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ABSTRACT (150-250 WORDS) 

Animal models of anxiety disorders are important for elucidating neurobiological 

defense mechanisms. However, animal models are limited when it comes to understanding the 

more complex processes of anxiety that are unique to humans (e.g., worry) and to screen new 

treatments. In this review we outline how the Experimental Psychopathology approach, based 

on experimental models of anxiety in healthy subjects, can mitigate these limitations and 

complement research in animals.   Experimental psychopathology can bridge basic research in 

animals and clinical studies, as well as guide and constrain hypotheses about the nature of 

psychopathology, treatment mechanisms and treatment targets. This review begins with a brief 

review of the strengths and limitation of animal models before discussing the need for human 

models of anxiety, which are especially necessary to probe higher-order cognitive processes. 

This can be accomplished by combining anxiety induction procedures with tasks that probe 

clinically-relevant processes to identify neurocircuits that are potentially altered by anxiety. The 

review then discusses the validity of experimental psychopathology and introduces a 

methodological approach consisting of five steps: 1) select anxiety-relevant cognitive or 

behavioral operations and associated tasks, 2) identify underlying neurocircuits supporting 

these operations in healthy controls, 3) examine the impact of experimental anxiety on the 

targeted operations in healthy control, 4) utilize findings from step 3 to generate hypotheses 

about neurocircuit dysfunction in anxious patients, and 5) evaluate treatment mechanisms and 

screen novel treatments. This is followed by two concrete illustrations of this approach and 

suggestions for future studies. 
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(now 7367 words; before 3505) 

1. INTRODUCTION  

Anxiety (1) disorders are a major public health problem. They are the most frequent 

classes of mental disorders in Western societies for which they are among the leading cause of 

disability (2) and come at huge individual and societal cost (3). Anxiety is also co-morbid with a 

variety of medical conditions, exacerbating symptoms, hampering recovery, and increasing risk 

for other mental disorders such as alcoholism and depression. Even when anxiety symptoms do 

not reach criteria for a disorder, they can cause misery and poor health (3). 

Unfortunately, our understanding of anxiety symptoms remains limited and the 

treatment of anxiety disorders represents a significant challenge to mental health (4, 5). 

Current drug treatments often have sub-optimal efficacy as well as unwanted side-effects (5). 

This situation reflects the difficulty of translational research, which has struggled to capitalize 

on the array of new technologies to develop efficient treatments. It also points, to some extent, 

to the practical challenge of developing animal models of mental disorders (6). While animal 

models of anxiety provide critical insights into basic defense-survival mechanisms (4), promising 

novel treatments derived from animal models too often end up being ineffective in humans, 

and none have led to significant improvement to the current armamentarium of anxiolytic 

drugs, which has been stagnant for several decades (7). This lack of effectiveness has prompted 

the pharmaco-industry to close or downsize research on mental illnesses (8). Ultimately, this 

grim picture signals the need for a new approach to translational research to improve the 

synergy between basic science and clinical science. 

In this paper, we argue that experimental models of anxiety in non-clinical, unmedicated 

humans can revitalize treatment discovery.  The “experimental psychopathology” approach can 

bridge basic research in animals and clinical studies, as well as guide and constrain hypotheses 

about the nature of psychopathology, treatment mechanisms and treatment targets (9, 10). 
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This paper focuses on experimental models of anxiety as opposed to fear. Of prime 

consideration when developing experimental models of psychopathology is the nature of 

symptoms. Fear and anxiety are different features of anxiety disorders (11) with distinct 

underlying neurobiology (12). Fear is a phasic response to a well-defined and identifiable 

proximal threat, whereas anxiety is a more sustained aversive state generated by uncertain 

future threat (11, 13). Fear is above all a behavioral response that mobilizes the organism to act 

(fight or flight) in the face of a life-threatening situation. By contrast, anxiety is a feeling of 

apprehension, a perceived sense of unpredictability, and aversive anticipation (13, 14). While 

great progress has been made to elucidate the neurobiology of fear thanks to robust 

translational experimental models such as Pavlovian fear conditioning, comparatively much less 

is known about anxiety, partly because of the difficulty in modeling its symptoms in animals. 

More than fear, anxiety involves complex cognitive and executive processes mediated by high-

order brain neurocircuits that are strikingly more developed in humans than animals, limiting 

the usefulness of animal models. Experimental models of anxiety in humans can characterize 

the normative interplay between anxiety and cognition, paving the way for identifying 

variability from these norms in pathological anxiety. 

In this paper, we 1) briefly discuss the advantages and limitations of animal models and 

argue for the development of human models of anxiety, 2) present a rationale for the 

experimental psychopathology approach, 3) describe a neuroscience systems approach to 

experimental psychopathology in humans to investigate pathological anxiety and its 

treatments, 4)  Provide an empirical illustration of this approach, and finally 5) review issues 

that need to be addressed in future studies.  

2. ANIMAL AND HUMAN MODELS OF ANXIETY 

Experimental models and translational research are necessary to improve our 

understanding of anxiety, anxiety disorders, and their treatments. Of all the mental disorders, 

anxiety disorders are arguably most amenable to translation because, unlike many psychiatric 
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symptoms, fear and anxiety are highly tractable in the laboratory. These defense-survival 

responses to threat can be readily induced and measured in animals and in humans, and their 

underlying neurocircuits are well-conserved across species (4, 12). 

Why do we need to model anxiety in humans given that 1) basic research in animal 

models on neurobiological mechanisms can go far beyond research in humans and 2) clinical 

research comparing healthy controls to anxiety patients can identify variations from the norms? 

We argue that human models of anxiety are necessary for the same reasons we rely on animal 

models: to enhance basic knowledge and theories, define functional norms to help identify 

pathological mechanisms and treatment targets, and to screen new treatments. Animal and 

human models, however, have their own specific advantages, limitations, and can address 

distinct questions. They are complementary, but for progress to be made, their differing scopes, 

strengths and weaknesses must be acknowledged. 

2.1 ANIMAL VS. HUMAN EXPERIMENTAL MODELS 

The advantage of animal models over human models include the availability of more 

invasive experiments (but see (15)) and of more advanced technical tools (e.g., optogenetic 

techniques). Research in animal models have advanced the characterization of functional 

neurocircuits and underlying neurobiology, and the gene to phenotype relationship (16, 17). 

Animal models are also essential at the early stage of drug development to establish safety, 

pharmacokinetics, and early evidence of target effectiveness (18). 

However, animal models have also important limitations. They have failed to deliver 

clinically effective psychopharmacological treatments for anxiety disorders (19, 20) and have 

limited application to test novel treatments (e.g., mindfulness, neurostimulation). This poor 

predictive validity of clinical efficacy has multiple causes, including poor construct validity (e.g., 

in modeling subjective experiences) and the difficulty of modeling the cognitive and behavioral 

symptoms listed under the major classification systems (e.g., DSM-5) (15, 21). As a result, the 

features of human anxiety modeled in animals can be fuzzy. In the defense of animal models, a 

key hurdle to their development is the current inadequate nosology of mental disorders based 
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on phenomenology (i.e., patients’ reports, signs) rather than underlying biology, unknown 

pathogenic mechanisms, absence of biomarkers and recognized highly penetrant genetic 

variants, clinical heterogeneity, and sex differences in brain structures and functions (6, 22). In 

fact, animal models are expected to achieve greater validity and stronger clinical relevance 

when the critical features of anxiety and anxiety disorders (biological markers, genetic makeup, 

pathophysiology) become better defined, and the exploration of the mechanisms of behavior in 

animals more sophisticated, owing to the remarkable advances in basic neuroscience tools and 

methods. 

However, the one irreducible issue concerns the cognitive, emotional and behavioral 

traits that are unique to humans (4). While animal models have been instrumental in 

elucidating defense-survival mechanisms, these defense-survival mechanisms are only one 

component of a complex system that contribute to human anxiety. Basic defense mechanisms 

interact with higher-order cognitive and executive functions mediated by neocortical circuits 

that are uniquely developed in humans (22). Above all, psychiatry is the field of medicine 

devoted to pathologies of the mind, which is the most complex and elusive faculty of the 

human being. The human mind harbors conscious and unconscious experiences and is the 

origin of conceptual abstraction and symbolic communication that cannot be assessed in 

animals (4, 15). In addition, the neural architecture of the brain is far more complex in humans 

than in animals and anxiety disorders often reflect disturbance of evolutionary recent circuits. 

The neurocircuitry of anxious feelings, mental representations, and emotion regulation in 

humans implicates prefrontal areas, which are uniquely developed in humans. Many psychiatric 

symptoms (e.g., worries) cannot be convincingly evaluated in animals, and while some domains 

of functioning (abnormal social behavior, working memory, attention control) can be modeled 

in animals, the analogy is only an approximation (4, 6). 

Human models can address these limitations. Experimental models in humans provide 

insights into the core subjective, cognitive, and self-regulatory aspects of anxiety, which are 

responsible for functional impairment and bring patients to the clinic. Experimental 

psychopathology can characterize what is behaviorally and cognitively deviant from the norms 
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in anxiety disorders. Human models are valuable tools to identify potential pathophysiological 

mechanisms and treatment targets (23-25). Clearly, experimental psychopathology cannot 

achieve the detailed analysis of brain function that is possible in animal research. However, in 

coming years, improvement in neuroimaging techniques and computational psychiatry will 

enhance the yield of human research (26).  

2.2 HUMAN EXPERIMENTAL MODELS VS. CLINICAL RESEARCH 

Human models of anxiety in healthy individuals can inform and complement clinical 

research with patients. This is particularly important since research in patients is complex, 

costly and challenging with regards to recruitment and confounding factors, such as 

comorbidity and drug treatment (27). Fundamentally, experimental models in humans can test 

reciprocal causal and correlational effects of anxiety on cognition and executive functions (28). 

They can also help disentangle the role of anxiety in other conditions that are often comorbid 

with anxiety (see (29)). 

Experimental models in healthy subjects also presents an advantage of scale in that they 

can leverage the benefit of relatively easy recruitment of participants (relative to psychiatric 

patients) to speed up research and widen its scope for an in-depth investigation of the multiple 

faceted aspects of anxiety. 

In addition, a most promising application of human models relates to treatment, 

providing some understanding on how treatments work (23, 30). In addition, human models 

could be very useful for the screening of novel anxiolytics (24, 25), adding specificity to the high 

sensitivity of animal models (see Section 6.6). Experimental psychopathology may also be an 

instructive first step to test non-pharmacological treatments that cannot be assessed in animals 

such as cognitive and behavioral treatments (e.g., mindfulness) or neuromodulation (31). 

 Finally, because anxiety disorders are developmental brain disorders and because the 

manifestation of anxiety is different in children and in adults (32), experimental 
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psychopathology affords the opportunity to implement a developmental perspective for 

anxiety research. 

3. EXPERIMENTAL PSYCHOPATHOLOGY: DEFINITION AND VALIDITY 

Experimental psychopathology is conducted in healthy individuals, and employs 

experimental models of psychopathology (e.g., anxiety) to gain insights into normal and 

abnormal behaviors and their underlying neurobiological mechanisms (33, 34). The validity of 

experimental models of anxiety in healthy humans is consistent with the dimensional 

conceptualization of psychopathology (35, 36), which assumes a continuum from normal to 

pathological anxiety, and therefore a similar continuity for underlying mechanisms. While the 

conceptualization of anxiety disorders in terms of dimensions or categories has long been 

debated (37, 38), the dimensional view is espoused by pre-clinical (39) and clinical research 

(36). That anxiety disorders result from inappropriate activation or exaggeration of otherwise 

adaptive responses to threat provides the rationale behind the experimental psychopathology 

approach. The same anxiety system that is perturbed in anxiety disorders is also activated by 

anxiety challenges in normal individuals, albeit in less extreme, persistent or incapacitating 

forms (40-43) (see also section 4.3). Fear conditioning studies are a validation of this view. 

Indeed, many of the neural structures underlying normative fear mechanisms in healthy 

subjects have been implicated in pathological anxiety, especially symptoms that are fear-

specific such as response to phobic stimuli (44). It follows that normative neuromechanisms of 

anxiety should provide a blueprint for the search of pathological mechanisms and drive 

hypotheses about neurocircuit dysfunction in pathological anxiety.  However, while the 

experimental psychopathology approach is consistent with the dimensional view of anxiety, it 

remains a hypothesis and, as such, it is falsifiable. If it turns out that normative and pathological 

mechanisms differ, the dimensional view of psychopathology will have to be revisited. 
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4. A RECIPE FOR EXPERIMENTAL PSYCHOPATHOLOGY RESEARCH ON ANXIETY 

Anxiety is multifaceted and cannot be expected to be recapitulated in a single model.  

Like animal models, the intent of human models is not to mimic the whole disease (6), but to 

develop specific tests of behavioral and psychological operations relevant to the symptoms and 

treatment of the target disorder. Findings informing how experimentally-induced anxiety affect 

these operations help generate hypotheses about biomarkers and underlying neurobiological 

dysfunction and narrow the search for treatment targets for the specific modelled symptoms. 

While studies of fear-related defense mechanisms examine short-duration responses to 

threat cues (e.g., Pavlovian fear conditioning), studies focusing on anxiety examine sustained 

aversive states. Anxiety induction procedures include situations such as anxiogenic 

pharmacological challenges (e.g., 7.5% CO2, CCK4) (45-52), darkness (53-55), or threat of 

unpredictable aversive stimuli (e.g., shock) (56-58). So far, most studies have investigated 

defensive mechanisms in idle subjects (i.e., subjects not involved in a complex task)  and have 

enhanced our understanding of the clinical relevance of these anxiety states (59-66) and their 

underlying neurobiology (46, 67-77). 

However, this type of investigation of sustained anxiety, which focuses uniquely on 

emotional expression, is limited in scope and does not fully capitalize on the advantages of 

experimental models in humans. Indeed, the cognitive aspects of anxiety state are for the most 

part ignored. This lapse is an issue since emotional and cognitive processes are not organized 

separately but contribute jointly to ongoing behavior (78) and subjective experience  relies on 

cognitive processes such as attention and working memory (79). In addition, cognitive 

formulations of anxiety provide elaborated theoretical models of psychopathology (80-83) and 

define the processes targeted by successful cognitive therapies. These theories emphasize the 

role of information processing (i.e., cognition) in the etiology and maintenance of anxiety 

disorders. In overanxious individuals, faulty perception, encoding, storage, retrieval, 

interpretation, control, and action interfere with ongoing goals while deficits in executive 

function impairs self-regulation (emotion regulation) (81, 84-87). However, we currently have 
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little mechanistic understanding of the impact of anxiety on these processes and their 

dysregulation in anxiety disorders. It is to study these cognitive processes that experimental 

psychopathology can be most beneficial. A better characterization of the dynamic between 

anxiety and cognition with the objective of identifying core cognitive processes that are 

vulnerable to anxiety could significantly improve our understanding of pathological 

mechanisms. 

Investigators have long used systems neuroscience to elucidate neurocircuits mediating 

behavioral plasticity and pharmacological effects (88). This approach begins with the 

characterization of the functional neural architecture that mediates the behavior under scrutiny 

to subsequently identify where and how plasticity occurs in response to experimental 

manipulations. The systems neuroscience approach has been used with great success to 

uncover underlying mechanisms of simple defense response to threat in animals (88, 89) and in 

humans (90). We argue that this approach can be applied to investigate how anxiety affects 

complex perceptual, cognitive and behavioral processes in experimental psychopathology 

studies in humans.  

The overall strategy is to combine a primary cognitive or behavioral task with 

experimentally-induced anxiety. Its implementation follows 5 steps:  

1) select anxiety-relevant cognitive or behavioral operations (e.g., attention bias for 

threat) and tasks (e.g., dot-probe) to probe these processes,  

2) identify the underlying neurocircuits via connectivity/activation nodes in healthy 

volunteers,  

3) examine the impact of experimental anxiety on the targeted operations and 

underlying neurocircuits in healthy volunteers,  

4) utilize findings from step 3 to generate and constrain hypotheses about mechanisms 

of pathophysiology and neurocircuit dysfunction in anxious patients, and  
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5) finally, evaluate mechanisms of treatment efficacy and screen putative anxiolytic 

treatments in healthy individuals exposed to experimental anxiety. 

 

4.1 STEP 1: FUNCTIONAL BEHAVIORAL AND COGNITIVE DOMAINS AND MARKERS OF ANXIETY 

The first step is to select anxiety-relevant psychological and behavioral processes or 

constructs. One productive approach is to base this selection on findings from clinical research, 

which compares patients with anxiety disorders to individuals without psychiatric disorders. 

These studies have identified cognitive, executive, behavioral, neurobiological, and 

electrophysiological abnormalities in anxiety patients. Results of these studies have generated 

important theoretical models and psychological constructs that underscore key cognitive, 

executive and behavioral variables presumed to play a role in the origins and maintenance of 

anxiety disorders. These include negative bias in information processing (86, 91, 92), worry (93, 

94), emotional dysregulation (95), behavioral inhibition (96), and avoidance (97). There are 

several established tasks and measures to investigate these constructs. For example, 

information processing biases can be evaluated using event-related potentials (ERPs) in 

response to sensory stimuli (98-100) or behavioral responses on cognitive tasks such as the dot-

probe, visual search paradigms, and the Stroop test (86). These tasks have enhanced our 

understanding of how anxiety captures attention, but they have also generated conflicting 

theories regarding the nature and the stage of information processing deficits in anxiety (86). 

Resolution of these conflicts can be facilitated with studies of experimental anxiety in healthy 

subjects.  

Another promising and more systematic approach relies on the Research Domain 

Criteria (RdoC) project, which seeks to relate dysfunction of specific neurobiological systems to 

symptoms (101). The RdoC is organized around fundamental functional constructs that are 

studied along the full range of variation, from normal to abnormal, across multiple units of 

analysis. These constructs are grouped into higher-level functional domains and are 

investigated using well-validated paradigms that have been selected by experts in the field. 
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Using a RdoC approach, experimental psychopathology seeks to better understand how anxiety 

changes behavior-brain relationships, and then relates these changes to pathological anxiety. 

One could argue that anxiety spans several RDoC constructs, the “potential threat” construct of 

the negative valence systems, and various constructs of the cognitive systems, including 

attention, perception, cognitive control, and working memory. For example, attentional bias for 

threat falls into the cognitive system and the negative valence system. From a RDoC 

perspective, experimental psychopathology explores the interaction between the domains of 

potential threat and various cognitive systems constructs. The RDoC represents a valuable 

framework for organizing experimental psychopathology research as it provides the scientific 

rationale to select constructs and validated tasks to probe these constructs. However, the list of 

constructs is not exhaustive, and it could be worthwhile to identify additional anxiety-relevant 

cognitive constructs (e.g., affective decision making) (102). This could be accomplished by 

following the example of research on the negative symptoms of schizophrenia. The MATRICS 

(Measurement and Treatment Research to Improve Cognition in Schizophrenia) initiative was 

designed to develop a consensus cognitive battery to stimulate the development of new drugs 

that target cognitive deficits in schizophrenia (103). A panel of experts was put together to 

identify relevant cognitive domains and constructs and select a battery of cognitive tests 

relevant to schizophrenia. A similar approach would greatly benefit the study of the core 

cognitive symptoms of anxiety. 

4.2 STEP 2: NORMATIVE MECHANISMS IN HEALTHY SUBJECTS 

This step belongs to the domain of cognitive neuroscience, which seeks to understand 

the neurocircuits of cognitive processes. Step 2 of the experimental psychopathology approach 

consists of identifying, in healthy individuals, the neural circuits underlying the 

behavioral/cognitive constructs selected in step 1. Neuroimaging techniques are the basic tools 

to examine these questions. They include most commonly magnetic resonance imaging (MRI), 

but also magnetoencephalography (MEG), and less frequently positron emission tomography 

(PET). Whereas information can be gleaned from structural brain data, functional data provide 
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more direct information about cognitive processes, since they record changes in neural activity 

that cooccur with changes in behavior. Two basic measures are supplied by fMRI: regional 

activation and functional connectivity. Most of the analyses, up till now, are correlational in 

nature. For example, working memory is a cognitive construct which has been “associated” 

with activations within the dorsolateral prefrontal cortex and parietal cortex. These regional 

activations are interpreted as forming the neural circuit that supports working memory.  

Naturally, the same is true for the functional connectivity measure.  

Extended efforts have been made to formulate mathematical algorithms that could 

generate causal models. Two complementary methods, Granger causality (G-causality, (104)) 

and dynamic causal modeling (105) have been developed, but have not been extensively 

applied. Reasons for this include the many assumptions and requirements needed for their 

successful application, and their complexity. A more in-depth discussion of these techniques is 

outside the scope of this review but see (106). More recently, the introduction of machine 

learning tools, while large datasets become publicly available, may change the landscape of 

brain-behavior neuroscience research. For the perspective of this review, machine learning 

tools offer the possibility of exploiting a large array of behavioral and neuroimaging variables to 

not only refine understanding of neural circuits, but also discover novel mechanisms underlying 

specific behavioral processes. 

4.3 STEP 3: STUDIES OF THE INTERPLAY OF ANXIETY AND COGNITION IN HEALTHY SUBJECTS 

Once the behavioral/cognitive process (Step 1) and its underlying neurocircuits (Step 2) 

are delineated, Step 3 assesses the effect of experimentally-induced anxiety on these factors. 

Step 3 is the critical step that determines the relevance of the cognitive construct and 

associated neural circuit to anxiety. Promising results from this step are then followed up in 

steps 4 and 5. However, negative results signal the end of this specific investigation.  Step 3 is 

the stage of experimental psychopathology that departs from but is the link to clinical research. 

In Step 3, cognitive tasks and their behavioral and neural signatures are explored in healthy 

individuals in a control condition and under a condition of experimentally-induced sustained 
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anxiety. Anxiety-related changes in cognitive performance and underlying neural substrates are 

then hypothesized to be markers of anxiety in general, and are expected to be relevant to 

clinical anxiety, which is what step 4 and 5 will test. Fig 1 illustrates a hypothetical scenario 

where a neurocircuit underlying response to a cognitive task is affected by induced-anxiety in 

healthy individuals. A network of three structures (ROI1, ROI2, ROI3) is implicated functionally in 

the task. During an anxiety-induction procedure, another structure, ROIx) is activated and alters 

connectivity in the network, between ROI1 and ROI2. These changes in neural activity and 

connectivity would be expected to be implicated in pathological anxiety. 

 

Fig. 1. Diagram illustrating the 3rd step. The left side describes a hypothetical network of three structures (ROI1, 

ROI2, ROI3) that is activated in response to a cognitive task in healthy individuals. The right side shows the 

activation of the same network when subjects are challenged with an anxiety induction procedure. When subjects 

are anxious, structure ROIx comes on line and alters the connectivity in the network between ROI1 and ROI2. 

Ultimately, the aim of experimentally-induced anxiety is to uncover markers of anxiety 

that can lead to treatments. There has been a steady increase in studying the interplay of 
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anxiety and cognition in recent years. The great majority of studies use the threat of 

unpredictable shocks (28, 107-109, 110    , 111-114) (also reviewed in (115)) or 7.5% CO2 

inhalation (29, 41, 42, 116). The trend that emerge is that anxiety induced by threat of shock 

can have detrimental but also beneficial effects depending on the nature of the task (reviewed 

in (115).  Generally, threat of shock facilitates early sensory processing, the detection of threat 

information, and interference from distractors. It impairs short-term memory but facilitates 

long-term memory. It does not have a uniform effect on inhibitory control, impairing cognitive 

inhibition in emotional Stroop tests, while facilitating response inhibition in go-nogo tasks. 

Breathing 7.5% CO2 increase measure of hypervigilance such as orienting and alerting (41, 42), 

negative interpretation bias (117). Overall, many of these effects mirror the effect of clinical 

anxiety on cognitive processes. 

Therefore, the next step (Step 4) is to evaluate the use of these findings in healthy 

subjects as markers of clinical anxiety 

4.4 STEP 4: MECHANISMS OF PATHOPHYSIOLOGY 

One objective of experimental psychopathology is to guide hypotheses about 

dysregulated cognitive processes and underlying neurocircuits in pathological anxiety. The 

dimensional perspective of psychopathology predicts that pathological anxiety is associated 

with perturbations in some of the processes and neural mechanisms engaged by experimental 

anxiety. In the example we provide above (Fig. 1), one would hypothesize that structure ROIx 

and connectivity between ROI1 and ROI2 are potentially implicated in pathological anxiety. 

What is the nature of the dysfunction that should be expected? From a dimensional 

perspective, the mechanisms that exacerbate responses to anxiety in healthy individuals should 

be amplified in anxiety patients (i.e., amplified excitatory mechanisms, and weakened inhibitory 

mechanisms). However, neuroadaptation following chronic anxiety may change the nature of 

these responses and underlying neurocircuits over time. Consistent with this view, while studies 

generally show increased defensive reactivity and increased amygdala activity in pathological 
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anxiety (66, 118), instances of hypo-reactivity in patients are not infrequent (119, 120). The 

current interpretation of these opposing effects is that they reflect distinct symptoms. For 

example, while pathological anxiety tends to be associated with exaggerated defensive 

responses as measured with startle (60, 61), increased illness chronicity and comorbidity is 

associated with blunted reactivity (120). A similar pattern of response has been reported at the 

neural level. In PTSD, for example, amygdala hyper-reactivity is associated with hypervigilance 

and intrusive thoughts, whereas amygdala hypo-reactivity leads to symptoms of dissociation 

and disengagement (119). 

Another consideration concerns whether these maladaptive responses are triggered by 

specific events or whether they are chronically expressed. According to the diathesis-stress 

model of anxiety disorders, functional perturbation of these adaptive mechanisms should be 

greatest during periods of anxiety or stress (e.g., during experimental threat). Alternatively, 

these mechanisms could be chronically and maladaptively engaged, even in the absence of 

experimental threat.  

4.5 STEP 5: TREATMENT IMPLICATIONS 

Given the poor predictive validity of animal models, another promising clinical utilization 

of experimental psychopathology is treatment research. Although there is a dearth of research 

in this area, the two broad applications of experimental models in humans are to explore the 

mechanisms through which treatments exert their effect and to screen candidate anxiolytics in 

proof-of-concept studies. 

Treatment mechanisms: The mechanism by which conventional pharmacological 

treatments, such as the SSRIs and the benzodiazepines, or cognitive behavioral therapy exert 

their effect is poorly understood. Experimental psychopathology is being used to clarify 

mechanisms responsible for the clinical efficacy of current pharmacological or psychological 

treatments. Results show that the effectiveness of SSRIs may be partly due to their down-

regulating effect on attentional bias for threat (23, 30). Studies focused on defensive 
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mechanisms indicate the benzodiazepine alprazolam and the SSRIs citalopram, which are used 

to treat anxiety patients, reduce defense responses to unpredictable shock but not predictable 

shock in healthy subject (9, 10). Interestingly, alcohol, which is used for its anxiety-dampening 

effect, also reduces defense responses to unpredictable but not predictable shock (121).  As 

research in humans and rodents point to distinct neurocircuits responsible for response to 

predictable and unpredictable threat, these results provide clues as to the structures that may 

be preferentially implicated in theses anxiolytic effects (12). 

As expected, given the role of cognitive dysfunction in anxiety disorders, there is also 

evidence that conventional anxiolytics act on cognitive processes. Studies in healthy volunteers 

have shown that 7 days of treatment with the benzodiazepine diazepam or with the SSRI 

citalopram reduces a pattern of attentional vigilance to threat (122, 123). Because cognitive 

models suggest that anxiety disorders are associated with attentional biases for threat, these 

results suggest that the therapeutic action of classical anxiolytics may partly be mediated by 

normalizing theses biases. 

Proof-of-concept: Anxiolytics that act preferentially through the γ-aminobutyric acid 

(GABA) or serotoninergic systems have been the benchmark since the 50’s and 80’s 

respectively. To improve the efficacy of anxiolytics, research has sought to discover new 

compounds that either target these systems or have a novel mode of action, for example acting 

on the neuropeptide, glutamate, or endocannabinoid systems (20).  However, despite 

important breakthroughs in basic science that have led to the development of a multitude of 

drug anxiolytic candidates, the ability to bring to the marketplace efficient new compounds has 

not improved. The lack of success of drug development can be traced to difficulties in selecting 

among the many candidate anxiolytic compounds because of costly and time-consuming clinical 

trials and the failure of animal models of anxiety to predict clinical efficacy. As long as candidate 

anxiolytics are safe, there is no reason why they could not be tested in models of anxiety using 

healthy individuals to establish whether they are actually anxiolytic.   
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The predictive validity of a model refers the ability of the model to predict clinical 

efficacy. However, a model has predictive validity if it can successfully differentiate among 

effective and ineffective treatments. Animals models have a high level of sensitivity but poor 

specificity. The hope is that human models can add specificity and help drug sponsors make 

‘go-no-go’ decision about novel compounds and choose appropriate treatment doses for 

subsequent clinical trials. Given their high cost and long duration, clinical trials are limited in the 

number of novel compounds that can be tested. New drug development methods, such as 

experimental models in humans, may facilitate and speed up screening and improve the 

predictability and the efficacy of candidate anxiolytics. 

Whether this approach will be successful remains to be seen. So far, the few studies that 

have tested putative anxiolytics in anxiety models in humans have had mixed success, as 

illustrated by translational research on antagonists of corticotropin-releasing factor (CRF) 

receptors. Based on strong preclinical evidence that CRF was a key mediator of stress-related 

responses, it has been suggested that drugs that target the CRF1 systems could be developed to 

relieve anxiety (as well as depression and alcoholism) (124). CRF1 antagonist have proved to be 

anxiolytic in a wide range of animal models (125), but  results in human models have not been 

as consistent. The CRF1 antagonists GSK876008 reduced startle potentiation in animal models 

of anxiety (126), but acute treatment with similar CRF1 antagonist, Verucerfont (GSK561679), 

did not reduce startle potentiation or subjective feeling of anxiety to unpredictable shock in a 

double-blind, crossover design in healthy subjects (24). However, a 7-day treatment with 

another CRF antagonist (R317573), reduced subjective response but not physiological response 

to a 7.5% CO2 inhalation challenge in a double-blind, randomized, placebo and active controlled 

study (25). These rather negative results should be considered in the light of clinical data that 

have shown CRF1 antagonist to be clinically inefficient to treat generalized anxiety disorder, 

social anxiety disorders, depression, and comorbid anxiety-alcoholism (127, 128). It is 

noteworthy that the same CRF1 antagonist that was tested in the fear-potentiated startle 

model in humans (24), was also found to have no anxiolytic effect when given chronically in 

individuals with PTSD (129). Although negative, these results have a positive side. The fear-
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potentiated startle model in humans did not produce a false positive: a clinically ineffective 

drug was ineffective in the human model. 

Beside screening putative anxiolytics, human models will be necessary to evaluate non-

pharmacologic treatments, such as exercise (130), cognitive-behavioral behavioral (131), 

mindfulness, or neuromodulation (31). One advantage of experimental models in humans is 

that their sensitivity and specificity may be improved by targeting pathological mechanisms 

identified via the experimental psychopathology approach.   

5. EXAMPLES OF EXPERIMENTAL PSYCHOPATHOLOGY APPROACH TO PRE-

ATTENTIVE INFORMATION PROCESSING 

Cognitive models emphasize the role of deficits in early information processing as a 

primary and persistent manifestation of pathological stress and anxiety, contributing to 

symptoms of hypervigilance and downstream malfunction of more complex cognitive 

operations (86, 132, 133). Various psychological constructs have been employed to study early 

information processing deficits in pathological anxiety, including attentional bias (86), sensory 

gating (134, 135), and pre-attentive perceptual processing (133, 136-138). This section 

illustrates how experimental psychopathology can provide clues about neurocircuit dysfunction 

using two specific examples: 1) perceptual sensitivity and 2) negative biases. 

5.1 PERCEPTUAL SENSITIVITY  

5.1.1 Step1: Functional domains and markers of anxiety: mismatch negativity 

Effective early detection of environmental change is adaptive as it provides for rapid 

orienting to potential threats, driving the organism to adopt cautious behavioral strategies 

(139). Early perceptual responding to environmental changes can be examined with oddball 

stimulus paradigms. These paradigms assess how the organism responds to rare, deviant 

stimuli. A consistent electroencephalographic response to these unexpected stimuli has been 
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identified and labeled mismatch negativity (MMN). In other words, the MMN is a brain-evoked 

potential in response to stimuli that deviate (prediction errors) from an established familiar 

sequence of sensory stimuli (e.g., change in tone frequency) (140). It is considered a measure of 

preattentive detection because it can be elicited when attention is focused elsewhere (141). 

As a measure of sensory perception and auditory discrimination, the MMN provides a 

window into the state of vigilance of the brain (142, 143). Consistent with this view, the MMN is 

abnormally elevated in a number of anxiety-related disorders, including PTSD (136, 137), panic 

disorder (138), and phobia (144). These findings support brain’s heightened sensitivity to 

environmental changes in these patient populations (i.e., hypervigilance). Heightened MMN is 

also associated with behavioral inhibition, a temperamental vulnerability for later anxiety 

disorders (145). These results indicate that the MMN can be used as a proximal measure of 

anxious hypervigilance to gain insights into underlying neurocircuit dysfunction. 

5.1.2 Step 2: Normative mechanisms in healthy subjects 

While the neural regions contributing to MMN generation have long been elucidated 

(146), more recent works relying on Dynamic Causal Modeling (DCM) have provided a 

mechanistic understanding of how the magnetoencephalographic MMN (MMNm) is generated 

(147). The MMNm is generated within a well-established frontotemporal network composed of 

bilateral sources over the primary and secondary auditory cortex (superior temporal gyrus, 

STG), and inferior frontal gyri (IFG) (147) (Fig. 2, left). DCM shows that the MMN can be 

explained by changes in the strength of the connectivity between (extrinsic) and within 

(intrinsic) these cortical sources (Fig. 2, right) (147). Forward connections can be conceptualized 

as bottom-up processes transmitting sensory information from A1 to higher cortical levels and 

convey prediction errors (MMN). Backward connections represent top-down predictions based 

on prior sensory experience and explain away prediction errors (deviance detection). 

5.1.3 Step 3: Studies of the interplay of anxiety and cognition 

Consistent with the dimensional view of psychopathology, the MMNm is also increased 

by experimental anxiety in healthy subjects (98, 99). The underlying mechanisms responsible 
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for this increased has been recently elucidated via DCM and involves a rebalance of forward 

and backward connections. Threat of shock enhances post-synaptic gain in primary auditory 

cortex and modulation of feedforward pathway but attenuates the normal feedback signaling, 

which results in a failure to attenuate ascending prediction errors (98). These results suggest 

that anxiety-induced hypervigilance results from heightened sensitivity of bottom-up processes 

and failure of top-down modulation. 

 

Fig. 2. Left. The MMNm arises from bilateral sources over primary, secondary auditory cortex (superior 

temporal gyrus, STG), and inferior frontal gyri (IFG) (146). Right. Dynamic causal modeling shows that the MMN 

results from changes within and among these cortical sources (147). Forward connections can be conceptualized 

as bottom-up processes transmitting sensory information from A1 to higher cortical levels and convey prediction 

errors (MMN). Backward connections represent top-down predictions based on prior sensory experience and 

explain away prediction errors (deviance detection). In the safe context, the MMN is mediated by changes in both 

extrinsic feedforward and feedback connectivity as well as intrinsic connectivity . Anxiety induced by threat of 
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shock suppresses feedback connectivity and the anxiolytic alprazolam reestablishes feedback connectivity (not 

shown). 

Having established via DCM that the changes within the MMNm neurocircuit are 

responsible for the increased MMNm by anxiety, the next step will be to identify the 

structure(s) that cause(s) these changes.  One potential structure is the amygdala. The 

amygdala plays a critical role in threat evaluation (148), boosts processing (149), is involved in 

novelty detection (150, 151), and, importantly, is activated by stimulus deviance in a time 

window that corresponds to IFG activation (99).   

5.1.4 Step 4: mechanisms of pathophysiology 

Results of experimental psychopathology constrain the search for the perturbation 

underlying the increased MMN in anxiety pathology. The identification of the normative 

mechanisms responsible for the increased MMN by anxiety leads to the hypotheses that 

comparable changes in the balance between feedforward and feedback signaling caused by 

threat of shock in healthy subjects are also responsible for the increased MMN in anxiety 

pathology. This hypothesis has not yet been tested. 

5.1.5 Step 5: Treatment implications 

Drugs acting on gamma-amino butyric acid-receptors can downregulate and upregulate 

hypervigilance (152, 153) and decrease or increase the MMN (154-156), respectively. In healthy 

subjects, the benzodiazepine alprazolam attenuates the threat-modulated MMNm and 

reestablishes the normal balance between feedforward and feedback signaling (98). This 

suggests that benzodiazepines may reduce hypervigilance, partly by dampening early deviance 

detection. These results suggest that treatment aimed at reducing hypervigilance symptoms in 

pathological anxiety should target the balance between feedforward and feedback implicated 

in deviance detection. 
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5.2 NEGATIVE BIASES  

5.2.1 Step1: Functional domains and markers of anxiety: attention bias 

Attention bias for threatening stimuli has long been associated with of pathological 

anxiety (86). It reflects the propensity to rapidly detect and react to threat and can be 

investigated using a wide range of tests which reflect different aspect of attention, including 

the dot-probe, the emotional Stroop, and emotional face processing (86, 115, 157). A face 

processing task is the exemplar selected here. 

5.2.2 Step 2: Normative mechanisms in healthy subjects 

Neural models of emotion amplification and emotion regulation suggest several neural 

signals implicated in attention bias for threat. The amygdala automatically detects salient 

environmental stimuli (158, 159). Response flexibility is associated with structures that amplify 

the threat signals, such as the rodent’s prelimbic cortex or its putative human equivalent, the 

dACC/dmPFC, and structures that protect goal-directed processing from threat distractors, 

including the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), ACC, and IFG (160-162). It is 

likely that some of these structures work together for adaptive behavior. Experimental models 

in humans have helped refine our understanding of functional connectivity among these 

structures to support biases attention in changing environments.  

5.2.3 Step 3: Studies of the interplay of anxiety and cognition 

Studies in healthy subjects during induced anxiety have highlighted the role of cortical-

subcortical connectivity in attention bias for threat. More specifically, in a series of studies 

using an emotional face identification task, it was first reported that induced-anxiety drives 

attentional bias; subjects show quicker detection of fearful faces and greater defense response 

(i.e., as measure with startle) upon presentation of fearful faces during threat of shock 

compared to a safe condition (157, 163). It was then shown that this heightened attentional 

bias was associated with increased connectivity between the dACC/dmPFC and the amygdala, 

providing evidence of an “aversive amplification circuit” that strengthens amygdala response to 
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facilitate threat detection (Fig. 3) (164, 165). In addition, the strength of this connectivity 

correlated positively with the behavioral bias index, suggesting this circuit drives negative bias. 

It has been argued that the dACC/dmPFC-amygdala neurocircuit serves to ‘prime’ the 

amygdala, maintaining the amygdala in a state of readiness. This provides a mechanism by 

which the amygdala can detect and react rapidly to alerting and potentially dangerous stimuli 

during sustained anxiety states without maintaining a sustained level of activation (166). 

  

Fig. 3. Proposed model of attention bias for threat in anxiety. Increased bi-directional coupling between the 
dorsal anterior cingulate/dorsomedial prefrontal cortex (dACC/dmPFC) and amygdala (amg) promotes threat bias. 
Coupling is transiently activated during anxiety states in healthy control, facilitating the detection of threat. 
However, the coupling is chronically engaged in pathological anxiety, leading to maladaptive threat bias. Lowering 
serotonin has similar effect as induced-anxiety: it increases dACC/dmPFC-amygdala coupling. By increasing 
serotonin, SSRIs may reduce attention bias for threat via inhibition of dACC/dmPFC-amygdala coupling.  

 

5.2.4 Step 4: mechanisms of pathophysiology 

Critically, it was subsequently found that the same dACC/dmPFC–amygdala neurocircuit 

is overactive in anxiety patients, in the absence of experimental anxiety (i.e., without threat of 

shock) (92). In other words, the same neurocircuit responsible for threat bias, which is 

appropriately engaged and disengaged in healthy subjects by threat and safety, is chronically 

activated in anxious patients (i.e., in safe environments) 
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These studies validate the experimental psychopathology approach and further provide 

evidence that an otherwise self-protective neurocircuit is dysfunctional in anxiety disorders.  

The positive correlation in healthy individuals between trait anxiety and the strength of the 

dACC/dmPFC-amygdala coupling (164) suggest that this neurocircuit indexes a vulnerability to 

anxiety disorders.   

5.2.5 Step 5: Treatment implications 

The dACC/dmPFC-amygdala neurocircuit therefore represents a potential neural target 

for treatment. Neural markers are more proximal than behavioral markers, and as such, 

targeting the dACC/dmPFC-amygdala circuit may prove to be a powerful way of developing 

treatments . 

Ideally, one would want to decrease dACC/dmPFC-amygdala coupling (92, 167). The 

mechanism by which activity in this neurocircuit can be reduced is not fully understood, but 

evidence shows that serotonin plays a key role. Serotonin affects affective processing (168, 169) 

and the first-line of psychopharmacological treatment for anxiety disorders, the SSRIs, alter 

serotonin neurotransmission (170). In addition, amygdala response to fearful faces is 

modulated by a serotonin transporter polymorphism (171). More direct evidence of serotonin 

involvement in dACC/dmPFC-amygdala coupling comes from findings that, in healthy subjects, 

reduced serotonin function following depletion of its precursor, tryptophan increases the 

strength of the connectivity in this circuit (172). These results suggest that SSRIs may reduce 

anxiety symptoms by increasing serotonin, which normalizes or reduces the excessive 

dACC/dmPFC-amygdala coupling responsible for promoting threat bias. This interpretation 

would be consistent with evidence that serotonin therapeutic effects is mediated by the 

serotoninergic reduction in attention bias (169, 173). Fig. 3 illustrates this possibility. Given that 

increased dACC/dmPFC-amygdala coupling promotes threat biases and reducing serotonin 

increases dACC/dmPFC-amygdala, SSRIs may reduce threat biases by inhibiting dACC/dmPFC-

amygdala coupling. Interestingly, psychological treatments (e.g., cognitive behavioral therapy) 
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of anxiety disorders, which can be as effective as pharmacological treatment (174), may also 

work by disengaging this circuit (167).  .   

6. FUTURE DIRECTIONS 

Whether the experimental psychopathology approach will bring a new insight into 

psychopathology and will help screen novel treatments remain to be seen. Experimental 

psychopathology is still in its infancy, but recent progresses are encouraging, supporting further 

development of this approach to fully contribute to clinical research.  Below, we briefly review 

of few issues that need to be addressed to take full advantage of experimental 

psychopathology.  

1. Sex and developmental changes: Anxiety disorders are more prevalent in women (175) and 

girls experience more anxiety symptoms than boys. Experimental psychopathology can be 

applied to children and adolescents (176) and can contribute to elucidating the neural basis 

of this sex difference by characterizing developmental changes. 

2. Inter-individual differences: Response to anxiety-inducing procedures (177-180) and 

cognitive performance (181) vary among individuals, reflecting the influence of 

temperamental, genetic, or environmental factors. It is likely that the interaction of 

cognition and experimental anxiety, as well as the treatment effects on these interactions, 

are similarly affected by inter-individual differences. It will be important to identify these 

factors since they may critically influence psychopathological mechanisms and treatment 

targets. By helping identify the inter-individual characteristics that determine treatment 

effects, experimental psychopathology carries implications for personalized medicine (182). 

3. Anxiety induction procedures: Different classes of environmental threats activate different 

defense mechanisms. Defense responses to proximal vs. more distal or uncertain threats 

are distinguishable in terms of behavior, cognition, and neurobiological substrates (183) as 

well as psychopathology (11).  Similarly, the response to bodily harm differs from that of 

social threat (184, 185). Aversive stimuli such as shocks have been successfully used in 
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experimental models in humans (60, 61, 186). However, threat of shock may not be 

appropriate to model all symptoms of anxiety. For example, low dose of CO2 (e.g., 7.5%) 

challenge has been proposed as a model of general anxiety disorder (187). Behavioral 

avoidance tasks, where subjects anticipate a feared situation (e.g., anticipation of public 

speaking in social anxiety) is also a promising tool (188). For example, healthy controls and 

patients with social anxiety show distinct emotional responses and cognitive regulation to 

social threat compared to physical threat (185, 189) and avoidance performance in a virtual 

elevated plus-maze is associated with symptom of acrophobia but not social anxiety or trait 

anxiety (190).  This approach can also be extended to more specific symptoms such as 

emotional distraction by worries and intrusive thoughts (191). Future works will need to 

examine the commonalities and differences in the effects of different types of anxiety 

induction procedures on cognitive and behavioral performance and underlying 

neurocircuits (192). It will be important to determine the extent to which different anxiety 

or stress induction procedures model symptoms that are similar or vary across disorders. 

4. Drug screening:  One exciting potential application of experimental psychopathology is to 

generate proof-of-concept evidence of the efficacy of novel psychopharmacological and 

psychological treatments (23, 24, 187).  Currently, determining the efficacy of a drug or 

psychological intervention requires expensive and time-consuming clinical trials in patients.  

Experimental psychopathology could provide optimization of this process, leading to a rapid 

and affordable indication of efficacy at an early stage of treatment development (19).  

However, a question for future studies is the extent to which treatments that work on 

normative responses also work on pathological responses.  

7. CONCLUSION 

Animal models are essential to advance our understanding of anxiety, but their 

limitations are increasingly recognized We have proposed a general framework centered on 

experimental psychopathology to improve research on pathological anxiety.  Combining anxiety 
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challenges with tasks that probe clinically-relevant psychological or behavioral constructs to 

identify clinically-relevant neurocircuits provide a new approach to translational research on 

pathological anxiety.   
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 FIGURE LEGENDS 

Fig. 1. Diagram illustrating the 5-step experimental approach. Step 1: Selection of a clinically-

relevant construct (e.g., attention bias for threat) and tasks (e.g., dot-probe) that probe the 

construct; Step 2: characterization of the response (output) and underlying neurobiology 

associated with the task (input) probing the construct in healthy subjects. The response can be 

a behavioral, cognitive, a pharmacological, or electrophysiological measure. The region of 

interest ROI1, ROI2, and ROI3 represent 3 hypothetical structures that mediate the behavior 

tested by the task. The arrows represent hypothetical directional connectivity among these 

structures; Step 3: The task is combined with an anxiety induction procedure to determine how 

anxiety affects the response and underlying neurocircuits. In this example, a structure ROIx 

affects the connectivity between ROI1 and ROI2. In Step 4 the task is tested in patients to 

determine whether the same processes and neurocircuits affected by experimental anxiety in 

healthy subjects are also implicated in the patients. Patients can be tested with or without an 

anxiety induction procedure. Step 5: Healthy subjects are tested as in Step 3 (Task + induced-

anxiety) but are also given a treatment to examine mechanisms of treatment responses or to 

screen putative anxiolytic treatments (do they affect the response and do they affect the same 

anxiety-neurocircuit identified in Step 2?). 

Fig. 2. Left. The MMNm arises from bilateral sources over primary, secondary auditory cortex 

(superior temporal gyrus, STG), and inferior frontal gyri (IFG) (146).  Right. Dynamic causal 

modeling shows that the MMN results from changes within and among these cortical sources 

(147). Forward connections can be conceptualized as bottom-up processes transmitting sensory 

information from A1 to higher cortical levels and convey prediction errors (MMN). Backward 

connections represent top-down predictions based on prior sensory experience and explain 

away prediction errors (deviance detection). In the safe context, the MMN is mediated by 
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changes in both extrinsic feedforward and feedback connectivity as well as intrinsic connectivity 

(not shown). Anxiety induced by threat of shock suppresses feedback connectivity. The 

anxiolytic alprazolam reestablishes feedback connectivity (not shown). 

Fig. 3. Proposed model of attention bias for threat in anxiety. Increased bi-directional 

coupling between the dorsal anterior cingulate/dorsomedial prefrontal cortex (dACC/dmPFC) 

and amygdala (amg) promotes threat bias. Coupling is transiently activated during anxiety 

states in healthy control, facilitating the detection of threat. However, the coupling is 

chronically engaged in pathological anxiety, leading to maladaptive threat bias. Lowering 

serotonin has similar effect as induced-anxiety: it increases dACC/dmPFC-amygdala coupling. By 

increasing serotonin, SSRIs may reduce attention bias for threat via inhibition of dACC/dmPFC-

amygdala coupling.  
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