SUPPLEMENTARY MATERIALS

Results

What drugs have people had sex on, over the last 12 months?

A greater proportion of women had sex on alcohol than men ($\mathrm{p}<0.001$). A greater proportion of heterosexual women had sex on alcohol than homosexual women ($\mathrm{z}=3.736, \mathrm{p}<0.001$). A greater proportion of bisexual women had sex on alcohol than heterosexual women ($\mathrm{z}=3.972$, $\mathrm{p}<0.001$).

A greater proportion of men had sex on cannabis than women $(\mathrm{p}<0.001)$. A greater proportion of heterosexual men had sex on cannabis than homosexual men $(\mathrm{z}=8.839, \mathrm{p}<0.001)$. A greater proportion of bisexual women had sex on cannabis than heterosexual women $(\mathrm{z}=10.710$, $\mathrm{p}<0.001$).

A greater proportion of homosexual men had sex on cocaine than heterosexual men $(z=4.341$, $\mathrm{p}<0.001$). A greater proportion of bisexual women had sex on cocaine than heterosexual women ($\mathrm{z}=3.311, \mathrm{p}<0.001$).

A greater proportion of homosexual men ($\mathrm{z}=5.753$, $\mathrm{p}<0.001$) and bisexual men $(\mathrm{z}=2.329$, $\mathrm{p}=0.02$) had sex on MDMA than heterosexual men. A greater proportion of bisexual women had sex on MDMA than heterosexual women $(\mathrm{z}=8.466, \mathrm{p}<0.001)$.

A greater proportion of men had sex on poppers than women ($\mathrm{p}<0.001$). A greater proportion of homosexual men $(z=40.071, p<0.001)$ and bisexual men $(z=12.660 p<0.001)$ had sex on poppers than heterosexual men.

A greater proportion of men had sex on Viagra than women ($\mathrm{p}<0.001$). A greater proportion of homosexual men $(\mathrm{z}=18.032, \mathrm{p}<0.001)$ and bisexual men $(\mathrm{z}=4.880 \mathrm{p}<0.001)$ had sex on Viagra than heterosexual men.

A greater proportion of men had sex on $G H B / G B L$ than women ($\mathrm{p}<0.001$). A greater proportion of homosexual men $(\mathrm{z}=24.189, \mathrm{p}<0.001)$ and bisexual men $(\mathrm{z}=3.271 \mathrm{p}<0.001)$ had sex on GHB/GBL than heterosexual men.

A greater proportion of men had sex on methamphetamine than women ($\mathrm{p}<0.001$). A greater proportion of homosexual men ($\mathrm{z}=21.792$, $\mathrm{p}<0.001$) and bisexual men ($\mathrm{z}=3.926 \mathrm{p}<0.001$) had had sex on methamphetamine than heterosexual men

A greater proportion of homosexual men ($\mathrm{z}=6.763$, $\mathrm{p}<0.001$) and bisexual men ($\mathrm{z}=2.198$ $\mathrm{p}=0.028$) had sex on ketamine than heterosexual men. A greater proportion of bisexual women had sex on ketamine than heterosexual women ($\mathrm{z}=4.742$, $\mathrm{p}<0.001$).

A greater proportion of homosexual men had sex on mephedrone than heterosexual men ($\mathrm{z}=8.682, \mathrm{p}<0.001$).

How different drugs affect enjoyment/capacity for sex or physical activity (figure 1)

Bisexual respondents rated MDMA higher than heterosexual ($\mathrm{p}<0.001$) and homosexual ($\mathrm{p}<0.001$) respondents.

Bisexual men rated cannabis higher than homosexual men ($\mathrm{p}<0.001$). Bisexual women rated cannabis higher than heterosexual ($\mathrm{p}<0.001$) and homosexual ($\mathrm{p}=0.034$) women. Overall, men rated cannabis higher than women ($\mathrm{p}<0.001$) and bisexual respondents rated it higher than heterosexual ($\mathrm{p}<0.001$) and homosexual ($\mathrm{p}<0.001$) respondents.

Heterosexual men rated alcohol higher than homosexual men ($\mathrm{p}=0.001$). Bisexual women rated alcohol higher than heterosexual and homosexual women ($\mathrm{p}<0.001$), and heterosexual women rated it higher than homosexual women ($\mathrm{p}<0.001$). Overall, women rated alcohol higher than men ($\mathrm{p}=0.016$). Both bisexual respondents ($\mathrm{p}<0.001$) and heterosexual respondents ($\mathrm{p}<0.001$) rated alcohol higher than homosexual respondents.

Homosexual men rated ketamine higher than bisexual $(\mathrm{p}=0.001)$ and heterosexual men ($\mathrm{p}<0.001$). Bisexual women rated ketamine higher than heterosexual women ($\mathrm{p}=0.004$). Overall, both bisexual respondents ($\mathrm{p}=0.001$) and homosexual respondents ($\mathrm{p}<0.001$) rated ketamine higher than heterosexual respondents.

Discussion

Discussion of alcohol

Alcohol was by far the most common drug used with sex, which is unsurprising given it is one of the most popular psychoactive substances worldwide ${ }^{1}$. However, despite high levels of use in SLS, it was less valued, in comparison to other drugs, on the overall item (9 ${ }^{\text {th }}$ place) and on many of the individual aspects of the sexual experience. This is consistent with other research that found illicit drugs lead to an overall more pleasurable experience than alcohol ${ }^{2}$, with regret after sex more commonly associated with alcohol than illicit substances ${ }^{3,4}$.

Drugs that scores specifically well on certain items

In terms of drugs that performed particularly well on specific sexual items, Viagra was rated best for erection, as expected ${ }^{5,6}$. GHB/GBL and methamphetamine were highly rated for sexual desire and intensity of orgasm respectively, potentially helping to explain their roles as chemsex drugs ${ }^{7,8}$. Cannabis and cocaine tended to be rated positively, but not as high as the drugs previously mentioned, indicating their somewhat milder effects on the sexual experience ${ }^{9,10}$.

Further limitations

Drug use can never be biologically verified; one drug is rarely taken without other drugs, so rating the effects of a single drug may be difficult; and people often have expectations about drug effects, which may contribute to ratings. The GDS's respondents self-select and so are not representative of national populations. Respondents tend to take more drugs, have better internet access and have higher levels of 'health literacy' than the general population. The GDS samples also disproportionately comprise young, white and educated people. Hence, one cannot extrapolate findings to wider populations. For instance, it would be a profound mistake to conclude that GHB/GBL will enhance 'overall performance' during sex for the average person. Estimates of prevalence (e.g. the proportion of people who have had sex on cannabis in the last year) from the GDS clearly do not represent the true global prevalence.

Another study-specific limitation, regarding the ratings section, is that we only asked respondents to provide ratings on the three drugs which they had used most commonly had sex in combination with. This was presumably a contributing factor to the low ns for some drugs in some groups. Furthermore, one may hypothesise that a drug which is more commonly taken
during sex has different effects to a drug that is less commonly taken during sex, independent of its pharmacological properties.

Table S1-General drug use in the last 12 months. Have you used this drug in the last 12 months? Number (percentage) [percentage rank]. The percentage has been calculated by dividing the number of 'yes I have taken this drug in the last 12 months' answers by the total number of that group and multiplying by 100 .

	Male				Female			
	Heterosexual	Homosexual	Bisexual	Total Male	Heterosexual	Homosexual	Bisexual	Total Female
Alcohol	11,379 (93.6\%) [1]	1,138 (92.9\%) [1]	888 (94.3\%) [1]	13,134 (93.5\%) [1]	4,677 (94.1\%) [1]	256 (90.8\%) [1]	916 (95.2\%) [1]	6,035 (94.0\%) [1]
Cannabis	8,374 (72.3\%) [2]	670 (54.7\%) [2]	727 (77.2\%) [2]	9,975 (71.0\%) [2]	2,387 (48.0\%) [2]	144 (51.1\%) [2]	667 (69.3\%) [2]	3,308 (51.5\%) [2]
Cocaine	2,998 (25.9\%) [4]	346 (28.2\%) [5]	221 (23.5\%) [4]	3,623 (25.8\%) [4]	1,004 (20.2\%) [4]	55 (19.5\%) [4]	252 (26.2\%) [4]	1,349 (21.0\%) [4]
GHB/GBL	198 (1.7\%) [10]	145 (11.8\%) [8]	25 (2.7\%) [10]	375 (2.7\%) [10]	47 (0.9\%) [9]	5 (1.8\%) [9]	29 (3.0\%) [9]	82 (1.3\%) [9]
Ketamine	1,426 (12.3\%) [5]	185 (15.1\%) [7]	137 (14.5\%) [5]	1,781 (12.7\%) [5]	399 (8.0\%) [5]	30 (10.6\%) [5]	141 (14.7\%) [5]	599 (9.3\%) [5]
MDMA	4,587 (39.6\%) [3]	507 (41.4\%) [3]	390 (41.4\%) [3]	5,590 (39.8\%) [3]	1,463 (29.4\%) [3]	71 (25.2\%) [3]	398 (41.4\%) [3]	1,999 (31.1\%) [3]
Mephedrone	484 (4.2\%) [8]	73 (6.0\%) [10]	50 (5.3\%) [9]	618 (4.4\%) [9]	140 (2.8\%) [8]	10 (3.5\%) [8]	48 (5.0\%) [8]	212 (3.3\%) [8]
Methamphetamine	494 (4.3\%) [7]	140 (11.4\%) [9]	53 (5.6\%) [8]	699 (5.0\%) [8]	182 (3.7\%) [7]	20 (7.1\%) [6]	61 (6.3\%) [7]	273 (4.3\%) [7]
Poppers	605 (5.2\%) [6]	449 (36.7\%) [4]	118 (12.5\%) [6]	699 (8.4\%) [6]	191 (3.8\%) [6]	16 (5.7\%) [7]	78 (8.1\%) [6]	292 (4.5\%) [6]
Viagra	470 (4.1\%) [9]	201 (16.4\%) [6]	82 (8.7\%) [7]	756 (5.4\%) [7]	9 (0.2\%) [10]	1 (0.4\%) [10]	7 (0.7\%) [10]	19 (0.3\%) [10]
Total number of people in this group	11,577	1,225	942	14,050	4,970	282	962	6,419

Table S2 - How do age, income and region of residence (as measured by the proxy variable currency) relate to the likelihood of having had sex on various drugs in the last 12 months. We conducted logistic regressions and report betas (6), standard error (SE) in beta, the odds ratio and the associated p value.

		β	SE(β)	Odds Ratio	p value
Alcohol	Age	-0.038	0.001	0.963	<0.001
	Income	0.093	0.005	1.098	<0.001
	Currency: Euro vs. Pounds	-0.227	0.053	0.797	<0.001
	Currency: US Dollar vs. Pounds	-0.534	0.043	0.586	<0.001
	Currency: Canadian Dollar vs. Pounds	-0.629	0.088	0.533	<0.001
	Currency: Austrian Dollar vs. Pounds	-0.476	0.041	0.622	<0.001
Cannabis	Age	-0.009	0.001	0.991	<0.001
	Income	-0.011	0.005	0.989	0.025
	Currency: Euro vs. Pounds	0.216	0.052	1.242	<0.001
	Currency: US Dollar vs. Pounds	0.540	0.042	1.716	<0.001
	Currency: Canadian Dollar vs. Pounds	0.258	0.087	1.295	0.003
	Currency: Austrian Dollar vs. Pounds	-0.552	0.043	0.576	<0.001

Cocaine	Age	-0.022	0.002	0.979	<0.001
	Income	0.141	0.007	1.151	<0.001
	Currency: Euro vs. Pounds	-0.510	0.089	0.601	<0.001
	Currency: US Dollar vs. Pounds	-0.819	0.075	0.441	<0.001
	Currency: Canadian Dollar vs. Pounds	-0.658	0.149	0.518	<0.001
	Currency: Austrian Dollar vs. Pounds	-0.946	0.066	0.388	<0.001
GHB/GBL	Age	0.005	0.006	1.005	0.336
	Income	0.139	0.018	1.149	0.000
	Currency: Euro vs. Pounds	0.561	0.203	1.753	0.006
	Currency: US Dollar vs. Pounds	-0.444	0.221	0.641	0.044
	Currency: Canadian Dollar vs. Pounds	0.323	0.318	1.382	0.309
	Currency: Austrian Dollar vs. Pounds	-0.464	0.178	0.628	0.009
Ketamine	Age	-0.026	0.005	0.974	<0.001
	Income	0.061	0.016	1.063	<0.001
	Currency: Euro vs. Pounds	-0.943	0.180	0.389	<0.001
	Currency: US Dollar vs. Pounds	-0.955	0.139	0.385	0.297

	Currency: Canadian Dollar vs. Pounds	-0.236	0.227	0.789	<0.001
	Currency: Austrian Dollar vs. Pounds	-1.576	0.149	0.207	<0.001
MDMA	Age	-0.036	0.002	0.965	<0.001
	Income	0.070	0.006	1.072	<0.001
	Currency: Euro vs. Pounds	-0.381	0.070	0.683	<0.001
	Currency: US Dollar vs. Pounds	-0.484	0.057	0.616	<0.001
	Currency: Canadian Dollar vs. Pounds	-0.466	0.121	0.628	<0.001
	Currency: Austrian Dollar vs. Pounds	-0.665	0.056	0.514	<0.001
Mephedrone	Age	-0.598	0.062	0.986	0.036
	Income	0.089	0.021	1.093	<0.001
	Currency: Euro vs. Pounds	-1.230	0.229	0.292	<0.001
	Currency: US Dollar vs. Pounds	-2.332	0.278	0.097	<0.001
	Currency: Canadian Dollar vs. Pounds	-3.211	1.004	0.040	<0.001
	Currency: Austrian Dollar vs. Pounds	-3.237	0.281	0.039	<0.001
Methamphetamine	Age	0.004	0.004	1.004	0.330
	Income	0.076	0.014	1.079	<0.001

	Currency: Euro vs. Pounds	0.177	0.310	1.193	0.568
	Currency: US Dollar vs. Pounds	0.886	0.207	2.426	<0.001
	Currency: Canadian Dollar vs. Pounds	0.193	0.476	1.212	0.686
	Currency: Austrian Dollar vs. Pounds	1.461	0.183	4.309	<0.001
Poppers	Age	0.011	0.004	1.011	0.011
	Income	0.100	0.015	1.105	<0.001
	Currency: Euro vs. Pounds	-0.659	0.216	0.517	0.002
	Currency: US Dollar vs. Pounds	-1.100	0.194	0.333	<0.001
	Currency: Canadian Dollar vs. Pounds	-1.133	0.420	0.322	0.007
	Currency: Austrian Dollar vs. Pounds	-0.586	0.133	0.556	<0.001
Viagra	Age	0.042	0.003	1.043	<0.001
	Income	0.119	0.010	1.127	<0.001
	Currency: Euro vs. Pounds	-0.490	0.153	0.613	0.001
	Currency: US Dollar vs. Pounds	-0.593	0.117	0.553	<0.001
	Currency: Canadian Dollar vs. Pounds	-0.471	0.216	0.624	0.030
	Currency: Austrian Dollar vs. Pounds	-0.761	0.094	0.467	<0.001

Table S3- Ratings of how different drugs affect different aspects of sexual experience in the different groups. $-10=$ ' m assive reduction', $0=$ ' $n o$ change' and $+10=$ 'massive increase'. N/A is reported if fewer than five respondents in a group provided ratings. ANOVAs were conducted with between-subjects factors of gender (men, women) and sexual orientation (heterosexual, homosexual and bisexual). When there were fewer than five respondents in a group, we did not include the gender by sexual orientation interaction in the model; we conducted separate ANOVAS to investigate the main effects of gender and sexual orientation in these instances. For the interaction (if conducted) and the main effects, we report the F statistic, degrees of freedom and the p value. Follow-up tests of significant interactions and effects can be found in table S4.

		Male				Female				Statistics		
		Heterosexual	Homosexual	Bisexual	All Males	Heterosexual	Homosexual	Bisexual	All Females	Gender by sexual orientation interaction	Gender main effect	Sexual orientation main effect
Erection or Moistness	Alcohol	$\begin{aligned} & -1.09 \text { (SD=4.11; } \\ & \mathrm{n}=6472) \end{aligned}$	$\begin{aligned} & \hline-1.15 \text { (SD=3.91; } \\ & \mathrm{n}=622) \end{aligned}$	$\begin{aligned} & \hline-1.62(S D=3.78 ; \\ & \mathrm{n}=507) \end{aligned}$	$\begin{aligned} & -1.13(S D=4.08 ; \\ & \mathrm{n}=7708) \end{aligned}$	$\begin{aligned} & 1.17 \text { (SD=4.18; } \\ & \mathrm{n}=2747) \end{aligned}$	$\begin{aligned} & 0.18 \text { (SD=3.69; } \\ & n=123) \end{aligned}$	$\begin{aligned} & 1.42(\mathrm{SD}=4.31 ; \\ & \mathrm{n}=625) \end{aligned}$	$\begin{aligned} & 1.18 \text { (SD=4.19; } \\ & \mathrm{n}=3586) \end{aligned}$	$\mathrm{F}_{2,11090}=7.456$	$\mathrm{F}_{1,11090}=188.474$	$F_{2,11090}=3.593$
	Cocaine	$\begin{aligned} & 1.26 \text { (SD=5.50; } \\ & \mathrm{n}=739) \end{aligned}$	$\begin{aligned} & 1.19 \text { (SD=5.61; } \\ & \mathrm{n}=108) \end{aligned}$	$\begin{aligned} & 1.49 \text { (SD=5.44; } \\ & \mathrm{n}=51) \end{aligned}$	$\begin{aligned} & 1.27 \text { (SD=5.50; } \\ & \mathrm{n}=911 \text {) } \end{aligned}$	$\begin{aligned} & 2.19 \text { (SD=4.68; } \\ & n=313) \end{aligned}$	$\begin{aligned} & -0.11 \text { (SD=3.61; } \\ & \mathrm{n}=18) \end{aligned}$	$\begin{aligned} & 2.51 \text { (SD=4.31; } \\ & \mathrm{n}=69) \end{aligned}$	$\begin{aligned} & 2.15(\mathrm{SD}=4.56 ; \\ & \mathrm{n}=410) \end{aligned}$	$F_{2,1292}=1.344$	$F_{1,1292}=0.148$	$F_{2,1292}=1.344$
	Cannabis	$\begin{aligned} & 2.69(\mathrm{SD}=4.07 ; \\ & \mathrm{n}=4080) \end{aligned}$	$\begin{aligned} & 2.61 \text { (SD=4.12; } \\ & \mathrm{n}=264) \end{aligned}$	$\begin{aligned} & 2.72 \text { (SD=3.79; } \\ & \mathrm{n}=341) \end{aligned}$	$\begin{aligned} & 2.70 \text { (SD=4.06; } \\ & \mathrm{n}=4772) \end{aligned}$	$\begin{aligned} & 2.23 \text { (SD=4.39; } \\ & \mathrm{n}=1034) \end{aligned}$	$\begin{aligned} & 1.43 \text { (SD=4.27; } \\ & \mathrm{n}=51) \end{aligned}$	$\begin{aligned} & 2.52 \text { (SD=4.44; } \\ & \mathrm{n}=359) \end{aligned}$	$\begin{aligned} & 2.26 \text { (SD=4.40; } \\ & \mathrm{n}=1497) \end{aligned}$	$\begin{aligned} & F_{2,6123}=1.003 \\ & p=0.367 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,6123}=6.497 \\ & \mathrm{p}=0.011 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,6123}=1.480 \\ & \mathrm{p}=0.228 \end{aligned}$
	GHB/GBL	$\begin{aligned} & 6.04 \text { (SD=3.71; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 4.34 \text { (SD=4.37; } \\ & \mathrm{n}=70 \text {) } \end{aligned}$	$\begin{aligned} & 1.40 \text { (SD=5.32; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 4.84 \text { (SD=4.28; } \\ & \mathrm{n}=123) \end{aligned}$	$\begin{aligned} & 5.47 \text { (SD=3.44; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 4.77 \text { (SD=4.21; } \\ & \mathrm{n}=13) \end{aligned}$	$\begin{aligned} & 5.30 \text { (SD=3.73; } \\ & \mathrm{n}=30) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,151}=0.296, \\ & \mathrm{p}=0.587 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,156}=2.658, \\ & \mathrm{p}=0.073 \end{aligned}$
	Ketamine	$\begin{aligned} & -1.43 \text { (SD=4.77; } \\ & \mathrm{n}=81) \end{aligned}$	$\begin{aligned} & -0.81 \text { (SD=5.0; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & 0.91 \text { (SD=4.41; } \\ & \mathrm{n}=11) \end{aligned}$	$\begin{aligned} & -1.08 \text { (SD=4.76; } \\ & \mathrm{n}=120) \end{aligned}$	$\begin{aligned} & 1.91 \text { (SD=4.22; } \\ & \mathrm{n}=43) \end{aligned}$	N/A	$\begin{aligned} & 0.65 \text { (SD=5.15; } \\ & \mathrm{n}=20) \end{aligned}$	$\begin{aligned} & 1.40(\mathrm{SD}=4.38 ; \\ & \mathrm{n}=68) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,186}=12.463, \\ & \mathrm{p}=0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,188}=0.940, \\ & \mathrm{p}=0.392 \end{aligned}$

	MDMA	$\begin{aligned} & 0.51 \text { (SD=5.81; } \\ & \mathrm{n}=1408) \end{aligned}$	$\begin{aligned} & 0.37 \text { (SD=5.85; } \\ & \mathrm{n}=161) \end{aligned}$	$\begin{aligned} & 0.29 \text { (SD=5.74; } \\ & \mathrm{n}=137) \end{aligned}$	$\begin{aligned} & 0.46 \text { (SD=5.81; } \\ & \mathrm{n}=1738) \end{aligned}$	$\begin{aligned} & 2.64 \text { (SD=5.12; } \\ & \mathrm{n}=548) \end{aligned}$	$\begin{aligned} & 2.54 \text { (SD=5.27; } \\ & \mathrm{n}=24) \end{aligned}$	$\begin{aligned} & 3.51 \text { (SD=4.82; } \\ & \mathrm{n}=190) \end{aligned}$	$\begin{aligned} & 2.82 \text { (SD=5.07; } \\ & \mathrm{n}=789) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2462}=1.240, \\ & \mathrm{p}=0.290 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2462}=28.777, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2462}=0.488, \\ & \mathrm{p}=0.614 \end{aligned}$
	Mephedrone	$\begin{aligned} & -0.77 \text { (SD=6.01; } \\ & \mathrm{n}=61) \end{aligned}$	$\begin{aligned} & -1.07 \text { (SD=5.82; } \\ & \mathrm{n}=28) \end{aligned}$	$\begin{aligned} & -1.00 \text { (SD=4.09; } \\ & \mathrm{n}=9) \end{aligned}$	$\begin{aligned} & -0.85 \text { (SD=5.73; } \\ & \mathrm{n}=99) \end{aligned}$	$\begin{aligned} & 1.26 \text { (SD=5.35; } \\ & \mathrm{n}=27 \text {) } \end{aligned}$	N/A	$\begin{aligned} & 3.75 \text { (SD=4.53; } \\ & n=8) \end{aligned}$	$\begin{aligned} & 2.05 \text { (SD=5.21; } \\ & \mathrm{n}=37 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,134}=7.242, \\ & \mathrm{p}=0.008 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,136}=0.619, \\ & \mathrm{p}=0.540 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 2.80 \text { (SD=6.23; } \\ & \mathrm{n}=118) \end{aligned}$	$\begin{aligned} & -2.97 \text { (SD=6.27; } \\ & \mathrm{n}=99) \end{aligned}$	$\begin{aligned} & -0.50 \text { (SD=5.49; } \\ & \mathrm{n}=20) \end{aligned}$	$\begin{aligned} & 0.12 \text { (SD=6.78; } \\ & \mathrm{n}=241) \end{aligned}$	$\begin{aligned} & 1.66 \text { (SD=5.96; } \\ & \mathrm{n}=35 \text {) } \end{aligned}$	N/A	$\begin{aligned} & 3.93 \text { (SD=5.74; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 2.33 \text { (SD=5.93; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,293}=4.926, \\ & \mathrm{p}=0.027 \end{aligned}$	$\begin{aligned} & F_{2,315}=22.463, \\ & \mathrm{p}<0.001 \end{aligned}$
	Poppers	$\begin{aligned} & 1.61 \text { (SD=4.89; } \\ & \mathrm{n}=31 \text {) } \end{aligned}$	$\begin{aligned} & 1.90(S D=4.73 ; \\ & \mathrm{n}=176) \end{aligned}$	$\begin{aligned} & 2.85 \text { (SD=4.15; } \\ & \mathrm{n}=34) \end{aligned}$	$\begin{aligned} & 2.01 \text { (SD=4.65; } \\ & \mathrm{n}=247) \end{aligned}$	$\begin{aligned} & 2.20 \text { (SD=2.17; } \\ & \mathrm{n}=5) \end{aligned}$	N/A	$\begin{aligned} & 1.00 \text { (SD=5.87; } \\ & \mathrm{n}=6) \end{aligned}$	$\begin{aligned} & 1.55 \text { (SD=4.41; } \\ & \mathrm{n}=11) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,256}=0.106, \\ & \mathrm{p}=0.745 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,267}=0.787, \\ & \mathrm{p}=0.456 \end{aligned}$
	Viagra	$\begin{aligned} & 8.11 \text { (SD=3.36; } \\ & \mathrm{n}=362) \end{aligned}$	$\begin{aligned} & 8.43 \text { (SD=2.64; } \\ & \mathrm{n}=143) \end{aligned}$	$\begin{aligned} & 8.31 \text { (SD=2.18; } \\ & \mathrm{n}=49) \end{aligned}$	$\begin{aligned} & 8.21 \text { (SD=3.09; } \\ & \mathrm{n}=557) \end{aligned}$	$\begin{aligned} & 2.50 \text { (SD=6.19; } \\ & \mathrm{n}=6) \end{aligned}$	N/A	N/A	$\begin{aligned} & 2.25 \text { (SD=6.61; } \\ & \mathrm{n}=8) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,563}=28.080, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,608}=0.846, \\ & \mathrm{p}=0.429 \end{aligned}$
Sexual Desire	Alcohol	$\begin{aligned} & 4.45 \text { (SD=3.66; } \\ & \mathrm{n}=6428) \end{aligned}$	$\begin{aligned} & 3.89 \text { (SD=3.83; } \\ & \mathrm{n}=620) \end{aligned}$	$\begin{aligned} & 4.05 \text { (SD=3.61; } \\ & \mathrm{n}=505) \end{aligned}$	$\begin{aligned} & 4.38 \text { (SD=3.68; } \\ & \mathrm{n}=7656) \end{aligned}$	$\begin{aligned} & 4.84 \text { (SD=3.67; } \\ & \mathrm{n}=2805) \end{aligned}$	$\begin{aligned} & 3.36 \text { (SD=4.51; } \\ & \mathrm{n}=127 \text {) } \end{aligned}$	$\begin{aligned} & 5.15 \text { (SD=3.70; } \\ & \mathrm{n}=628) \end{aligned}$	$\begin{aligned} & 4.86 \text { (SD=3.71; } \\ & \mathrm{n}=3653) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,11107}=8.187 \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,11107}=5.119 \\ & \mathrm{p}=0.024 \end{aligned}$	$\begin{aligned} & F_{2,11107}=15.400 \\ & p<0.001 \end{aligned}$
	Cocaine	$\begin{aligned} & 6.08 \text { (SD=3.79; } \\ & \mathrm{n}=730) \end{aligned}$	$\begin{aligned} & 6.52 \text { (SD=3.03; } \\ & \mathrm{n}=109) \end{aligned}$	$\begin{aligned} & 6.78 \text { (SD=3.60; } \\ & n=50) \end{aligned}$	$\begin{aligned} & 6.18 \text { (SD=3.70; } \\ & \mathrm{n}=902) \end{aligned}$	$\begin{aligned} & 5.58 \text { (SD=4.00; } \\ & \mathrm{n}=314) \end{aligned}$	$\begin{aligned} & 3.53 \text { (SD=3.00; } \\ & \mathrm{n}=17) \end{aligned}$	$\begin{aligned} & 5.86 \text { (SD=3.68; } \\ & \mathrm{n}=71) \end{aligned}$	$\begin{aligned} & 5.51 \text { (SD=3.93; } \\ & \mathrm{n}=411) \end{aligned}$	$F_{2,1285}=3.076$	$\mathrm{F}_{1,1285}=12.940$	$\mathrm{F}_{2,1285}=2.331$
	Cannabis	$\begin{aligned} & 3.64 \text { (SD=4.07; } \\ & \mathrm{n}=4044) \end{aligned}$	$\begin{aligned} & 4.10 \text { (SD=4.30; } \\ & \mathrm{n}=267) \end{aligned}$	$\begin{aligned} & 3.84 \text { (SD=3.77; } \\ & \mathrm{n}=340) \end{aligned}$	$\begin{aligned} & 3.68 \text { (SD=4.07; } \\ & \mathrm{n}=4736) \end{aligned}$	$\begin{aligned} & 3.64 \text { (SD=4.50; } \\ & \mathrm{n}=1041) \end{aligned}$	$\begin{aligned} & 2.92 \text { (SD=4.06; } \\ & \mathrm{n}=53 \text {) } \end{aligned}$	$\begin{aligned} & 3.89 \text { (SD=4.23; } \\ & \mathrm{n}=360) \end{aligned}$	$\begin{aligned} & 3.67 \text { (SD=4.41; } \\ & \mathrm{n}=1509) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,6099}=1.739, \\ & \mathrm{p}=0.176 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,6099}=2.497, \\ & \mathrm{p}=0.114 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,6099}=1.010, \\ & \mathrm{p}=0.364 \end{aligned}$

	GHB/GBL	$\begin{aligned} & 8.79 \text { (SD=1.60; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & 7.67 \text { (SD=3.08; } \\ & \mathrm{n}=69) \end{aligned}$	$\begin{aligned} & 8.60(S D=1.34 ; \\ & n=5) \end{aligned}$	$\begin{aligned} & 8.15 \text { (SD=2.58; } \\ & n=123) \end{aligned}$	$\begin{aligned} & 7.60 \text { (SD=1.99; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 7.91 \text { (SD=2.81; } \\ & \mathrm{n}=11) \end{aligned}$	$\begin{aligned} & 7.89 \text { (SD=2.31; } \\ & \mathrm{n}=28) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,149}=0.229, \\ & \mathrm{p}=0.633 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,155}=1.329, \\ & \mathrm{p}=0.268 \end{aligned}$
	Ketamine	$\begin{aligned} & 0.65 \text { (SD=4.37; } \\ & \mathrm{n}=80 \text {) } \end{aligned}$	$\begin{aligned} & 3.15 \text { (SD=5.94; } \\ & \mathrm{n}=26 \text {) } \end{aligned}$	$\begin{aligned} & 1.91 \text { (SD=3.08; } \\ & \mathrm{n}=11) \end{aligned}$	$\begin{aligned} & 1.29 \text { (SD=4.74; } \\ & \mathrm{n}=119) \end{aligned}$	$\begin{aligned} & 2.20 \text { (SD=5.17; } \\ & \mathrm{n}=44) \end{aligned}$	N/A	$\begin{aligned} & 1.85 \text { (SD=5.45; } \\ & \mathrm{n}=20 \text {) } \end{aligned}$	$\begin{aligned} & 2.32 \text { (SD=5.12; } \\ & \mathrm{n}=69 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,186}=1.954, \\ & \mathrm{p}=0.164 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,188}=1.901, \\ & \mathrm{p}=0.152 \end{aligned}$
	MDMA	$\begin{aligned} & 5.79 \text { (SD=4.16; } \\ & \mathrm{n}=1391) \end{aligned}$	$\begin{aligned} & 5.86 \text { (SD=4.31; } \\ & \mathrm{n}=161 \text {) } \end{aligned}$	$\begin{aligned} & 6.51 \text { (SD=3.77; } \\ & \mathrm{n}=138) \end{aligned}$	$\begin{aligned} & 5.83 \text { (SD=4.18; } \\ & \mathrm{n}=1722) \end{aligned}$	$\begin{aligned} & 5.63 \text { (SD=4.51; } \\ & \mathrm{n}=557 \text {) } \end{aligned}$	$\begin{aligned} & 6.40(S D=3.18 ; \\ & n=25) \end{aligned}$	$\begin{aligned} & 6.22 \text { (SD=3.69; } \\ & \mathrm{n}=192) \end{aligned}$	$\begin{aligned} & 5.79 \text { (SD=4.28; } \\ & \mathrm{n}=801) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2458}=0.333, \\ & \mathrm{p}=0.717 \end{aligned}$	$\begin{aligned} & \mathrm{F} 1,2458=0.008, \\ & \mathrm{p}=0.927 \end{aligned}$	$\begin{aligned} & \text { F2, 2458=3.495, } \\ & \mathrm{p}=0.030 \end{aligned}$
	Mephedrone	$\begin{aligned} & 6.68 \text { (SD=3.98; } \\ & \mathrm{n}=59 \text {) } \end{aligned}$	$\begin{aligned} & 6.70 \text { (SD=4.17; } \\ & \mathrm{n}=27 \text {) } \end{aligned}$	$\begin{aligned} & 6.22 \text { (SD=5.52; } \\ & n=9) \end{aligned}$	$\begin{aligned} & 6.68 \text { (SD=4.14; } \\ & \mathrm{n}=96 \text {) } \end{aligned}$	$\begin{aligned} & 4.63 \text { (SD=4.31; } \\ & \mathrm{n}=28) \end{aligned}$	N/A	$\begin{aligned} & 8 \text { (SD=2.00; } \\ & n=8) \end{aligned}$	$\begin{aligned} & 5.34 \text { (SD=4.15; } \\ & \mathrm{n}=38) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,132}=2.827, \\ & \mathrm{p}=0.095 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,134}=0.654, \\ & \mathrm{p}=0.521 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 7.32 \text { (SD=3.82; } \\ & \mathrm{n}=114) \end{aligned}$	$\begin{aligned} & 8.11 \text { (SD=3.34; } \\ & \mathrm{n}=97 \text {) } \end{aligned}$	$\begin{aligned} & 7.70 \text { (SD=2.70; } \\ & \mathrm{n}=20) \end{aligned}$	$\begin{aligned} & 7.64 \text { (SD=3.71; } \\ & \mathrm{n}=235) \end{aligned}$	$\begin{aligned} & 6.14 \text { (SD=4.63; } \\ & \mathrm{n}=35) \end{aligned}$	N/A	$\begin{aligned} & 8.13 \text { (SD=2.72; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 6.57 \text { (SD=4.45; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,287}=3.375, \\ & \mathrm{p}=0.067 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,309}=2.942, \\ & \mathrm{p}=0.054 \end{aligned}$
	Poppers	$\begin{aligned} & 4.50 \text { (SD=4.70; } \\ & \mathrm{n}=30) \end{aligned}$	$\begin{aligned} & 5.64 \text { (SD=4.05; } \\ & \mathrm{n}=174) \end{aligned}$	$\begin{aligned} & 6.44 \text { (SD=3.60; } \\ & n=34) \end{aligned}$	$\begin{aligned} & 5.60 \text { (SD=4.09; } \\ & \mathrm{n}=244) \end{aligned}$	$\begin{aligned} & 6 \text { (SD=3.67; } \\ & n=5) \end{aligned}$	N/A	$\begin{aligned} & 4.20 \text { (SD=5.40; } \\ & n=5) \end{aligned}$	$\begin{aligned} & 5.10 \text { (SD=4.45; } \\ & \mathrm{n}=10 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,252}=0.144, \\ & \mathrm{p}=0.704 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,263}=1.397, \\ & \mathrm{p}=0.249 \end{aligned}$
	Viagra	$\begin{aligned} & 5.26 \text { (SD=4.06; } \\ & \mathrm{n}=351) \end{aligned}$	$\begin{aligned} & 4.88 \text { (SD=4.09; } \\ & \mathrm{n}=139) \end{aligned}$	$\begin{aligned} & 5.56 \text { (SD=4.07; } \\ & \mathrm{n}=50 \text {) } \end{aligned}$	$\begin{aligned} & 5.20 \text { (SD=4.06; } \\ & \mathrm{n}=543) \end{aligned}$	$\begin{aligned} & 4 \text { (SD=8.49; } \\ & n=5) \end{aligned}$	N/A	N/A	$\begin{aligned} & 5.00 \text { (SD=7.79; } \\ & \mathrm{n}=6) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,547}=0.014, \\ & \mathrm{p}=0.905 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,588}=0.223, \\ & \mathrm{p}=0.800 \end{aligned}$
Time To Orgasm	Alcohol	$\begin{aligned} & 1.93 \text { (SD=5.02; } \\ & \mathrm{n}=6369) \end{aligned}$	$\begin{aligned} & 0.85 \text { (SD=4.80; } \\ & \mathrm{n}=614) \end{aligned}$	$\begin{aligned} & 1.22 \text { (SD=4.89; } \\ & \mathrm{n}=497) \end{aligned}$	$\begin{aligned} & 1.80 \text { (SD=5.01; } \\ & 7582 \text {) } \end{aligned}$	$\begin{aligned} & -0.13 \text { (SD=4.80; } \\ & \mathrm{n}=2717) \end{aligned}$	$\begin{aligned} & 0.02 \text { (SD=4.79; } \\ & \mathrm{n}=127) \end{aligned}$	$\begin{aligned} & 0.07 \text { (SD=4.81; } \\ & \mathrm{n}=617) \end{aligned}$	$\begin{aligned} & -0.08 \text { (SD=4.80; } \\ & 3552) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10935}=6.520 \\ & , \mathrm{p}=0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,10935}=49.356, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10935}=2.821, \\ & \mathrm{p}=0.060 \end{aligned}$
	Cocaine	$\begin{aligned} & 3.43 \text { (SD=5.55; } \\ & \mathrm{n}=722) \end{aligned}$	$\begin{aligned} & 2.65 \text { (SD=5.65; } \\ & \mathrm{n}=106) \end{aligned}$	$\begin{aligned} & 1.46 \text { (SD=5.99; } \\ & \mathrm{n}=50 \text {) } \end{aligned}$	$\begin{aligned} & 3.23 \text { (SD=5.59; } \\ & \mathrm{n}=891 \text {) } \end{aligned}$	$\begin{aligned} & 0.51 \text { (SD=5.63; } \\ & \mathrm{n}=303) \end{aligned}$	$\begin{aligned} & 0.94 \text { (SD=5.03; } \\ & \mathrm{n}=18) \end{aligned}$	$\begin{aligned} & 0.26 \text { (SD=5.71; } \\ & \mathrm{n}=68) \end{aligned}$	$\begin{aligned} & 0.44 \text { (SD=5.63; } \\ & \mathrm{n}=397) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1261}=1.443, \\ & \mathrm{p}=0.237 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1261}=10.368, \\ & \mathrm{p}=0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1261}=1.998, \\ & \mathrm{p}=0.136 \end{aligned}$

	Cannabis	$\begin{aligned} & \text { 2.21 (SD=3.95; } \\ & \mathrm{n}=3997) \end{aligned}$	$\begin{aligned} & \text { 2.11 (SD=4.25; } \\ & \mathrm{n}=262) \end{aligned}$	$\begin{aligned} & \text { 2.15 (SD=3.83; } \\ & \mathrm{n}=335) \end{aligned}$	$\begin{aligned} & \text { 2.21 (SD=3.96; } \\ & \mathrm{n}=4678) \end{aligned}$	$\begin{aligned} & 1.50(S D=4.32 ; \\ & n=1014) \end{aligned}$	$\begin{aligned} & 0.51 \text { (SD=4.23; } \\ & \mathrm{n}=51) \end{aligned}$	$\begin{aligned} & 1.61(S D=4.62 ; \\ & n=352) \end{aligned}$	$\begin{aligned} & 1.50 \text { (SD=4.38; } \\ & \mathrm{n}=1472) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,6005}=1.182, \\ & \mathrm{p}=0.307 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,6005}=16.154, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,6005}=1.480, \\ & \mathrm{p}=0.228 \end{aligned}$
	GHB/GBL	$\begin{aligned} & 3.28 \text { (SD=4.66; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 2.64 \text { (SD=4.86; } \\ & \mathrm{n}=69) \end{aligned}$	$\begin{aligned} & 0.80 \text { (SD=3.11; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 2.83 \text { (SD=4.70; } \\ & \mathrm{n}=122) \end{aligned}$	$\begin{aligned} & 2.60 \text { (SD=5.15; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 0 \text { (SD=4.74; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 2.04 \text { (SD=5.18; } \\ & \mathrm{n}=27 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,14}=0.602, \\ & \mathrm{p}=0.439 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,152}=2.136, \\ & \mathrm{p}=0.122 \end{aligned}$
	Ketamine	$\begin{aligned} & 2.81 \text { (SD=5.98; } \\ & \mathrm{n}=80 \text {) } \end{aligned}$	$\begin{aligned} & -0.04 \text { (SD=6.19; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & 1.73 \text { (SD=5.46; } \\ & \mathrm{n}=11 \text {) } \end{aligned}$	$\begin{aligned} & 2.13 \text { (SD=6.04; } \\ & \mathrm{n}=118) \end{aligned}$	$\begin{aligned} & 1.02 \text { (SD=5.76; } \\ & \mathrm{n}=42) \end{aligned}$	N/A	$\begin{aligned} & -0.61 \text { (SD=5.79; } \\ & \mathrm{n}=18) \end{aligned}$	$\begin{aligned} & 0.49 \text { (SD=5.86; } \\ & \mathrm{n}=65) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,181}=3.132, \\ & \mathrm{p}=0.078 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,184}=2.849, \\ & \mathrm{p}=0.060 \end{aligned}$
	MDMA	$\begin{aligned} & 4.04 \text { (SD=6.13; } \\ & 1385) \end{aligned}$	$\begin{aligned} & 1.97 \text { (SD=6.75; } \\ & \mathrm{n}=159) \end{aligned}$	$\begin{aligned} & 3.16 \text { (SD=6.46; } \\ & \mathrm{n}=135) \end{aligned}$	$\begin{aligned} & 3.78 \text { (SD=6.25; } \\ & \mathrm{n}=1711) \end{aligned}$	$\begin{aligned} & 1.21 \text { (SD=6.11; } \\ & \mathrm{n}=540) \end{aligned}$	$\begin{aligned} & -0.58 \text { (SD=6.25; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & 0.83 \text { (SD=6.11; } \\ & \mathrm{n}=186) \end{aligned}$	$\begin{aligned} & 1.00 \text { (SD=6.13; } \\ & \mathrm{n}=777) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2425}=0.229, \\ & \mathrm{p}=0.795 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2425}=25.864, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2425}=5.065, \\ & \mathrm{p}=0.006 \end{aligned}$
	Mephedrone	$\begin{aligned} & 4.00 \text { (SD=6.53; } \\ & \mathrm{n}=61) \end{aligned}$	$\begin{aligned} & 2.48 \text { (SD=7.27; } \\ & \mathrm{n}=27 \text {) } \end{aligned}$	$\begin{aligned} & 0.63 \text { (SD=7.05; } \\ & \mathrm{n}=8) \end{aligned}$	$\begin{aligned} & 3.32 \text { (SD=6.76; } \\ & \mathrm{n}=97 \text {) } \end{aligned}$	$\begin{aligned} & -1.38 \text { (SD=5.87; } \\ & \mathrm{n}=26) \end{aligned}$	N/A	$\begin{aligned} & -3.14 \text { (SD=6.23; } \\ & \mathrm{n}=7) \end{aligned}$	$\begin{aligned} & -1.94 \text { (SD=5.89; } \\ & \mathrm{n}=35) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,130}=16.621, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,132}=1.683, \\ & \mathrm{p}=0.190 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 4.86 \text { (SD=5.70; } \\ & \mathrm{n}=115) \end{aligned}$	$\begin{aligned} & 2.71 \text { (SD=7.26; } \\ & \mathrm{n}=98 \text {) } \end{aligned}$	$\begin{aligned} & 3.25 \text { (SD=5.83; } \\ & \mathrm{n}=20) \end{aligned}$	$\begin{aligned} & 3.82 \text { (SD=6.50; } \\ & \mathrm{n}=237) \end{aligned}$	$\begin{aligned} & 0.69 \text { (SD=5.43; } \\ & \mathrm{n}=35) \end{aligned}$	N/A	$\begin{aligned} & 1.27 \text { (SD=6.26; } \\ & \mathrm{n}=15 \text {) } \end{aligned}$	$\begin{aligned} & 0.87 \text { (SD=5.64; } \\ & \mathrm{n}=54 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,289}=9.467, \\ & \mathrm{p}=0.002 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,312}=1.482, \\ & \mathrm{p}=0.229 \end{aligned}$
	Poppers	$\begin{aligned} & 2.06 \text { (SD=5.43; } \\ & \mathrm{n}=31 \text {) } \end{aligned}$	$\begin{aligned} & 2.01 \text { (SD=4.54; } \\ & \mathrm{n}=177) \end{aligned}$	$\begin{aligned} & 0.50 \text { (SD=4.36; } \\ & \mathrm{n}=34) \end{aligned}$	$\begin{aligned} & 1.84 \text { (SD=4.62; } \\ & \mathrm{n}=248) \end{aligned}$	$\begin{aligned} & 1.50(S D=4.81 ; \\ & \mathrm{n}=6) \end{aligned}$	N/A	$\begin{aligned} & 2 \text { (SD=3.74; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 1.73 \text { (SD=4.15; } \\ & \mathrm{n}=11) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,257}=0.006, \\ & \mathrm{p}=0.937 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,268}=1.422, \\ & \mathrm{p}=0.243 \end{aligned}$
	Viagra	$\begin{aligned} & 2.60 \text { (SD=4.58; } \\ & n=352) \end{aligned}$	$\begin{aligned} & 2.56 \text { (SD=4.27; } \\ & \mathrm{n}=138) \end{aligned}$	$\begin{aligned} & 3.96 \text { (SD=3.97; } \\ & \mathrm{n}=49) \end{aligned}$	$\begin{aligned} & 2.74 \text { (SD=4.46; } \\ & \mathrm{n}=542) \end{aligned}$	$\begin{aligned} & 3.67 \text { (SD=6.22; } \\ & \mathrm{n}=6) \end{aligned}$	N/A	N/A	$\begin{aligned} & 4.57 \text { (SD=6.16; } \\ & \mathrm{n}=7 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,547}=1.154, \\ & \mathrm{p}=0.283 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,588}=1.672, \\ & \mathrm{p}=0.189 \end{aligned}$
Multiple Orgasms	Alcohol	$\begin{aligned} & -1.52 \text { (SD=4.11; } \\ & \mathrm{n}=6099) \end{aligned}$	$\begin{aligned} & -1.52 \text { (SD=4.05; } \\ & \mathrm{n}=596) \end{aligned}$	$\begin{aligned} & -1.80 \text { (SD=4.02; } \\ & \mathrm{n}=478) \end{aligned}$	$\begin{aligned} & -1.54 \text { (SD=4.10; } \\ & \mathrm{n}=7274) \end{aligned}$	$\begin{aligned} & -1.06 \text { (SD=4.55; } \\ & \mathrm{n}=2675) \end{aligned}$	$\begin{aligned} & -1.39(\mathrm{SD}=4.08 ; \\ & \mathrm{n}=122) \end{aligned}$	$\begin{aligned} & -0.74 \text { (SD=4.37; } \\ & \mathrm{n}=603) \end{aligned}$	$\begin{aligned} & -1.02 \text { (SD=4.51; } \\ & \mathrm{n}=3490) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10567}=2.777 \\ & , \mathrm{p}=0.062 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,10567}=10.623, \\ & \mathrm{p}=0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10567}=0.321, \\ & \mathrm{p}=0.726 \end{aligned}$

Cocaine	$\begin{aligned} & 0.96 \text { (SD=4.86; } \\ & \mathrm{n}=693) \end{aligned}$	$\begin{aligned} & 1.65 \text { (SD=4.70; } \\ & \mathrm{n}=106) \end{aligned}$	$\begin{aligned} & 1.98 \text { (SD=4.72; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 1.10 \text { (SD=4.84; } \\ & \mathrm{n}=859) \end{aligned}$	$\begin{aligned} & 0.30(S D=5.37 ; \\ & \mathrm{n}=294) \end{aligned}$	$\begin{aligned} & 1.06 \text { (SD=3.80; } \\ & \mathrm{n}=17 \text {) } \end{aligned}$	$\begin{aligned} & 0.66 \text { (SD=5.76; } \\ & \mathrm{n}=68) \end{aligned}$	$\begin{aligned} & 0.36 \text { (SD=5.39; } \\ & \mathrm{n}=388) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1219}=0.216, \\ & \mathrm{p}=0.806 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1219}=2.411, \\ & \mathrm{p}=0.121 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1219}=1.370, \\ & \mathrm{p}=0.255 \end{aligned}$
Cannabis	$\begin{aligned} & 1.18 \text { (SD=3.42; } \\ & \mathrm{n}=3835) \end{aligned}$	$\begin{aligned} & 1.03 \text { (SD=3.87; } \\ & \mathrm{n}=252) \end{aligned}$	$\begin{aligned} & 1.69 \text { (SD=3.37; } \\ & \mathrm{n}=323) \end{aligned}$	$\begin{aligned} & 1.21 \text { (SD=3.44; } \\ & \mathrm{n}=4491) \end{aligned}$	$\begin{aligned} & 1.77 \text { (SD=4.24; } \\ & \mathrm{n}=996) \end{aligned}$	$\begin{aligned} & 1.84 \text { (SD=3.77; } \\ & n=49) \end{aligned}$	$\begin{aligned} & 2.25 \text { (SD=4.29; } \\ & \mathrm{n}=342) \end{aligned}$	$\begin{aligned} & 1.89 \text { (SD=4.22; } \\ & \mathrm{n}=1441) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5791}=0.074, \\ & \mathrm{p}=0.928 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,5791}=9.101, \\ & \mathrm{p}=0.003 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5791}=5.113, \\ & \mathrm{p}=0.006 \end{aligned}$
GHB/GBL	$\begin{aligned} & 1.47 \text { (SD=4.31; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 2.42 \text { (SD=4.45; } \\ & \mathrm{n}=66) \end{aligned}$	$\begin{aligned} & -0.60 \text { (SD=5.64; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 1.93 \text { (SD=4.45; } \\ & \mathrm{n}=119) \end{aligned}$	$\begin{aligned} & 1.53 \text { (SD=6.00; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 4.20 \text { (SD=4.78; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 2.88 \text { (SD=5.67; } \\ & \mathrm{n}=26) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,143}=0.881, \\ & \mathrm{p}=0.350 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,148}=1.296, \\ & \mathrm{p}=0.277 \end{aligned}$
Ketamine	$\begin{aligned} & -1.33 \text { (SD=4.36; } \\ & \mathrm{n}=75) \end{aligned}$	$\begin{aligned} & 0.24 \text { (SD=5.25; } \\ & \mathrm{n}=25) \end{aligned}$	$\begin{aligned} & -1.90 \text { (SD=4.53; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & -1.02 \text { (SD=4.58; } \\ & \mathrm{n}=111) \end{aligned}$	$\begin{aligned} & -0.90(S D=5.90 ; \\ & \mathrm{n}=41) \end{aligned}$	N/A	$\begin{aligned} & -0.65 \text { (SD=5.41; } \\ & \mathrm{n}=17) \end{aligned}$	$\begin{aligned} & -0.56 \text { (SD=5.63; } \\ & \mathrm{n}=63) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,172}=0.346, \\ & \mathrm{p}=0.557 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,175}=1.047, \\ & \mathrm{p}=0.353 \end{aligned}$
MDMA	$\begin{aligned} & 0.74 \text { (SD=5.36; } \\ & \mathrm{n}=1319) \end{aligned}$	$\begin{aligned} & 0.12 \text { (SD=5.68; } \\ & \mathrm{n}=156) \end{aligned}$	$\begin{aligned} & 1.87 \text { (SD=5.59; } \\ & \mathrm{n}=130) \end{aligned}$	$\begin{aligned} & 0.79 \text { (SD=5.42; } \\ & \mathrm{n}=1637) \end{aligned}$	$\begin{aligned} & 1.07 \text { (SD=5.58; } \\ & \mathrm{n}=520) \end{aligned}$	$\begin{aligned} & 1.83 \text { (SD=6.81; } \\ & \mathrm{n}=23) \end{aligned}$	$\begin{aligned} & 1.58 \text { (SD=5.61; } \\ & \mathrm{n}=178) \end{aligned}$	$\begin{aligned} & 1.21 \text { (SD=5.63; } \\ & \mathrm{n}=747) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2320}=1.100, \\ & \mathrm{p}=0.333 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2320}=1.568, \\ & \mathrm{p}=0.211 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2320}=2.830, \\ & \mathrm{p}=0.059 \end{aligned}$
Mephedrone	$\begin{aligned} & 0.65 \text { (SD=5.27; } \\ & \mathrm{n}=54) \end{aligned}$	$\begin{aligned} & 1 \text { (SD=5.33; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & 1.0 \text { (SD=2.14; } \\ & \mathrm{n}=8) \end{aligned}$	$\begin{aligned} & 0.85 \text { (SD=5.06; } \\ & \mathrm{n}=89 \text {) } \end{aligned}$	$\begin{aligned} & -0.50(S D=6.05 ; \\ & \mathrm{n}=26) \end{aligned}$	N/A	$\begin{aligned} & -1.50 \text { (SD=7.42; } \\ & \mathrm{n}=6 \text {) } \end{aligned}$	$\begin{aligned} & -0.74 ;(\mathrm{SD}=6.38 ; \\ & \mathrm{n}=34) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,121}=2.091, \\ & \mathrm{p}=0.151 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,123}=0.365, \\ & \mathrm{p}=0.695 \end{aligned}$
Methamphetamine	$\begin{aligned} & 4.01 \text { (SD=5.25; } \\ & \mathrm{n}=111) \end{aligned}$	$\begin{aligned} & 1.19 \text { (SD=6.47; } \\ & \mathrm{n}=96 \text {) } \end{aligned}$	$\begin{aligned} & 3.11 \text { (SD=4.12; } \\ & \mathrm{n}=19) \end{aligned}$	$\begin{aligned} & 2.73 \text { (SD=5.91; } \\ & \mathrm{n}=230) \end{aligned}$	$\begin{aligned} & 1.63 \text { (SD=5.90; } \\ & \mathrm{n}=35 \text {) } \end{aligned}$	N/A	$\begin{aligned} & 3.27 \text { (SD=6.92; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 1.98 \text { (SD=6.15; } \\ & \mathrm{n}=54 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,282}=0.691, \\ & \mathrm{p}=0.407 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,303}=5.203, \\ & \mathrm{p}=0.006 \end{aligned}$
Poppers	$\begin{aligned} & 2.55 \text { (SD=4.40; } \\ & \mathrm{n}=29) \end{aligned}$	$\begin{aligned} & 1.54 \text { (SD=3.74; } \\ & \mathrm{n}=170) \end{aligned}$	$\begin{aligned} & 1.33 \text { (SD=3.24; } \\ & \mathrm{n}=33 \text {) } \end{aligned}$	$\begin{aligned} & 1.66 \text { (SD=3.74; } \\ & \mathrm{n}=238) \end{aligned}$	$\begin{aligned} & 0.80 \text { (SD=5.02; } \\ & \mathrm{n}=5) \end{aligned}$	N/A	$\begin{aligned} & 1.4 \text { (SD=3.13; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 1.10 \text { (SD=3.96; } \\ & \mathrm{n}=10) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,246}=0.218, \\ & \mathrm{p}=0.641 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,257}=0.515, \\ & \mathrm{p}=0.598 \end{aligned}$
Viagra	$\begin{aligned} & 3.38 \text { (SD=4.58; } \\ & n=336) \end{aligned}$	$\begin{aligned} & 2.99 \text { (SD=4.32; } \\ & \mathrm{n}=139) \end{aligned}$	$\begin{aligned} & 5.48 \text { (SD=3.72; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & 3.47 \text { (SD=4.47; } \\ & \mathrm{n}=526) \end{aligned}$	$\begin{aligned} & 1.33 \text { (SD=6.31; } \\ & \mathrm{n}=6) \end{aligned}$	N/A	N/A	$\begin{aligned} & 2.00 \text { (SD=6.03; } \\ & \mathrm{n}=7 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,53}=0.743, \\ & \mathrm{p}=0.389 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,573}=3.417, \\ & \mathrm{p}=0.033 \end{aligned}$

Intensity of Orgasm	Alcohol	$\begin{aligned} & 0.05(S D=3.82 ; \\ & \mathrm{n}=6259) \end{aligned}$	$\begin{aligned} & -0.04 \text { (SD=3.55; } \\ & \mathrm{n}=605) \end{aligned}$	$\begin{aligned} & -0.20(S D=3.87 ; \\ & \mathrm{n}=491) \end{aligned}$	$\begin{aligned} & 0.01 \text { (SD=3.82; } \\ & 7455) \end{aligned}$	$\begin{aligned} & 0.02(S D=4.34 ; \\ & n=2692) \end{aligned}$	$\begin{aligned} & -1.10(S D=4.27 ; \\ & \mathrm{n}=127) \end{aligned}$	$\begin{aligned} & 0.05(S D=4.31 ; \\ & \mathrm{n}=614) \end{aligned}$	$\begin{aligned} & -0.01(S D=4.33 ; \\ & n=3523) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10782}=4.227 \\ & , \mathrm{p}=0.015 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,10782}=3.297, \\ & \mathrm{p}=0.069 \end{aligned}$	$\begin{aligned} & F_{2,10782}=4.759, \\ & p=0.009 \end{aligned}$
	Cocaine	$\begin{aligned} & 3.87 \text { (SD=4.29; } \\ & \mathrm{n}=703) \end{aligned}$	$\begin{aligned} & 4.99 \text { (SD=3.71; } \\ & \mathrm{n}=105) \end{aligned}$	$\begin{aligned} & 4.51 \text { (SD=4.08; } \\ & \mathrm{n}=49) \end{aligned}$	$\begin{aligned} & 4.06 \text { (SD=4.21; } \\ & \mathrm{n}=870) \end{aligned}$	$\begin{aligned} & 2.88 \text { (SD=5.05; } \\ & \mathrm{n}=296 \text {) } \end{aligned}$	$\begin{aligned} & 1.67 \text { (SD=4.38; } \\ & \mathrm{n}=18 \text {) } \end{aligned}$	$\begin{aligned} & 2.43 \text { (SD=5.11; } \\ & \mathrm{n}=68) \end{aligned}$	$\begin{aligned} & 2.71 \text { (SD=5.01; } \\ & \mathrm{n}=391) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1233}=2.478, \\ & \mathrm{p}=0.084 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1223}=19.440, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1233}=0.027, \\ & \mathrm{p}=0.973 \end{aligned}$
	Cannabis	$\begin{aligned} & 5.07 \text { (SD=3.48; } \\ & \mathrm{n}=3963) \end{aligned}$	$\begin{aligned} & 5.04 \text { (SD=3.70; } \\ & \mathrm{n}=257 \text {) } \end{aligned}$	$\begin{aligned} & 5.25 \text { (SD=3.23; } \\ & \mathrm{n}=334) \end{aligned}$	$\begin{aligned} & 5.08 \text { (SD=3.48; } \\ & \mathrm{n}=4636) \end{aligned}$	$\begin{aligned} & 4.17 \text { (SD=4.09; } \\ & \mathrm{n}=1014) \end{aligned}$	$\begin{aligned} & 4.19 \text { (SD=3.97; } \\ & \mathrm{n}=52 \text {) } \end{aligned}$	$\begin{aligned} & 4.64 \text { (SD=4.03; } \\ & n=348) \end{aligned}$	$\begin{aligned} & 4.27 \text { (SD=4.07; } \\ & 1468) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5962}=0.421, \\ & \mathrm{p}=0.657 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,5962}=14.085, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & F_{2,5962}=2.262, \\ & p=0.104 \end{aligned}$
	GHB/GBL	$\begin{aligned} & 6.23 \text { (SD=3.58; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 5.78 \text { (SD=3.59; } \\ & \mathrm{n}=67 \text {) } \end{aligned}$	$\begin{aligned} & 5.40 \text { (SD=3.44; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 5.93 \text { (SD=3.55; } \\ & \mathrm{n}=120) \end{aligned}$	$\begin{aligned} & 3.80 \text { (SD=3.91; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 5.20 \text { (SD=3.52; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 4.56 \text { (SD=3.71; } \\ & \mathrm{n}=27 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,145}=3.231, \\ & \mathrm{p}=0.074 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,150}=0.123, \\ & \mathrm{p}=0.885 \end{aligned}$
	Ketamine	$\begin{aligned} & 1.75 \text { (SD=4.47; } \\ & \mathrm{n}=76) \end{aligned}$	$\begin{aligned} & 3.40 \text { (SD=4.98; } \\ & \mathrm{n}=25 \text {) } \end{aligned}$	$\begin{aligned} & 2.70 \text { (SD=3.86; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 2.21 \text { (SD=4.53; } \\ & \mathrm{n}=112) \end{aligned}$	$\begin{aligned} & 1.93 \text { (SD=5.39; } \\ & \mathrm{n}=42 \text {) } \end{aligned}$	N/A	$\begin{aligned} & 1.35 \text { (SD=6.22; } \\ & \mathrm{n}=17 \text {) } \end{aligned}$	$\begin{aligned} & 2.17 \text { (SD=5.65; } \\ & \mathrm{n}=64) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,174}=0.002, \\ & \mathrm{p}=0.966 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,177}=1.659, \\ & \mathrm{p}=0.193 \end{aligned}$
	MDMA	$\begin{aligned} & 5.77 \text { (SD=4.17; } \\ & \mathrm{n}=1344) \end{aligned}$	$\begin{aligned} & 5.80 \text { (SD=4.01; } \\ & \mathrm{n}=158 \text {) } \end{aligned}$	$\begin{aligned} & 6.84 \text { (SD=3.98; } \\ & \mathrm{n}=134) \end{aligned}$	$\begin{aligned} & 5.85 \text { (SD=4.16; } \\ & \mathrm{n}=1668) \end{aligned}$	$\begin{aligned} & 3.75 \text { (SD=5.24; } \\ & \mathrm{n}=523) \end{aligned}$	$\begin{aligned} & 5.48 \text { (SD=5.01; } \\ & \mathrm{n}=25) \end{aligned}$	$\begin{aligned} & 4.76 \text { (SD=4.78; } \\ & \mathrm{n}=182) \end{aligned}$	$\begin{aligned} & 4.06 \text { (SD=5.13; } \\ & \mathrm{n}=754) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2360}=1.518, \\ & \mathrm{p}=0.219 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2360}=15.785, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2360}=8.025, \\ & \mathrm{p}<0.001 \end{aligned}$
	Mephedrone	$\begin{aligned} & 5.12 \text { (SD=3.84; } \\ & \mathrm{n}=58) \end{aligned}$	$\begin{aligned} & 4.77 \text { (SD=4.04; } \\ & \mathrm{n}=26 \text {) } \end{aligned}$	$\begin{aligned} & 4.50 \text { (SD=4.99; } \\ & n=8) \end{aligned}$	$\begin{aligned} & 5.00 \text { (SD=3.95; } \\ & \mathrm{n}=93 \text {) } \end{aligned}$	$\begin{aligned} & 2.22 \text { (SD=5.48; } \\ & \mathrm{n}=27) \end{aligned}$	N/A	$\begin{aligned} & 3.71 \text { (SD=4.61; } \\ & \mathrm{n}=7) \end{aligned}$	$\begin{aligned} & 2.42 \text { (SD=5.63; } \\ & \mathrm{n}=36) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,127}=8.644, \\ & \mathrm{p}=0.004 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,12}=0.340, \\ & \mathrm{p}=0.712 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 6.89 \text { (SD=3.57; } \\ & \mathrm{n}=111) \end{aligned}$	$\begin{aligned} & 6.19 \text { (SD=4.46; } \\ & \mathrm{n}=94) \end{aligned}$	$\begin{aligned} & 6.30 \text { (SD=3.18; } \\ & \mathrm{n}=20 \text {) } \end{aligned}$	$\begin{aligned} & 6.55 \text { (SD=3.94; } \\ & \mathrm{n}=229) \end{aligned}$	$\begin{aligned} & 4.37 \text { (SD=4.99; } \\ & \mathrm{n}=35) \end{aligned}$	N/A	$\begin{aligned} & 5.27 \text { (SD=5.51; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 4.45 \text { (SD=5.24; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,281}=10.752, \\ & \mathrm{p}=0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,300}=0.029, \\ & \mathrm{p}=0.971 \end{aligned}$
	Poppers	$\begin{aligned} & 6.90 \text { (SD=3.55; } \\ & \mathrm{n}=30 \text {) } \end{aligned}$	$\begin{aligned} & 5.77 \text { (SD=3.88; } \\ & \mathrm{n}=177) \end{aligned}$	$\begin{aligned} & 6.59 \text { (SD=3.18; } \\ & \mathrm{n}=34) \end{aligned}$	$\begin{aligned} & 6.06 \text { (SD=3.73; } \\ & \mathrm{n}=247) \end{aligned}$	$\begin{aligned} & 4.20 \text { (SD=4.87; } \\ & \mathrm{n}=5) \end{aligned}$	N/A	$\begin{aligned} & 2.40 \text { (SD=3.29; } \\ & n=5) \end{aligned}$	$\begin{aligned} & 3.30 \text { (SD=4.03; } \\ & \mathrm{n}=10) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,255}=5.244, \\ & \mathrm{p}=0.023 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,266}=0.377, \\ & \mathrm{p}=0.686 \end{aligned}$

Overall Performance	Viagra	$\begin{aligned} & 3.58 \text { (SD=4.07; } \\ & \mathrm{n}=341) \end{aligned}$	$\begin{aligned} & 3.56 \text { (SD=3.65; } \\ & \mathrm{n}=135) \end{aligned}$	$\begin{aligned} & 4.71 \text { (SD=3.71; } \\ & \mathrm{n}=49) \end{aligned}$	$\begin{aligned} & 3.67 \text { (SD=3.94; } \\ & \mathrm{n}=528) \end{aligned}$	$\begin{aligned} & 1.67(S D=6.02 ; \\ & \mathrm{n}=6) \end{aligned}$	N/A	N/A	$\begin{aligned} & 2.71 \text { (SD=6.16; } \\ & n=7) \end{aligned}$	NA	$\begin{aligned} & F_{1,53}=0.396, \\ & p=0.529 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,576}=1.236, \\ & \mathrm{p}=0.291 \end{aligned}$
	Alcohol	$\begin{aligned} & 0.02 \text { (SD=4.23; } \\ & \mathrm{n}=6293) \end{aligned}$	$\begin{aligned} & -0.50(\mathrm{SD}=3.85 ; \\ & \mathrm{n}=605) \end{aligned}$	$\begin{aligned} & -0.84 \text { (SD=4.21; } \\ & \mathrm{n}=494) \end{aligned}$	$\begin{aligned} & -0.08 \text { (SD=4.21; } \\ & \mathrm{n}=7494) \end{aligned}$	$\begin{aligned} & 1.04 \text { (SD=4.38; } \\ & \mathrm{n}=2720) \end{aligned}$	$\begin{aligned} & -0.70(S D=4.25 ; \\ & n=125) \end{aligned}$	$\begin{aligned} & 1.08 \text { (SD=4.46; } \\ & \mathrm{n}=616) \end{aligned}$	$\begin{aligned} & 0.98 \text { (SD=4.39; } \\ & \mathrm{n}=3548) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10847}=10.18 \\ & 6, \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,10847}=30.061, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10847}=17.047, \\ & \mathrm{p}<0.001 \end{aligned}$
	Cocaine	$\begin{aligned} & 3.50 \text { (SD=4.50; } \\ & \mathrm{n}=708) \end{aligned}$	$\begin{aligned} & 3.79 \text { (SD=4.51; } \\ & \mathrm{n}=107) \end{aligned}$	$\begin{aligned} & 3.54 \text { (SD=4.61; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & 3.55 \text { (SD=4.50; } \\ & \mathrm{n}=876) \end{aligned}$	$\begin{aligned} & 3.83 \text { (SD=4.19; } \\ & \mathrm{n}=293 \text {) } \end{aligned}$	$\begin{aligned} & 2.28 \text { (SD=3.34; } \\ & \mathrm{n}=18) \end{aligned}$	$\begin{aligned} & 4.46 \text { (SD=4.07; } \\ & \mathrm{n}=68 \text {) } \end{aligned}$	$\begin{aligned} & 3.85 \text { (SD=4.13; } \\ & \mathrm{n}=388) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1236}=1.588, \\ & \mathrm{p}=0.205 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1236}=0.038, \\ & \mathrm{p}=0.846 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1236}=0.953, \\ & \mathrm{p}=0.386 \end{aligned}$
	Cannabis	$\begin{aligned} & 3.15 \text { (SD=3.84; } \\ & \mathrm{n}=3,950) \end{aligned}$	$\begin{aligned} & 3.46 \text { (SD=4.07; } \\ & \mathrm{n}=256 \text {) } \end{aligned}$	$\begin{aligned} & 3.05 \text { (SD=3.80; } \\ & n=335) \end{aligned}$	$\begin{aligned} & 3.16 \text { (SD=3.68; } \\ & \mathrm{n}=4624) \end{aligned}$	$\begin{aligned} & 2.86 \text { (SD=4.26; } \\ & \mathrm{n}=1014) \end{aligned}$	$\begin{aligned} & 2.35 \text { (SD=3.99; } \\ & \mathrm{n}=52 \text {) } \end{aligned}$	$\begin{aligned} & 2.92 \text { (SD=4.30; } \\ & \mathrm{n}=351) \end{aligned}$	$\begin{aligned} & 2.83 \text { (SD=4.25; } \\ & \mathrm{n}=1471) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5952}=1.080, \\ & \mathrm{p}=0.340 \end{aligned}$	$\begin{aligned} & F_{1,5952}=4.950, \\ & \mathrm{p}=0.026 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5952}=0.061, \\ & \mathrm{p}=0.941 \end{aligned}$
	GHB/GBL	$\begin{aligned} & 6.74 \text { (SD=2.62; } \\ & \mathrm{n}=46 \text {) } \end{aligned}$	$\begin{aligned} & 5.78 \text { (SD=3.45; } \\ & \mathrm{n}=67 \text {) } \end{aligned}$	$\begin{aligned} & 4.60 \text { (SD=2.07; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 6.10 \text { (SD=3.12; } \\ & \mathrm{n}=119) \end{aligned}$	$\begin{aligned} & 6.33 \text { (SD=2.77; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 5.60 \text { (SD=2.99; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 6.22 \text { (SD=2.79; } \\ & \mathrm{n}=27) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,144}=0.035, \\ & \mathrm{p}=0.853 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,149}=1.750, \\ & \mathrm{p}=0.177 \end{aligned}$
	Ketamine	$\begin{aligned} & 0.01 \text { (SD=4.65; } \\ & n=76) \end{aligned}$	$\begin{aligned} & 3.28 \text { (SD=5.24; } \\ & \mathrm{n}=25) \end{aligned}$	$\begin{aligned} & 1.80(S D=3.55 ; \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 0.83 \text { (SD=4.88; } \\ & \mathrm{n}=113) \end{aligned}$	$\begin{aligned} & 1.57 \text { (SD=5.34; } \\ & \mathrm{n}=42 \text {) } \end{aligned}$	N/A	$\begin{aligned} & 1.95 \text { (SD=6.20; } \\ & \mathrm{n}=19) \end{aligned}$	$\begin{aligned} & 1.95 \text { (SD=5.49; } \\ & \mathrm{n}=66 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,177}=2.009, \\ & \mathrm{p}=0.158 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,179}=3.582, \\ & \mathrm{p}=0.030 \end{aligned}$
	MDMA	$\begin{aligned} & 3.95 \text { (SD=4.83; } \\ & \mathrm{n}=1,357 \text {) } \end{aligned}$	$\begin{aligned} & 3.96 \text { (SD=4.62; } \\ & \mathrm{n}=157) \end{aligned}$	$\begin{aligned} & 3.95 \text { (SD=4.53; } \\ & \mathrm{n}=136) \end{aligned}$	$\begin{aligned} & 3.91 \text { (SD=4.80; } \\ & \mathrm{n}=1682) \end{aligned}$	$\begin{aligned} & 3.95 \text { (SD=4.65; } \\ & n=534) \end{aligned}$	$\begin{aligned} & 4.56 \text { (SD=4.71; } \\ & \mathrm{n}=25) \end{aligned}$	$\begin{aligned} & 4.99 \text { (SD=3.88; } \\ & \mathrm{n}=186) \end{aligned}$	$\begin{aligned} & 4.23 \text { (SD=4.48; } \\ & \mathrm{n}=769) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2389}=1.667, \\ & \mathrm{p}=0.189 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2889}=1.991, \\ & \mathrm{p}=0.158 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2389}=1.698, \\ & \mathrm{p}=0.183 \end{aligned}$
	Mephedrone	$\begin{aligned} & 3.49 \text { (SD=5.10; } \\ & \mathrm{n}=57 \text {) } \end{aligned}$	$\begin{aligned} & 3.96 \text { (SD=4.57; } \\ & \mathrm{n}=27 \text {) } \end{aligned}$	$\begin{aligned} & 1.75 \text { (SD=5.23; } \\ & \mathrm{n}=8) \end{aligned}$	$\begin{aligned} & 3.39 \text { (SD=4.99; } \\ & \mathrm{n}=93 \text {) } \end{aligned}$	$\begin{aligned} & 3.62 \text { (SD=4.88; } \\ & \mathrm{n}=26) \end{aligned}$	N/A	$\begin{aligned} & 3.29 \text { (SD=3.73; } \\ & \mathrm{n}=7 \text {) } \end{aligned}$	$\begin{aligned} & 3.71 \text { (SD=4.61; } \\ & \mathrm{n}=35) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,126}=0.114, \\ & \mathrm{p}=0.736 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,128}=0.577, \\ & \mathrm{p}=0.563 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 5.93 \text { (SD=3.98; } \\ & \mathrm{n}=113) \end{aligned}$	$\begin{aligned} & 5.15 \text { (SD=4.28; } \\ & \mathrm{n}=95 \text {) } \end{aligned}$	$\begin{aligned} & 4.79 \text { (SD=3.24; } \\ & \mathrm{n}=19) \end{aligned}$	$\begin{aligned} & 5.56 \text { (SD=4.06; } \\ & \mathrm{n}=231) \end{aligned}$	$\begin{aligned} & 4.83 \text { (SD=4.67; } \\ & \mathrm{n}=35) \end{aligned}$	N/A	$\begin{aligned} & 7.00 \text { (SD=2.90; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 5.41 \text { (SD=4.27; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,283}=0.063, \\ & \mathrm{p}=0.802 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,303}=0.604, \\ & \mathrm{p}=0.547 \end{aligned}$

	Methamphetamine	$\begin{aligned} & 1.85 \text { (SD=5.27; } \\ & \mathrm{n}=111) \end{aligned}$	$\begin{aligned} & \text { 2.69 (SD=5.76; } \\ & n=97) \end{aligned}$	$\begin{aligned} & 1.68(S D=4.26 ; \\ & \mathrm{n}=19) \end{aligned}$	$\begin{aligned} & \text { 2.31 (SD=5.43; } \\ & \mathrm{n}=231) \end{aligned}$	$\begin{aligned} & 2.89 \text { (SD=5.68; } \\ & n=35) \end{aligned}$	N/A	$\begin{aligned} & 1.73 \text { (SD=6.25; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 2.78 \text { (SD=5.70; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,28}=0.323, \\ & \mathrm{p}=0.571 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,301}=0.033, \\ & \mathrm{p}=0.967 \end{aligned}$
	Poppers	$\begin{aligned} & 2.90 \text { (SD=4.84; } \\ & \mathrm{n}=30) \end{aligned}$	$\begin{aligned} & 2.76 \text { (SD=4.79; } \\ & \mathrm{n}=175) \end{aligned}$	$\begin{aligned} & 2.32 \text { (SD=4.52; } \\ & \mathrm{n}=34) \end{aligned}$	$\begin{aligned} & 2.73 \text { (SD=4.72; } \\ & \mathrm{n}=245) \end{aligned}$	$\begin{aligned} & 2.20 \text { (SD=3.19; } \\ & \mathrm{n}=5) \end{aligned}$	N/A	$\begin{aligned} & 2.40 \text { (SD=5.41; } \\ & n=5) \end{aligned}$	$\begin{aligned} & 2.30 \text { (SD=4.19; } \\ & \mathrm{n}=10) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,253}=0.079, \\ & \mathrm{p}=0.779 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,264}=0.290, \\ & \mathrm{p}=0.749 \end{aligned}$
	Viagra	$\begin{aligned} & 2.48 \text { (SD=3.97; } \\ & \mathrm{n}=344) \end{aligned}$	$\begin{aligned} & 2.45 \text { (SD=3.77; } \\ & \mathrm{n}=136) \end{aligned}$	$\begin{aligned} & 3.29 \text { (SD=3.77; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & 2.54 \text { (SD=3.90; } \\ & \mathrm{n}=531) \end{aligned}$	$\begin{aligned} & 1.83 \text { (SD=3.25; } \\ & \mathrm{n}=6) \end{aligned}$	N/A	N/A	$\begin{aligned} & 1.29 \text { (SD=3.30; } \\ & \mathrm{n}=7) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,536}=0.722, \\ & \mathrm{p}=0.396 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,578}=1.694, \\ & \mathrm{p}=0.185 \end{aligned}$
Sensual Aspects	Alcohol	$\begin{aligned} & -0.69(\mathrm{SD}=4.08 ; \\ & \mathrm{n}=6220) \end{aligned}$	$\begin{aligned} & 0.52 \text { (SD=3.88; } \\ & \mathrm{n}=604) \end{aligned}$	$\begin{aligned} & -0.57 \text { (SD=4.14; } \\ & \mathrm{n}=489) \end{aligned}$	$\begin{aligned} & -0.59 \text { (SD=4.09; } \\ & \mathrm{n}=7416) \end{aligned}$	$\begin{aligned} & 0.54 \text { (SD=4.40; } \\ & \mathrm{n}=2725) \end{aligned}$	$\begin{aligned} & -0.76 \text { (SD=4.32; } \\ & \mathrm{n}=126) \end{aligned}$	$\begin{aligned} & 0.38 \text { (SD=4.66; } \\ & \mathrm{n}=608) \end{aligned}$	$\begin{aligned} & 0.45 \text { (SD=4.45; } \\ & \mathrm{n}=3548) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10766}=17.86 \\ & 4, \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & F_{1,10766}=3.390, \\ & p=0.066 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10766}=0.029, \\ & \mathrm{p}=0.971 \end{aligned}$
	Cocaine	$\begin{aligned} & 1.95 \text { (SD=4.48; } \\ & \mathrm{n}=695) \end{aligned}$	$\begin{aligned} & 3.31 \text { (SD=4.09; } \\ & \mathrm{n}=105) \end{aligned}$	$\begin{aligned} & 3.54 \text { (SD=4.55; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & 2.20 \text { (SD=4.47; } \\ & \mathrm{n}=861) \end{aligned}$	$\begin{aligned} & 2.43 \text { (SD=4.62; } \\ & \mathrm{n}=295) \end{aligned}$	$\begin{aligned} & 1.06 \text { (SD=4.32; } \\ & \mathrm{n}=18) \end{aligned}$	$\begin{aligned} & 2.07 \text { (SD=4.86; } \\ & \mathrm{n}=67 \text {) } \end{aligned}$	$\begin{aligned} & 2.29 \text { (SD=4.65; } \\ & \mathrm{n}=389) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1222}=4.536, \\ & \mathrm{p}=0.011 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1222}=4.922, \\ & \mathrm{p}=0.027 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1222}=0.944, \\ & \mathrm{p}=0.389 \end{aligned}$
	Cannabis	$\begin{aligned} & 4.80 \text { (SD=3.49; } \\ & \mathrm{n}=3929) \end{aligned}$	$\begin{aligned} & 5.33 \text { (SD=3.42; } \\ & \mathrm{n}=258) \end{aligned}$	$\begin{aligned} & 5.06 \text { (SD=3.40; } \\ & \mathrm{n}=333) \end{aligned}$	$\begin{aligned} & 4.85 \text { (SD=3.48; } \\ & n=4602) \end{aligned}$	$\begin{aligned} & 4.54 \text { (SD=3.99; } \\ & \mathrm{n}=1020) \end{aligned}$	$\begin{aligned} & 5.29 \text { (SD=3.53; } \\ & \mathrm{n}=52 \text {) } \end{aligned}$	$\begin{aligned} & 5.11 \text { (SD=3.68; } \\ & \mathrm{n}=345) \end{aligned}$	$\begin{aligned} & 4.68 \text { (SD=3.91; } \\ & \mathrm{n}=1471) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5931}=0.601, \\ & \mathrm{p}=0.548 \end{aligned}$	$\begin{aligned} & F_{1,5931}=0.153, \\ & p=0.696 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5931}=5.807, \\ & \mathrm{p}=0.003 \end{aligned}$
	GHB/GBL	$\begin{aligned} & 5.52 \text { (SD=4.62; } \\ & \mathrm{n}=46) \end{aligned}$	$\begin{aligned} & 6.18 \text { (SD=4.07; } \\ & \mathrm{n}=68 \text {) } \end{aligned}$	$\begin{aligned} & 6.00 \text { (SD=2.12; } \\ & \mathrm{n}=5) \end{aligned}$	$\begin{aligned} & 5.93 \text { (SD=4.20; } \\ & \mathrm{n}=120) \end{aligned}$	$\begin{aligned} & 5.20 \text { (SD=3.51; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 6.60 \text { (SD=3.17; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 5.70 \text { (SD=3.26; } \\ & \mathrm{n}=27) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,145}=0.066, \\ & \mathrm{p}=0.798 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,150}=0.568, \\ & \mathrm{p}=0.568 \end{aligned}$
	Ketamine	$\begin{aligned} & 1.39 \text { (SD=4.87; } \\ & \mathrm{n}=77) \end{aligned}$	$\begin{aligned} & 3.73 \text { (SD=5.08; } \\ & \mathrm{n}=26 \text {) } \end{aligned}$	$\begin{aligned} & 3.40 \text { (SD=5.21; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 2.17 \text { (SD=5.00; } \\ & \mathrm{n}=115) \end{aligned}$	$\begin{aligned} & 3.12 \text { (SD=5.63; } \\ & \mathrm{n}=43 \text {) } \end{aligned}$	N/A	$\begin{aligned} & 3.20 \text { (SD=5.93; } \\ & \mathrm{n}=20 \text {) } \end{aligned}$	$\begin{aligned} & 3.37 \text { (SD=5.57; } \\ & \mathrm{n}=68 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,181}=2.269, \\ & \mathrm{p}=0.134 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,183}=1.641, \\ & \mathrm{p}=0.197 \end{aligned}$
	MDMA	$\begin{aligned} & 6.03 \text { (SD=3.94; } \\ & \mathrm{n}=1343) \end{aligned}$	$\begin{aligned} & 6.78 \text { (SD=3.57; } \\ & \mathrm{n}=158) \end{aligned}$	$\begin{aligned} & 6.88 \text { (SD=3.48; } \\ & \mathrm{n}=135) \end{aligned}$	$\begin{aligned} & 6.16 \text { (SD=3.89; } \\ & \mathrm{n}=1668) \end{aligned}$	$\begin{aligned} & 5.73 \text { (SD=4.21; } \\ & \mathrm{n}=538) \end{aligned}$	$\begin{aligned} & 6.60 \text { (SD=3.40; } \\ & \mathrm{n}=25) \end{aligned}$	$\begin{aligned} & 6.19 \text { (SD=3.99; } \\ & \mathrm{n}=185) \end{aligned}$	$\begin{aligned} & 5.86 \text { (SD=4.16; } \\ & \mathrm{n}=772) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2378}=0.347, \\ & \mathrm{p}=0.707 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2378}=1.387, \\ & \mathrm{p}=0.239 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2378}=4.888, \\ & \mathrm{p}=0.008 \end{aligned}$

	Mephedrone	$\begin{aligned} & \text { 4.04 (SD=4.64; } \\ & n=57) \end{aligned}$	$\begin{aligned} & 5.04 \text { (SD=3.66; } \\ & n=27) \end{aligned}$	$\begin{aligned} & 3.88(S D=4.39 ; \\ & \mathrm{n}=8) \end{aligned}$	$\begin{aligned} & 4.31 \text { (SD=4.31; } \\ & \mathrm{n}=93) \end{aligned}$	$\begin{aligned} & 3.54 \text { (SD=5.37; } \\ & \mathrm{n}=26) \end{aligned}$	N/A	$\begin{aligned} & 4.71 \text { (SD=3.95; } \\ & n=7) \end{aligned}$	$\begin{aligned} & \text { 4.06 (SD=5.04; } \\ & \mathrm{n}=35 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,126}=0.081, \\ & \mathrm{p}=0.777 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,128}=0.799, \\ & \mathrm{p}=0.452 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 4.45 \text { (SD=4.65; } \\ & \mathrm{n}=109) \end{aligned}$	$\begin{aligned} & 4.93 \text { (SD=5.11; } \\ & \mathrm{n}=96 \text {) } \end{aligned}$	$\begin{aligned} & 4.53 \text { (SD=3.42; } \\ & \mathrm{n}=19 \text {) } \end{aligned}$	$\begin{aligned} & 4.47 \text { (SD=4.75; } \\ & \mathrm{n}=228 \text {) } \end{aligned}$	$\begin{aligned} & 2.77 \text { (SD=5.76; } \\ & \mathrm{n}=35) \end{aligned}$	N/A	$\begin{aligned} & 3.67 \text { (SD=5.55; } \\ & \mathrm{n}=15 \text {) } \end{aligned}$	$\begin{aligned} & 3.33 \text { (SD=5.56; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,280}=3.585, \\ & \mathrm{p}=0.059 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,288}=0.542, \\ & \mathrm{p}=0.582 \end{aligned}$
	Poppers	$\begin{aligned} & 5.06 \text { (SD=4.63; } \\ & \mathrm{n}=31 \text {) } \end{aligned}$	$\begin{aligned} & 5.09 \text { (SD=4.25; } \\ & \mathrm{n}=174) \end{aligned}$	$\begin{aligned} & 5.50 \text { (SD=3.69; } \\ & \mathrm{n}=34) \end{aligned}$	$\begin{aligned} & 5.06 \text { (SD=4.24; } \\ & \mathrm{n}=245) \end{aligned}$	$5.40 \text { (SD=3.05; }$	N/A	2.801	$\begin{aligned} & 4.10 \text { (SD=3.07; } \\ & \mathrm{n}=10 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,253}=0.497, \\ & \mathrm{p}=0.481 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,266}=0.008, \\ & \mathrm{p}=0.992 \end{aligned}$
	Viagra	$\begin{aligned} & 3.07 \text { (SD=3.81; } \\ & \mathrm{n}=339) \end{aligned}$	$\begin{aligned} & 3.53 \text { (SD=3.75; } \\ & \mathrm{n}=137) \end{aligned}$	$\begin{aligned} & 3.62 \text { (SD=3.62; } \\ & \mathrm{n}=47) \end{aligned}$	$\begin{aligned} & 3.24 \text { (SD=3.78; } \\ & \mathrm{n}=526) \end{aligned}$	$\begin{aligned} & 2.80 \text { (SD=3.90; } \\ & \mathrm{n}=5 \text {) } \end{aligned}$	N/A	N/A	$\begin{aligned} & 3.00 \text { (SD=3.52; } \\ & \mathrm{n}=6) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,530}=0.024, \\ & \mathrm{p}=0.877 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,571}=1.780, \\ & \mathrm{p}=0.170 \end{aligned}$
Confidence in Trying New Things	Alcohol	$\begin{aligned} & 4.38 \text { (SD=3.46; } \\ & \mathrm{n}=6272) \end{aligned}$	$\begin{aligned} & 4.05 \text { (SD=3.63; } \\ & \mathrm{n}=606) \end{aligned}$	$\begin{aligned} & 4.26 \text { (SD=3.5; } \\ & \mathrm{n}=496) \end{aligned}$	$\begin{aligned} & 4.35 \text { (SD=3.49; } \\ & \mathrm{n}=7478) \end{aligned}$	$\begin{aligned} & 4.91 \text { (SD=3.34; } \\ & \mathrm{n}=2752) \end{aligned}$	$\begin{aligned} & 4.06 \text { (SD=4.51; } \\ & \mathrm{n}=127) \end{aligned}$	$\begin{aligned} & 5.29 \text { (SD= } 3.39 ; \\ & \mathrm{n}=615) \end{aligned}$	$\begin{aligned} & 4.93 \text { (SD=3.42; } \\ & \mathrm{n}=3584) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10862}=3.885 \\ & , \mathrm{p}=0.021 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,10862}=12.044, \\ & \mathrm{p}<0.001 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10862}=6.971, \\ & \mathrm{p}=0.001 \end{aligned}$
	Cocaine	$\begin{aligned} & 5.55 \text { (SD=3.51; } \\ & \mathrm{n}=698) \end{aligned}$	$\begin{aligned} & 6.36 \text { (SD=3.18; } \\ & \mathrm{n}=107) \end{aligned}$	$\begin{aligned} & 5.91 \text { (SD=3.62; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 5.67 \text { (SD=3.51; } \\ & \mathrm{n}=865) \end{aligned}$	$\begin{aligned} & 5.82 \text { (SD=3.56; } \\ & \mathrm{n}=299) \end{aligned}$	$\begin{aligned} & 4.78 \text { (SD=2.76; } \\ & \mathrm{n}=18 \text {) } \end{aligned}$	$\begin{aligned} & 6.18 \text { (SD=3.35; } \\ & \mathrm{n}=68 \text {) } \end{aligned}$	$\begin{aligned} & 5.84 \text { (SD=3.48; } \\ & \mathrm{n}=394) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1231}=2.050, \\ & \mathrm{p}=0.129 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1231}=0.872, \\ & \mathrm{p}=0.350 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1231}=0.583, \\ & \mathrm{p}=0.558 \end{aligned}$
	Cannabis	$\begin{aligned} & 2.57 \text { (SD=3.76; } \\ & \mathrm{n}=3931) \end{aligned}$	$\begin{aligned} & 3.31 \text { (SD=4.06; } \\ & \mathrm{n}=255) \end{aligned}$	$\begin{aligned} & 3.14 \text { (SD= } 3.77 ; \\ & \mathrm{n}=336) \end{aligned}$	$\begin{aligned} & 2.65 \text { (SD=3.78; } \\ & \mathrm{n}=4604) \end{aligned}$	$\begin{aligned} & 2.72 \text { (SD=3.95; } \\ & \mathrm{n}=1018) \end{aligned}$	$\begin{aligned} & 3.02 \text { (SD=4.18; } \\ & \mathrm{n}=51 \text {) } \end{aligned}$	$\begin{aligned} & 3.03 \text { (SD=4.14; } \\ & n=346) \end{aligned}$	$\begin{aligned} & 2.77 \text { (SD=4.00; } \\ & \mathrm{n}=1469) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5931}=0.559, \\ & \mathrm{p}=0.572 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,5931}=0.124, \\ & \mathrm{p}=0.725 \end{aligned}$	$\begin{aligned} & F_{2,5931}=4.799, \\ & \mathrm{p}=0.008 \end{aligned}$
	GHB/GBL	$\begin{aligned} & 6.89 \text { (SD=3.13; } \\ & \mathrm{n}=47 \text {) } \end{aligned}$	$\begin{aligned} & 6.21 \text { (SD=3.63; } \\ & \mathrm{n}=68) \end{aligned}$	$\begin{aligned} & 6.40 \text { (SD=3.05; } \\ & n=5) \end{aligned}$	$\begin{aligned} & 6.49 \text { (SD=3.40; } \\ & \mathrm{n}=121) \end{aligned}$	$\begin{aligned} & 7.40 \text { (SD=2.56; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & 6.70 \text { (SD=4.22; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 7.22 \text { (SD=3.15; } \\ & \mathrm{n}=27) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,146}=1.059, \\ & \mathrm{p}=0.305 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,151}=0.820, \\ & \mathrm{p}=0.443 \end{aligned}$
	Ketamine	$\begin{aligned} & 1.51 \text { (SD=4.52; } \\ & \mathrm{n}=76) \end{aligned}$	$\begin{aligned} & 4.85 \text { (SD=3.77; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & 4.20 \text { (SD=3.16; } \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & 2.52 \text { (SD=4.50; } \\ & \mathrm{n}=114) \end{aligned}$	$\begin{aligned} & 4.51 \text { (SD=4.25; } \\ & \mathrm{n}=43) \end{aligned}$	N/A	$\begin{aligned} & 3.16 \text { (SD=4.09; } \\ & \mathrm{n}=19) \end{aligned}$	$\begin{aligned} & 4.22 \text { (SD=4.22; } \\ & \mathrm{n}=67) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,179}=6.345, \\ & \mathrm{p}=0.013 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,181}=2.569, \\ & \mathrm{p}=0.079 \end{aligned}$

	MDMA	$\begin{aligned} & \text { 5.50 (SD=3.72; } \\ & \mathrm{n}=1352) \end{aligned}$	$\begin{aligned} & 5.50 \text { (SD=3.94; } \\ & \mathrm{n}=159) \end{aligned}$	$\begin{aligned} & 6.17 \text { (SD=3.83; } \\ & \mathrm{n}=136) \end{aligned}$	$\begin{aligned} & \text { 5.54 (SD=3.77; } \\ & \mathrm{n}=1679) \end{aligned}$	$\begin{aligned} & 5.55 \text { (SD=3.67; } \\ & \mathrm{n}=539) \end{aligned}$	$\begin{aligned} & 6.44 \text { (SD=3.68; } \\ & n=25) \end{aligned}$	$\begin{aligned} & 6.20 \text { (SD=3.51; } \\ & \mathrm{n}=187) \end{aligned}$	$\begin{aligned} & \text { 5.71 (SD=3.65; } \\ & n=776) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2392}=0.600, \\ & \mathrm{p}=0.549 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2392}=1.231, \\ & \mathrm{p}=0.267 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2392}=4.378, \\ & \mathrm{p}=0.013 \end{aligned}$
	Mephedrone	$\begin{aligned} & 6.04 \text { (SD=3.69; } \\ & n=57 \text {) } \end{aligned}$	$\begin{aligned} & 6.23 \text { (SD=3.43; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & 6.88 \text { (SD=3.27; } \\ & \mathrm{n}=8) \end{aligned}$	$\begin{aligned} & 6.11 \text { (SD=3.58; } \\ & \mathrm{n}=92) \end{aligned}$	$\begin{aligned} & 5.74 \text { (SD=4.37; } \\ & \mathrm{n}=27) \end{aligned}$	N/A	$\begin{aligned} & 6.14 \text { (SD=3.08; } \\ & \mathrm{n}=7) \end{aligned}$	$\begin{aligned} & 5.78 \text { (SD=4.10; } \\ & \mathrm{n}=36 \text {) } \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,126}=0.204, \\ & \mathrm{p}=0.653 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,128}=0.190, \\ & \mathrm{p}=0.827 \end{aligned}$
	Methamphetamine	$\begin{aligned} & 7.29 \text { (SD=3.41; } \\ & \mathrm{n}=109) \end{aligned}$	$\begin{aligned} & 7.10 \text { (SD=3.77; } \\ & \mathrm{n}=96 \text {) } \end{aligned}$	$\begin{aligned} & 6.50 \text { (SD=3.19; } \\ & \mathrm{n}=20 \text {) } \end{aligned}$	$\begin{aligned} & 7.12 \text { (SD=3.56; } \\ & \mathrm{n}=228) \end{aligned}$	$\begin{aligned} & 5.74 \text { (SD=4.79; } \\ & \mathrm{n}=35) \end{aligned}$	N/A	$\begin{aligned} & 8.07 \text { (SD=2.87; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & 6.35 \text { (SD=4.36; } \\ & \mathrm{n}=54) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,280}=1.852, \\ & \mathrm{p}=0.175 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,301}=0.086, \\ & \mathrm{p}=0.917 \end{aligned}$
	Poppers	$\begin{aligned} & 4.43 \text { (SD=4.38; } \\ & \mathrm{n}=30 \text {) } \end{aligned}$	$\begin{aligned} & 4.61 \text { (SD=3.71; } \\ & \mathrm{n}=174) \end{aligned}$	$\begin{aligned} & 4.33 \text { (SD=3.96; } \\ & \mathrm{n}=33 \text {) } \end{aligned}$	$\begin{aligned} & 4.56 \text { (SD=3.79; } \\ & \mathrm{n}=243) \end{aligned}$	$\begin{aligned} & 2.80 \text { (SD=3.83; } \\ & \mathrm{n}=5) \end{aligned}$	N/A	$\begin{aligned} & 2.60 \text { (SD=2.51; } \\ & n=5) \end{aligned}$	$\begin{aligned} & 2.70 \text { (SD=3.06; } \\ & \mathrm{n}=10) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,251}=2.339, \\ & \mathrm{p}=0.127 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,262}=0.410, \\ & \mathrm{p}=0.664 \end{aligned}$
	Viagra	$\begin{aligned} & 3.99 \text { (SD=3.73; } \\ & \mathrm{n}=341) \end{aligned}$	$\begin{aligned} & 3.06 \text { (SD=3.69; } \\ & \mathrm{n}=139) \end{aligned}$	$\begin{aligned} & 5.50 \text { (SD=3.33; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & 3.88 \text { (SD=3.73; } \\ & \mathrm{n}=531) \end{aligned}$	$\begin{aligned} & 2.60(S D=3.71 ; \\ & n=5) \end{aligned}$	N/A	N/A	$\begin{aligned} & 2.17 \text { (SD=3.49; } \\ & \mathrm{n}=6) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,53}=1.256, \\ & \mathrm{p}=0.263 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,577}=6.752, \\ & \mathrm{p}<0.001 \end{aligned}$
Feelings of Shame	Alcohol	$\begin{aligned} & -0.87 \text { (SD=3.68; } \\ & \mathrm{n}=6188) \end{aligned}$	$\begin{aligned} & -0.73 \text { (SD=3.83; } \\ & \mathrm{n}=602) \end{aligned}$	$\begin{aligned} & -0.74 \text { (SD=3.47; } \\ & \mathrm{n}=488) \end{aligned}$	$\begin{aligned} & -0.83 \text { (SD=3.68; } \\ & \mathrm{n}=7378) \end{aligned}$	$\begin{aligned} & -0.43 \text { (SD=3.83; } \\ & \mathrm{n}=2706) \end{aligned}$	$\begin{aligned} & -0.40(\mathrm{SD}=3.44 ; \\ & \mathrm{n}=124) \end{aligned}$	$\begin{aligned} & -0.32 \text { (SD=4.25; } \\ & \mathrm{n}=604) \end{aligned}$	$\begin{aligned} & -0.39(\mathrm{SD}=3.89 ; \\ & \mathrm{n}=3524) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10706}=0.048 \\ & , \mathrm{p}=0.953 \end{aligned}$	$\begin{aligned} & F_{1,10766}=7.337, \\ & p=0.007 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,10706}=0.576, \\ & \mathrm{p}=0.562 \end{aligned}$
	Cocaine	$\begin{aligned} & -1.39 \text { (SD=3.99; } \\ & \mathrm{n}=690) \end{aligned}$	$\begin{aligned} & -1.40(S D=3.74 ; \\ & \mathrm{n}=105) \end{aligned}$	$\begin{aligned} & -1.64 \text { (SD=4.73; } \\ & \mathrm{n}=46) \end{aligned}$	$\begin{aligned} & -1.40(S D=4.00 ; \\ & \mathrm{n}=854) \end{aligned}$	$\begin{aligned} & -1.22 \text { (SD=4.47; } \\ & \mathrm{n}=295) \end{aligned}$	$\begin{aligned} & -0.47 \text { (SD=3.06; } \\ & \mathrm{n}=17) \end{aligned}$	$\begin{aligned} & -2.30(\mathrm{SD}=4.63 ; \\ & \mathrm{n}=66) \end{aligned}$	$\begin{aligned} & -1.32 \text { (SD=4.39; } \\ & \mathrm{n}=387) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1213}=0.738, \\ & \mathrm{p}=0.478 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,1213}=0.115, \\ & \mathrm{p}=0.734 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,1213}=1.641, \\ & \mathrm{p}=0.194 \end{aligned}$
	Cannabis	$\begin{aligned} & -1.20 \text { (SD=3.40; } \\ & 3893) \end{aligned}$	$\begin{aligned} & -1.50(S D=3.6 ; \\ & \mathrm{n}=254) \end{aligned}$	$\begin{aligned} & -0.95 \text { (SD=2.95; } \\ & \mathrm{n}=329) \end{aligned}$	$\begin{aligned} & -1.20 \text { (SD=3.38; } \\ & \mathrm{n}=4557 \text {) } \end{aligned}$	$\begin{aligned} & -1.35 \text { (SD=3.64; } \\ & \mathrm{n}=1005) \end{aligned}$	$\begin{aligned} & -1.33 \text { (SD=3.33; } \\ & \mathrm{n}=51) \end{aligned}$	$\begin{aligned} & -1.43 \text { (SD=3.89; } \\ & \mathrm{n}=341) \end{aligned}$	$\begin{aligned} & -1.36 \text { (SD=3.68; } \\ & \mathrm{n}=1448) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5867}=0.888, \\ & \mathrm{p}=0.411 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,5867}=0.607, \\ & \mathrm{p}=0.436 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,5867}=0.318, \\ & \mathrm{p}=0.728 \end{aligned}$
	GHB/GBL	$\begin{aligned} & -2.24 \text { (SD=4.72; } \\ & \mathrm{n}=45) \end{aligned}$	$\begin{aligned} & -1.97 \text { (SD=4.17; } \\ & \mathrm{n}=67) \end{aligned}$	N/A	$\begin{aligned} & -2.16 \text { (SD=4.41; } \\ & \mathrm{n}=117) \end{aligned}$	$\begin{aligned} & -4.00 \text { (SD=5.30; } \\ & \mathrm{n}=15) \end{aligned}$	N/A	$\begin{aligned} & -1.60(S D=5.70 ; \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & -3.19 \text { (SD=5.47; } \\ & \mathrm{n}=27) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,142}=1.069, \\ & \mathrm{p}=0.303 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,147}=0.424, \\ & \mathrm{p}=0.655 \end{aligned}$

Ketamine	$\begin{aligned} & \hline-1.33 \text { (SD=3.91; } \\ & \mathrm{n}=75) \end{aligned}$	$\begin{aligned} & -2.88(S D=4.84 ; \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & \hline-3.70(S D=4.85 ; \\ & \mathrm{n}=10) \end{aligned}$	$\begin{aligned} & \hline-1.79(\mathrm{SD}=4.38 ; \\ & \mathrm{n}=113) \end{aligned}$	$\begin{aligned} & -1.19(S D=4.04 ; \\ & \mathrm{n}=42) \end{aligned}$	N/A	$\begin{aligned} & \hline-2.71(\mathrm{SD}=4.95 ; \\ & \mathrm{n}=17) \end{aligned}$	$\begin{aligned} & \hline-1.56(\mathrm{SD}=4.19 ; \\ & \mathrm{n}=64) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,175}=0.111, \\ & \mathrm{p}=0.739 \end{aligned}$	$\begin{aligned} & F_{2,176}=2.492, \\ & p=0.086 \end{aligned}$
MDMA	$\begin{aligned} & -2.13 \text { (SD=4.18; } \\ & \mathrm{n}=1325) \end{aligned}$	$\begin{aligned} & -2.46 \text { (SD=4.14; } \\ & \mathrm{n}=160) \end{aligned}$	$\begin{aligned} & -2.62(S D=3.96 ; \\ & n=135) \end{aligned}$	$\begin{aligned} & -2.19 \text { (SD=4.15; } \\ & \mathrm{n}=1652) \end{aligned}$	$\begin{aligned} & -1.78 \text { (SD=4.25; } \\ & \mathrm{n}=525) \end{aligned}$	$\begin{aligned} & -1.64 \text { (SD=3.73; } \\ & \mathrm{n}=25) \end{aligned}$	$\begin{aligned} & -2.06 \text { (SD=4.61; } \\ & \mathrm{n}=180) \end{aligned}$	$\begin{aligned} & -1.84 \text { (SD=4.30; } \\ & 754) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,2344}=0.188, \\ & \mathrm{p}=0.829 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1,2344}=2.750, \\ & \mathrm{p}=0.097 \end{aligned}$	$\begin{aligned} & F_{2,2344}=1.100, \\ & p=0.333 \end{aligned}$
Mephedrone	$\begin{aligned} & -2.45 \text { (SD=4.56; } \\ & \mathrm{n}=55) \end{aligned}$	$\begin{aligned} & -2.62 \text { (SD=4.99; } \\ & \mathrm{n}=26) \end{aligned}$	$\begin{aligned} & -3.50(S D=4.00 ; \\ & \mathrm{n}=8) \end{aligned}$	$\begin{aligned} & -2.66 \text { (SD=4.61; } \\ & \mathrm{n}=90) \end{aligned}$	$\begin{aligned} & -2.07 \text { (SD=5.10; } \\ & \mathrm{n}=27) \end{aligned}$	N/A	$\begin{aligned} & 0.43 \text { (SD=7.79; } \\ & \mathrm{n}=7) \end{aligned}$	$\begin{aligned} & -1.47 \text { (SD=5.55; } \\ & \mathrm{n}=36) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,124}=1.502, \\ & \mathrm{p}=0.223 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,126}=0.150, \\ & \mathrm{p}=0.861 \end{aligned}$
Methamphetamine	$\begin{aligned} & -1.33 \text { (SD=5.14; } \\ & \mathrm{n}=109) \end{aligned}$	$\begin{aligned} & -2.20 \text { (SD=4.82; } \\ & \mathrm{n}=96) \end{aligned}$	$\begin{aligned} & -1.94 \text { (SD=3.19; } \\ & \mathrm{n}=18) \end{aligned}$	$\begin{aligned} & -1.73 \text { (SD=4.85; } \\ & \mathrm{n}=226) \end{aligned}$	$\begin{aligned} & -0.38 \text { (SD= 5.16; } \\ & \mathrm{n}=34) \end{aligned}$	N/A	$\begin{aligned} & -0.73 \text { (SD=6.69; } \\ & \mathrm{n}=15) \end{aligned}$	$\begin{aligned} & -0.64 \text { (SD=5.54; } \\ & \mathrm{n}=53) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,277}=2.048, \\ & \mathrm{p}=0.154 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,299}=2.240, \\ & \mathrm{p}=0.108 \end{aligned}$
Poppers	$\begin{aligned} & -1.40(S D=4.26 ; \\ & \mathrm{n}=30) \end{aligned}$	$\begin{aligned} & -1.24 \text { (SD=3.65; } \\ & \mathrm{n}=173) \end{aligned}$	$\begin{aligned} & -0.85 \text { (SD=3.68; } \\ & \mathrm{n}=33) \end{aligned}$	$\begin{aligned} & -1.24(\mathrm{SD}=3.74 ; \\ & \mathrm{n}=242) \end{aligned}$	$\begin{aligned} & 0.00 \text { (SD=0.00; } \\ & n=5) \end{aligned}$	N/A	$\begin{aligned} & 0.00 \text { (SD=0.00; } \\ & n=5) \end{aligned}$	$\begin{aligned} & 0.00 \text { (SD=0.00; } \\ & \mathrm{n}=10) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,250}=1.088, \\ & \mathrm{p}=0.298 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,261}=0.031, \\ & \mathrm{p}=0.970 \end{aligned}$
Viagra	$\begin{aligned} & -1.58 \text { (SD=4.04; } \\ & \mathrm{n}=338) \end{aligned}$	$\begin{aligned} & -1.13 \text { (SD=3.53; } \\ & \mathrm{n}=138) \end{aligned}$	$\begin{aligned} & -1.67 \text { (SD=3.63; } \\ & \mathrm{n}=48) \end{aligned}$	$\begin{aligned} & -1.47 \text { (SD=3.89; } \\ & \mathrm{n}=527) \end{aligned}$	$\begin{aligned} & -1.67 \text { (SD=4.08; } \\ & \mathrm{n}=6) \end{aligned}$	N/A	N/A	$\begin{aligned} & -1.43 \text { (SD=3.78; } \\ & \mathrm{n}=7) \end{aligned}$	NA	$\begin{aligned} & \mathrm{F}_{1,532}=0.001, \\ & \mathrm{p}=0.975 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{2,577}=0.773, \\ & \mathrm{p}=0.462 \end{aligned}$

Table S4 - F-tests and p values for the ANOVAs conducted for each drug for each sexual aspect with between-subjects factors of gender and sexual orientation (also shown in table 3). When there were fewer than five participants in any one specific group (e.g. homosexual women), we conducted separate ANOVAs to investigate main effects of gender and sexual orientation without the interaction. Here we report Bonferroni corrected follow-up t-tests for the significant F-tests.

Sexual Aspect	Drug	Gender X Sexual Orientation Interaction	Gender Main Effect	Sexual Orientation Main Effect
Erection or Moistness	Alcohol	$\mathrm{F}_{2,11090}=7.456, \mathrm{p}=0.001$.	$\mathrm{F}_{1,11090}=188.474, \mathrm{p}<0.001$.	$\mathrm{F}_{2,11090}=3.593, \mathrm{p}=0.028$.
		Within women, it was greater for bisexuals than homosexuals ($\mathrm{d}=1.240$, $\mathrm{se}=0.405$, $p=0.007$) and greater for heterosexuals than for homosexuals ($d=0.993$, $s e=0.379, p=0.026$)	It was higher for women compared to men ($\mathrm{d}=2.212$, $\mathrm{se}=0.161, \mathrm{p}<0.001$)	It was higher for heterosexuals than for homosexuals ($\mathrm{d}=0.527$, $\mathrm{se}=0.208, \mathrm{p}=0.034$)
		Within men, it was lower for bisexuals than heterosexuals ($\mathrm{d}=-0.530$, $\mathrm{se}=0.190, \mathrm{p}=0.016$)		
	Cocaine	$\mathrm{F}_{2,1292}=1.344, \mathrm{p}=0.261$	$\mathrm{F}_{1,1292}=0.148, \mathrm{p}=0.700$	$\mathrm{F}_{2,1292}=1.344, \mathrm{p}=0.261$
	Cannabis	$F_{2,6123}=1.003, p=0.367$	$F_{1,6123}=6.497, p=0.011$	$\mathrm{F}_{2,6123}=1.480, p=0.228$
			It was higher for men compared to women ($\mathrm{d}=0.613, \mathrm{se}=0.240, \mathrm{p}=0.011$)	
	GHB/GBL	NA	$\mathrm{F}_{1,151}=0.296, \mathrm{p}=0.587$	$F_{2,156}=2.658, p=0.073$
	Ketamine	NA	$F_{1,186}=12.463, p=0.001$	$F_{2,188}=0.940, p=0.392$
			It was higher for women compared to men ($\mathrm{d}=2.480$, $\mathrm{se}=0.703, \mathrm{p}=0.001$)	
	MDMA	$F_{2,2462}=1.240, p=0.290$	$F_{1,2462}=28.777, p<0.001$	$F_{2,2462}=0.488, p=0.614$
			It was higher for women compared to men ($\mathrm{d}=2.508, \mathrm{se}=0.467, \mathrm{p}<0.001$)	
	Mephedrone	NA	$\mathrm{F}_{1,134}=7.242, \mathrm{p}=0.008$	$F_{2,136}=0.619, p=0.540$
			It was higher for women compared to men ($\mathrm{d}=2.903, \mathrm{se}=1.079, \mathrm{p}<0.008$)	

	Methamphetamine	NA	$\mathrm{F}_{1,293}=4.926, \mathrm{p}=0.027$	$\mathrm{F}_{2,315}=22.463, \mathrm{p}<0.001$
			It was higher for women compared to men ($\mathrm{d}=2.217$, $\mathrm{se}=0.999, \mathrm{p}=0.027$)	Within men, it was higher for heterosexuals compared to homosexuals $(d=5.766, s e=0.844, p<0.001)$
	Poppers	NA	$\mathrm{F}_{1,256}=0.106, \mathrm{p}=0.745$	$\mathrm{F}_{2,267}=0.787, \mathrm{p}=0.456$
	Viagra	NA	$\mathrm{F}_{1,563}=28.080, \mathrm{p}<0.001$	$\mathrm{F}_{2,608}=0.846, \mathrm{p}=0.429$
			It was higher for men compared to women ($d=5.962$, se=1.125, $p<0.001$)	
Sexual Desire	Alcohol	$\mathrm{F}_{2,11107}=8.187, \mathrm{p}<0.001$	$\mathrm{F}_{1,11107}=5.119, \mathrm{p}=0.024$	$\mathrm{F}_{2,11107}=15.400, \mathrm{p}<0.001$
		Within women, it was greater for bisexuals than homosexuals ($\mathrm{d}=1.786$, se= 0.358 , $\mathrm{p}<0.001$) and greater for heterosexuals than homosexuals ($\mathrm{d}=1.482$, $\mathrm{se}=0.334, \mathrm{p}<0.001$).	It was higher for women compared to men ($\mathrm{d}=0.324$, $\mathrm{se}=0.143, \mathrm{p}=0.024$)	It was higher for bisexuals than homosexuals ($\mathrm{d}=0.976$, $\mathrm{se}=0.210$, $\mathrm{p}<0.001$), and higher for heterosexuals than homosexuals ($\mathrm{d}=1.022$, $\mathrm{se}=0.184$, p<0.001)
		Within men, it was greater for heterosexuals than homosexuals ($\mathrm{d}=0.561$, $\mathrm{se}=0.155$, $\mathrm{p}=0.001$).		
	Cocaine	$\mathrm{F}_{2,1285}=3.076, \mathrm{p}=0.046$	$\mathrm{F}_{1,1285}=12.940, p<0.001$	$\mathrm{F}_{2,1285}=2.331, \mathrm{p}=0.098$
		Within women, it was greater for bisexuals than homosexuals ($\mathrm{d}=2.330$, $\mathrm{se}=1.016$, $\mathrm{p}=0.066$)	It was higher for men compared to women ($\mathrm{d}=1.473, \mathrm{se}=0.410, \mathrm{p}<0.001$)	
	Cannabis	$\mathrm{F}_{2,6099}=1.739, \mathrm{p}=0.176$	$\mathrm{F}_{1,6099}=2.497, \mathrm{p}=0.114$	$\mathrm{F}_{2,6099}=1.010, \mathrm{p}=0.364$
	GHB/GBL	NA	$\mathrm{F}_{1,149}=0.229, \mathrm{p}=0.633$	$\mathrm{F}_{2,155}=1.329, \mathrm{p}=0.268$
	Ketamine	NA	$\mathrm{F}_{1,186}=1.954, \mathrm{p}=0.164$	$\mathrm{F}_{2,188}=1.901, \mathrm{p}=0.152$
	MDMA	$\mathrm{F}_{2,2458}=0.333, \mathrm{p}=0.717$	$\mathrm{F}_{1,2458}=0.008, \mathrm{p}=0.927$	$\mathrm{F}_{2,2458}=3.495, \mathrm{p}=0.030$
				It was higher for bisexuals than heterosexuals ($\mathrm{d}=0.655$, $\mathrm{se}=0.256$, $\mathrm{p}=0.032$)
	Mephedrone	NA	$\mathrm{F}_{1,132}=2.827, \mathrm{p}=0.095$	$\mathrm{F}_{2,134}=0.654, \mathrm{p}=0.521$

	Methamphetamine	NA	$\mathrm{F}_{1,287}=3.375, \mathrm{p}=0.067$	$\mathrm{F}_{2,309}=2.942, \mathrm{p}=0.054$
	Poppers	NA	$\mathrm{F}_{1,252}=0.144, \mathrm{p}=0.704$	$\mathrm{F}_{2,263}=1.397, \mathrm{p}=0.249$
	Viagra	NA	$\mathrm{F}_{1,547}=0.014, \mathrm{p}=0.905$	$\mathrm{F}_{2,588}=0.223, \mathrm{p}=0.800$
Time to orgasm	Alcohol	$\mathrm{F}_{2,10935}=6.520, \mathrm{p}=0.001$ Within men, it was greater for heterosexuals than bisexuals ($\mathrm{d}=0.704, \mathrm{se}=0.230, \mathrm{p}=0.007$) and greater for heterosexuals than homosexuals ($\mathrm{d}=1.074, \mathrm{se}=0.208, \mathrm{p}<0.001$).	$\mathrm{F}_{1,10935}=49.356, \mathrm{p}<0.001$ It was higher for men compared to women (d=1.350, se=0.192, p<0.001)	$\mathrm{F}_{2,10935}=2.821, \mathrm{p}=0.060$
	Cocaine	$\mathrm{F}_{2,1261}=1.443, p=0.237$	$F_{1,1261}=10.368, p=0.001$ It was higher for men compared to women $(d=1.941, \text { se=0.603, p=0.001) }$	$\mathrm{F}_{2,1261}=1.998, \mathrm{p}=0.136$
	Cannabis	$\mathrm{F}_{2,6005}=1.182, p=0.307$	$\mathrm{F}_{1,6005}=16.154, \mathrm{p}<0.001$ It was higher for men compared to women $(\mathrm{d}=0.952, \mathrm{se}=0.237, \mathrm{p}<0.001)$	$\mathrm{F}_{2,6005}=1.480, \mathrm{p}=0.228$
	GHB/GBL	NA	$\mathrm{F}_{1,147}=0.602, \mathrm{p}=0.439$	$\mathrm{F}_{2,152}=2.136, \mathrm{p}=0.122$
	Ketamine	NA	$\mathrm{F}_{1,181}=3.132, \mathrm{p}=0.078$	$\mathrm{F}_{2,184}=2.849, \mathrm{p}=0.060$
	MDMA	$\mathrm{F}_{2,2425}=0.229, \mathrm{p}=0.795$	$F_{1,2425}=25.864, p<0.001$ It was higher for men compared to women $(\mathrm{d}=2.571, \mathrm{se}=0.506, \mathrm{p}<0.001)$	$\mathrm{F}_{2,2425}=5.065, \mathrm{p}=0.006$ It was higher for heterosexuals than homosexuals ($\mathrm{d}=1.927$, $\mathrm{se}=0.673, \mathrm{p}=0.013$)
	Mephedrone	NA	$\mathrm{F}_{1,130}=16.621, \mathrm{p}<0.001$ It was higher for men compared to women $(\mathrm{d}=5.262, \mathrm{se}=1.291, \mathrm{p}<0.001)$	$\mathrm{F}_{2,132}=1.683, \mathrm{p}=0.190$

			It was higher for men compared to women ($\mathrm{d}=2.948$, $\mathrm{se}=0.958, \mathrm{p}=0.002$)	
	Poppers	NA	$\mathrm{F}_{1,257}=0.006, \mathrm{p}=0.937$	$\mathrm{F}_{2,268}=1.422, \mathrm{p}=0.243$
	Viagra	NA	$\mathrm{F}_{1,547}=1.154, \mathrm{p}=0.283$	$\mathrm{F}_{2,588}=1.672, p=0.189$
Multiple orgasms	Alcohol	$F_{2,10567}=2.777, p=0.062$	$\mathrm{F}_{1,10567}=10.623, \mathrm{p}=0.001$ It was higher for women compared to men $(\mathrm{d}=0.548, \mathrm{se}=0.168, \mathrm{p}=0.001)$	$F_{2,10567}=0.321, p=0.726$
	Cocaine	$\mathrm{F}_{2,1219}=0.216, \mathrm{p}=0.806$	$\mathrm{F}_{1,1219}=2.411, \mathrm{p}=0.121$	$F_{2,1219}=1.370, p=0.255$
	Cannabis	$F_{2,5791}=0.074, p=0.928$	$F_{1,5791}=9.101, p=0.003$ It was higher for women compared to men (d=0.653, se=0.216, p=0.003)	$F_{2,5791}=5.113, p=0.006$ It was higher for bisexuals than heterosexuals ($\mathrm{d}=0.493$, $\mathrm{se}=0.156$, $\mathrm{p}=0.005$)
	GHB/GBL	NA	$\mathrm{F}_{1,143}=0.881, \mathrm{p}=0.350$	$\mathrm{F}_{2,148}=1.296, \mathrm{p}=0.277$
	Ketamine	NA	$\mathrm{F}_{1,172}=0.346, \mathrm{p}=0.557$	$\mathrm{F}_{2,175}=1.047, p=0.353$
	MDMA	$F_{2,2320}=1.100, p=0.333$	$\mathrm{F}_{1,2320}=1.568, \mathrm{p}=0.211$	$\mathrm{F}_{2,2320}=2.830, \mathrm{p}=0.059$
	Mephedrone	NA	$\mathrm{F}_{1,121}=2.091, \mathrm{p}=0.151$	$\mathrm{F}_{2,123}=0.365, \mathrm{p}=0.695$
	Methamphetamine	NA	$\mathrm{F}_{1,282}=0.691, \mathrm{p}=0.407$	$F_{2,303}=5.203, p=0.006$
				Within men, it was higher for heterosexuals than homosexuals ($\mathrm{d}=2.822$, $\mathrm{se}=0.799, \mathrm{p}=0.002$)
	Poppers	NA	$\mathrm{F}_{1,246}=0.218, \mathrm{p}=0.641$	$\mathrm{F}_{2,257}=0.515, p=0.598$
	Viagra	NA	$\mathrm{F}_{1,531}=0.743, \mathrm{p}=0.389$	$\mathrm{F}_{2,573}=3.417, p=0.033$
				Within men, it was higher for bisexuals than heterosexuals ($\mathrm{d}=2.098$, $\mathrm{se}=0.685$,

				$\mathrm{p}=0.007$) and higher for bisexuals than homosexuals ($\mathrm{d}=2.486$, $\mathrm{se}=0.743, \mathrm{p}=0.003$)
Intensity of orgasm	Alcohol	$\mathrm{F}_{2,10782}=4.227, \mathrm{p}=0.015$	$\mathrm{F}_{1,10782}=3.297, p=0.069$	$\mathrm{F}_{2,10782}=4.759, \mathrm{p}=0.009$
		Within women, it was greater for bisexuals than homosexuals ($\mathrm{d}=1.154$, se=$=0.388$, $\mathrm{p}=0.009$) and greater for heterosexuals than homosexuals ($\mathrm{d}=1.121$, $\mathrm{se}=0.361, \mathrm{p}=0.006$)		It was higher for heterosexuals than homosexuals ($\mathrm{d}=0.604$, $\mathrm{se}=0.199, \mathrm{p}=0.007$)
	Cocaine	$\mathrm{F}_{2,1233}=2.478, \mathrm{p}=0.084$	$\mathrm{F}_{1,1233}=19.440, p<0.001$	$\mathrm{F}_{2,1233}=0.027, \mathrm{p}=0.973$
			It was higher for men compared to women ($\mathrm{d}=2.134$, se=0.484, $\mathrm{p}<0.001$)	
	Cannabis	$\mathrm{F}_{2,5962}=0.421, \mathrm{p}=0.657$	$\mathrm{F}_{1,5962}=14.085, \mathrm{p}<0.001$	$\mathrm{F}_{2,5962}=2.262, \mathrm{p}=0.104$
			It was higher for men compared to women ($\mathrm{d}=0.789, \mathrm{se}=0.210, \mathrm{p}<0.001$)	
	GHB/GBL	NA	$\mathrm{F}_{1,145}=3.231, \mathrm{p}=0.074$	$\mathrm{F}_{2,150}=0.123, \mathrm{p}=0.885$
	Ketamine	NA	$\mathrm{F}_{1,174}=0.002, \mathrm{p}=0.966$	$\mathrm{F}_{2,177}=1.659, \mathrm{p}=0.193$
	MDMA	$\mathrm{F}_{2,2360}=1.518, \mathrm{p}=0.219$	$\mathrm{F}_{1,2360}=15.785, \mathrm{p}<0.001$	$\mathrm{F}_{2,2360}=8.025, \mathrm{p}<0.001$
			It was higher for men compared to women ($\mathrm{d}=1.471, \mathrm{se}=0.370, \mathrm{p}<0.001$)	It was higher for bisexuals than heterosexuals ($\mathrm{d}=1.044, \mathrm{se}=0.279$, $\mathrm{p}=0.001$)
	Mephedrone	NA	$\mathrm{F}_{1,127}=8.644, \mathrm{p}=0.004$	$\mathrm{F}_{2,129}=0.340, p=0.712$
			It was higher for men compared to women ($\mathrm{d}=2.583, \mathrm{se}=0.879, \mathrm{p}=0.004$)	
	Methamphetamine	NA	$\mathrm{F}_{1,281}=10.752, \mathrm{p}=0.001$	$\mathrm{F}_{2,301}=0.029, \mathrm{p}=0.971$
			It was higher for men compared to women ($\mathrm{d}=2.092, \mathrm{se}=0.638, \mathrm{p}=0.001$)	
	Poppers	NA	$\mathrm{F}_{1,255}=5.244, \mathrm{p}=0.023$	$\mathrm{F}_{2,266}=0.377, p=0.686$

			It was higher for men compared to women ($d=2.761$, $s e=1.206, p=0.023$)	
	Viagra	NA	$F_{1,533}=0.396, p=0.529$	$F_{2,576}=1.236, p=0.291$
Overall performance	Alcohol	$\mathrm{F}_{2,10847}=10.186, \mathrm{p}<0.001$	$\mathrm{F}_{1,10847}=30.061, \mathrm{p}<0.001$	$F_{2,10847}=17.047, p<0.001$
		Within women, it was greater for bisexuals than homosexuals ($\mathrm{d}=1.780$, $\mathrm{se}=0.418$, $\mathrm{p}<0.001$) and greater for heterosexuals than homosexuals ($\mathrm{d}=1.737$, $\mathrm{se}=0.390, \mathrm{p}<0.001$). Within men, it was greater for heterosexuals than bisexuals ($\mathrm{d}=0.859$, $\mathrm{se}=0.199, \mathrm{p}<0.001$) and greater for heterosexuals than homosexuals ($\mathrm{d}=0.522$, $\mathrm{se}=0.181, \mathrm{p}=0.012$).	It was higher for women compared to men ($\mathrm{d}=0.916$, $\mathrm{se}=0.167, \mathrm{p}<0.001$).	It was higher for bisexuals than homosexuals ($\mathrm{d}=0.722$, $\mathrm{se}=0.246$, $p=0.010$), and it was lower for bisexuals than heterosexuals ($\mathrm{d}=0.408$, $\mathrm{se}=0.138$, $\mathrm{p}=0.009$), and it was higher for heterosexuals than homosexuals ($\mathrm{d}=1.129$, $\mathrm{se}=0.215, \mathrm{p}<0.001$).
	Cocaine	$\mathrm{F}_{2,1236}=1.588, p=0.205$	$F_{1,1236}=0.038, p=0.846$	$F_{2,1236}=0.953, p=0.386$
	Cannabis	$\mathrm{F}_{2,5952}=1.080, \mathrm{p}=0.340$	$\mathrm{F}_{1,5952}=4.950, \mathrm{p}=0.026$	$\mathrm{F}_{2,5952}=0.061, \mathrm{p}=0.941$
			It was higher for men compared to women ($\mathrm{d}=0.510$, $\mathrm{se}=0.229, \mathrm{p}=0.026$).	
	GHB/GBL	NA	$\mathrm{F}_{1,144}=0.035, \mathrm{p}=0.853$	$F_{2,149}=1.750, p=0.177$
	Ketamine	NA	$F_{1,177}=2.009, p=0.158$	$F_{2,179}=3.582, p=0.030$
				Within men, it was higher for homosexuals than heterosexuals ($\mathrm{d}=3.267$, $\mathrm{se}=1.085$, $\mathrm{p}=0.010$)
	MDMA	$F_{2,2389}=1.667, p=0.189$	$F_{1,2389}=1.991, p=0.158$	$F_{2,2389}=1.698, p=0.183$
	Mephedrone	NA	$F_{1,126}=0.114, p=0.736$	$F_{2,128}=0.577, p=0.563$
	Methamphetamine	NA	$\mathrm{F}_{1,283}=0.063, \mathrm{p}=0.802$	$\mathrm{F}_{2,303}=0.604, \mathrm{p}=0.547$
	Poppers	NA	$\mathrm{F}_{1,253}=2.394, \mathrm{p}=0.123$	$\mathrm{F}_{2,264}=0.961, \mathrm{p}=0.384$

	Viagra	NA	$\mathrm{F}_{1,544}=5.404, \mathrm{p}=0.020$	$F_{2,587}=0.379, p=0.685$
			It was higher for men compared to women ($d=2.872$, $s e=1.236, p=0.020$)	
Emotionality/intimacy	Alcohol	$\mathrm{F}_{2,10818}=9.310, \mathrm{p}<0.001$	$\mathrm{F}_{1,10818}=2.975, \mathrm{p}=0.085$	$\mathrm{F}_{2,10818}=3.258, \mathrm{p}=0.039$
		Within women, it was greater for heterosexuals than bisexuals ($d=0.512$, $\mathrm{se}=0.189, \mathrm{p}=0.017$).		It was higher for heterosexuals than bisexuals ($d=0.311$, $s e=0.137, p=0.068$)
		Within men, it was greater for homosexuals than bisexuals ($d=1.183$, $s e=0.257, p<0.001$) and greater for homosexuals than heterosexuals ($\mathrm{d}=1.081$, $\mathrm{se}=0.180, \mathrm{p}<0.001$).		
	Cocaine	$\mathrm{F}_{2,1229}=4.758, \mathrm{p}=0.009$	$\mathrm{F}_{1,1229}=2.086, \mathrm{p}=0.149$	$F_{2,1229}=1.309, p=0.271$
		Within men, it was greater for homosexuals than heterosexuals ($\mathrm{d}=1.766$, $\mathrm{se}=0.504$, $\mathrm{p}=0.001$).		
	Cannabis	$\mathrm{F}_{2,5961}=0.403, p=0.668$	$\mathrm{F}_{1,5961}=3.744, \mathrm{p}=0.053$	$\mathrm{F}_{2,5961}=1.519, \mathrm{p}=0.219$
	GHB/GBL	NA	$\mathrm{F}_{1,145}=0.338, \mathrm{p}=0.562$	$F_{2,150}=0.451, p=0.638$
	Ketamine	NA	$\mathrm{F}_{1,181}=6.034, \mathrm{p}=0.015$	$\mathrm{F}_{2,183}=4.053, \mathrm{p}=0.019$
			It was higher for women compared to men ($\mathrm{d}=1.819$, $\mathrm{se}=0.741, \mathrm{p}=0.015$)	Within men, it was higher for homosexuals than heterosexuals ($\mathrm{d}=3.014$, $\mathrm{se}=1.057$, $\mathrm{p}=0.016$)
	MDMA	$\mathrm{F}_{2,2399}=1.063, \mathrm{p}=0.345$	$\mathrm{F}_{1,2399}=3.728, \mathrm{p}=0.054$	$\mathrm{F}_{2,2399}=1.089, \mathrm{p}=0.337$
	Mephedrone	NA	$\mathrm{F}_{1,127}=0.052, \mathrm{p}=0.820$	$\mathrm{F}_{2,129}=0.762, p=0.469$
	Methamphetamine	NA	$\mathrm{F}_{1,283}=0.323, \mathrm{p}=0.571$	$F_{2,301}=0.033, p=0.967$
	Poppers	NA	$\mathrm{F}_{1,253}=0.079, p=0.779$	$\mathrm{F}_{2,264}=0.290, p=0.749$
	Viagra	NA	$\mathrm{F}_{1,536}=0.722, \mathrm{p}=0.396$	$F_{2,578}=1.694, p=0.185$

Sensual aspects	Alcohol	$F_{2,10766}=17.864, p<0.001$	$F_{1,10766}=3.390, p=0.066$	$F_{2,10766}=0.029, p=0.971$
		Within women, it was greater for bisexuals than homosexuals ($\mathrm{d}=1.143$, $\mathrm{se}=0.410$, $\mathrm{p}=0.016$), and greater for heterosexuals than homosexuals ($\mathrm{d}=1.300$, $\mathrm{se}=0.382, \mathrm{p}=0.002$).		
		Within men, it was greater for homosexuals than bisexuals ($\mathrm{d}=1.089$, $\mathrm{se}=0.255, \mathrm{p}<0.001$), and it was greater for homosexuals than heterosexuals ($\mathrm{d}=1.210$, $\mathrm{se}=0.179, \mathrm{p}<0.001$).		
	Cocaine	$\mathrm{F}_{2,1222}=4.536, \mathrm{p}=0.011$	$\mathrm{F}_{1,1222}=4.922, \mathrm{p}=0.027$	$\mathrm{F}_{2,1222}=0.944, \mathrm{p}=0.389$
		Within men, it as greater for homosexuals than heterosexuals ($\mathrm{d}=1.366$, $\mathrm{se}=0.471$, $\mathrm{p}=0.011$)	It was higher for men compared to women ($\mathrm{d}=1.082$, $\mathrm{se}=0.488, \mathrm{p}=0.027$)	
	Cannabis	$\mathrm{F}_{2,5931}=0.601, \mathrm{p}=0.548$	$F_{1,5931}=0.153, p=0.696$	$\mathrm{F}_{2,5931}=5.807, p=0.003$
				It was higher for bisexuals than heterosexuals ($\mathrm{d}=0.414$, $\mathrm{se}=0.151$, $p=0.019$)
	GHB/GBL	NA	$\mathrm{F}_{1,145}=0.066, \mathrm{p}=0.798$	$\mathrm{F}_{2,150}=0.568, p=0.568$
	Ketamine	NA	$\mathrm{F}_{1,181}=2.269, \mathrm{p}=0.134$	$F_{2,183}=1.641, p=0.197$
	MDMA	$\mathrm{F}_{2,2378}=0.347, p=0.707$	$\mathrm{F}_{1,2378}=1.387, \mathrm{p}=0.239$	$\mathrm{F}_{2,2378}=4.888, \mathrm{p}=0.008$
				It was higher for bisexuals than heterosexuals ($\mathrm{d}=0.658$, $\mathrm{se}=0.245$, $\mathrm{p}=0.022$)
	Mephedrone	NA	$\mathrm{F}_{1,126}=0.081, \mathrm{p}=0.777$	$\mathrm{F}_{2,128}=0.799, \mathrm{p}=0.452$
	Methamphetamine	NA	$\mathrm{F}_{1,280}=3.585, \mathrm{p}=0.059$	$\mathrm{F}_{2,298}=0.542, \mathrm{p}=0.582$
	Poppers	NA	$\mathrm{F}_{1,253}=0.497, \mathrm{p}=0.481$	$\mathrm{F}_{2,264}=0.008, \mathrm{p}=0.992$
	Viagra	NA	$\mathrm{F}_{1,530}=0.024, \mathrm{p}=0.877$	$F_{2,571}=1.780, p=0.170$
Confidence in trying new things	Alcohol	$F_{2,10862}=3.885, p=0.021$	$\mathrm{F}_{1,10862}=12.044, \mathrm{p}<0.001$	$\mathrm{F}_{2,10862}=6.971, \mathrm{p}=0.001$

	Within women, it was greater for bisexuals than heterosexuals ($\mathrm{d}=0.378$, $\mathrm{se}=0.154$, $\mathrm{p}=0.042$), and greater for bisexuals than homosexuals ($\mathrm{d}=1.234$, $\mathrm{se}=0.337, \mathrm{p}=0.001$), and greater for heterosexuals than homosexuals ($\mathrm{d}=0.856$, $\mathrm{se}=0.313, \mathrm{p}=0.019$)	It was higher for women compared to men ($\mathrm{d}=0.522$, se=0.135, $\mathrm{p}<0.001$)	It was higher for bisexuals than homosexuals ($\mathrm{d}=0.726$, se $=0.198$, $\mathrm{p}=0.001$), and higher for heterosexuals than homosexuals ($\mathrm{d}=0.594$, $\mathrm{se}=0.173$, $\mathrm{p}=0.002$)
Cocaine	$\mathrm{F}_{2,1231}=2.050, \mathrm{p}=0.129$	$\mathrm{F}_{1,1231}=0.872, \mathrm{p}=0.350$	$\mathrm{F}_{2,1231}=0.583, \mathrm{p}=0.558$
Cannabis	$\mathrm{F}_{2,5931}=0.559, \mathrm{p}=0.572$	$\mathrm{F}_{1,5931}=0.124, \mathrm{p}=0.725$	$\mathrm{F}_{2,5931}=4.799, \mathrm{p}=0.008$
			It was higher for bisexuals than heterosexuals ($\mathrm{d}=0.440$, $\mathrm{se}=0.162$, $\mathrm{p}=0.019$)
GHB/GBL	NA	$\mathrm{F}_{1,146}=1.059, \mathrm{p}=0.305$	$\mathrm{F}_{2,151}=0.820, \mathrm{p}=0.443$
Ketamine	NA	$\mathrm{F}_{1,179}=6.345, \mathrm{p}=0.013$	$\mathrm{F}_{2,181}=2.569, \mathrm{p}=0.079$
		It was higher for women compared to men ($\mathrm{d}=1.706$, se=0.677, $\mathrm{p}=0.013$)	
MDMA	$\mathrm{F}_{2,2392}=0.600, \mathrm{p}=0.549$	$\mathrm{F}_{1,2392}=1.231, \mathrm{p}=0.267$	$\mathrm{F}_{2,2392}=4.378, \mathrm{p}=0.013$
			It was higher for bisexuals than heterosexuals ($\mathrm{d}=0.655$, $\mathrm{se}=0.230$, $\mathrm{p}=0.013$)
Mephedrone	NA	$\mathrm{F}_{1,126}=0.204, \mathrm{p}=0.653$	$\mathrm{F}_{2,128}=0.190, \mathrm{p}=0.827$
Methamphetamine	NA	$\mathrm{F}_{1,280}=1.852, \mathrm{p}=0.175$	$\mathrm{F}_{2,301}=0.086, \mathrm{p}=0.917$
Poppers	NA	$\mathrm{F}_{1,251}=2.339, \mathrm{p}=0.127$	$\mathrm{F}_{2,262}=0.410, \mathrm{p}=0.664$
Viagra	NA	$\mathrm{F}_{1,535}=1.256, \mathrm{p}=0.263$	$\mathrm{F}_{2,577}=6.752, \mathrm{p}<0.001$
			Within men, it was higher for bisexuals than heterosexuals ($d=1.506$, se=0.568, $\mathrm{p}=0.025$), and higher for bisexuals than homosexuals ($\mathrm{d}=2.435$, $\mathrm{se}=0.617$, $\mathrm{p}<0.001$), and higher for heterosexuals than homosexuals ($\mathrm{d}=0.929$, $\mathrm{se}=0.371$, $\mathrm{p}=0.038$)

Table S5 - The number of respondents in each group for each drug for the 'increased enjoyment or capacity for sex or physical activity' item. The corresponding graph is figure 1 in the main document.

	Male				Female			
	Heterosexual	Homosexual	Bisexual	Total Male	Heterosexual	Homosexual	Bisexual	Total Female
GHB/GBL	168	137	21	333	42	5	27	75
MDMA	4,419	493	378	5,394	1,414	70	385	1,937
Amphetamine	1,565	221	160	1,990	485	40	163	708
Cocaine	2,813	331	210	3,407	971	55	243	1,305
Cannabis	8,079	633	699	9,607	2,283	140	651	3,184
Mephedrone	453	71	43	574	139	9	47	208
LSD	1,847	107	219	2,231	396	34	181	634
Magic Mushrooms	2,038	105	201	2,396	422	27	184	663
Alcohol	10,666	1,129	865	12,927	4,597	252	910	5,944
Ketamine	1,276	163	118	1,588	371	30	133	561
Tobacco	5,716	502	502	6,869	1,990	122	515	2,723

Table S6-F-tests and p values for the ANOVAs conducted for each drug for the overall rating 'increased enjoyment/capacity for sex or physical activity' with between-subjects factors of gender and sexual orientation. Here we report Bonferroni corrected follow-up t-tests for the significant F-tests.

	Gender by sexual orientation interaction	Gender main effect	Sexual orientation main effect
GHB/GBL	$\mathrm{F}_{2,394}=1.295, \mathrm{p}=0.275$	$\mathrm{F}_{1,394}=0.005, \mathrm{p}=0.943$	$F_{2,394}=1.295, p=0.275$
MDMA	$\mathrm{F}_{2,7153}=1.242, \mathrm{p}=0.289$	$\mathrm{F}_{1,7153}=0.188$	$\mathrm{F}_{1 \mathrm{a} 7153}=10.632, \mathrm{p}<0.001$
			Bisexuals rated it more highly than both heterosexuals ($\mathrm{d}=0.532$, $\mathrm{se}=0.121, \mathrm{p}<0.001$) and homosexuals ($d=0.729$, $s e=0.226$, $p=0.004$)
Cocaine	$\mathrm{F}_{2,4617}=0.171, \mathrm{p}=0.842$	$\mathrm{F}_{1,4617}=1.278, \mathrm{p}=0.258$	$\mathrm{F}_{2,4617}=1.335, \mathrm{p}=0.263$
Cannabis	$\mathrm{F}_{2,12479}=3.53, \mathrm{p}=0.035$	$\mathrm{F}_{1,12479}=52.859, \mathrm{p}<0.001$	$F_{2,12479}=11.747, p<0.001$
	Within men, bisexuals rated it more highly than homosexuals ($\mathrm{d}=0.714$, se=0.183, $\mathrm{p}<0.001$). Within women, bisexuals rated it more highly than heterosexuals ($d=0.643$, se=0.148, $p<0.001$) and	Men rated it more highly than women ($d=0.894$, $\mathrm{se}=0.123$, $\mathrm{p}<0.001$)	Bisexuals rated it more highly than heterosexuals ($\mathrm{d}=0.408$, $\mathrm{se}=0.099$, $\mathrm{p}<0.001$) and homosexuals ($d=0.751$, $s e=0.180, p<0.001$).

Alcohol	$F_{2,18413}=10.975, p<0.001$	$\mathrm{F}_{1,18413}=5.785, \mathrm{p}=0.016$	$F_{2,18413}=13.642, p<0.001$
	Within men, heterosexuals rated it more highly than homosexuals ($d=0.307$, se=0.088, $p=0.001$). Within women, bisexuals rated it more highly than heterosexuals ($\mathrm{d}=0.388$, $\mathrm{se}=0.102, \mathrm{p}<0.001$) and homosexuals ($\mathrm{d}=1.074$, $\mathrm{se}=0.200$, $\mathrm{p}<0.001$); and heterosexuals rated it more highly than homosexuals ($\mathrm{d}=0.686$, se=0.182, $\mathrm{p}<0.001$)	Women rated it more highly than men ($\mathrm{d}=0.194$, $\mathrm{se}=0.081, \mathrm{p}=0.016$)	Bisexuals rated it more highly than homosexuals ($\mathrm{d}=0.592$, $\mathrm{se}=0.118$, $\mathrm{p}<0.001$) and heterosexuals rated it more highly than homosexuals ($\mathrm{d}=0.496$, $\mathrm{se}=0.101, \mathrm{p}<0.001$)
Amphetamine	$\mathrm{F}_{2,2628}=1.675, \mathrm{p}=0.187$	$\mathrm{F}_{1,2628}=4.480, \mathrm{p}=0.034$	$\mathrm{F}_{2,2628}=5.145, \mathrm{p}=0.006$
		Men rated it more highly than women ($\mathrm{d}=0.495$, $\mathrm{se}=0.234$, $\mathrm{p}=0.034$)	Homosexuals rated it more highly than heterosexuals ($d=0.883$, se=0.298, $p=0.009$)
Ketamine	$\mathrm{F}_{2,2085}=5.319, \mathrm{p}=0.005$	$\mathrm{F}_{1,2085}=3.460, \mathrm{p}=0.063$	$F_{2,2085}=12.931, p<0.001$
	Within men, homosexuals rated it more highly than bisexuals		Homosexuals rated it more highly than heterosexuals ($d=1.035$,

	$\begin{aligned} & (d=1.264, s e=0.339, p=0.001) \text { and } \\ & \text { heterosexuals (} d=1.941, s e=0.233 \text {, } \\ & p<0.001 \text {). Within women, bisexuals } \\ & \text { rated it more highly than } \\ & \text { heterosexuals (} d-0.904 \text {, } \mathrm{se}=0.284 \text {, } \\ & p=0.004 \text {) } \end{aligned}$		$\begin{aligned} & \mathrm{se}=0.291, \mathrm{p}=0.001 \text {) and bisexuals } \\ & \text { rated it more highly than } \\ & \text { heterosexuals (} \mathrm{d}=0.790 \text {, } \mathrm{se}=0.196 \text {, } \\ & \mathrm{p}<0.001 \text {) } \end{aligned}$
LSD	$F_{2,2778}=0.496, p=0.609$	$\mathrm{F}_{1,2778}=1.809, \mathrm{p}=0.179$	$\mathrm{F}_{2,2778}=3.824, \mathrm{p}=0.022$
			Bisexuals rated it more highly than homosexuals ($\mathrm{d}=0.952$, $\mathrm{se}=0.388$, $\mathrm{p}=0.043$)
Magic mushrooms	$\mathrm{F}_{2,2971}=0.047, \mathrm{p}=0.954$	$\mathrm{F}_{1,2971}=0.045, \mathrm{p}=0.832$	$\mathrm{F}_{2,2971}=2.628, \mathrm{p}=0.072$
Mephedrone	$\mathrm{F}_{2,756}=0.760, \mathrm{p}=0.468$	$\mathrm{F}_{1,756}=1.935, \mathrm{p}=0.165$	$F_{2,756}=1.767, p=0.172$
Tobacco	$\mathrm{F}_{2,9341}=3.201, \mathrm{p}=0.041$	$\mathrm{F}_{1,9341}=41.144, \mathrm{p}<0.001$	$\mathrm{F}_{2,9341}=5.861, \mathrm{p}=0.003$
	Within men, bisexuals rated it more highly than heterosexuals ($d=0.309$, se=0.078, $p<0.001$).	Men rated it more highly than women ($\mathrm{d}=0.436$, se=0.068, p<0.001)	Bisexuals rated it more highly than heterosexuals ($\mathrm{d}=0.192$, $\mathrm{se}=0.057$, $\mathrm{p}=0.002$)

References

[1] World-Health-Organisation. Global Status Report on Alcohol and Health 2018. Global Status Report on Alcohol and Health. 2018.
[2] Sumnall H, Beynon C, Conchie S, Riley S, Cole J. An investigation of the subjective experiences of sex after alcohol or drug intoxication. Journal of Psychopharmacology. 2007;21: 52537.
[3] Bellis MA, Hughes K, Calafat A, et al. Sexual uses of alcohol and drugs and the associated health risks: a cross sectional study of young people in nine European cities. BMC public health. 2008;8: 155.
[4] Palamar JJ, Griffin-Tomas M, Acosta P, Ompad DC, Cleland CM. A comparison of selfreported sexual effects of alcohol, marijuana, and ecstasy in a sample of young adult nightlife attendees. Psychology \& Sexuality. 2018;9: 54-68.
[5] Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, Steers WD, Wicker PA. Oral sildenafil in the treatment of erectile dysfunction. New England Journal of Medicine. 1998;338: 1397-404.
[6] Morales A, Gingell C, Collins M, Wicker PA, Osterloh IH. Clinical safety of oral sildenafil citrate (Viagra TM) in the treatment of erectile dysfunction. International journal of impotence research. 1998;10: 69.
[7] Bourne A, Reid D, Hickson F, Torres Rueda S, Weatherburn P. The Chemsex Study: drug use in sexual settings among gay and bisexual men in Lambeth, Southwark and Lewisham. 2014.
[8] Weatherburn P, Hickson F, Reid D, Torres-Rueda S, Bourne A. Motivations and values associated with combining sex and illicit drugs ('chemsex') among gay men in South London: findings from a qualitative study. Sex Transm Infect. 2017;93: 203-06.
[9] Halikas J, Weller R, Morse C. Effects of regular marijuana use on sexual performance. Journal of Psychoactive Drugs. 1982;14: 59-70.
[10] Peugh J, Belenko S. Alcohol, drugs and sexual function: a review. Journal of psychoactive drugs. 2001;33: 223-32.

