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Abstract. This paper presents ConFiG, a method for generating white
matter (WM) numerical phantoms with more realistic orientation dis-
persion and packing density. Numerical phantoms are commonly used
in the validation of diffusion MRI (dMRI) techniques so it is impor-
tant that they are as realistic as possible. Current numerical phantoms
either oversimplify the complex morphology of WM or are unable to pro-
duce realistic orientation dispersion at high packing density. The high-
est packing density and orientation dispersion achieved so far is only
20% at 10◦. ConFiG takes advantage of a shift of paradigm: rather than
‘packing fibres’, our algorithm ‘grows fibres’ contextually and efficiently,
attempting to produce a substrate with desired morphological priors (ori-
entation dispersion, packing density and diameter distribution), whilst
avoiding intersection between fibres. The potential of ConFiG is demon-
strated by reaching the highest packing density and orientation disper-
sion ever, to our knowledge (25% at 35◦). The algorithm is compared
with a ‘brute force’ growth approach showing that it is much more effi-
cient, being O(n) compared to the O(n2) brute-force method. The ap-
plication of the method to dMRI is demonstrated with simulations of
diffusion-weighted MR signal in three example substrates with differing
orientation-dispersions, packing-densities and permeabilities.

1 Introduction

Numerical phantoms have found much use for validating many magnetic reso-
nance imaging (MRI) experiments. In particular, many studies employing diffu-
sion MRI (dMRI) to study microstructural features of white matter (WM) use
numerical phantoms as part of the validation process[16, 9, 10].

Typically, the models used in these studies represent axons in WM using sim-
plistic geometrical representations such as parallel cylinders with uniform[9] or
polydisperse[5] radii. Other studies introduce more complexity into the numerical
phantoms with, for example, harmonic beading[1], spines [13] and undulation of
individual fibres[11]. These studies typically only consider one mode of morpho-
logical variation at a time and all of these representations over-simplify the true
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complexity of axonal morphology that has been investigated through ex-vivo
studies using electron microscopy[7].

Another emerging application of dMRI simulations is in the direct estimation
of microstructural features from a measured dMRI signal. Some recent works use
fingerprinting-style techniques and machine learning to match simulated signals
and the corresponding ground truth microstructure of the numerical phantom
to the measured signal[14, 6, 12, 8].

For all of these applications, synthetic models of WM that accurately repre-
sent real tissue are highly important.

Generating realistic WM numerical phantoms which accurately capture re-
alistic microstructural features (such as dispersion, undulation, beading, etc.) at
high packing densities is a major open challenge for the dMRI community. While
densely packing straight, parallel, fibres is relatively easy, only a few groups have
attempted to densely pack irregular, non-parallel, fibres. The highest packing
density achieved so far under modest dispersion (up to 10◦) reaches only 20%[4].
These approaches typically involve the packing of fibres. That is, trying to pack
a set of existing fibres together as densely as possible.

Here, we propose a completely different strategy: rather than densely ‘pack-
ing’ irregular fibres, we ‘grow’ fibres contextually, mimicking natural fibre gen-
esis. The algorithm presented proposes a method called ConFiG (Contextual
Fibre Growth) for the generation of WM numerical phantoms with more re-
alistic orientation dispersion and packing density. Fibres are grown one-by-one
following a cost function which attempts to impose the morphological priors that
are input to the algorithm.

The rest of the paper is organized as follows: Section 2 describes ConFiG,
Section 3 details some experiments showing the potential of the algorithm and
comparing it to a brute-force approach to fibre growth and Section 4 summarises
the contributions and discusses future work.

2 ConFiG: Contextual Fibre Growth

In this section we describe ConFiG which grows fibres one-by-one avoiding inter-
section between fibres whilst attempting to ensure that the resulting substrate
has desired morphological properties such as orientation dispersion, diameter
distribution and packing density. The algorithm is broken into a few stages:

– the definition of inputs to the algorithm

– the generation of the network on which fibres grow

– the method by which each fibre grows

– the meshing procedure to create 3D meshes

Pseudocode for the first three of these points is shown in Algorithm 1. The rest
of this section details each of the above stages.
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Algorithm 1 ConFiG algorithm pseudocode. Takes desired morphological pri-
ors (OD, ρ and d0) as well as desired number of nodes in the growth network.
From these initial fibre positions, targets and the growth network are generated
before the main loop of the algorithm in which each fibre grows one-by-one.

procedure fibreGrowth(OD, ρ, d0, numNodes)
[startPoints, targets] ← getInitialPoints(OD, ρ, d0) . Section 2.1
[DT, D] ← intialiseNetwork(numNodes, startPoints, targets) . Section 2.2
numFibre ← number of entries in startPoints
for i in 1:numFibre do . Initialise the fibre structures

fibres(i).node(0) = startPoints(i)
end for
for i in 1:numFibre do . Main growth loop (Section 2.3)

terminated ← false
j ← 0
while not terminated do

getCandidateNodes(fibres(i).node(j), DT) . Figure 1a
• candiates ← DT.nodes sharing edge with fibres(i).node(j)

getBestStep(candidates, D, targets) . Figure 1b
• costs ← costs for candiates from Eq. (1) given targets, D
• bestStep ← candidate with minimum cost

takeStep(fibres(i), bestStep) . Figure 1c
• fibres(i).node(j+1) ← bestStep

updateTriangulation(fibres(i), DT, D) . Figure 1d
• segment ← vector from fibre(i).node(j) to fibre(i).node(j+1)
• Dnew ← distance from DT.nodes to segment
• D ← min(D, Dnew)

isTerminated(fibres(i), targets)
• if fibre(i) has reached target:

terminated ← true
• elseif fibre(i) has no possible node to move to:

terminated ← true
• else:

terminated ← false
j ← j + 1

end while
end for

end procedure

2.1 Input to the algorithm

The morphology of the final substrate will depend on the inputs to the algorithm
which can be split into two general categories: parameters defining the fibre
population(s), and parameters defining the space in which fibres grow.

Fibre parameters include the desired orientation dispersion (OD), packing
density (ρ) and diameter distribution (P (d0)). These three parameters determine
the initial settings for each individual fibre. Each fibre is defined by a starting
point and a target point towards which it will grow as well as an initial fibre
diameter, d0. These parameters for each fibre are determined from OD, ρ and
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P (d0) by packing circles with the diameters drawn from P (d0) up to a density
of ρ in 2 dimensions. Orientation dispersion is introduced by moving the target
points of fibres relative to the starting points.

Alternatively, if the user wishes, the starting point, target point and diameter
for each fibre can be directly input, rather than allowing ConFiG to generate
them, in order to specify particular fibre configurations such as crossing fibre
bundles or fanning fibres.

Each fibre is allowed to shrink its diameter if it is necessary to fit into spaces
close to other fibres. The maximum amount of shrinkage permitted is a control-
lable parameter, specified as a percentage of the initial fibre diameter.

Due to the stochastic nature of the algorithm, the final substrate is not
guaranteed to have the exact morphological properties as input in the priors,
however these inputs give the target morphology that ConFiG will attempt to
produce.

Parameters defining the space in which the fibres grow are used to define a
discretisation of the space into a set of node points that the fibres can occupy.
Ideally, the space in which the fibres can grow is a continuous space, so there are
an infinite number of positions a fibre can occupy, however this is impractical,
so in this algorithm the space is discretised into a finite set of nodes.

Naturally, the choice of the density and arrangement of node points will im-
pact the substrate that is produced. Too few nodes will result in fibres that have
very long, straight segments and may introduce intersections between fibres. Us-
ing more nodes will reduce overlap between fibres at the cost of more memory
usage and slower growth of the fibres. The arrangement of the nodes will also
affect the morphology of the final substrate. For instance, placing nodes on a
uniform grid may produce fibres with unnaturally angular paths. If the density
of nodes on a uniform grid becomes sufficiently high, these angular bends are
insignificant compared to the diameter and the fibres will have more natural
shapes. For large substrates, the number of nodes required to satisfy this con-
dition becomes intractably large. For this reason, the nodes used are typically
pseudo-randomly distributed to ensure broadly uniform coverage of the space,
whilst keeping the number of nodes required lower.

2.2 Creation of the Growth Network

In order to embed information about the local environment at each node, the
first step of the algorithm is generating the paths that fibres can take between
the nodes as well as defining a maximum diameter that can be sustained at each
node to avoid intersection which will be denoted by di, for a node, i. These paths
define a network along which the fibres may grow.

The paths between nodes are defined by the Delaunay triangulation[3] of
the nodes which creates a sparse network in which any node can be reached
from any other node. This triangulation creates edges between nearby nodes,
encoding information about the local connectivity at each node. Nodes that
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become occupied by a fibre will be inaccessible to any future fibres, which is one
way in which intersection is minimised between fibres.

The maximum diameter, di, at each node encodes information on the amount
of space available at each node. Where di is small, that node is close to an existing
fibre, so any subsequent fibre passing through that node will have to shrink its
diameter to di in order to prevent intersections. Allowing fibres to contextually
shrink their diameter allows fibres to occupy spaces which would otherwise be
unavailable.

2.3 Growth of a Fibre

Fig. 1: Schematic overview of the fibre growth algorithm. A fibre grows sequentially,
moving from one node to the next, starting from the start point (top left, green node)
toward the target (top left, blue node) along the edges defined by the Delaunay tri-
angulation. Inset: The algorithm determining which node a fibre steps to at any given
iteration. a) The possible nodes to step to are those which share an edge with the
current node. b) From the edges available costs are calculated using eqs. (1) and (2). c)
The fibre will grow along the edge with the lowest cost. d) From this new segment, the
maximum diameter sustainable at a given node is calculated, giving each node a cost
based on the maximum sustainable diameter. This cost will then be used in the cal-
culation of edge weights (b) for future fibres. Note that although this figure illustrates
the algorithm in 2D, in practice the algorithm grows fibres in 3D.

Each individual fibre grows by moving the head of the fibre from node to
node according to a cost function which attempts to ensure that the fibre moves
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towards its target whilst avoiding intersection. The main steps in the growth of
a single fibre are shown in Figure 1.

The first step in the growth of a fibre is determining which nodes are the
possible next nodes the fibre can step to, referred to as candidate nodes. From
a given starting node, s, the candidate nodes are any of the nodes which share
an edge with s.

The choice of which candidate node a fibre steps to from the current node
is determined by a cost function. The cost function consists of two terms, one
which penalises moving away from the target point, t, and one which penalises
moving to a position where di is low, meaning the fibre diameter would have to
shrink. The cost function for a fibre at a position, s, to move to an candidate
node, c, given a target point, t, is l = lt + fld, where

lt =
1

2
· ‖s− c‖

1 + ‖s− c‖
·
(

1− (c− s) · (t− s)
‖c− s‖‖t− s‖

)
, (1)

ld = max

(
0,

1

d0
(d0 − di)

)
, (2)

d0 is the desired radius of the fibre and f is a weighting factor between the two
terms. In this work, f is fixed to 0.2 to more strongly weight growth toward the
target.

Equation (1) is the term penalising moving away from the target. The dot
product between the vector to the candidate and the vector to the target ensures
that the minimum cost occurs when the candidate is directly aligned with the
target. Equation (2) is the term penalising moving to a position where the radius
of the fibre must shrink. For radii lower than the desired radius of the fibre,
d0, Equation (2) grows linearly with distance from d0. For radii greater than
or equal to d0, Equation (2) is zero, meaning that regions of empty space are
equally weighted.

The next node for a fibre will be the candidate node which has the lowest
cost according to Equations (1) and (2). This method of finding a path through
the triangulation by choosing the lowest cost node at each position amounts to
a greedy best-first pathfinding approach with a heuristic given by Equations (1)
and (2).

With the next node chosen, the value of di needs to be updated for other
nearby nodes. All nodes have di set to the Euclidean distance between the node
and the surface of the new section of fibre if that distance is less than the current
value of di. This is illustrated in Figure 1d.

Any nodes which now lie within the fibre have di set to zero. Nodes with
di = 0 are disallowed from future steps, meaning that once a fibre has grown,
no future fibres can connect to any nodes within the fibre. This, in addition to
shrinking the radius of future fibres according to di at each node means that the
fibres grow in an almost completely non-intersecting manner. Since the value of
di is set based on fibre-to-point distances, there can be cases in which the fibres
would intersect when the closest point between two fibre sections is not at one of
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the fibre nodes. In order to account for this, a meshing process developed which
can deform fibres around one another. This is described in Section 2.4.

The fibre growth algorithm will output a set of fibres which are defined by a
series of nodes and the diameter of the fibre at each node. These are written into
the Stockley-Wheal-Cole (SWC) format[15], a format commonly used to store
cellular morphology information.

2.4 Creation of Fibre Meshes

In order to create 3D meshes to be used in dMRI simulations, a meshing pro-
cess was developed using 3D modelling software Blender (https://blender.org).
Fibres are meshed one-by-one using the Blender SWC Mesher add-on (https://
github.com/mcellteam/swc mesher) which uses Blender metaballs to make a
mesh.

In Blender, a metaball is an implicit surface defined as the isosurface of a
so-called directing structure. This directing structure can be seen the source of
a static field. For instance a spherical isosurface can be formed with a directing
structure which mimics the electric field a point charge. When multiple meta-
balls come close to one another, the fields will combine to form a surface that
merges the two spheres together. An example of metaball interactions is shown
in Figure 2.

By placing metaballs along the skeleton of each fibre, with the path and
diameters given from the fibre growth algorithm, a smooth surface is formed
for each fibre. It is this implicit surface, created using metaballs that the SWC
mesher add-on creates. This implicit surface can be turned into an explicit sur-
face (i.e. a mesh of vertices and faces) in Blender, which can then be refined by
progressively smoothing and reducing the number of faces in the mesh to create
a mesh which can be used in dMRI simulations.

This process can be used to mesh each fibre individually, however issues can
arise with intersection of fibres, as mentioned in Section 2.3. In order to account
for this, a contextual meshing algorithm was developed. The metaball surface
for one fibre is created using the SWC Mesher. This surface is then turned into
a mesh as described above, however the metaballs are retained. The metaball
potential is then turned negative, meaning that rather than attracting any fu-
ture nearby metaball surfaces, it will repel them, as shown in Figure 2b. This
means that subsequent fibres which are meshed very close to, or overlapping with
existing fibres will deform organically to resolve the intersection, thus creating
a series of completely non-intersecting fibre meshes which can be used by the
dMRI simulator.

The deformation introduced by the contextual meshing process has two ef-
fects. As well as helping to prevent intersection between fibres, the deformation
produces fibres with more organic non-circular cross sections, better mimicking
realistic mythologies. This is vastly different to the majority of previous WM
numerical phantoms which model fibres as circular or elliptic cylinders.
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Fig. 2: Simple example of metaball interactions. a) With two positive metaballs, the
fields combine to attract the surfaces together. This is used to join individual segments
into a continuous fibre. b) With one negative metaball (indicated by the flat grey
circle) the surface of the metaball is repelled from the negative metaball. This is used
to deform nearby fibres around one another.

3 Experiments and Results

3.1 Demonstration of ConFiG

To demonstrate the potential of ConFiG, three substrates at different (disper-
sion, packing density) conditions were generated: (0◦, 60%), (15◦, 30%) and
(35◦, 25%), shown in Figure 3a. Each substrate is grown using 5× 106 pseudo-
randomly placed source nodes for the growth network, giving a network with
3.88 × 107 edges and a mean distance between any given node and its neigh-
bours of 0.29 µm. The packing densities chosen represent the highest densities
achievable using ConFiG for each dispersion condition.

For the 0◦ dispersed substrate, initial diameters were drawn from a gamma
distribution with mean d0 = 2 µm and standard deviation σd = 0.2 µm. The 15◦

and 35◦ substrates were generated with d0 = 1.2 µm and σd = 0.2 µm in order
to show the flexibility of ConFiG to generate substrates with different diameter
distributions as well as orientation dispersion and packing density. Diameters
were limited to be permitted to shrink to 25% of the original fibre diameter in
order to fit into space.

For each substrate, the Pulsed-Gradient-Spin-Echo (PGSE) signal was simu-
lated in Camino[2] using 5× 105 diffusing spins and 5× 103 discrete time steps,
uniformly distributed with bulk-diffusivity D0=2 µm2/ms. To show the range of
simulation possibilities available, three different membrane permeabilities (κ=0,
0.0025, 0.0050 µm/ms) were also imposed. The simulated PGSE measurement
parameters were: δ/∆ = 1/40 ms and 50 b-values from 0 to 9 ms/µm2 along x-,
y- and z-directions.

The corresponding direction-averaged simulated PGSE signals at different
permeabilities are shown with SNR = ∞ in Figure 3b and SNR = 20 in Fig-
ure 3c. The signal decays to a lower value as the dispersion increases and density
decreases, as expected.
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Fig. 3: a) Example substrates (cut into 30x30x30 µm3 cube) from the fibre growth
algorithm, left to right: Zero macroscopic dispersion (60% density), 15◦ of macroscopic
dispersion (30% density), 35◦ dispersed (25% density). b) Simulations for each substrate
for varying permeabilities with SNR = ∞ and c) SNR = 20. Units of κ are µm/ms.

3.2 Comparison with Brute-Force Approach

ConFiG was compared against the näıve brute-force approach to fibre growth.
The brute-force approach grows fibres one segment at a time and checks for
collisions between the new segment and all existing fibres. Each new segment is
chosen from one of 128 candidate directions on a cone aligned with the previous
segment, with each direction being weighted according to Equation (1).

Substrates were grown with both the brute-force approach and ConFiG using
the same starting and target points and initial diameters. These initial param-
eters were determined by packing circles with gamma distributed radii (mean
d0 = 2 µm, standard deviation σ = 0.6 µm) into a 40 µm x 40 µm square up
to a packing density of 60%. Target points were set as 40 µm directly above the
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Fig. 4: Timing of brute force growth vs. the fibre growth algorithm along with a
quadratic fit (brute-force) and linear fit (fibre growth algorithm). The fibre growth
algorithm is clearly linear in the number of fibres, while brute force growth fits an
order n2 well.

starting points to define a substrate with 0◦ macroscopic orientation dispersion.
This resulted in a substrate with a total of 54 initial fibres.

The fibre growth algorithm used 1 × 106 randomly distributed points for
the Delaunaty triangulation giving a mean distance between points of 0.5 µm,
matching the brute force approach which used a segment length of 0.5 µm for
each new fibre segment.

From these initial parameters, fibres were grown using a subset of n =
1, 5, 10, 15, 20, 25, 30, 40 fibres and the growth was timed. Each value of n was
timed 5 times with and the mean taken to reduce single-run timing fluctuations.

Figure 4 shows the timing results of the brute-force approach versus the fibre
growth algorithm. The fibre growth algorithm has approximately O(n) com-
plexity with n being the number of fibres. Conversely, the brute-force algorithm
shows O(n2) complexity owing to the fact that every new segment has to check
for collisions with all existing fibres.

The fibre growth algorithm has a higher n = 0 offset which is caused by the
overhead in calculating the Delaunay triangulation for the growth network. This
causes the brute-force approach to have better performance at low n, while at
higher n (approaching the > 100 fibres needed for a realistic dMRI voxel) the
linearity of the fibre growth algorithm gives it much faster performance.

4 Discussion and Conclusion

ConFiG shifts perspective from previous works attempting to pack together fi-
bres, by trying to mimic natural fibre genesis. This approach represents a major
step towards very high fibre packing, enabling us to reach the highest dispersion
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at the highest packing density reached so far, to our knowledge. Our (15◦, 30%)
and (35◦, 25%) represent an average ∼50% and ∼200% improvement, respec-
tively, over the best previously reported results of (10◦, 20%)[4].

The substrates presented in Figure 3 are just a few examples of the kinds
of substrates that can be produced using our ConFiG method. By varying the
setup of the morphological controls and start and target points, many different
fibre configurations can be produced. Currently, fibres will attempt to grow in a
straight line between the start and target points, meaning that certain configu-
rations such as kissing bundles cannot be represented. However, the algorithm
can in principle be extended to allow for series of target points, allowing the
definition of a desired ’path’ of a fibre.

Additionally, some input parameter settings cannot be achieved. For instance,
trying to grow a substrate with both very high density and very high disper-
sion will result in a final substrate that does not reach the density required.
The reason for this could be a combination of limitations of the algorithm in re-
stricting growth to a discrete network and also the fact that some morphological
settings are practically infeasible. This limitation, however, also applies to the
fibre packing and brute force growth approaches.

One weakness of the fibre-growth algorithm is that since the fibre diameters
are calculated from a fibre-to-point distance, there can still be some small amount
of overlap between fibres. This is solved using the meshing process in Blender to
deform the regions of slight overlap between neighbouring fibres.

To conclude, the proposed ConFiG approach, using the fully connected growth
network, is shown to be more efficient than a ‘brute-force’ growth approach. The
fact that ConFiG is linear with the number of fibres makes it far more efficient
for high numbers of fibres. For instance, a realistic voxel will need hundreds or
thousands of fibres which will become impractically slow for the ‘brute-force’
approach, whilst remaining manageable for our algorithm. This efficiency, along
with the high density and orientation dispersion achieved means that ConFiG
represents a promising step forward in the construction of ultra-realistic numer-
ical phantoms of WM.
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