Supplementary Materials: The Consortium of Metabolomics Studies (COMETS): Metabolomics in 47 Prospective Cohort Studies

Bing Yu, Krista A. Zanetti, Marinella Temprosa, Demetrius Albanes, Nathan Appel, Clara Barrios Barrera, Yoav Ben-Shlomo, Eric Boerwinkle, Juan P. Casas, Clary Clish, Caroline Dale, Abbas Dehghan, Andriy Derkach, A. Heather Eliassen, Paul Elliott, Eoin Fahy, Christian Gieger, Marc J. Gunter, Sei Harada, Tamara Harris, Deron R. Herr, David Herrington, Joel N. Hirschhorn, Elise Hoover, Ann W. Hsing, Mattias Johansson, Rachel S. Kelly, Chin Meng Khoo, Mika Kivimäki, Bruce S. Kristal, Claudia Langenberg, Jessica Lasky-Su, Deborah A. Lawlor, Luca A. Lotta, Massimo Mangino, Loïc Le Marchand, Ewy Mathé, Charles E. Matthews, Cristina Menni, Lorelei A. Mucci, Rachel Murphy, Matej Oresic, Eric Orwoll, Jennifer Ose, Alexandre C. Pereira, Mary C. Playdon, Lucilla Poston, Jackie Price, Qibin Qi, Kathryn Rexrode, Adam Risch, Joshua Sampson, Wei Jie Seow, Howard D. Sesso, Svati H. Shah, Xiao-Ou Shu, Gordon C.S. Smith, Ulla Sovio, Victoria L. Stevens, Rachael Stolzenberg-Solomon, Toru Takebayashi, Therese Tillin, Ruth Travis, Ioanna Tzoulaki, Cornelia M. Ulrich, Ramachandran S. Vasan, Mukesh Verma, Ying Wang, Nick J. Wareham, Andrew Wong, Naji Younes, Hua Zhao, Wei Zheng, and Steven C. Moore

Web Appendix. Pilot study comparing two metabolomics platforms for measurement of blood metabolites.

Web Table 1. Location of cohorts and contributing study authors.

Web Table 2. Methods of follow-up for outcomes in participating COMETS studies

Web Table 3. Title, legend, and table provided separately in Excel.

Web Table 4. Correlations (Spearman and Pearson) between log-transformed metabolite values measured at the Broad Institute and Metabolon, Inc. for 111 overlapping metabolites.

Web Table 5. Metabolite pairs that are highly correlated across the Broad Institute and Metabolon, Inc. metabolomics platforms.

Web Appendix. Pilot study comparing two metabolomics platforms for measurement of blood metabolites.

Population and sample collection

The Health, Aging, and Body Composition Study (Health ABC) is a prospective, longitudinal cohort study of 3075 community-dwelling, initially well-functioning, black and white men and women aged 70-79 years. Participants were recruited from a random sample of white Medicare beneficiaries in selected zip codes and all black Medicare-eligible residents in the Memphis, Tennessee, and Pittsburgh, Pennsylvania areas. Eligibility criteria were 1) no reported difficulty walking one quarter of a mile, climbing 10 steps without resting and performing activities of daily living, 2) no active treatment for cancer in the prior 3 years, 3) planned to stay in the study area for at least 3 years, and 4) were not actively participating in a lifestyle intervention trial. Participants donated blood at multiple time points during the study.

In a prior research effort, we sent 200 μ l of blood from 319 black men for metabolomics analysis at the Broad Institute(1). Black men were selected because no studies had examined metaboliteadiposity associations in this population before. The participants in this analysis were selected at random from among all black men in Health ABC. The blood samples were ethylenediaminetetraacetic acid (EDTA) plasma donated at the 12-month study visit and taken after an overnight fast (mean fast = 14 hours). Samples had never been thawed and were stored at ~80°C until metabolite profiling. Additionally, a duplicate aliquot was prepared for 40 of these men (selected at random) and sent to Metabolon Inc. for analysis. The current analysis is restricted to just those 40 men whose samples were analyzed by both the Broad Institute and Metabolon Inc.

Metabolomics analysis

A total of 350 metabolites were measured using the metabolite profiling platform of the Broad Institute of Massachusetts Institute of Technology. Detailed methodology is provided in Townsend et al(2). In brief, we used liquid chromatography-mass spectroscopy (LC-MS) to obtain profiles of polar and lipid metabolites. Negative ionization mode results were provided by a ACQUITY ultra-performance liquid chromatography (Waters) coupled with a 5500 QTRAP triple quadrupole MS (AB SCIEX) using a hydrophilic interaction chromatography method(3). Polar, negatively charged compounds were analyzed by multiple reaction monitoring in the negative ionization mode(4). Positive ionization data were provided by a LC-MS/MS system of a 4000 QTRAP triple quadrupole mass spectrometer (AB SCIEX) with an HTS PAL auto-sampler (Leap Technologies), as described in Wang et al(5). Polar, positively charged metabolites were analyzed with multiple reaction monitoring in the positive ion mode. Lipids were separated using a Prosphere C4 HPLC column and data obtained through a full scan MS analysis in positive ion mode(6). MultiQuant 1.2 software (AB SCIEX) was used to integrate peaks and for manual review of data(6). Reference standards of each metabolite were used to determine chromatographic retention times. Metabolite peaks were compared against known standards to confirm identity. Metabolite signals were measured as LC-MS/MS peak areas that are proportional to metabolite concentrations.

A total of 610 named metabolites were measured using the Orbitrap Elite LC-MS(7) and GC-MS platform(8) of Metabolon Inc. Samples were extracted and prepared for analysis using Metabolon's standard solvent extraction method. The LC/MS portion of the platform was based on a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a ThermoFisher Scientific Orbitrap Elite high resolution/accurate mass spectrometer, which consisted of a heated electrospray ionization (HESI) source and orbitrap mass analyzer operated at 30 000 mass resolution. The sample extract was dried then reconstituted in acidic or basic LC-compatible solvents, each of which contained 8 or more injection standards at fixed concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed using acidic positive ion optimized conditions and the other using basic negative ion optimized conditions in two independent injections using separate dedicated columns. Extracts reconstituted in acidic conditions were gradient eluted using water and methanol containing 0.1% formic acid, while the basic extracts, which also used water/methanol, contained 6.5mM Ammonium Bicarbonate. The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a minimum of 24 hours prior to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). The GC column was 5% phenyl and the temperature ramp was from 40° to 300° C in a 16-minute period. Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron impact ionization. The instrument was tuned and calibrated for mass

resolution and mass accuracy on a daily basis. Metabolite signals were measured as LC-MS peak areas, with prior data indicating that peak areas are proportion to metabolite concentrations over much of the linear dynamic range(9). To account for variability by run day, values were standardized as a proportion of the median observed value for that day. Thus, the median value for each metabolite for each run day was set to 1, and metabolite values twice that of the median for that day were to 2, and so on.

Statistical analysis

The current analysis utilizes data from the 40 men whose samples were analyzed at both the Broad Institute and Metabolon Inc. For both sets of data, the distribution of metabolites was skewed and we thus log transformed metabolite values to approximate a normal distribution. Metabolite values were then grand mean centered (mean=0, standard deviation=1). Missing values were assumed to be below the limit of detection and were imputed with half of the minimum observed value for that metabolite.

We identified the metabolites constituting matches between the Broad Institute and Metabolon Inc. metabolomics platforms by using Human Metabolome Database(10) identifiers that each lab reported for their metabolites. These unique identifiers served as keys linking the different metabolite naming systems of the Broad Institute and Metabolon.

In our analysis, we compared metabolite values between the Broad Institute and Metabolon Inc. using both Spearman and Pearson correlations. We focus primarily on Spearman correlations because metabolomics data sometimes contain outliers (even after log-transformation) and because there is no guarantee that peak area values will be linearly proportional across platforms. Spearman correlations, unlike Pearson correlations, are not sensitive to outliers and do not assume linearly proportional relationships. We report Pearson correlations as complementary data because they have more statistical power when the assumption of linear proportionality is met.

References

- 1. Murphy RA, Moore SC, Playdon M, et al. Metabolites Associated With Lean Mass and Adiposity in Older Black Men. *J Gerontol A Biol Sci Med Sci* 2017.
- 2. Townsend MK, Clish CB, Kraft P, et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. *Clin Chem* 2013;59(11):1657-67.
- Bajad SU, Lu W, Kimball EH, et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. *J Chromatogr A* 2006;1125(1):76-88.
- 4. Rhee EP, Ho JE, Chen MH, et al. A genome-wide association study of the human metabolome in a community-based cohort. *Cell Metab* 2013;18(1):130-43.
- Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011;17(4):448-53.
- 6. Rhee EP, Cheng S, Larson MG, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. *J Clin Invest* 2011;121(4):1402-11.
- Evans AM, DeHaven CD, Barrett T, et al. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. *Anal Chem* 2009;81(16):6656-67.
- 8. Sha W, da Costa KA, Fischer LM, et al. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline. *FASEB J* 2010;24(8):2962-75.
- Evans AM BB, Liu Q, Mitchell MW, Robinson RJ, Dai H, Stewart SJ, DeHaven CD, Miller LAD.
 High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared to Unit
 Mass Resolution Mass Spectrometry in High-Throughput Profiling Metabolomics. *Metabolomics* 2014;4(2):132.
- 10. Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. *Nucleic Acids Res* 2017.

Web Table 1. Location of cohorts and contributing study authors.

		Contributing study authors and research
Cohort	Location	group ^a
AIRWAVE	United Kingdom	Abbas Dehghan; Paul Elliott; Ioanna Tzoulaki
ATBC	Finland	Demetrius Albanes; Rachael Stolzenberg-Solomon
ARIC	United States	Eric Boerwinkle; Bing Yu
ALSPAC	United Kingdom	Deborah A. Lawlor
BHS	Brazil	Alexandre C. Pereira
BIB	United Kingdom	Deborah A. Lawlor
BCFR	Australia; United States	Ann W. Hsing
BWHHS	United Kingdom	Juan P. Casas; Caroline Dale
CaPS	United Kingdom	Yoav Ben-Shlomo
CPS-II	United States	Victoria L. Stevens; Ying Wang
CATHGEN	United States	Svati H. Shah
CAMP	United States	Clary Clish; Jessica Lasky-Su
COLO	United States	Cornelia M. Ulrich
KORA	Germany	Christian Gieger
DIPP	Finland	Matej Oresic
DPP	United States	Marinella Temprosa; Naji Younes; DPP Research Group ^b
ET2DS	United Kingdom	Jackie Price
Estonia OE	Estonia	Joel N. Hirschhorn
	Denmark; France; Germany; Greece;	Ruth Travis; Marc Gunter
EPIC	Italy; Norway; Spain; Sweden; The	
	Netherlands; United Kingdom	
Fenland	United Kingdom	Claudia Langenberg; Luca A. Lotta; Nick J.
51100		Varenam
FHS2	United States	Ramachandran S. Vasan
FHS3	United States	Ramachandran S. Vasan
GDM	Spain	Clara Barrios Barrera
HABC	United States	Tamara Harris; Rachel Murphy
HPFS	United States	A. Heather Eliassen
MAC	United States	Hua Zhao
MRC NSHD	United Kingdom	Andrew Wong
MrOS	United States	Eric Orwoll
MEC	United States	Bruce S. Kristal; Loic LeMarchand
MESA	United States	David Herrington
NHS	United States	A. Heather Eliassen

NHS-II	United States	A. Heather Eliassen
PHS	United States	Howard D. Sesso; Lorelei Mucci
POPS	United Kingdom	Gordon C.S. Smith; Ulla Sovio
PLCO	United States	Steven C. Moore
SMHS	China	Wei Zheng; Xiao-Ou Shu
SPA	China	Charles E. Matthews
SWHS	China	Xiao-Ou Shu
SP2	Singapore	Deron R. Herr; Chin Meng Khoo; Wei Jie Seow
SABRE	United Kingdom	Therese Tillin
TMCS	Japan	Sei Harada; Toru Takebayashi
TwinsUK	United Kingdom	Massimo Mangino; Cristina Menni
UPBEAT	United Kingdom	Lucilla Poston
VDAART	United States	Rachel S. Kelly; Jessica Lasky-Su
WH-II	United Kingdom	Mika Kivimäki
WHI	United States	Kathryn Rexrode
WIHS	United States	Qibin Qi

^a For each research group, footnotes provide references that include complete lists of research group members.

^b Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403.

Cohort	Follow-up	Protocol-based clinic	Medical record	Death	Cancer
	questionnaire	or home visit ^b	confirmation	registry	registry
AIRWAVE	Р	Р	✓	✓	✓
ATBC	✓	✓	✓	√	√
ARIC	✓	✓	✓	√	Х
ALSPAC	✓	✓	✓	✓	✓
BHS	✓	✓	Х	Х	Х
BIB	✓	✓	✓	✓	✓
BCFR	✓	Х	Х	✓	✓
BWHHS	✓	✓	✓	√	✓
CaPS	✓	✓	✓	√	✓
CPS-II	✓	Х	✓	√	✓
CATHGEN	✓	✓	\checkmark	✓	Х
CAMP	✓	✓	Х	Х	Х
COLO	✓	Х	✓	√	Х
KORA	X	Р	Х	√	Х
DIPP	✓	✓	Х	Х	Х
DPP	✓	✓	✓	√	Х
ET2DS	✓	✓	✓	✓	Х
Estonia OE	Р	Р	✓	√	✓
EPIC	Р	Х	Р	√	✓
Fenland	✓	✓	Х	Х	Х
FHS2	✓	✓	✓	Х	Х
FHS3	✓	✓	1	Х	Х
GDM	✓	✓	✓	✓	Х
HABC	✓	✓	✓	Х	Х
HPFS	✓	Х	✓	√	Х
MAC	✓	Х	Х	√	✓
MRC NSHD	✓	✓	✓	√	✓
MrOS	✓	✓	Х	Х	Х
MEC	✓	Х	Х	✓	✓
MESA	✓	✓	1	✓	Х
NHS	✓	Х	√	✓	✓
NHSII	✓	Х	√	✓	✓
PHS	✓	Х	1	✓	Х

Web Table 2. Methods of follow-up for outcomes in participating COMETS studies^a.

POPS	✓	Х	Х	Х	Х
PLCO	✓	✓	✓	Х	Х
SMHS	√	✓	✓	✓	✓
SPA	✓	✓	✓	✓	✓
SWHS	✓	✓	✓	✓	✓
SP2	✓	✓	Х	✓	✓
SABRE	Р	Р	Р	✓	✓
TMCS	✓	✓	✓	✓	✓
TwinsUK	√	✓	Х	Х	Х
UPBEAT	✓	\checkmark	✓	✓	✓
VDAART	✓	✓	Х	Х	Х
WH-II	✓	✓	✓	✓	✓
WHI	✓	✓	✓	✓	Х
WIHS	✓	\checkmark	√	✓	✓

^a ✓indicates that the measurement is available in all participants, P indicates that the measurement is available in a portion of participants, X indicates that the measurement is not available in any of the participants.

^b Does not include incidental hospital visits.

Web Table 3. Title, legend, and table provided separately in Excel.

Web Table 4. Correlations (Spearman and Pearson) between log-transformed metabolite values measured at the Broad Institute and Metabolon, Inc. for 111 overlapping metabolites.

Name HMDB ID	Spearman Correlation	Pearson Correlation
X_1_METHYLNICOTINAMIDE HMDB00699	0.93	0.95
X_2_AMINOADIPATE HMDB00510	0.77	0.75
X_2_HYDROXYGLUTARATE HMDB00694	0.46	0.45
X_4_PYRIDOXATE HMDB00017	0.95	0.96
ACETYLGLYCINE HMDB00532	0.82	0.88
ADENINE HMDB00034	-0.30	-0.14
ADMA HMDB01539	0.49	0.43
ADP HMDB01341	0.87	0.90
ALANINE HMDB00161	0.61	0.43
ALPHA_GLYCEROPHOSPHATE HMDB00126	0.14	0.32
ALPHA_GLYCEROPHOSPHOCHOLINE HMDB00086	0.49	0.47
ALPHA_HYDROXYBUTYRATE HMDB00008	0.97	0.98
ALPHA_KETOGLUTARATE HMDB00208	0.23	0.14
AMP HMDB00045	0.87	0.91
ARGININE HMDB00517	0.80	0.76
ASPARAGINE HMDB00168	0.60	0.65
BENZOATE HMDB01870	0.10	0.12
BETA_ALANINE HMDB00056	0.12	0.18
BETAINE HMDB00043	0.75	0.76
BUTYROBETAINE HMDB01161	0.43	0.29
C10_CARNITINE HMDB00651	0.93	0.95
C12_CARNITINE HMDB02250	0.74	0.77
C14_CARNITINE HMDB05066	0.54	0.54
C14_0_LPC HMDB10379	0.76	0.75
C16_CARNITINE HMDB00222	0.32	0.29
C16_0_LPC HMDB10382	0.48	0.70
C16_0_LPE HMDB11503	0.52	0.64
C16_1_LPC HMDB10383	0.75	0.70
C18_CARNITINE HMDB00848	0.46	0.41
C18_0_LPC HMDB10384	0.45	0.71
C18_0_LPE HMDB11130	0.71	0.78
C18_0_SM HMDB01348	0.70	0.72
C18_1_CARNITINE HMDB05065	0.24	0.18
C18_1_LPC HMDB02815	0.75	0.75
C18_1_LPE HMDB11506	0.79	0.83
C18_2_LPC HMDB10386	0.71	0.78
C18_2_LPE HMDB11507	0.86	0.85

C2_CARNITINE HMDB00201	0.90	0.92
C20_4_LPC HMDB10395	0.63	0.76
C20_4_LPE HMDB11517	0.80	0.78
C3_CARNITINE HMDB00824	0.91	0.93
C3_DC_CH3_CARNITINE HMDB13133	0.50	0.65
C4_CARNITINE HMDB02013	0.78	0.70
C4_OH_CARNITINE HMDB13127	0.92	0.88
C5_CARNITINE HMDB00688	0.83	0.83
C5_DC_CARNITINE HMDB13130	0.96	0.97
C5_1_CARNITINE HMDB02366	0.95	0.94
C6_CARNITINE HMDB00705	0.92	0.92
C8_CARNITINE HMDB00791	0.97	0.99
CAMP HMDB00058	0.08	0.22
CARNITINE HMDB00062	0.62	0.63
CHOLATE HMDB00619	0.94	0.93
CHOLINE HMDB00097	0.91	0.93
CITRATE HMDB00094	0.77	0.83
CITRULLINE HMDB00904	0.86	0.90
COTININE HMDB01046	0.68	0.94
CREATINE HMDB00064	0.90	0.92
CREATININE HMDB00562	0.93	0.93
DIMETHYLGLYCINE HMDB00092	0.90	0.87
FRUCTOSE_GLUCOSE_GALACTOSE HMDB00122	0.86	0.92
GENTISATE HMDB00152	0.89	0.90
GLUTAMATE HMDB00148	0.79	0.85
GLUTAMINE HMDB00641	0.46	0.54
GLYCINE HMDB00123	0.31	0.27
GLYCOCHOLATE HMDB00138	0.76	0.76
GLYCODEOXYCHOLATE_GLYCOCHENODEOX HMDB00631	0.76	0.66
HIPPURATE HMDB00714	0.96	0.98
HISTIDINE HMDB00177	0.44	0.48
HYDROXYPHENYLACETATE HMDB00020	0.15	0.21
HYDROXYPROLINE HMDB00725	0.96	0.98
HYPOXANTHINE HMDB00157	0.88	0.91
INDOLE_3_PROPIONATE HMDB02302	0.95	0.94
INDOXYLSULFATE HMDB00682	0.96	0.98
INOSINE HMDB00195	0.03	0.08
INOSITOL HMDB00211	0.67	0.74
ISOLEUCINE HMDB00172	0.89	0.88
KYNURENIC_ACID HMDB00715	0.77	0.77
KYNURENINE HMDB00684	0.89	0.89

LACTATE HMDB00190	0.95	0.95
LEUCINE HMDB00687	0.89	0.90
LYSINE HMDB00182	0.83	0.57
MALATE HMDB00156	0.80	0.66
METHIONINE HMDB00696	0.83	0.80
N_CARBAMOYL_BETA_ALANINE HMDB00026	0.80	0.86
NIACINAMIDE HMDB01406	0.92	0.91
ORNITHINE HMDB00214	0.83	0.81
OROTATE HMDB00226	0.41	0.76
OXALATE HMDB02329	0.11	0.09
PANTOTHENATE HMDB00210	0.81	0.83
PHENYLALANINE HMDB00159	0.81	0.78
PROLINE HMDB00162	0.84	0.82
PYROGLUTAMIC_ACID HMDB00267	0.30	0.25
PYRUVATE HMDB00243	0.71	0.70
SALICYLURATE HMDB00840	0.97	0.97
SDMA HMDB03334	0.69	0.77
SERINE HMDB00187	0.82	0.78
SEROTONIN HMDB00259	0.89	0.93
SUCROSE HMDB00258	NA	NA
TAURINE HMDB00251	0.95	0.95
TAURODEOXYCHOLATE_TAUROCHENODEO HMDB00896	0.74	0.88
THREONINE HMDB00167	0.86	0.65
TRIMETHYLAMINE_N_OXIDE HMDB00925	0.93	0.96
TRYPTOPHAN HMDB00929	0.67	0.79
TYROSINE HMDB00158	0.83	0.85
URACIL HMDB00300	0.39	0.27
URATE HMDB00289	0.82	0.87
URIDINE HMDB00296	0.78	0.76
VALINE HMDB00883	0.92	0.9
XANTHINE HMDB00292	0.75	0.91
XANTHOSINE HMDB00299	-0.02	0.00
XANTHURENATE HMDB00881	0.60	0.69

Web Table 5. Metabolite pairs that are highly correlated across the Broad Institute and Metabolon, Inc. metabolomics platforms.

Broad Institute name	Metabolon, Inc. name	Spearman	Pearson
		0.92	0.97
	A_10000	0.76	0.70
		0.04	0.70
		0.90	0.99
C10_2_CARNITINE	A_13435	0.79	0.75
C12_1_CARNITINE	A_13743	0.70	0.74
C14_1_CARNITINE	A_13743	0.79	0.77
C14_2_CARNITINE		0.76	0.00
		0.75	0.74
		0.75	0.70
		0.70	0.70
		0.97	0.73
	X_1_DOCOSAREXAENOTLGLTCEROPETH	0.00	0.00
C32_0_DAG		0.72	0.47
		0.00	0.71
		0.75	C0.0
		0.70	0.00
C34_0_PS		0.08	0.76
		0.71	0.70
C34_3_PE_PLASMALOGEN		0.59	0.79
		0.77	0.00
		0.30	0.71
		0.70	0.64
C36_4_PC_A		0.09	0.75
		0.72	0.00
C30_4_PE_PLASMALOGEN		0.00	0.78
C36_5_PC_PLASMALOGEN_B		0.74	0.08
C30_5_PE_PLASMALOGEN		0.01	0.71
C38_5_PE_PLASMALOGEN		0.73	0.77
		0.69	0.73
		0.72	0.80
		0.73	0.79
C38_7_PE_PLASMALOGEN		0.69	0.70
C40_7_PC_PLASMALOGEN		0.70	0.60
		0.71	0.75
C44_13_PE_PLASMALOGEN		0.68	0.70
C44_2_1AG	X_1_MYRISTOLEOYLGLYCEROPHOSPHO	0.71	0.63

C56_10_TAG	EICOSAPENTAENOATE	0.66	0.76
C56_8_TAG	EICOSAPENTAENOATE	0.70	0.74
C56_9_TAG	EICOSAPENTAENOATE	0.70	0.77
C58_10_TAG	DOCOSAHEXAENOATE	0.69	0.71
C58_11_TAG	EICOSAPENTAENOATE	0.72	0.69
C58_9_TAG	DOCOSAHEXAENOATE	0.70	0.71
C7_CARNITINE	X_17335	0.73	0.67
C9_CARNITINE	X_13431	0.80	0.80
GABA	X_2_AMINOBUTYRATE	0.82	0.76
GDP	ADENOSINE_5DIPHOSPHATEADP	0.87	0.89
GLUTATHIONE_OXIDIZED	CIS_VACCENATE18_1N7_	0.82	0.81
GMP	ADENOSINE_5MONOPHOSPHATEA	0.79	0.88
ISOCITRATE	X_12819	0.71	0.76
LACTOSE	MALTOSE	0.80	0.72
PIPECOLIC_ACID	PIPECOLATE	0.94	0.98
PROPIONATE	GUANOSINE	0.78	0.74
QUINOLINATE	X_15503	0.77	0.84
SORBITOL	MANNITOL	0.86	0.88
UDP	ADENOSINE_5DIPHOSPHATEADP	0.77	0.76
X_5_AMINOLEVULINIC_ACID	N_ACETYLVALINE	0.83	0.89