frequently, it is natural that some of them will fail 

to select the correct response, either through confusion or through unlearning. After all, the 

target was equally likely to appear anywhere during the immediately preceding stage. In 

more general terms, this approach fails to meet what Newell and Shanks (2014) called the 

‘immediacy criterion’: A good measure of awareness should take place concurrently to the 

learning task or as soon as possible afterwards to avoid forgetting, interference, or, in this 

case, unlearning. 

Another potential problem in probabilistic cuing experiments is that what 

participants learn during the training stage might not overlap perfectly with the 

experimental manipulation that is addressed in the awareness test (Shanks & St. John, 
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1994). Imagine a cuing experiment in which the target is more likely to appear in the top-

right quadrant than in the remaining quadrants. A participant might fail to detect this 

regularity in full detail, but she might notice that the target appears more frequently on the 

right-hand side of the screen than on the left-hand side. Knowing this would be sufficient 

to speed up visual search in the rich region, but would not guarantee good performance in 

the awareness test, as according to her hypothesis the top-right and the bottom-right 

quadrants are equally valid responses. 

In the present study we explore these problems in more detail using a combination of 

meta-analytic methods, empirical studies, and computational modeling. First, in the 

following section we report the results of a systematic review and meta-analysis exploring 

the awareness tests of published probabilitistic cuing studies. Then, we report the results of 

two new empirical studies where we test the sensitivity of alternative measures of 

awareness that address some of the shortcomings identified in the previous paragraphs. We 

also show that, based on the predictions of a formal model of probabilistic cuing and given 

the reliabilities of the dependent measures collected in these experiments, any statistical 

test aimed at detecting a significant correlation between learning and awareness is doomed 

to return a non-significant result, even if at the latent level both constructs are actually 

related and participants’ knowledge is completely explicit. 

 

Meta-analysis of Previous Probabilistic Cuing Studies 

Individual studies with small sample sizes are poorly suited to make inferences about 

the absence of an effect because non-significant results can be easily attributed to a simple 

lack of statistical power. Meta-analysis, in contrast, allows researchers to achieve a high 

degree of statistical power by collating data from large numbers of participants tested in 

different studies. If the null results typically observed in the awareness tests of probabilistic 
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cuing experiments reflect true negatives, then a meta-analytic integration of all the 

experiments published so far should provide a highly precise effect size estimate that 

would not depart significantly from zero. Additionally, meta-analytic methods can also be 

used to assess the potential impact of some of the methodological artefacts noted in the 

previous paragraphs. For instance, it is possible that interpolating an unbiased testing stage 

between training and the awareness check produces some amount of unlearning, reducing 

the likelihood of observing significant levels of awareness. If so, one would expect to find 

greater awareness effects in experiments that did not include such a testing stage than in 

experiments that did include it. Similarly, awareness should be greater in studies for which 

there is no positive evidence of unlearning than in studies where the statistical analyses 

suggest that unlearning occurred. The present meta-analysis puts these hypotheses to the 

test. 

 

Method 

Literature search 

Y. Jiang is the most prolific and active expert in probability cuing of visual attention. 

Consequently, we decided to use her work as the starting point of our literature search 

strategy. On November 10th 2017, we explored the website of her research team at the 

University of Minnesota and the Web of Science to find all her published research on 

probability cuing. On the basis of the titles and abstracts we selected 18 studies by Jiang 

and colleagues that were assessed for inclusion in the meta-analysis. Then, we searched for 

additional papers by inspecting the reference sections of these articles and also by 

searching for papers citing them in the Web of Science. This led to 27 additional articles 

that were assessed for inclusion. 

 

Eligibility criteria 
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Studies were only included in the meta-analysis if they complied with four selection 

criteria. Firstly, we selected only studies exploring probabilistic cuing of visual attention 

(Criterion 1). By this, we understood any task in which participants had to locate a visual 

target in a search display, with the targets being more likely to appear in one specific 

region than in the others. Secondly, studies were only included in the meta-analysis if they 

administered an awareness test (Criterion 2). Furthermore, our meta-analysis focuses only 

on the most popular type of awareness test, in which at the end of the experiment each 

participant is asked to guess which region contained the target most often and above 

chance performance at the group level is taken as significant evidence of awareness. 

Studies including only other types of awareness tests, such as unstructured interviews or 

subjective ratings, were excluded. 

Thirdly, we excluded studies in which participants were given some explicit 

instruction or presented with exogenous cues that would orient their attention, either 

hindering or promoting attention to the rich region (Criterion 3). For instance, experiments 

in which participants were explicitly instructed to pay attention to one quadrant or were 

presented with arrows directing their attention towards specific quadrants were excluded 

from the meta-analysis. Finally, studies were included in the meta-analysis only if 

participants showed statistically significant evidence of probabilistic cuing at some point in 

the experiment (Criterion 4). Table A1 in Appendix A lists all the studies that were 

excluded according to these criteria. The studies that passed all the eligibility criteria are 

reported in Table 1 and marked with an asterisk in the reference list. 

 

Computation of effect sizes 

In all the studies included in this meta-analysis the main dependent variable was the 

proportion of participants selecting the rich region in the awareness test. If this proportion 
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was higher than chance, then participants were assumed to be aware of the biased 

distribution of targets in the search displays. A simple and straightforward means to meta-

analyze these data would be to collate these proportions. Unfortunately, proportions on 

their own carry little informative value, because the definition of chance-level performance 

differed from one experiment to another. While in most studies the search display was 

divided into four regions, one of them containing the target more frequently than the other 

three, in an important subset of studies the search display was divided into just two 

regions, one of them acting as the rich region and the other as the sparse region. 

Consequently, chance-level performance was .25 in some experiments, but .50 in others. 

Bearing this in mind, simply knowing that the proportion of participants guessing the 

correct region was, say, .35, does not provide sufficient information to assess whether 

participants were aware or not. And, for the same reason, raw proportions cannot be 

collated in a single meta-analysis for studies with different numbers of regions. 

To overcome this problem, we conducted all analyses using Cohen’s h as the default 

effect size estimate (Cohen, 1977, Hedger et al., 2016). Cohen’s h measures the difference 

between two proportions, in our case, the proportion of participants selecting the rich 

region at test (p1) and the proportion that would be expected by chance (p2). Cohen’s h is 

computed as 2·arcsin√𝑝1 - 2·arcsin√𝑝2 and its value can be interpreted following the same 

standards as the popular Cohen’s d: values of .20, .50, and .80 are considered small, 

medium and large, respectively. For comparisons of a one-sample proportion against a 

theoretical proportion, the variance of Cohen’s h is simply the inverse of the number of 

participants. 

In a small number of studies, not all participants were invited to guess which region 

contained the target most frequently. In some studies (e.g., Smith, Hood, & Gilchrist, 

2010) only participants who thought that the targets had been randomly distributed were 
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invited to guess which was the rich region. In contrast, in other studies (e.g., Umemoto, 

Scolari, Vogel, & Awh, 2010) only participants who thought that the target was not 

randomly distributed were invited to select a region. In yet other studies (Jiang, Swallow, 

& Rosenbaum, 2013) some of the sample were invited to select a region unconditionally 

and others were excluded from this test if they thought that the target was equally likely to 

appear anywhere in the search display. In all these cases, we computed the effect size on 

the basis of the proportion of participants who correctly selected the rich region out of the 

total number of participants who were invited to make this selection. That is to say, in our 

analyses the sample size is the total number of participants who took part in the region-

guessing test, which is not always the same as the total number of participants included in 

the experiment. 

Similarly, in a small number of studies there was some ambiguity regarding which 

region should be considered the rich one. For instance, in Jiang, Swallow, and Sun (2014) 

the search display lay on a table and participants moved to a different side of the table 

between training and testing (or the display was rotated between one stage and the other). 

In this situation, at test one can distinguish a viewer-rich region and a scene-rich region, 

depending on whether the reference frame is centered in the viewer or in the scene. In 

cases like this, we considered that the correct response was selecting the region for which 

there was positive evidence of learning. For example, in Experiment 1 of Jiang, Swallow et 

al. (2014), participants showed probabilistic cuing only for the viewer-rich quadrant, but 

not for the scene-rich quadrant. Consequently, we considered that selecting the viewer-rich 

quadrant was the correct response in the awareness test. 

 

Coding of study characteristics 
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As explained above, before starting the literature search, we suspected that two 

features of the studies could have an important impact on effect sizes. Firstly, we 

hypothesized that studies that tested probabilistic cuing with an unbiased stage after 

training would give rise to some amount of unlearning or “extinction” of any learned 

search bias that would reduce the chances of observing above-chance performance in the 

subsequent awareness test. Therefore, for each study we coded whether or not the design 

included an unbiased testing stage before the awareness test. For similar reasons, we 

hypothesized that the results of the awareness test would only be above chance if there was 

positive evidence of learning immediately before the awareness test. That is, even if the 

magnitude of cuing had been significant at some stage of the experiment, if there was 

evidence that probabilistic cuing had vanished before the awareness test (e.g., because of 

unlearning in an unbiased testing stage), we expected to find chance-level performance in 

the awareness test. Consequently, evidence of learning at the end of the experiment was 

coded as a potential moderator of effect sizes. 

In addition to these two moderators, while we were assessing the articles for 

inclusion we detected important methodological differences across studies that we thought 

deserved to be explored as potential moderators. For instance, while in most studies the 

rich region was one of the quadrants of the search display, in other studies the rich region 

was one half of the search display. We hypothesized that the biased distribution of targets 

would be easier to notice in the latter and, consequently, we coded this feature as a 

potential moderator. Similarly, although most studies were conducted using a computer 

screen or other electronic device to present the search displays, a small number of 

experiments were conducted in large-scale settings, such as a park or a room. Research in 

other implicit learning paradigms has shown that learning tends to be more robust when 

search displays comprise natural scenes than when employing artificial stimuli such as 



Probabilistic cuing of visual attention 14 

rotated Ls and Ts (Brockmole & Henderson, 2006; Brockmole & Vo, 2010). 

Consequently, we hypothesized that the evidence of awareness would be larger in studies 

conducted in large-scale settings. Finally, as noted above, not all participants were invited 

to select a region in all the experiments. We were unsure about the potential impact of this 

feature on the results of the awareness test. For exploratory purposes, we decided to code 

whether all participants or just a subset of them were invited to select a region in the 

awareness test and we assessed the impact of this variable on effect sizes. 

 

Results and Discussion 

The effect sizes and variances for all the 44 studies that met the criteria for inclusion 

in the meta-analysis are shown in Table 1. All the analyses reported in this section were 

conducted with the ‘metafor’ R package (Viechtbauer, 2010). Across studies, the random-

effects meta-analytic effect size was 0.35, with 95% confidence interval (CI) from 0.21 to 

0.49, z = 4.81, p < .001, providing strong evidence that participants were able to identify 

the rich region in the awareness test. The meta-analysis also revealed a substantial and 

statistically significant amount of heterogeneity across studies, I2 = 71.24%, Q(43) = 

143.11, p < .001. 

To assess whether this heterogeneity could be accounted for by the different 

characteristics that we coded for each study, we conducted five independent meta-

regressions. The results are shown in Table 2. As can be seen, the only moderator that 

explained a significant proportion of heterogeneity was the experimental setting: Although 

awareness was statistically significant both when the search was conducted on a 

computer/tablet screen and when it was conducted in a large-scale setting (i.e., a park or a 

room), effect sizes tended to be noticeably larger in the latter case. 



Probabilistic cuing of visual attention 15 

None of the other potential moderators reached statistical significance. Even so, it is 

interesting to note that in all cases the ordering of the means is consistent with our 

predictions. For instance, on average, effect sizes tended to be larger when the awareness 

test was conducted immediately after the training stage than when an unbiased testing 

stage was interpolated between them, suggesting that the lack of awareness observed in 

some experiments might be due to some degree of unlearning taking place during the 

unbiased testing stage or confusion in some participants about which stage the 

experimenter is probing them about. Similarly, effect sizes tended to be larger in the subset 

of studies in which there was clear evidence of learning immediately before the awareness 

test than in the subset in which learning seemed to have diminished before the awareness 

test. In fact, only the former subset of studies produced statistically significant evidence of 

awareness. 

In any case, given that these moderator analyses failed to reach statistical 

significance, the value of these patterns of results can only be considered suggestive. The 

fact that some subsets of studies include only 4-6 effect sizes limits considerably the power 

of the moderation tests and our ability to draw any firm conclusions. An additional 

shortcoming of these analyses is that the moderators themselves are correlated with each 

other. In Table 3 we report the results of a series of χ2 tests exploring the relationships 

between moderators. As can be seen, across studies there is a significant correlation 

between whether or not they included an unbiased testing stage before the awareness test 

and (1) the experimental setting of the study (computer vs. large-scale) and (2) the number 

of regions into which the search display was divided. 

Although 4 of the moderator analyses failed to confirm our predictions, our results 

do show quite convincingly that at the meta-analytic level participants’ performance in the 

awareness tests is significantly above chance. For a typical experiment in which 
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participants have to guess the rich quadrant out of 4 candidate regions, an effect size of h = 

0.35 is equivalent to a proportion of .42 participants correctly selecting the rich quadrant. 

As in our previous analysis of contextual cuing (Vadillo et al., 2016), we conclude that the 

failure to detect significant evidence of awareness in many of these studies, taken in 

isolation, must be attributed to a simple lack of statistical power. In fact, a power analysis 

with the ‘pwr’ R package shows that with the median sample size of these studies (N = 16), 

the statistical power to detect an effect of size h = 0.35 in a two-tailed test is barely .29. 

Stated differently, a study requires 64 participants in order to reach .80 power to detect a 

significant awareness effect in a two-tailed test or 51 participants for an equivalent one-

tailed test, far greater than the typical sample size. 

It is worth noting that the results of the present meta-analysis are in perfect 

agreement with a recent reanalysis of data from more than 300 participants who have taken 

part in many of the studies conducted at Jiang’s laboratory over the last seven years (Jiang, 

Sha, & Sisk, 2018). Across these studies, the proportion of participants correctly guessing 

the rich quadrant in the awareness test was exactly .42, which was also significantly higher 

than chance, χ2(1) = 53.40, p < .001. 

 

Relationship between Measures of Performance and Awareness 

We have focused to this point on the analysis of the proportion of participants 

selecting the rich region in the awareness test because finding at-chance performance on 

this variable is, by far, the most common basis in past studies for inferring unconscious 

probabilistic cuing. Table S1 in the Supplementary Material reports the verbatim 

quotations from each article where the authors justify their reasons for concluding that 

learning was unconscious. As can be seen, failure to perform above chance in the 

awareness test at the group level was the main argument in most cases. However, not all 
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the studies included in the meta-analysis relied just on this line of reasoning. For instance, 

researchers sometimes compared the size of probabilistic cuing in participants who 

selected the rich region and participants who did not (e.g., Salovich, Remington, & Jiang, 

2018; Twedell, Koutstaal, & Jiang, 2017; see also Jiang, Sha et al., 2018). The logic behind 

this analysis is that, if learning is based on explicit memory, then one would expect cuing 

to be larger among participants who show evidence of awareness. However, a moment’s 

thought reveals that the problems of statistical power that we have detected for the more 

typical analysis become even worse when this alternative approach is adopted. 

It is useful to consider the issue from a psychometric perspective. Testing for an 

interaction between awareness and cuing is essentially an attempt to detect a correlation 

between two variables and, as such, is affected by measurement error. Even if two 

variables, x and y, measure exactly the same latent construct, if their reliabilities, rxx and 

ryy, are less than perfect, the observed correlation between them will usually be lower than 

1 (Spearman, 1904). Specifically, the attenuation factor is given by √𝑟𝑥𝑥·√𝑟𝑦𝑦. How small 

can the observed correlations become for the particular case of probabilistic cuing and 

awareness? 

At present, we simply do not have sufficient information to provide even a tentative 

answer to this question. It is well known that most experimental tasks provide remarkably 

unreliable measures, especially when participants’ performance is measured on the basis of 

differences in reaction times under two different conditions (Enkavi et al., 2019; Hedge, 

Powell, & Sumner, 2018). To the best of our knowledge, no previous study in this 

literature has reported the reliability of probabilistic cuing or of the awareness tests 

employed. However, the articles that have done so in other implicit learning paradigms 

have reported disappointingly low values. For instance, West, Vadillo, Shanks, and Hulme 

(2018) tested 7-8 year-old children in several implicit learning tasks, including different 
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versions of contextual cuing, serial reaction time, and a Hebb serial order learning task. 

Most of the reliabilities of these tasks were below .50. In the same vein, Kaufman, 

DeYoung, Gray, Jiménez, Brown, and Mackintosh (2010) found a reliability of .44 for the 

serial reaction time task. Regarding the measurement of awareness, Smyth and Shanks 

(2008) reported a reliability of .46 for an extended version of a test typically used to 

measure explicit knowledge in contextual cuing. For the standard (shorter) test, the 

reliability was just .09. 

Although at present we ignore the reliability of the different measures of 

performance and awareness that have been used to explore probabilistic cuing, it is easy to 

see that if these values are not substantially higher than those reported for similar implicit 

learning paradigms, then any attempt to detect a correlation between cuing and awareness 

is doomed to fail even in very large samples. If these reliabilities are, for instance, in the 

order of .40, then even if there is a medium-sized correlation of .30 between learning and 

awareness at the latent level, the observed correlation will drop to just .12. With this effect 

size, 725 participants are needed to detect a significant correlation with 90% power. 

Instead of exploring the correlation between learning and awareness, some studies 

have concluded that probabilistic cuing is unconscious because it could be detected in the 

subsample of participants who did not select the rich region in the awareness test (e.g., 

Addleman, Tao, Remington, & Jiang, 2018; see also Jiang, Sha et al., 2018). The 

psychometric stance outlined in the previous paragraphs also highlights the shortcomings 

of this approach. Because the awareness test, like any other psychological variable, is 

subject to measurement error, the set of participants who fail the awareness test will 

necessarily include participants who were actually aware (see Shanks, 2017b). And these 

participants may exhibit a significant cuing effect due to entirely conscious processes. The 
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scale of the problem depends on the reliability of both dependent variables, which, as 

explained above is as yet unknown for probabilistic cuing. 

Although none of the following experiments were originally designed with this 

purpose in mind, the resulting data and modeling can be used to illuminate the question of 

whether probabilistic cuing and explicit knowledge can be expected to correlate with each 

other and to what extent probabilistic cuing can be expected to occur even among 

participants who apparently lack any explicit knowledge. 

 

Experiment 1 

While the previous meta-analysis shows that participants’ performance in the 

awareness test is clearly above chance on average, we cannot deny that these effects are 

small by statistical standards. The mismatch between the large effects observed in search 

times and the small effects in awareness measures may be seen, per se, as compelling 

evidence of unconscious learning. However, an alternative explanation is that the method 

used to measure awareness may not be as sensitive as the method used to measure 

probabilistic cuing. While the former is usually measured with a single item, the latter is 

typically measured on the basis of hundreds and hundreds of visual search trials. This 

factor alone could suffice to explain the differences in effect sizes. 

Furthermore, as we argued in the introduction, it is also possible that the awareness 

test fails to capture awareness of the specific information that participants have actually 

learned during the training stage. Over the course of the experiment, participants may 

develop all kinds of hypotheses about the location of the targets. Some of those hypotheses 

may depart substantially from the experimental manipulation that the researcher has in 

mind, but even so they may still speed up visual search in the rich region: in Dulany’s 

(1961) terms, they are ‘correlated hypotheses’. A good example of this would be a 
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participant believing that the target appears more frequently on the right side of the screen 

when, in truth, it appears more frequently specifically in the top-right quadrant. The type of 

awareness tests included in the meta-analysis are almost guaranteed to yield small effect 

sizes in they ignore this possibility. 

In the present study, we explored the sensitivity of an alternative test in which 

participants were asked to rank the four quadrants according to their likelihood of being the 

rich region. Specifically, participants were first asked to guess which quadrant was most 

likely to be the rich region. This response, on its own, is comparable to the dependent 

measure taken in previous studies. But, in addition to this, participants were then also 

asked to guess which was the second most likely quadrant to be the rich region, and then 

the third quadrant. Even if some participants failed to rank the rich quadrant first, we 

hypothesized that they would still be more likely to rank it second than third or fourth, 

which would confirm that even participants who fail the traditional test show some degree 

of awareness. Following this logic, we expected that analysing the whole 4-quadrant 

ranking provided by each participant would provide clear evidence of awareness, even if 

the simple proportion of participants ranking the rich quadrant first failed to be 

significantly above chance. 

 

Method 

Participants 

Thirty-two participants from the UCL participant pool took part in Experiment 1 in 

exchange of £4. The meta-analysis presented in the previous section had not been 

completed by the time Experiment 1 was programmed. Therefore, sample size could not be 

determined taking into account the results of the meta-analysis. Given that the present 

experiment included an improved awareness test and that there was no unbiased testing 
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stage that could give rise to unlearning, we estimated that a sample size twice as large as 

the typical probabilistic cuing experiment should provide sufficient statistical power to 

detect awareness. All participants had normal or corrected to normal vision and completed 

the experimental task individually in isolated cubicles. 

 

Materials and Apparatus 

The experimental task was programmed in MATLAB, using Cogent 2000 and 

Cogent Graphics (The MathWorks, Inc., Natick, MA; www.vislab.ucl.ac.uk/cogent.php) to 

collect participants’ responses and present stimuli on a 17-in TFT computer screen set at a 

resolution of 1280  1024. Each trial began with the brief presentation of a black, 8  8 

mm fixation cross, followed by a unique search display comprising 11 L-shaped distractors 

and 1 T-shaped target in random locations, each of them 14  14 mm. Distractors and 

targets were presented on a 12  12 grid, invisible to participants, covering an area of 240 

 240 mm in the center of the screen. Distractors could be rotated 0, 90, 180 or 270 

degrees. Targets could only be rotated 90 or 270 degrees. Distractors and targets could be 

randomly presented in yellow, red, green or blue, against a grey background. Participants 

entered their responses by pressing keys z and m on a standard computer keyboard. 

 

Procedure and Design 

At the beginning of the experiment, participants were told that they would have to 

perform a visual search task. They were instructed to find a rotated T target among a series 

of distractors and to press key z if the stem of the T pointed to the left and key m if it 

pointed to the right. They were asked to find the target as quickly as possible but without 

making errors. After seeing two examples, they started the training stage. 
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The training stage consisted of 40 blocks, each comprising six trials. In each block 

the target was located in the rich quadrant on three trials and in each of the sparse 

quadrants on the remaining three trials, in random order. The rich quadrant was randomly 

selected for each participant. To reduce fatigue effects, participants could take a brief rest 

after trials 60, 120, and 180. 

Immediately after completing the training stage, participants’ explicit knowledge of 

the distribution of targets was assessed through a ranking test. Participants were told that, 

even though perhaps they had not noticed it, the target tended to appear more frequently in 

one quadrant than in the others. Then they were asked to select which quadrant was most 

likely to contain the target. After entering their response, they selected which was the 

quadrant second most likely to contain the target, and then third most likely. Once they had 

entered these three responses, they were given an opportunity to review and change their 

ranking if they wished. 

 

Results and Discussion 

Training Stage 

Reaction times (RT) from trials with incorrect responses were removed from the 

analyses. Similarly, we removed reaction times shorter than 100 ms or longer than 10,000 

ms, RTs from trials immediately following a resting break, and all RTs that were three 

standard deviations faster or slower than each participant’s mean RT. To reduce random 

noise, the 40 blocks of training were collapsed into 20 epochs, each comprising 2 blocks.  

Figure 1A depicts participants’ RTs as a function of the location of the target (in the rich or 

the sparse region of the search display) and epoch. RTs decreased smoothly over the 

course of the training stage, but the decline was clearly steeper when the target appeared in 

the rich than in the sparse region. A 2 (target location: rich vs. sparse)  20 (epoch: 1-20) 
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repeated-measures analysis of variance (ANOVA) yielded significant effects of location, 

F(1, 31) = 100.72, p < .001, 2
G = .17, and epoch, F(19, 589) = 12.27, p < .001, 2

G = .11, 

as well as a significant interaction, F(19, 589) = 1.77, p = .024, 2
G = .01. 

As mentioned in the introduction, a methodological problem in probabilistic cuing 

experiments is that simply comparing RTs to the target in rich and sparse regions ignores 

the potential contribution of repetition priming (Walthew & Gilchrist, 2006). Responses 

tend to be faster if the target appears in the same region as in the previous trial. In our 

experiment, as in previous ones, repetitions were more likely to happen when the target 

appeared in the rich region, which means that, in principle, the pattern of results observed 

in the previous analyses could be entirely due to repetition priming. To discount this 

possibility, we repeated the analysis removing from the data all trials in which the target 

appeared in the same quadrant as on the previous trial. The dotted lines in Figure 1A 

denote RTs excluding those repetitions. A 2 (target location: rich vs. sparse)  20 (epoch: 

1-20) repeated-measures ANOVA on these reaction times again yielded main effects of 

target location, F(1, 31) = 58.68, p < .001, 2
G = .11, and epoch, F(19, 589) = 8.80, p < 

.001, 2
G = .09. In contrast, the location  epoch interaction failed to reach statistical 

significance, F(19, 589) = 1.39, p = .124, 2
G = .01. 

 

Awareness Test 

Figure 1B shows the results of the awareness test. 16/32 participants ranked the rich 

quadrant first in the awareness test, 8 participants ranked it second, 5 ranked it third, and 

only 3 ranked it in the fourth and last position. This distribution of responses departs 

significantly from chance performance, χ2(3) = 12.25, p = .007. The observed number of 

participants ranking the rich quadrant first is significantly greater than chance, represented 

by the dotted line in Figure 1B, binomial test p = .002. From the 16 participants who did 
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not rank the rich quadrant first, one would expect only one third (5.33) of them to rank it 

second, but 8 of them did. This proportion, however, was not significantly greater than 

chance, binomial p = .126. Similarly, from the 8 participants who did not rank the rich 

quadrant first or second, 5 ranked it first, although this failed to be significantly higher than 

the expected number of 4, binomial p = .363. Even though these two comparisons miss 

statistical significance, the fact that participants who failed to rank the rich quadrant first 

were numerically more likely to rank it second or third than fourth suggests that they were 

not totally unaware of the biased distribution of targets across training trials. 

 

Experiment 2 

Experiment 2 sought to replicate and extend the findings of the previous experiment. 

Although the results together with the meta-analysis strongly imply that probabilistic cuing 

of visual attention is associated with above-chance performance in the awareness test, this 

conclusion is restricted to circumstances in which a substantial degree of learning has 

taken place. In Experiment 1, for example, participants received over 200 search trials in 

which they developed a high degree of search bias, as shown in Figure 1A. Although this 

number of trials is typical of the studies included in the meta-analysis, it is possible that 

search bias develops more rapidly than awareness and that Experiment 1 (and previous 

experiments) have failed to identify the ‘sweet spot’ at which search bias, but not 

awareness, has developed. It is possible that implicit learning is acquired faster than 

explicit knowledge (Bechara, Damasio, Tranel, & Damasio, 1997; Goujon, Didierjean, & 

Poulet, 2014). Although previous research has generally failed to find clear evidence of 

different learning rates (e.g., Konstantinidis & Shanks, 2014; Maia & McClelland, 2004; 

Perruchet & Amorim, 1992), it is important to ask whether the trajectories of learning of 
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search bias and awareness are similar or different. Thus, in Experiment 2 we test awareness 

at different time points during search bias training. 

 The second major contribution is that we introduce a new and alternative method 

for assessing awareness. In Experiment 1 we employed an innovative improvement to the 

standard test (asking participants to rank all quadrants rather than just stating which one 

they believed to be the richest). Here we include a betting test in which on each trial the 

target was hidden from view and participants wagered on its most likely location. 

 

Method 

Participants, Materials, and Apparatus 

Given that we succeeded at detecting awareness in Experiment 1, we planned to test 

a roughly similar number of participants in each of the groups included in Experiment 2. 

One hundred and thirty-four psychology students from Universidad Nacional de Educación 

a Distancia, Madrid (UNED) volunteered to take part in the experiment. Random 

allocation of participants to experimental conditions resulted in 35, 33, 31, and 35 

participants in Groups 1, 2, 3, and 4, respectively. As in Experiment 1, all participants 

completed the experimental task individually in isolated cubicles. Except for the facts that 

all instructions were in Spanish and distractors and targets were located on a 10  10 grid, 

invisible to participants, the search displays, and the experimental program in general, 

were otherwise identical to those of Experiment 1. 

 

Design and Procedure 

As in Experiment 1, immediately after reading the instructions, participants began 

the training stage. The general design of Experiment 2 is summarized in Table 4. As can be 

seen, there are two crucial differences with respect to Experiment 1. Firstly, training was 

divided into four stages, some of them separated by an awareness test. Each training stage 
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consisted of 60 visual search trials, half of them containing the target in the rich quadrant 

(randomly selected for each participant) and the other half containing the target in the other 

(sparse) quadrants. In these trials, participants were asked to find the target as quickly as 

possible using keys z and m to report its orientation. Secondly, the experiment included 

two types of awareness tests, administered at different points during the experimental 

session depending on group assignment. 

At the end of the experiment, all participants completed a single-item quadrant-

guessing test similar to the one used in previous studies of probabilistic cuing. Specifically, 

participants were invited to select which quadrant they thought had contained the target 

most often during the training stage. In addition, after some training stages participants 

completed a 24-trial betting test designed to provide an alternative measure of awareness. 

In each of these trials, participants were presented with a search display identical to the 

ones used during the training stage, except that the T-shaped target was replaced by an 

additional L-shaped distractor. Participants were instructed that their task was to guess 

which quadrant contained the hidden target, using four different keys (T, Y, G, and H) to 

select a quadrant. They did not receive any feedback about the accuracy of their responses, 

but they were told that the program would record whether they provided the correct 

response or not. Groups 1-4 differed only in the number of betting tests they completed 

during the experimental session. The group designation (1, 2, 3, 4) refers to the number of 

betting tests administered during the experiment. Varying the number of tests in this way 

permits us to measure awareness at different points during the development of probability 

cuing, while also measuring any quantitative effect that taking an awareness test has on 

probability cuing. 

 

Results and Discussion 
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Training Stages 

RTs were filtered using the same procedure as in Experiment 1. Figure 2 shows 

participants’ RTs across conditions and epochs (each of them comprising 12 trials, for 

consistency with Figure 1A), separately for each group. As in Experiment 1, RTs 

decreased smoothly over the course of the training stage and this decline was stronger 

when the target appeared in the rich quadrant than when it appeared in any of the sparse 

quadrants. As can be seen in Figure 2, overall RTs for each condition tended to be similar 

across groups, except that, unsurprisingly, RTs became slower in the few trials 

immediately following an awareness test. To reduce the impact of these fluctuations, in the 

following analyses we aggregated trials at the stage (instead of epoch) level. A 4 (group: 1-

4)  2 (target location: rich vs. sparse)  4 (stage: 1-4) mixed ANOVA on RTs yielded 

significant main effects of target location, F(1, 130) = 404.83, p < .001, 2
G = .15, and 

stage, F(3, 390) = 73.54, p < .001, 2
G = .08, and a significant interaction between these 

factors, F(3, 390) = 5.04, p = .002, 2
G = .002. The remaining effects and interactions were 

nonsignificant, all Fs < 1.32. As in Experiment 1, to discount the possibility that these 

effects were due to repetition priming, we ran the same analysis removing from the sample 

all trials in which the target appeared in the same quadrant as in the preceding trial. Again, 

only the main effects of target location, stage and their interaction were statistically 

significant, all ps < .001. 

Taking into account all valid trials, all groups showed significant evidence of 

probabilistic cuing at epoch 5, all ts > 3.27, ps < .003, dz’s > 0.37, except Group 1, t(34) = 

1.72, p = .095, dz = 0.29. At epochs 10, 15, and 20 all groups showed significant evidence 

of cuing, ts > 3.48, ps < .002, dz’s > 0.63. To control for repetition priming, we repeated 

the same analyses excluding trials with repetitions. None of the results changed 

substantially, except that cuing at epoch 5 in Group 2 also became statistically non-
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significant, t(32) = 1.61, p = .117, dz = 0.28. From these analyses we can conclude that 

cuing was robust by the end of all training stages, with the possible exception of epoch 5 in 

Groups 1 and 2. 

 

Awareness Tests 

In this experiment, participants’ awareness was assessed in two different ways: In the 

betting tests interpolated between the training stages (and also at the end) and in the 

traditional quadrant guessing test, conducted only at the end of the experiment (see the 

design summary in Table 4). The results of these two tests are shown in Figure 3. Panel A 

shows the average proportion of times that each participant bet on the rich quadrant. As 

can be seen, this proportion was always numerically above chance, although the 95% 

confidence intervals excluded .25 in only half of the tests. Participants’ performance 

tended to improve over the experiment, but this cannot be solely due to repeated 

experience with the betting task, as participants in Group 1, who performed the task just 

once, showed above chance performance by the end of training (Epoch 20). 

These impressions were confirmed by a comparison of linear mixed-effects models. 

Firstly, we fitted a linear mixed model predicting the proportion of bets to the rich quadrant 

from group, stage and their interaction, adding a random intercept for participants. This 

model did not perform significantly better than an otherwise identical model without the 

group  stage interaction, χ2(1) < 0.01, p = .950. The model with just the two main effects 

of group and stage did not perform better than an identical model with just stage, χ2(1) = 

1.50, p = .220. However, it did perform better than an identical model without stage, χ2(1) 

= 4.21, p = .040. This pattern of results suggests that the proportion of bets to the rich 

quadrant did increase over the course of the experiment, to a similar extent in all groups. 
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Figure 3B shows the proportion of participants who chose the rich quadrant in the 

traditional quadrant guessing test. As can be seen, although individually not all participants 

made the correct choice, at the group level performance is clearly above chance. Binomial 

tests conducted separately for each group showed that the proportion of participants 

selecting the rich quadrant at test was significantly higher than .25 in all cases, largest p = 

.027. 

 

Updated meta-analysis 

Some of the dependent variables gathered in Experiments 1 and 2 are directly 

comparable to ones garnered from studies included in the initial meta-analysis reported in 

the present article. For instance, the proportion of participants ranking the rich quadrant 

first in Experiment 1 can be compared to the equivalent proportion of participants selecting 

the rich quadrant in experiments using the traditional single-trial quadrant guessing test. 

Similarly, the final test included at the end of Experiment 2 is also analogous to the 

traditional test. Given these similarities, it is possible to update the results of the meta-

analysis with the data collected in the present experiments. Figure 4 shows the results of 

the present experiments, along with a summary of the initial meta-analysis, a meta-analysis 

of the present Experiments 1 and 2, and a comprehensive meta-analysis including all the 

effect sizes of the original meta-analysis together with those of Experiments 1 and 2. 

While the number of participants selecting the rich quadrant was somewhat larger in 

Groups 3 and 4 of Experiment 2, the meta-analysis of the present studies reveals very little 

evidence of heterogeneity, Q(4) = 473, p = .316, I2 = 14.71%. In other words, the amount 

of variation seen across the different groups in Experiments 1 and 2 is not higher than 

expected by mere chance. In contrast, the updated overall meta-analysis reveals a 
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substantial amount of heterogeneity, Q(48) = 155.13, p < .001, I2 = 70.82%, although this 

result is barely different from the original meta-analysis excluding the present experiments. 

We also repeated the moderator analyses reported in Table 2 with the updated set of 

effect sizes. The results changed very little, except that the presence or absence of an 

unbiased testing stage now did reliably moderate the results, Q(1) = 4.11, p = .042: Studies 

without a testing stage yielded larger effect sizes, h = 0.52, 95% CI [0.32, 0.72], than those 

with one, h = 0.26, 95% CI [0.11, 0.41]. This confirms our earlier hypothesis that an 

unbiased testing stage inserted between the initial probabilistic cuing training stage and the 

awareness test can dilute the attentional biases learned during the former and hence lead to 

underestimation of awareness. For the rest of the moderators listed in Table 2, the results 

were virtually identical after including the present experiments. 

 

Relation between Visual Search and Awareness in Experiments 1 and 2 

As explained previously, some studies have concluded that probabilistic cuing is 

unconscious because the size of the effect tends to be similar for participants who show 

some signs of awareness and those who do not (Jiang, Sha et al., 2018; Salovich, 

Remington, & Jiang, 2018; Twedell, Koutstaal, & Jiang, 2017). This correlational 

approach to assessing the unconscious character of cognitive processes is also quite 

common in other areas of research (e.g., Colagiuri & Livesey, 2016). We therefore now 

ask whether there was any correlation between participants’ performance in the awareness 

test and the size of the probability cueing effect in Experiments 1 and 2. 

For Experiment 1, we only included RTs from the second half of the experiment (to 

ensure that RTs reflect asymptotic performance) and trials without repetitions (to ensure 

that they are not biased by repetition priming). Figure 5A shows the size of the cuing effect 

observed for each participant (i.e., average RTs to targets in the sparse quadrants minus 
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average RTs to targets in the rich quadrant), as a function of the rank that each participant 

gave to the rich quadrant. Positive scores are indicative of probabilistic cuing. In principle, 

one would expect to find the largest probabilistic cuing effect among participants who 

ranked the rich quadrant first. However, if anything we found a small and non-significant 

trend in the opposite direction, Spearman’s rho = .08, p = .652. 

For Experiment 2, we explored the correlation between cuing and awareness 

considering only trials without repetitions (again, to eliminate repetition priming effects) 

from Stage 4. As shown in Figure 5B, participants who betted more frequently on the rich 

quadrant tended to show somewhat larger probabilistic cuing effects, although the relation 

is far from reaching statistical significance, r = .04, p = .631. A multiple regression of 

cuing on group and proportion of bets failed to find a significant main effect of group (p = 

.217) or a significant group  proportion of bets interaction (p = .100). Therefore, although 

participants showed clear evidence of both cuing and awareness at the end of the 

experiment, there was no obvious correlation between them in any experimental group. 

As explained previously, the fact that measures of learning and awareness fail to 

correlate with each other, even in large samples, is not completely unexpected. Even if 

there is a positive correlation between learning and awareness at the latent level, the 

observed correlation will necessarily be attenuated if their measures are unreliable. Is there 

any reason to suspect that the present correlations are attenuated by measurement error? In 

an attempt to answer this question, we first estimated the split-half reliability of 

probabilistic cuing by computing, for each participant, a separate measure of probabilistic 

cuing (RTs in sparse quadrants minus RTs in the rich quadrant) from odd and even trials, 

after excluding invalid trials, quadrant repetitions, and trials from the first half of the 

training stage. The correlations between those two measures across participants were .30 

and .33 for Experiments 1 and 2, respectively, with a meta-analytic average of .32. 
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Applying the Spearman-Brown correction to this value, the split-half reliability of 

probabilistic cuing can be estimated as .49. This value is quite close to the reliability of 

other implicit learning tasks, such as the serial reaction time task (Kaufman et al., 2010; 

Siegelman & Frost, 2015). 

We cannot compute a similar split-half reliability index for the measure of awareness 

employed in Experiment 1, because the quadrant ranking test involved a single trial. 

However, it is possible to estimate the split-half reliability of the betting test used in 

Experiment 2. As in the case of visual search times during the training stage, we divided 

the 24 trials of the last betting test into two identical data sets based on an odd/even trial 

split and then correlated the proportion of bets to the rich quadrant in both halves. The 

results were remarkably similar to those of the cuing effect: We obtained a split-half 

correlation of .34, which became .50 after applying the Spearman-Brown correction. 

Again, this value is close to the reliability estimate of the awareness test used in a related 

implicit learning paradigm (Smyth & Shanks, 2008). 

Given these reliabilities, which would be regarded as ‘unacceptable’ in most 

psychometric contexts (Cicchetti & Sparrow, 1981), we can conclude that the observed 

correlation between probabilistic cuing and awareness will be roughly half the size (i.e., 

attenuated by a factor of √. 49·√. 50 = .49) of the true correlation between their 

corresponding constructs at the latent level. In practical terms, this means that to detect a 

medium-size correlation of r = .30 at the latent level (.15 at the observed level) with 90% 

power, a sample of at least 462 participants would be needed. Detecting a smaller, but yet 

meaningful, correlation of .20 at the latent level would require more than 1,000 

participants. 

To make things worse, there are good reasons to suspect that the reliability of the 

betting test we used in Experiment 2 is substantially higher than the measures of awareness 
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used in previous research, usually comprising a single quadrant-guessing test. In a way, we 

can see each of the trials in our betting test as an independent single-trial quadrant-

guessing test. Following this logic, if the reliability of 24-trial betting test is .50, using 

Spearman-Brown’s prediction formula, we can estimate that the reliability of a test 

comprising just one trial must be .04. 

Converging evidence for this pessimistic conclusion comes from a recent reanalysis 

of probabilistic cuing experiments conducted by Jiang, Sha et al. (2018). Before being 

asked to guess the rich quadrant, the participants tested in these experiments were also 

asked whether they thought that the target had appeared in some locations 

disproportionally often. With the data reported in the reanalysis, it is possibly to 

reconstruct the 2 × 2 contingency matrix of responses to both questions. The relationship 

between the two responses, both of which are assumed to be measures of awareness, is not 

statistically significant, χ2(1) = 2.70, p = .100, and corresponds to a tetrachoric correlation 

of .15. To the extent that both questions are intended to measure the same construct (i.e., 

awareness of the target distribution) these figures suggest that their reliability and validity 

is minimal. 

Even assuming that .04 and .15 are gross underestimations of the reliability of the 

traditional quadrant-guessing test, it is clear that any plausible estimate falls very far short 

of any psychometric standard for correlational research, however lenient. Detecting a 

significant correlation between learning and awareness with these dependent measures is 

simply impossible, unless thousands of participants are tested. It is worth adding that the 

alternative approach of testing for probabilistic cuing in the subset of participants showing 

no signs of awareness is bound to be misleading (Shanks, 2017b). Given the low 

reliabilities of awareness tests, many participants who possess some explicit knowledge 
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will necessarily be misclassified has being unaware and, consequently, the true level of 

awareness in the subset of participants will be underestimated. 

 

Modeling Single- and Dual-Process Accounts of Probabilistic Cuing 

The analysis of Experiments 1 and 2 revealed that, overall, participants’ performance 

tended to be systematically above chance on all measures of awareness, although this trend 

did not reach statistical significance in all cases. In contrast, we failed to detect a 

significant correlation between performance and awareness, an outcome we attribute at 

least in part to the low reliability of our dependent measures. To further explore whether 

performance in both tasks might be driven by a common underlying representation, we 

developed several competing models of probabilistic cuing, one assuming a single memory 

representation for cuing and awareness and two assuming different representations for the 

two tasks, and compared their relative fits to the data gathered in Experiment 2. 

Model 1 assumes that the proportion of bets in the awareness test and RTs in the 

visual search task are driven by a common memory trace. In this model, parameter R 

represents the weight or strength of the rich quadrant, which affects behaviour in both the 

awareness tests and in search times. This parameter can be regarded as a latent variable 

representing participants’ perception of the tendency for targets to appear in the rich 

quadrant. In our implementation, R can take values between 0 and 1. Each sparse 

quadrant also has a weight denoted by S, which is computed as (1-R)/3, so that the sum 

of the weights of all four quadrants is 1. Participants’ performance in the betting task is 

assumed to be a direct translation of these weights, so that on any given trial, the 

probability that they will bet on the rich quadrant is exactly R while the probability that 

they will bet on any of the three sparse quadrants is 3S. 
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Participants’ search times in each quadrant during the training stages are assumed to 

be inversely related to the weights. Specifically, RTs are modelled as an ex-Gaussian 

distribution, which has shown a good fit to visual search times in previous research (e.g., 

Palmer, Horowitz, Torralba, & Wolfe, 2011). This distribution is the convolution of a 

normal and an exponential distribution and has three parameters: the mean of the normal 

component (), the standard deviation of the normal component (), and a third parameter 

determining the mean and standard deviation of the exponential component (). Model 1 

assumes that RTs are sampled from different ex-Gaussian distributions when the target is 

presented in the rich quadrant and when it is presented in any of the sparse quadrants. 

Specifically, parameters  and  are constrained to adopt equal values in all conditions, but 

 adopts different values depending on the location of the target and on repetition priming. 

For trials in which the target is in the rich quadrant R is computed as a+b/R, while for 

trials in which the target is in the sparse quadrants S is computed as a+b/S. In other 

words,  is a linear transformation of the inverse of each quadrant’s weight, with intercept 

a and slope b, so that RTs will be faster for quadrants with larger weights. Importantly, 

parameters a and b are fixed across all trials, so that differences in RTs across conditions 

can only be attributed to differences in R and S. Additionally, to model repetition 

priming, a constant value p is subtracted from R or S whenever the target is in the same 

quadrant as on the previous trial. Therefore, Model 1 has six free parameters to be 

estimated from the empirical data: R, a, b, p, , . 

Model 2A is identical to Model 1, except that R is assumed to determine only RTs 

during the visual search task. Performance in the awareness test is assumed to be 

completely random. That is to say, on any given trial, the probability that participants will 

bet on the rich quadrant is assumed to be exactly .25, regardless of the specific value of R. 

This assumption is akin to the expectation that participants’ performance in the awareness 
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test will tend to be at chance, even if search times are faster when the target is located in 

the rich quadrant. Model 2A thus has the same number of free parameters as Model 1. 

Unlike Model 2A, Model 2B assumes that performance in the awareness test is 

driven by an independent parameter, R, with values from 0 to 1, which determines the 

propensity of each participant to bet on the rich quadrant and which is completely 

independent from R. The probability of betting on any of the sparse quadrants is 3S, 

where S is computed as (1-R)/3. Therefore, Model 2B has seven free parameters: the 

same parameters as Models 1 and 2A plus the additional parameter R. Model 1 can be 

seen as a special case of Model 2B in which R = R, and Model 2A can be seen as a 

special case of Model 2B in which R = .25. 

We fitted the three models independently to each participant using individual-trial 

data from stages 2-4, including both training stages and betting tests. RTs from training 

stages were trimmed following exactly the same procedure as in Experiments 1 and 2. This 

resulted in a somewhat different number of valid trials for each participant. Additionally, 

not all groups were exposed to the same number of betting tests. Consequently, the number 

of valid observations from each participant ranged from 190 to 251, with an average of 

227.07 (SD = 19.83). In total we fitted 30,428 data points. We optimized the fit of each 

model using the Nelder-Mead algorithm to find the combination of parameter values with 

the lowest negative log likelihood. As starting values for all models, we set R, a and p to 

.25, 0, and 0, respectively. To select suitable starting values for the remaining parameters, 

we first fitted an ex-Gaussian distribution to all the RTs using the dexgauss function of the 

‘retimes’ R package. The results were used to inform the selection of starting values for b, 

, and . The empirical probability of betting on the rich quadrant was used as the starting 

value for R in Model 2B. 



Probabilistic cuing of visual attention 37 

Table 5 shows the mean best-fitting values for all models and Table 6 shows the 

correspondence between observed RTs in the visual search task and the predictions made 

by each model. As can be seen all models predicted RT data with reasonable accuracy, 

except in the case when the target was located in the same sparse quadrant as in the 

previous trial. This is a normal consequence of the fact that this condition contributed 

fewer data points to the model fit. Table 6 also shows the correlation between performance 

in the awareness test and the predictions of Models 1 and 2B. (This correlation is irrelevant 

for Model 2A as it predicts that the proportion of bets to the rich quadrant is .25.) In this 

case, the fit of Model 2B is perfect, while Model 1 achieves only a modest .39 correlation 

between observed and expected data. Again, this discrepancy is logical, given that Model 

2B is saturated because its predictions depend on parameter R, which only needs to fit the 

awareness data, while in Model 1 these predictions depend on parameter R, which is 

constrained to fit both awareness data and RTs. 

To compare the goodness of fit of each model we computed the Akaike Information 

Criterion (AIC) for each participant (Lewandowsky & Farrell, 2010). Table 6 shows the 

sum of AICs across participants for each model and how many individual participants were 

best fitted by each model. As can be seen, at the aggregate level, Model 1 provides the best 

fit to the empirical data and also yields the best fit for most individual participants, 

although roughly 55% of them were better fit by Models 2A or 2B. Model recovery 

analyses, presented in Appendix B, show that our model fitting procedure described in the 

preceding analyses usually retrieves the true underlying model, except, logically, when the 

predictions of Model 2B overlap with those of Model 1 (i.e., when R = R) or Model 2A 

(i.e., when R = .25). 

Perhaps most interestingly, Model 1 not only fits reasonably well participants’ 

performance in the visual search task and in the awareness test, it also predicts extremely 
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low correlations between these dependent variables, even though, at the latent level, both 

RTs and bets are assumed to be driven by a common latent variable, R (and by no other 

learning-dependent factors). Figure 5D shows an example of data generated from Model 1 

using the best-fitting parameters for each participant. To mirror the empirical data depicted 

in Figure 5B, where each data point was computed on the basis of 60 visual search trials 

(ignoring the removal of invalid RTs and repeated trials) and 24 betting-test trials, we 

simulated for each participant 30 visual search trials with the target in the rich quadrant, 30 

visual search trials with the target in the sparse quadrants, and 24 betting trials in the 

awareness test. As can be seen, although the model does predict a positive correlation 

between performance and awareness, this correlation is rather weak. The bell-shaped curve 

in Figure 5F summarizes the distribution of correlation coefficients obtained across 10,000 

iterated simulations like the one represented in Figure 5D. On average, these simulations 

produce a correlation of .12 between probabilistic cuing and the proportion of bets to the 

rich quadrant. The diamond shape represents the 95% CI of the observed correlation in the 

empirical data depicted in Figure 5B. Although the observed correlation is clearly lower 

than the correlation predicted by the model, the two distributions are by no means 

inconsistent with each other, and 85.91 % of simulated correlations fall within the 95% CI 

of the observed data. 

Given that Experiment 1 included an awareness test with just one trial, it is not 

feasible to fit Model 1 to participants’ data, as the resulting best-fitting parameters would 

be driven almost exclusively by the (hundreds of) RTs collected during the visual search 

task. However, it is possible to use the model fits of Experiment 2 to simulate how those 

participants would have performed in an awareness test like the one conducted in 

Experiment 1. In the following simulations, we assumed that the probability of ranking the 

rich quadrant first in the awareness test would be given by R. Among participants who 
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did not rank the rich quadrant first, the probability of ranking it second would be equal to 

R divided by the sum of the weights of all the quadrants that remained unselected, and so 

on for the third and fourth ranking positions. In this case, we simulated 60 rich quadrant 

trials and 60 sparse quadrant trials, to equate the number of trials included in the empirical 

data shown in Figure 5A. Figure 5C shows the results of a simulation based on this 

approach. As expected, the model predicts a (negative) correlation between learning and 

awareness, such that participants who tend to rank the quadrant first show, on average, 

larger cuing effects. However, the correlations are remarkably small. Figure 5E show the 

distribution of rho correlation coefficients obtained across 10,000 iterations. Again, these 

results are not inconsistent with the empirical results of Experiment 1, summarized by the 

diamond-shaped figure. In this case 99.22% of simulated correlations fall within the 95% 

CI of the observed data. 

 

General Discussion 

The idea that implicit processes permeate much of perception and cognition has 

become a central plank of contemporary psychology (Greenwald & Banaji, 2017; Hassin, 

2013). Yet much of the evidence supporting this viewpoint is controversial (Shanks, 

2017a). One of the reasons for this state of affairs is that some of the most frequent 

approaches to test the unconscious character of cognitive processes are methodologically 

problematic, particularly when strong inferences are made on the basis of null results 

obtained with small samples and unreliable measures. This approach is extremely popular 

in many areas of implicit cognition research, including probabilistic cuing of visual 

attention. In fact, meta-analytic integration of previous research in this domain shows that 

participants do perform significantly above chance in the standard region-guessing test 

devised to measure awareness, although the size of this effect is relatively small and hence 
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unlikely to be detected reliably with a small sample. Our own Experiments 1 and 2, which 

partially replicate previous research, confirm this conclusion. We also found converging 

evidence from alternative measures of awareness, such as the ranking test in Experiment 1 

and the betting test in Experiment 2. 

Consistent with previous studies, we also failed to detect a significant correlation 

between the size of probabilistic cuing and participants’ measured awareness. However, 

we found that these dependent measures show rather low split-half reliabilities, even 

though each betting test in Experiment 2 comprised a much larger number of trials than 

any previous study (24 trials, as opposed to the traditional single-trial quadrant-guessing 

test). Given these reliabilities, it is unsurprising that previous research has failed to detect 

correlation between learning and awareness. Furthermore, we showed that a simple model 

in which probabilistic cuing and performance in the awareness test are based on a single 

latent variable also predicts remarkably small correlations between learning and awareness, 

albeit different from zero. Both lines of thought converge to the same conclusion: It is 

naïve to expect a significant correlation between these dependent variables, unless 

thousands of participants are tested. 

The fact that we question the conclusions drawn on the basis of these approaches 

does not mean that we are necessarily equating probability cuing with explicit or goal-

driven attention. In fact, some results of the present study are consistent with the idea that 

unconsious processes may contribute to probabilistic cuing to some extent in some 

participants. For instance, our modeling suggests that Models 2A and 2B, which assume 

independent memory traces for search times and awareness, do provide a better fit for 

74/134 participants. In other words, for many participants there was a dissociation between 

awareness and probabilistic cuing that may indicate the presence of a truly unconscious 

learning effect. The fact that the predictions of Model 1 did not correlate perfectly with 
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participants’ performance also dovetails with this conclusion. Therefore, although our 

analyses suggest that the implicit character of probabilistic cuing may have been 

exaggerated in previous research, we do not reject categorically the possibility that 

probabilistic cuing can be unconscius for some participants. Instead, what we want to 

contend is that the dominant approach to testing the role of awareness in probablistic 

cuing, based on null results in underpowered tests, is methologically flawed and 

misleading, and should be abandoned in favor of alternative methods. Our own modeling 

approach can be considered a first step towards the development of suitable methods for 

the categorization of aware and unaware participants (see also Berry, Shanks, 

Speekenbrink, & Henson, 2012; Rouder, Morey, Speckman, & Pratte, 2007). 

 

Recommendations for future research 

There are some obvious solutions to the shortcomings of current research practices in 

implicit learning research, of which probabilistic cuing is just an example. In the present 

article we have advocated the use of a modeling approach, but researchers can consider 

alternative and more easily-implemented solutions. For instance, if they wish to show that 

participants are truly at chance on some dependent measure, they can employ a Bayes 

Factor analysis, which unlike NHST can be used to quantify evidence in favor of the null 

hypothesis (Dienes, 2011, 2015; Rouder et al., 2009; Sand & Nilsson, 2016). Even without 

stepping out of the NHST framework, much can be gained by simply calibrating more 

carefully the significance threshold according to the relative risks of making Type I or 

Type II errors (Lakens et al., 2018). Setting   to .05 and  to .20 may make sense when 

Type I errors are more likely or more important than Type II errors. But for the particular 

case of researchers wishing to conclude that some dependent variable, such as awareness, 
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is at chance, it makes more sense to reverse these values, setting  to .20 and  to .05. To 

make this strategy even more effective, it would be advisable to use one-tailed tests. 

Interestingly, if anything, current research practices in implicit learning research go 

in the opposite direction. For instance, in their famous study on unconscious instrumental 

learning, Pessiglione, Petrovich, Daunizeau, Palminteri, Dolan, and Frith (2008) used one-

tailed tests for all the analyses assessing learning, but two-tailed tests for all the analyses 

assessing awareness. This strategy increases power to detect learning and decreases power 

to detect awareness. Finding “unconscious” learning is hardly surprising in these 

conditions. Perhaps more interestingly, researchers can also test awareness using 

equivalence tests (Lakens, 2017). These tests require researchers to define what is the 

smallest effect size that they would consider of practical significance. If the effect size 

(e.g., for awareness) they find is significantly smaller than this value and non-significantly 

different from zero, then it is concluded that, for pragmatic purposes, the effect can be 

considered equivalent to zero. Interestingly this approach is helpful not only to assess 

whether performance in the awareness test is at chance; It can also be used to assess 

whether the correlation between learning and awareness is actually indistinguishable from 

zero given some basic information about the reliabilities of both dependent variables. If, 

for instance, we consider a priori that any correlation below .10 would be of no practical 

significance and at the same time we also know that the reliability of our dependent 

variables is around .50, then we should choose .05, instead of .10, as the smallest effect 

size of interest. 

A further simple but important recommendation is that researchers should endeavor 

to formally measure the reliability of their explicit and implicit measures, either by using 

test-retest designs or (as done here) the split-half method. Without reliability estimates, 

interpretation of correlation coefficients is fraught with danger. 
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To sum up, although these approaches are relatively unconventional, there are simple 

statistical methods, both within and beyond the traditional NHST framework, that can be 

used to improve the measurement and analysis of awareness in implicit learning studies 

and ameliorate the risk of Type II errors. 

 

Context of the Research 

The meta-analysis and empirical studies reported in the present article are part of a 

larger research program aimed at identifying methodological shortcomings in implicit 

cognition research and suggesting alternative approaches. In previous articles we have 

highlighted how widespread practices, such as inferring the absence of awareness from 

statistically null results in explicit memory tests, can lead to a largely misleading picture of 

the role of unconscious processes in human cognition (Vadillo et al., 2016). Our research 

also addresses how measurement error can contribute to these problems by making 

awareness even more difficult to detect, diluting the observed correlations between 

measures of learning and awareness, and giving rise to new methodological problems such 

as regression to the mean (Shanks, 2017b). The fact that implicit learning measures tend to 

be very unreliable also questions the significance of alleged null correlations between these 

measures and problems in language and reading acquisition (West et al., 2018). In future 

studies, we plan to offer specific guidelines to overcome these and other methodological 

problems in implicit cognition research. 
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Table 1. List of effect sizes and study characteristics 

Study code Nvalid Ncorrect # Regions Test stage? Learning? Setting # Guess h v 

DA10.1 12 10 2 No Yes Computer All 0.73 0.08 

SHG10.2 2 2 2 No Yes Natural Subset 1.57 0.50 

SHG10.5 8 7 2 No Yes Natural Subset 0.85 0.13 

USVA10.1A 7 2 4 No Yes Computer Subset 0.08 0.14 

USVA10.1B 15 1 4 No Yes Computer Subset -0.52 0.07 

USVA10.1C 8 2 4 No Yes Computer Subset 0.00 0.13 

USVA10.2 20 12 4 No Yes Computer All 0.72 0.05 

USVA10.3 16 11 4 No Yes Computer All 0.91 0.06 

JCES13.asd 14 4 4 Yes No Computer All 0.08 0.07 

JCES13.ctrl 15 6 4 Yes No Computer All 0.32 0.07 

JS13.1 24 7 4 Yes Yes Computer All 0.09 0.04 

JS13.2 12 2 4 Yes Yes Computer All -0.21 0.08 

JS13.3 15 5 4 Yes Yes Computer All 0.18 0.07 

JSC13.3 16 3 4 Yes No Computer All -0.15 0.06 

JSR13.1 6 3 4 Yes Yes Computer Subset 0.52 0.17 

JSRH13.1 1 1 4 Yes Yes Computer Subset 2.09 1.00 

JSRH13.2 3 3 4 Yes Yes Computer Subset 2.09 0.33 

JSRH13.3 5 2 4 Yes Yes Computer Subset 0.32 0.20 

JSRH13.4 8 4 4 Yes Yes Computer All 0.52 0.13 

JS14.4A 16 3 4 Yes Yes Computer All -0.15 0.06 

JS14.4B 16 3 4 Yes Yes Computer All -0.15 0.06 
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JSS14.1 7 1 4 Yes Yes Computer All -0.27 0.14 

JSS14.2 13 1 4 Yes Yes Computer All -0.49 0.08 

JWS14.1 12 3 4 Yes Yes Computer All 0.00 0.08 

JWSM14.1 16 11 4 No Yes Natural All 0.91 0.06 

JWSM14.2 16 14 4 No Yes Natural All 1.37 0.06 

JWSM14.3 16 5 4 No Yes Natural All 0.14 0.06 

SG14.1 12 6 2 No Yes Computer All 0.00 0.08 

JSR15.1A 16 6 4 Yes Yes Computer All 0.27 0.06 

JSR15.1B 16 6 4 Yes Yes Computer All 0.27 0.06 

JSWC15.1fs 48 13 4 Yes No Computer All 0.05 0.02 

JW15.1 15 10 4 Yes No Computer All 0.86 0.07 

JW15.3 16 3 4 No Yes Computer All -0.15 0.06 

JW15.4 16 6 4 Yes Yes Computer All 0.27 0.06 

WJ15.1 18 5 4 No Yes Computer All 0.06 0.06 

WLJ15 16 13 4 Yes Yes Natural All 1.10 0.06 

JKT16.1y 16 5 4 Yes Yes Computer All 0.14 0.06 

JKT16.1o 16 6 4 Yes Yes Computer All 0.27 0.06 

JKT16.2y 24 16 4 Yes Yes Computer All 0.86 0.04 

JKT16.2o 24 8 4 Yes Yes Computer All 0.18 0.04 

ATRJ17.3 48 22 4 Yes Yes Computer All 0.44 0.02 

TKJ17.y 24 15 4 No Yes Computer All 0.78 0.04 

TKJ17.o 24 17 4 No Yes Computer All 0.95 0.04 

SRJ17 40 15 4 Yes Yes Computer All 0.27 0.03 
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Note: In the leftmost column studies are coded according to the first letters of the names of the authors, followed by the year of publication. The 

numbers or characters that follow the period denote the experiment number or condition name. Nvalid refers to how many participants were 

invited to guess which region of the display contained the target most frequently. Ncorrect refers to how many of them gave the correct response. # 

Regions refers to the number of different regions into which the search display was divided (2 for search displays divided into two halves or 4 

for search displays divided into quadrants). Test stage? codes whether the experiment included an unbiased testing stage before the awareness 

test. Learning? codes whether there was clear (i.e., statistically significant) evidence of learning in the stage immediately preceding the 

awareness test. Setting denotes whether participants searched for the target on a computer display (or a similar device) or in a natural large-scale 

setting (e.g., a room or a park). # Guess codes whether all participants were invited to guess which region contained the target most frequently or 

only some (usually depending on their answer to a previous question). Finally, h and v are the effect size and variance computed for the meta-

analytic synthesis.  
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Table 2. Results of moderation analyses 

Moderator / Sub-group h LL UL z p k Q df p 

Unbiased test stage before the awareness test       2.37 1 .124 

Without test stage*** 0.50 0.22 0.77 3.56 <.001 16    

With test stage*** 0.26 0.11 0.41 3.41 <.001 28    

Number of regions in the search display       1.12 1 .290 

Two* 0.63 0.09 1.17 2.31 .021 4    

Four*** 0.33 0.18 0.48 4.33 <.001 40    

Evidence of learning before the awareness test       0.44 1 .506 

No 0.22 -0.11 0.54 1.30 .193 5    

Yes*** 0.37 0.21 0.53 4.61 <.001 39    

Experimental setting***       11.37 1 <.001 

Computer*** 0.26 0.13 0.40 3.88 <.001 38    

Large-scale setting*** 0.94 0.53 1.35 4.48 <.001 6    

Number of participants guessing       0.45 1 .503 

All*** 0.33 0.19 0.48 4.46 <.001 35    

Subset* 0.59 0.03 1.15 2.07 .038 9    

Note: h = effect size. LL = lower limit of the 95% CI; UL = upper limit of the 95% CI; z = z-score associated with the h value in the same row; p 

= p-value associated with the z-score in the same row; k = number of effect sizes contributing to g in the same row; Q = result of the Q-test for 

moderation; df = degrees of freedom of the Q-test for moderation; p = p-value of the Q-test for moderation. * p < .05, ** p < .01, *** p < .001 
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Table 3. Relationship between moderators 

 

Number of regions 

in the search 

display 

Evidence of 

learning before the 

awareness test 

Experimental 

setting 

Number of 

participants 

guessing 

 χ2 p χ2 p χ2 p χ2 p 

Unbiased test stage before the awareness test 4.97 .026 1.69 .193 4.48 .034 0.91 .340 

Number of regions in the search display -  < 0.01 .999 2.13 .145 0.79 .375 

Evidence of learning before the awareness test -  -  0.06 .801 0.38 538 

Experimental setting -  -  -  0.09 .767 

Number of participants guessing -  -  -  -  

Note: All χ2 tests for independence had one degree of freedom. Bold characters denote statistically significant results at α = .05. 
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Table 4. Design summary of Experiment 2 

Group Stage 1 Stage 2 Stage 3 Stage 4 Final Test 

1 Training - Training - Training - Training Betting test Guessing Test 

2 Training - Training - Training Betting test Training Betting test Guessing Test 

3 Training - Training Betting test Training Betting test Training Betting test Guessing Test 

4 Training Betting test Training Betting test Training Betting test Training Betting test Guessing Test 
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Table 5. Best fitting parameters to data from Experiment 2 

 R R a b p   

Model 1 
.28 

(.05) 
- 

-129.15 

(1,232.61) 

222.01 

(315.82) 

78.19 

(72.28) 

105.23 

(58.31) 

493.88 

(153.40) 

Model 2A 
.29 

(.09) 
- 

-8.44 

(324.72) 

191.59 

(89.25) 

81.05 

(79.27) 

105.80 

(63.99) 

494.22 

(155.90) 

Model 2B 
.30 

(.11) 

.29 

(.10) 

6.61 

(353.88) 

188.37 

(95.88) 

75.43 

(69.68) 

110.71 

(59.49) 

492.56 

(164.23) 

Note: Mean (and standard deviation) of best fitting parameters for Models 1, 2A, and 2B across participants. 
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Table 6. Performance of Models 1, 2A, and 2B 

 Correlation between predicted and observed data   

 
RT rich, 

repetition 

RT rich, 

no repetition 

RT sparse, 

repetition 

RT sparse, 

no repetition 

Proportion of 

bets 
AIC Nbest 

Model 1 .95 .95 .89 .98 .39 352,056.00 60 

Model 2A .95 .95 .89 .98 - 352,175.40 47 

Model 2B .94 .94 .87 .98 1.00 352,267.30 27 

Note: Correlation between observed data and model predictions across participants. The first four columns report the correlation between each 

participant’s mean RT in four conditions and the mean RT predicted for each of those participants by Models 1, 2A, and 2B with best fitting 

parameters. The fifth column reports the correlation between the proportion of bets to the rich quadrant made by each participant and the 

predictions made by each model with best fitting parameters. AIC denotes the sum of AICs across participants. Nbest denotes the number of 

participants with lower AICs for that model than for the alternative models. Bold characters denote the lowest AICs and highest Nbest. 
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Figure Captions 

 

Figure 1. Results of Experiment 1. Panel A depicts reaction times across Epochs in the 

training stage, separately for trials in which the target appeared in the rich and sparse 

quadrants. The dotted lines denote reaction times excluding inter-trial repetitions of target 

quadrant. Panel B represents the number of participants ranking the rich quadrant first, 

second, third and fourth in the awareness test. 

 

Figure 2. Results of Experiment 2: Probabilistic cuing. Each panel presents reaction times 

across Epochs in the training stage, separately for each experimental condition. The dotted 

lines denote reaction times excluding inter-trial repetitions of target quadrant. 

 

Figure 3. Results of Experiment 2: Awareness tests. Panel A depicts the average proportion 

of bets to the rich quadrant in the betting tests, separately for each group and stage. Panel B 

shows the proportion of participants selecting the rich quadrant in the final awareness test. 

All error bars denote 95% CIs. 

 

Figure 4. Updated meta-analysis. The top row reports the meta-analytic estimate and 95% 

confidence interval of the initial meta-analysis. The following rows denote the effect sizes 

and confidence intervals of awareness in the present series of experiments. The final rows 

represent the meta-analysis of the current studies and the combination of the present 

studies and the initial meta-analysis. 

 

Figure 5. Correlation between learning and awareness. Panels A and B show the 

correlation between probabilistic cuing and performance in the awareness test in 

Experiments 1 and 2, respectively. Panels C and D show two simulations of the 

correlations predicted by Model 1 for Experiments 1 and 2, respectively. The bell-shaped 

curve in Panels E and F shows the distribution of correlations predicted by Model 1 for 

Experiments 1 and 2 over 10,000 iterations. The diamond denotes the mean and 95% CI of 

the correlation observed in the empirical data. 
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Appendix A 

Characteristics of Excluded Studies and Reasons for Exclusion  

 

Table A1. Excluded studies, in chronological order 

 

Study Reason for exclusion 

Shaw & Shaw (1977) Participants were explicitly informed about the probabilities of the 

target appearing in each region (Criterion 3) and there was no 

awareness test (Criterion 2). 

Shaw (1978) Participants were explicitly informed about the probabilities of the 

target appearing in each region (Criterion 3) and there was no 

awareness test (Criterion 2). 

Rabitt, Cumming, & Vyas 

(1979) 

Not a probabilistic cuing task (Criterion 1). 

Müller & Findlay (1987) On every trial, an arrow was presented to indicate the likely target 

position (Criterion 3) and there was no awareness test (Criterion 

2). 

Miller (1988) No awareness test (Criterion 2). 

Hoffmann & Kunde (1999) Awareness was assessed with an unstructured interview (Criterion 

2). 

Geng & Behrmann (2002) Participants were asked whether the target was equally likely to 

appear in all regions, but they were not asked to guess what was 

the rich region (Criterion 2). 

Reder, Weber, Shang, & 

Vanyukov (2003) 

Not a probabilistic cuing task (Criterion 1). Although the study 

included an awareness test, little information is reported (Criterion 

2). 

Geng & Behrmann (2005) Participants were asked whether they had realised that one 

location was more likely to contain the target than the others, but 

they were not asked to guess what was the rich region (Criterion 

2). 

Walthew & Gilchrist (2006) No awareness test (Criterion 2). 

Beck, Angelone, Levin, 

Peterson, & Varakin (2008) 

Experiments 1-3 and 5 do not use a probabilistic cuing task 

(Criterion 1). In Experiment 4 (and in the implicit condition of 

Experiment 6) participants rated regions instead of selecting one 

(Criterion 2). Beck (personal communication, May 27th 2017) 

reports that most participants gave equal ratings to all regions, 

possibly for consistency with Question 2 of the awareness test 

(“Do you think that any of the changes were more likely to occur 

in certain locations?”), where most participants replied “No”. The 

explicit condition of Experiment 6 has the same shortcomings and, 
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additionally, participants receive explicit information about the 

location of targets (Criterion 3). 

Fecteau, Korjoukov, & 

Roelfsema (2009) 

Details of the awareness test are missing (Criterion 2). 

Druker & Anderson (2010), 

Experiment 2 

Details of the awareness test are missing (Criterion 2). Anderson 

(personal communication, May 26th, 2017) has confirmed that 

participants in this experiment were not asked to select a region. 

Liu, Chiau, Tseng, Hung, 

Tzeng, Muggleton, & Juan 

(2010) 

Experiment 1 is not a probabilistic cuing task (Criterion 1). 

Experiments 2 and 3 apparently included an awareness test, but 

the authors did not report detailed information about the procedure 

or results (Criterion 2). 

Smith, Hood, & Gilchrist 

(2010), Experiments 1, 3, 4, 6 

There was no evidence of cuing in Experiments 1, 3, and 4 

(Criterion 4). Experiment 6 is not a probabilistic cuing task 

(Criterion 1), given that colors (instead of sides or quadrants) are 

probabilistically related to the target. 

Pellicano, Smith, Cristino, 

Hood, Briscoe, & Gilchrist 

(2011) 

No awareness test (Criterion 2). 

van Lamsweerde & Beck 

(2011) 

Not a probabilistic cuing task (Criterion 1). 

Jones & Kaschak (2012) No awareness test (Criterion 2). 

Kabata & Matsumoto (2012) No awareness test (Criterion 2). 

Shaqiri & Anderson (2012) No awareness test (Criterion 2). 

Chukoskie, Snider, Mozer, 

Krauzlis, & Sejnowski (2013) 

No awareness test (Criterion 2). 

Jiang, Swallow, & Capistrano 

(2013), Experiment 4 

There was no evidence of cuing in Experiments 1 and 2 (Criterion 

4). In Experiment 4, participants were explicitly told that all 

locations are equally likely at test (Criterion 3). 

Jiang, Swallow, & 

Rosenbaum (2013), 

Experiments 2-5 

Experiment 2 was not a probabilistic cuing task (Criterion 1). In 

Experiments 3-5 there was an endogenous cue directing 

participants’ attention to specific quadrants at different stages, 

depending on the experiment (Criterion 3). 

Goschy, Bakos, Müller, & 

Zehetleitner (2014) 

Not a probabilistic cuing task (Criterion 1). The target was equally 

likely in all regions. 

Jiang & Swallow (2014), 

Experiments 1A, 1B, 2, 3 

There was no evidence of cuing in Experiments 1A, 1B, and 2 

(Criterion 4). Experiment 3 did not use a probabilistic cuing task 

(Criterion 1). 

Jiang, Swallow, & Sun 

(2014), Experiments 3-5 

Participants were explicitly told where to find the target (Criterion 

3). For instance, they were instructed to give equal priority to all 
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quadrants, or to the sparse quadrants, where the target was not 

most likely to appear. 

Jiang, Won, & Swallow 

(2014), Experiments 2-3 

 

Participants were given explicit information about the likelihood 

that the target would appear in each quadrant in different stages 

(Criterion 3) and either there was no awareness test or its results 

were not reported (Criterion 2). 

Kabata, Yokoyama, Noguchi, 

& Kita (2014) 

No awareness test (Criterion 2). 

Stankevich & Geng (2014), 

Experiment 2 

Not a probabilistic cuing task (Criterion 1). 

Jiang, Sha, & Remington 

(2015), Experiments 2-4 

Not a probabilistic cuing task (Criterion 1). 

Jiang, Swallow, Won, 

Cistera, & Rosenbaum 

(2015), Experiments 2-5 

Awareness data were only reported for Experiment 1 (Criterion 2). 

Jiang & Won (2015), 

Experiments 2, 5, 6 

There was no evidence of cuing in Experiments 2, 5, and 6 

(Criterion 4). 

Won & Jiang (2015), 

Experiments 2-5 

 

Unlike the rest of the experiments in the meta-analysis, in 

Experiments 2 and 3 there were two rich quadrants, one for load 

and one for the no-load trials (Criterion 2). Experiments 4 and 5 

did not use a probability cuing task (Criterion 1). 

Chua & Gauthier (2016) Experiments 1 and 2 did not include an awareness test (Criterion 

2). Experiment 3 included an awareness test that differs 

substantially from the rest of the experiments included in the meta-

analysis (Criterion 2). 

Chang, Little, & Yang (2016) Experiments 2 and 3 did not include an awareness test (Criterion 

2) and there was an obvious explicit component (Criterion 3). For 

instance, one of the four participants is an author of the paper and 

in Experiment 3 all participants were informed about the 

probabilities. 

Addleman, Tao, Remington, 

& Jiang (2018) 

Participants were explicitly informed about the probabilities of the 

target appearing in each region (Criterion 3) and there was no 

awareness test (Criterion 2). 
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Appendix B 

Model Recovery Analysis 

 

The analyses reported in the main text of the article rely on the Akaike Information 

Criterion (AIC) to compare the performance of Models 1, 2A, and 2B. This approach 

assumes that the model with the lowest AIC is more likely to be the true model that 

generated the empirical data. However, it is not impossible that data generated by one 

model are better fitted by an alternative model due to sampling error or to the relative 

flexibility of each model. Needless to say, our conclusions depend heavily on the ability of 

our procedure to recover the true model that generated the data. To confirm the validity of 

our analyses, we generated data from Models 1, 2A, and 2B using the best-fitting 

parameters of each participant in Experiment 2 and then we fitted all three models to the 

generated datasets. This allowed us to assess whether the true model was more likely to be 

selected than the alternative two models. 

For each participant, we generated the same number of data points (i.e., reaction 

times in the rich and sparse conditions, with and without repetitions, and number of bets in 

the awareness test) that had been used to fit the models for that participant. Furthermore, to 

reduce the impact of sampling error, we generated 20 complete data sets for each 

participant and we fitted the three models to all of them using exactly the same procedure 

as in the analyses reported in the main text. For each participant, we registered (a) the 

average AIC for each model across the 20 data sets and (b) the proportion of times (out of 

20) that each model yielded the lowest AIC compared to the other two models. 

Table B1 shows the results of the model recovery analysis across participants. As can 

be seen, when data were generated by Models 1 and 2A, both the sum (across participants) 

and the mean proportion (across participants) of times each model was selected favoured 

the true model. In contrast, when data were generated by Model 2B, the true model was not 
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more likely to be selected than Models 1 and 2A. This is a natural consequence of the fact 

that Models 1 and 2A are special cases of Model 2B. When R = R, Model 2B generates 

data indistinguishable from Model 1 and when R = .25 it generates data indistinguishable 

from Model 2A. Because Model 2B includes an additional parameter and AICs put a 

penalty on the number of free parameters, under those conditions Models 1 and 2A are 

systematically preferred over Model 2B. Therefore, we repeated our recovery analysis of 

Model 2B excluding all participants for whom R was very similar to R or to .25. 

Specifically, we removed all participants for whom |R - R| > .05 or R was within the [.2, 

.3] interval. The final row in Table B1 reports the results of the recovery analysis with the 

subset of 66 participants who met these conditions. As can be seen, the true model was 

successfully recovered within this sample.  

 

Table B1. Results of the Model Recovery Analysis 

 Sum of Average AIC Mean Proportion Nbest 

True Model Model 1 Model 2A Model 2B Model 1 Model 2A Model 2B 

Model 1 351,010.30 351,082.40 351,237.70 .49 .39 .12 

Model 2A 350,702.76 350,669.02 350,914.93 .38 .51 .11 

Model 2B 351,402.58 351,500.74 351,367.24 .37 .33 .30 

Model 2B66 174,478.50 174,588.23 174,345.29 .31 .20 .49 

Note: The analysis reported in the final row, labeled as Model 2B66, retained only 66 participants 

for whom the best fitting R was out of the [.2, .3] interval and |R - R| > .05. Bold characters 

denote the lowest sum of AICs and the highest proportion of Nbest in each row. 
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Figure #1 
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Figure #3 
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Figure #4 
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