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Abstract
Alzheimer’s disease (AD) is the most common form of dementia. To date, only
five pharmacological agents have been approved by the Food and Drug
Administration for clinical use in AD, all of which target the symptoms of the
disease rather than the cause. Increasing our understanding of the underlying
pathophysiology of AD will facilitate the development of new therapeutic
strategies. Over the years, the major hypotheses of AD etiology have focused on
deposition of amyloid beta and mitochondrial dysfunction. In this review we
highlight the potential of experimental model systems based on human induced
pluripotent stem cells (iPSCs) to provide novel insights into the cellular
pathophysiology underlying neurodegeneration in AD. Whilst Down syndrome
and familial AD iPSC models faithfully reproduce features of AD such as
accumulation of Aβ and tau, oxidative stress and mitochondrial dysfunction,
sporadic AD is much more difficult to model in this way due to its complex
etiology. Nevertheless, iPSC-based modelling of AD has provided invaluable
insights into the underlying pathophysiology of the disease, and has a huge
potential for use as a platform for drug discovery.
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Core tip: Alzheimer’s disease (AD) is a huge burden on the healthcare system and on
society. At present, there are no therapeutic approaches that address the underlying
causes of this devastating disease, largely because we lack understanding of the
underlying molecular mechanisms. Induced pluripotent stem cells (iPSCs) from AD or
Down syndrome patients can be used to elucidate these molecular mechanisms, therefore
presenting a novel approach to this problem. In this review, we focus on the ability of
iPSC models to gain insight into the mitochondrial dysfunction that occurs during AD
and therefore identify novel drug targets.
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HYPOTHESES OF CAUSATION: THE AMYLOID
HYPOTHESIS VS THE MITOCHONDRIAL CASCADE
HYPOTHESIS
Alzheimer’s  disease  (AD)  is  characterized  by  the  presence  of  tangles  of  hyper-
phosphorylated tau and plaques of beta-amyloid (Aβ) in the central nervous system
(CNS).  However,  it  is  not  clear  whether  the  tangles  and  plaques  drive  the
pathophysiology of  AD or  whether  they are  symptomatic,  caused by a  common
underlying process. The vast majority of people with AD present at 65 or older with
“sporadic”  AD (sAD).  Around 1% of  subjects  present  with  atypical  early  onset
familial AD (fAD), generally diagnosed between the ages of 30-60[1,2]. Despite this,
most research has focused on fAD since its etiology is the most straightforward to
model. fAD is most frequently caused by mutations in the genes encoding the three
components of the amyloid precursor protein (APP) processing pathway (Figure 1),
the γ-secretase-component, encoding the genes presenilin (PSEN)-1 and PSEN-2, or
the APP gene itself, whereas a growing consensus suggests that sAD is more likely to
be caused by impaired clearance of Aβ[3-7].

The genetic basis of fAD suggests that the accumulation of Aβ in plaques is one, if
not the only, cause of the disease, as was suggested by the “amyloid hypothesis” of
AD[8]. The amyloid hypothesis has evolved over the years and the most recent version
distinguishes between soluble forms of Aβ, which are likely to accumulate in cells
early in AD and be highly toxic, and insoluble fibrillary Aβ which is deposited later in
the disease and is less toxic (reviewed in[9-12]) (Figure 2). Interestingly, tau tangles are
generally no longer posited as a primary cause for AD, despite being a major cause of
neuronal death, since mutations in the tau gene (MAPT) do not cause AD (reviewed
in[13]), instead leading to frontotemporal dementia and parkinsonism. MAPT knockout
mice  are  also  relatively  normal[14].  Instead Aβ accumulation is  thought  to  cause
accumulation of tau tangles[15], since treatment of AD neurons in vitro with Aβ-specific
antibodies reverses the tau accumulation phenotype[16], although the mechanism for
this  association  is  currently  unknown[17].  In  support  of  the  amyloid  hypothesis,
exposure of  astrocytes  and neurons to  exogenous Aβ causes  mitochondrial  dys-
function, impaired glucose uptake and ultimately cell death[18,19] whilst injecting Aβ42

into the CNS of healthy rats[20] and primates[21] causes impaired memory. In addition,
APP duplications cause fAD[22]  and the incidence of  AD-like dementia  is  almost
universal  in  ageing  Down’s  syndrome  (DS)  subjects,  who  have  three  copies  of
chromosome 21 and therefore of the APP gene[23]. Approximately two thirds of people
with DS will develop a dementia by the age of 60[23], compared to an incidence closer
to 1 in 10 in the general population at a similar age. Furthermore, Prasher et al[24]

described a 78-year-old woman with DS but without AD, in which the distal segment
of chromosome 21 was translocated so that the APP gene, amongst others, was not
triplicated[24]. Despite extensive evidence for the role of Aβ in AD aetiology, various
anti-amyloid drugs have failed in clinical trials[25,26], as have anti-tangle drugs, which
have also all failed phase II clinical trials[27]. This, along with the observations that sAD
patients do not harbor APP or PSEN mutations[28], that many ageing individuals also
have plaques and tangles at post mortem without signs of dementia[29,30],  and that
triplication of  all  genes  on chromosome 21 except  APP in  mice  still  leads  to  Aβ
deposition  and  cognitive  deficits  in  mice[31],  suggests  that  the  pathophysiology
underlying AD progression likely  to  be  more  complex.  Thus,  the  search for  the
underlying mechanisms driving the pathophysiology of sAD and identification of
novel candidate drug targets is urgent.

Swerdlow and Khan[32] proposed the mitochondrial cascade hypothesis, suggesting
that AD develops as a consequence of an individual’s baseline mitochondrial function
coupled with a decline in mitochondrial function with age[33,34]. This might explain the
role of ageing in the aetiology of sAD and is supported by various forms of experi-
mental  evidence.  For  example,  evidence  of  oxidative  stress  can  precede  plaque
formation in the brain[35],  AD has a strong maternal genetic contribution[36,37]  and
cybrid  cells,  in  which  platelets  from  AD  patients  were  fused  with  neuro-
blastoma/teratocarcinoma cell lines lacking mtDNA, develop molecular features of
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Figure 1

Figure 1  Amyloid precursor protein processing. Adapted from[80].

AD including Aβ production[38].  Exposure  of  HEK293 cells  to  the  mitochondrial
respiratory chain inhibitor antimycin A was associated with increased reactive oxygen
species  (ROS)  generation,  Aβ  deposition  and  toxicity  and  this  was  reduced  by
expression of  the alternative oxidase,  which prevents antimycin A-induced ROS
production[39]. Furthermore, normal astrocytes exhibit intracellular accumulation of
Aβ similar  to  that  observed in DS astrocytes  when mitochondrial  metabolism is
prevented by the treatment with the uncoupler carbonyl cyanide mchlorophenyl-
hydrazone (CCCP)[40].

The role of Aβ in AD remains controversial since, despite its toxicity, it can also
protect cells, perhaps by virtue of an antioxidant role (reviewed in[41,42]). This role,
evidenced by the ability of aggregated Aβ42 peptide to abolish ROS formation in rat
mitochondria exposed to FeSO4 and ascorbate, has been proposed to be mediated by
metal chelation by the peptide[43]. In addition, soluble (s)APPα, generated by the non-
amyloidogenic processing of APP (Figure 1), has been shown to be neuroprotective[44].
It has been suggested that accumulation of Aβ40 and Aβ42 in AD may be a protective
response to the oxidative damage caused by mitochondrial dysfunction[45], consistent
with the mitochondrial cascade theory. This idea is supported by the observation that
the survival of DS neurons was increased by recombinant or astrocyte-produced
Aβ[40]. It seems plausible that ageing (or premature ageing in DS[46,47]) causes both Aβ
accumulation,  as  a  result  of  neurodegeneration,  and  mitochondrial  dysfunc-
tion/oxidative  stress  and  therefore  that  a  vicious  cycle  develops  whereby
accumulation of Aβ into plaques causes oxidative stress which in turn increases the
amyloidogenic  processing  of  APP  and  Aβ  deposition [45].  Interestingly,  tau
phosphorylation also increases in response to disruption of mitochondrial function
through inhibition of the electron transport chain[48-50]. Both hypotheses are therefore
likely to be correct at least to some extent.

MITOCHONDRIAL DYSFUNCTION AND OXIDATIVE STRESS
IN AD: MECHANISTIC INSIGHT
Various mechanisms by which Aβ plaques may cause oxidative stress have been
proposed. For example, it has long been suggested that Aβ generates oxygen radicals
directly in solution[51], since Aβ coordinates with iron and copper, which can generate
ROS[52,53]. Aβ also has the capacity to form Ca2+-permeant channels in lipid bilayers[54,55].
This property is dependent on the membrane cholesterol content of the bilayer[56,57],
leading to the selective generation of Ca2+ signals in astrocytes, but not neurons after
exposure to Aβ, reflecting differences in membrane cholesterol content between the
two cell types[58]. This phenomenon may explain our previous observations, detailed
below, in which we described mitochondrial dysfunction in astrocytes in response to
Aβ, followed only later by the death of neurons. Interestingly, reactive astrocytes have
been shown to  actively  induce  neuronal  death  in  the  context  of  many neurode-
generative diseases, including AD[59,60].

We  have  previously  shown  that  exogenous  Aβ-mediated  Ca2+  influx  into  rat
astrocytes  activate  the  nicotinamide  adenine  dinucleotide  phosphate  (NADPH)
oxidase which generates superoxide. This results in DNA damage and large transient
depolarizations of the mitochondrial membrane potential, driven by Ca2+ signals and
opening of the mitochondrial permeability transition pore (mPTP)[18,19,61]. We showed
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Figure 2

Figure 2  The different forms of Aβ. Adapted from[178] with additional information from[84].

that  overactivation of  Poly (ADP-ribose)  polymerase (PARP)-1 in astrocytes and
neurons in response to superoxide-driven DNA damage caused NAD+ depletion,
failure  of  glycolysis  in  neurons  and  neuronal  death.  Neurons  were  rescued  by
inhibition of  each step of  this  pathway -  by NADPH oxidase inhibitors,  PARP-1
inhibitors  and by supply of  metabolic  substrates  that  bypass  glycolysis,  such as
supplementation  with  methyl  succinate  or  pyruvate[18]  (Figure  3).  That  these
mechanisms are not simply an artefact of the experimental design and operate in the
intact AD nervous system is suggested by a number of observations. For example,
intercellular Ca2+ waves passing between astrocytes and initiated at Aβ plaques were
described in vivo  in a double transgenic mouse model of AD expressing APP and
mutant  PSEN[62]  and we found evidence for  increased activation of  the  NADPH
oxidase in the hippocampus of a triple transgenic AD mouse model[18]. Similarly, Love
et al[63] reported evidence of increased PARP activity in post-mortem AD brains.

Impaired mitochondrial substrate supply may be exacerbated by decreased glucose
uptake, a feature of the AD brain[64], likely due to Aβ exposure, which impairs glucose
uptake in astrocytes[18]. This effect has been modelled in stem cell-derived neurons and
astrocytes  upon  exposure  to  Aβ,  which  resulted  in  decreased  levels  of  glucose
uptake[65]. Interestingly, glucose levels have been shown in some studies to increase in
the AD brain[66], which has been proposed to lead to decreased glucose uptake as an
adaptive response. Whilst the mechanisms remain uncertain, Liu et al[67] demonstrated
decreased expression of the glucose transporters GLUT-1 (the blood-brain barrier and
astrocytic glucose transporter) and GLUT-3 in the AD brain and Prapong et al[68] have
shown that Aβ inhibits neuronal glucose uptake by preventing the fusion of GLUT-3-
containing vesicles with the plasma membrane.

Mitochondrial  dysfunction in AD is  well-established (reviewed in[69])  and res-
piratory  capacity  is  generally  decreased  across  AD  models[70,71].  Mitochondrial
dynamics also appear to be dysregulated in AD. Expression of the proteins mitofusin-
1  and  -2  and  optic  atrophy-1,  which  are  involved  in  mitochondrial  fusion,  and
dynamin-like protein-1, which mediates fission, are all downregulated in pyramidal
neurons  of  AD  patients[72,73].  In  addition,  genes  associated  with  autophagy  and
mitophagy are downregulated in fibroblasts derived from sAD patients[73]. Despite
this,  Birnbaum et  al[74]  demonstrated  an  upregulation  of  mitochondrial  complex
protein expression. Mechanistically, PTEN-induced putative kinase (PINK)1, which
promotes removal of damaged mitochondria by mitophagy, is downregulated in AD
and restoring its expression decreases Aβ production, oxidative stress and mito-
chondrial dysfunction in APP-overexpressing mouse brains[75]. PINK1 mutations are
associated with Parkinson’s  disease (reviewed in[76,77]),  highlighting the common
mechanisms underlying the various neurodegenerative disorders.

A ROLE FOR THE MITOCHONDRIAL mPTP IN AD
Supraphysiological increases in intra-mitochondrial Ca2+ can trigger opening of the
mPTP, causing mitochondrial depolarization and cell death, especially if the Ca2+

signal is coincident with oxidative stress[18,78-81]. It has been suggested that Aβ may
directly contribute to the formation of the mPTP by binding cyclophilin D, the major
regulator of mPTP opening, resident in the mitochondrial matrix[82]. Alternatively, it
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Figure 3

Figure 3  A proposed mechanism for the role of Aβ in neuronal death. Showing the intersection of the amyloid
and mitochondrial hypotheses.

has been suggested that Aβ upregulates another putative regulator of mPTP opening,
the  voltage-dependent  anion-selective  channel-1[83].  The  concept  that  Aβ can  be
internalized into the cell  was recently supported by a study which visualized its
uptake using confocal microscopy[84].  Interestingly, mitochondria in DS astrocytes
were described as shorter, consistent with mitochondrial fragmentation and, possibly,
mitochondrial swelling due to mPTP formation[85]. Furthermore, a double transgenic
AD mouse model crossed with a cyclophilin D knockout mouse (in which mPTP
opening is suppressed), performed significantly better in various cognitive tasks[82,86].
Aβ can also disrupt the mitochondrial respiratory chain directly through the inhibi-
tion of complex IV[87-89], complex V (reviewed in[42]) and/or by binding to Aβ-binding
alcohol  dehydrogenase[88,90-94],  all  of  which  would  contribute  to  mitochondrial
dysfunction and potentially to increased ROS production[95]. Moreover, deregulation
of complex I has been shown to be regulated by tau[96].

THE NEED FOR BETTER MODEL SYSTEMS
Much insight has been gained through animal models. However, the lack of effective
disease modifying drugs for AD largely reflects the failure of these studies to translate
to efficacy in humans[97]. Reasons for this failure remain unclear, but certainly, the
anatomy and genetics of the brain in rodents differ significantly from that of the
human[1].  sAD is especially difficult to model,  as we know so little about the un-
derlying  mechanisms,  and mouse  models  have  been  generated  through genetic
manipulation and are therefore representative of fAD than sAD[98], with the hope that
these will give insights into mechanisms of sAD. Even in the case of fAD they do not
accurately  mimic  AD  progression,  for  example  by  exhibiting  full  tau  tangle
pathology[99]. Animal models do have the unique advantage of being able to model
systemic physiological factors such as diet, obesity and hypertension, all of which
play important roles in sAD (reviewed in[100]). Mouse models also cannot realistically
lend themselves to drug screens. Postmortem brain tissue from AD patients has also
been used as a research tool. However, this is difficult to obtain[101] and the ability to
generate neural cultures from postmortem tissue is highly dependent on the quality of
the tissue, which is often compromised during the later stages of the disease[102].

Adding Aβ exogenously to cell cultures has been widely employed as a strategy
and may have generated interesting data on the mechanisms of Aβ toxicity, but is also
fraught with interpretational difficulties. It is difficult to know whether the levels or
forms of Aβ that are used experimentally are (patho) physiologically relevant. In
addition, various groups have added pre-aggregated tau fibrils to induced pluri-
potent stem cell (iPSC)-derived neurons to model AD, demonstrating that these fibrils
efficiently enter the neurons[103], are propagated intracellularly[104] and that the tau
aggregation phenotype that they induce can be rescued by treatment with autophagy
inducers[105]. The advantages and disadvantages of the different model systems are
summarized in Table 1.

WJSC https://www.wjgnet.com May 26, 2019 Volume 11 Issue 5

Hawkins KE et al. Using iPSCs to study AD

240



Table 1  Advantages and disadvantages of different systems for modelling Alzheimer’s disease[178]

Model system Advantages Disadvantages

Animal models Can be used to model physiological factors such as
diet, obesity and hypertension

Findings may not be able to be directly
extrapolated to humans

Postmortem tissue Human-derived Difficult to obtain; May be of poor quality due to
the destructive effects of AD in its later stages

iPSC-based models Human-derived; More easily obtained than post-
mortem tissue

Cannot be used to model physiological or
epigenetic factors; Large variation between sAD

iPSC lines (may not exhibit phenotype); Neuronal
derivatives may be akin to ‘younger’ neurons

AD: Alzheimer’s disease; iPSC: Induced pluripotent stem cells.

MODELLING AD USING IPSCS
The use of patient-derived iPSCs may be able to address many of these challenges,
since they are derived from human subjects and are easier to obtain than postmortem
tissue. In addition, tau phosphorylation has been demonstrated both in AD patient
iPSC-derived neurons[106,107] and cerebral organoids generated from these cells[108] while
GSK3β, a major tau kinase, has been shown to be upregulated in AD iPSC-derived
neurons[17,107].

iPSCs were first generated from mouse[109] and human[110] fibroblasts in 2006 and
2007 respectively.  The pioneering work of  Prof.  Yamanaka’s  group in Japan de-
monstrated that pluripotency, the ability to give rise to the three germ layers, could be
induced in these cells through the forced expression of four key “Yamanaka factors”,
OCT4, SOX2, KLF4 and cMYC. The original Yamanaka factors are still in use today,
with the optional addition of LIN28, p53 shRNA and NANOG to increase efficacy and
the substitution of LMYC in the place of cMYC. The substitution of the latter factor is
for safety reasons, since cMYC is a known oncogene[111]. In addition, pTAT-mcMYC[112]

or fluorescence-activated cell sorting for differentiation markers[102] can be used to
prevent uncontrolled proliferation.

Importantly, the epigenetic landscape is largely reset by the reprogramming pro-
cess[113]. This will inevitably limit the use of iPSC-derived neurons to study the role of
epigenetic factors in AD. Despite this phenomenon, some iPSC lines have been shown
to exhibit an “epigenetic memory” of their cell type of origin[114]. This observation,
along with the high degree of variability between iPSC clones (reviewed in[115]), may
mean that they exhibit differing abilities to differentiate down a particular lineage,
which should be taken into account when using iPSCs in this way. To address these
issues,  various  groups  have  published  protocols  for  the  direct  conversion  of
fibroblasts into induced neural precursor cells (iNPCs[116]) and induced neuronal cells
(iNs[117]), in which case the epigenetic changes a cell has obtained over the lifespan of
the individual are maintained. The choice of whether to use iPSC-derived neurons or
iNPCs/iNs will depend on whether the researchers intend to study the genetic basis
of the disease only or both genetic and epigenetic factors. However, the cell type of
origin, usually fibroblasts, may still be an issue depending to what extent this cell type
is affected by the disease and ageing in comparison to the neurons and astrocytes of
the brain that are directly affected by the disease in the patient.

Since their original discovery a decade ago, iPSCs have proven to be an invaluable
tool for studying disease progression “in a dish”. Diseases that have been modelled in
this way include amyotrophic lateral sclerosis[118],  familial  dysautonomia[119],  Rett
syndrome[120], schizophrenia[121], spinal muscular atrophy[122,123], DS[124], Huntingdon’s
disease[125],  Duchenne muscular  dystrophy,  Parkinson’s  disease,  AD,  type 1  dia-
betes[126]  and Gaucher disease[125].  These diseases all have a genetic basis, which is
necessary  to  allow  recapitulation  of  the  disease  phenotype  in  iPSCs  and  their
derivatives.

sAD may be included in this category to some degree since it is linked to SNP
variants in particular genes in 60%-80% of cases[102] (reviewed in[127]). Interestingly, in
two recent studies only one of two sAD patient lines studied demonstrated an AD
phenotype in the iPSC-derived neurons, including altered APP expression and Aβ
secretion[17,53],  demonstrating  the  high  variability  of  results  obtained using  sAD
patient-derived  iPSCs.  This  variability  is  likely  to  reflect  the  different  genetic
backgrounds of the two different patients and highlights the importance of maxi-
mising  the  number  of  cell  lines  used,  particularly  in  the  case  of  sAD  where
phenotypes are so variable. The maximum number of cell lines used in the studies
described here is  Young et  al[128]  who use seven lines.  However,  studies  of  other
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diseases  have been identified that  use almost  30 disease lines  to  ensure that  the
statistical  power of  their  findings is  sufficient[129].  These  types  of  studies  will  be
important, at least initially, to identify subtypes of patients with similar phenotypes
and  therefore  to  potentially  allow  particular  therapies  to  be  targeted  to  these
subtypes. Variations in the neural differentiation protocols used are also likely to
represent another potential source of variation between studies. This may lead to
different  neural  cell  phenotypes  and therefore  possibly  to  different  mechanistic
findings.

Encouragingly,  however,  Hossini  et  al[130]  have demonstrated AD-like gene ex-
pression profiles in sAD patient iPSC-derived neurons, including alterations in the
response to  oxidative stress.  In  addition,  AD-associated phenotypes such as  the
presence  of  large  RAB5+ early  endosomes,  which indicate  impaired autophagy,
increased susceptibility to cell death, abnormal calcium influx and altered axonal
transport have all been observed in cells derived from patients with both fAD and
sAD[17,53,131,132], reinforcing the validity of iPSC sAD models.

Many groups have modelled AD using fAD[15-17,53,98,101,108,131,133-140], sAD[17,53,98,128,129,136,141]

or DS[15,124,142-147] iPSCs (Table 2). Indeed, fAD iPSC-derived neurons appear to faithfully
reproduce  the  Aβ  overproduction/tau  hyperphosphorylation  phenotype[15,16].
Interestingly, AD iPSCs differentiate into NPCs with indistinguishable growth rate
and  morphology  to  control  cells  and  show  a  comparable  efficacy  of  terminal
differentiation into neurons[98], as do DS iPSCs[124].

Neural differentiation of iPSCs also presents the unique opportunity to model
disease progression from an early stage. For example, it  has been shown that Aβ
secretion increases throughout neural differentiation of both fAD patient and control
iPSCs[16]. Moreover, DS iPSC-derived neurons are electrophysiologically active; DS
and control cell lines show no significant differences in this respect[144] and neural
cultures develop AD-like pathologies after relatively short periods in culture. Despite
this, iPSC-derived neurons have been shown to be more similar to late fetal neurons
than late adult neurons which may limit the expression of tau isoforms[148]. In addition,
iPSC-derived astrocytes from both sAD and fAD patients exhibited defective locali-
zation of  astroglial  markers in comparison to control  cell  lines[98]  and fAD iPSC-
derived  astrocytes  exhibited  increased  Aβ  production,  dysregulated  calcium
homeostasis and were more inflammatory, producing more ROS[98,149]. Birnbaum et
al[74] also showed oxidative stress in iPSC-derived neurons from sAD patients, even in
the  absence  of  Aβ  and  tau  pathology,  providing  support  for  the  mitochondrial
cascade hypothesis.  Hibaoui et  al[143]  showed that DS iPSC-derived neurospheres
contained a reduced number of NPCs, likely related to the observation that NPC
proliferation was decreased and levels of apoptosis increased in the patient-derived
cells.  Upon neural  maturation,  they observed decreased expression of  neuronal
markers and increased expression of astroglial markers in DS cells in comparison to
isogenic controls. These defects could be rescued by inhibition of dual-specificity
tyrosine-(Y)-phosphorylation regulated kinase 1A, suggesting that its triplication in
DS is responsible for the phenotypes observed.

AD MODELLING IN 3D CULTURE SYSTEMS
In addition to 2D disease modelling, various groups are attempting to model AD in
3D cultures, in order to recreate the interactions between neurons and glia in the
brain[99,108,141]. Lancaster et al[150] were the first to generate cerebral organoids, paving the
way  for  3D  studies  by  demonstrating  that  these  “mini  brains”  recapitulate  the
development of the fetal brain and can be used to model diseases such as micro-
cephaly. 3D culture may have benefits over 2D culture. For example, Choi et al[99]

describe accelerated Aβ and tau pathologies in 3D compared to 2D cultures, arguing
that Aβ aggregates get “trapped” in the 3D structure rather than being released into
the  culture  medium  as  they  would  in  2D  and  therefore  that  3D  cultures  more
accurately model the disease. This assumes that aggregated extracellular species are
the  toxic  entity  as  opposed  to  soluble  oligomers  or  intracellular  accumulation.
However, current drawbacks of 3D modeling include their heterogeneity and lack of
developmental maturity[150-152]. Jorfi et al[153] have recently addressed the heterogeneity
issue by demonstrating the derivation of more uniform neurospheroids which may be
of use in future studies.

DRUG TESTING USING AD IPSCS
One of the major potential applications of AD derived iPSCs is in drug discovery. This
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Table 2  List of studies that have used induced pluripotent stem cells to model Alzheimer’s disease

Study Disease Key findings Advantages Disadvantages

Yagi et al[133], 2011 fAD Relevant expression of APP
and secretase subunits in

iPSC-derived neurons

Obvious AD phenotype
observed

fAD only represents ~ 5%
patients

Shi et al[124], 2012a DS AD pathology (such as
aberrant Aβ production and
hyperphosphorylated Tau)
developed over months in

culture, as opposed to years
in vivo

Show tau (advanced)
phenotype

Findings may not be able to
be extrapolated to AD

Israel et al[17], 2012 fAD, sAD fAD neurons and one out of
two sAD neurons exhibit

altered APP expression and
Aβ secretion and swollen

endosomes

Comparison of fAD and sAD,
in essence using fAD lines as

positive control

High levels of variation
between cell lines

Koch et al[101], 2012 fAD Key steps in proteolytic APP
processing are recapitulated

in hES and iPSC-derived
neurons

Obvious AD phenotype
observed

High levels of variation
between cell lines

Maclean et al[146], 2012 DS Disturbance of multilineage
myeloid haematopoiesis in

T21 at fetal liver stage

Reproducible phenotype
because clear genetic link

Findings may not be able to
be extrapolated to AD

Kondo et al[53], 2013 fAD, sAD Aβ oligomers accumulated in
iPSC-derived neurons and

astrocytes in fAD and one out
of two sAD patients, also

observed ROS

Comparison of fAD and sAD,
in essence using fAD lines as

positive control

High variation between sAD
cell lines

Xu et al[66], 2013 Exogenous Aβ Cell cycle re-entry in iPSC-
derived neurons treated with

Aβ

Used pharmacological
inhibitors to demonstrate

rescue of phenotype

May not be physiologically
relevant

Weick et al[142], 2013 DS Compensatory responses to
oxidative stress in T21
neurons, also reduced

synaptic activity

Reproducible phenotype
because clear genetic link

Findings may not be able to
be extrapolated to AD

Woodruff et al[139], 2013 fAD PSEN1 mutations impair γ-
secretase activity but do not

disrupt γ-secretase-
independent functions

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Hibaoui et al[143], 2014 DS Abnormal neural
differentiation, likely caused
by DYRK1A on chromosome

21

Used fetal fibroblasts to
generate iPSCs (less acquired

mutations)

Findings may not be able to
be extrapolated to AD

Muratore et al[16], 2014 fAD iPSC-derived neurons have
increased Aβ42 and Aβ38,

along with increased levels of
both tau and phosphorylated

tau

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Mahairaki et al[134], 2014 fAD Increased Aβ42:Aβ40 ratio in
fAD iPSC-derived neurons

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Sproul et al[135], 2014 fAD Identified 14 genes that are
differentially regulates in

PSEN1 mutant NPCs relative
to controls

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Duan et al[131], 2014 fAD iPSC-derived neurons with
ApoE3/4 mutations showed

typical AD features

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Liu et al[67], 2014 fAD Treatment with NSAID
reduced Aβ42:Aβ40 ratio

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Young et al[128], 2015 sAD Human neurons with SORL1
mutations associated with

sAD show a reduced
response to BDNF, at the

level of both SORL1
expression and APP

processing

Many cell lines used (n = 7) Only one type of sAD
mutation examined; unlikely
to be able to be extrapolated

to a large patient cohort
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Hossini et al[130], 2015 sAD Genes associated with AD
expressed in sAD iPSC-

derived neurons (including
oxidative stress response).

Treatment with a γ-secretase
inhibitor reduced levels of

Tau.

Show AD-like gene
expression patterns

Only one patient line used (n
= 1)

Chang et al[147], 2015 DS Tau mislocalisation Show advanced (tau)
phenotype

Findings may not be able to
be extrapolated to AD

Murray et al[144], 2015 DS Slower proliferation of NPCs,
increased Aβ production, a
decrease in mitochondrial
membrane potential and

increased no. and abnormal
appearance of mitochondria,
also increased no. of ds DNA

breaks in T21 neurons

Reproducible phenotype
because clear genetic link

Findings may not be able to
be extrapolated to AD

Moore et al[15], 2015 fAD, DS APP mutations increase
levels of tau and

phosphorylated tau whereas
PSEN mutations do not

Obvious AD phenotype
observed

Tested drugs (β-secretase and
-secretase inhibitors) that
have failed clinical trials

Tubsuwan et al[177], 2016 fAD Description of model Obvious AD phenotype
observed

fAD only represents ~5%
patients

Raja et al[108], 2016 fAD Brain organoids from AD
patients exhibit amyloid
aggregation, pTau and

endosome abnormalities,
treatment with β and γ-

secretase inhibitors reduced
this pathology

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Li et al[140], 2016 fAD Characterisation of an iPSC
line

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Lee et al[119], 2016 sAD Secretase inhibtors decreased
Aβ generation but less

potency in 3D

High number of sAD lines
used (n = 5)

Tested generic drugs (BACE1
and -secretase inhibitors) that

have failed clinical trials

Yang et al[136], 2017 fAD Premature neuronal
differentiation with

decreased proliferation and
increased apoptosis in AD-
NPCs, Wnt-Notch pathway

involvement

Obvious AD phenotype
observed

fAD only represents ~5%
patients

Dashinimaev et al[145], 2017 DS Increased Aβ secretion and
upregulation of APP gene,

also increased BACE2,
RCAN1, ETS2, TMED10

expression in T21 neural cells
compared to controls

Reproducible phenotype
because clear genetic link

Findings may not be able to
be extrapolated to AD

Jones et al[98], 2017 fAD, sAD Astrocytes derived from
iPSCs from both fAD and

sAD patients exhibit a
pronounced pathological

phenotype

Comparison of fAD and sAD,
in essence using fAD lines as

positive control

Only one line each fAD and
sAD used (n = 1)

Armijo et al[137], 2017 fAD, sAD fAD neurons have increased
susceptibility to Aβ in

comparison to sAD (and
control) neurons

Comparison of fAD and sAD,
in essence using fAD lines as

positive control

Only one line each fAD and
sAD used (n = 1)

Ochalek et al[107], 2018 fAD, sAD sAD iPSC-derived neurons
reveal elevated tau

hyperphosphorylation,
increased amyloid levels and

GSK3β activation

Show tau (advanced)
phenotype

Differentiation protocol
requires 10 weeks at least

Birnbaum et al[74], 2018 sAD sAD iPSC-derived neurons
display oxidative stress and

increased mitochondrial
protein expression which

doesn’t correlate with Aβ/tau

Occurs in ~95% of AD cases Hard to explain why the
oxidative stress and increased

mitochondrial protein
expression don’t correlate

with Aβ/tau

AD: Alzheimer’s disease; iPSC: Induced pluripotent stem cells; DS: Down’s syndrome; APP: Amyloid precursor protein; NPC: Neural precursor cells; Aβ:
Beta-amyloid.

relies on the establishment of a reliable and robust readout that associates unequi-
vocally with AD pathophysiology that is suitable for screening on high throughput
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platforms. Various groups have used AD iPSC-derived neurons to test γ-secretase
inhibitors, with some efficacy[16,132,154]. Additional drugs that have been tested in this
way include docosahexaenoic acid (DHA), which reduces ROS production by an
unknown mechanism. Interestingly, treatment with this drug increased the survival
time of AD iPSC-derived neurons[53]. Since Aβ-induced toxicity has been linked to
aberrant cell cycle re-entry, CDK2 inhibitors[155] and avermectins[156] have also been
shown to be effective blockers of Aβ-induced toxicity in AD iPSC-derived neuronal
models, although the mechanism of action of avermectins is unknown other than they
increase  the  relative  production  of  shorter  Aβ  peptides  and  that  this  action  is
unrelated to γ-secretase activity[156]. In addition, a combinatorial approach may be
useful.  For  example,  Kondo et  al[154]  have  used  human iPSC-derived  neurons  to
identify three drugs (bromocriptine, cromolyn and topiramate) from a screen of 1258
compounds that had the most potent Aβ-reducing effects in both fAD and sAD iPSC-
derived neurons.

FUTURE AVENUES OF RESEARCH AND THERAPY
One particular benefit of iPSC technology is the ability to model the heterogeneity of
sAD.  Many  AD-linked  SNPs  have  been  identified  by  genome-wide  association
studies[157],  and so use of iPSCs may allow particular treatments to be targeted to
groups of  individuals based on the SNPs they harbor.  This field of  personalized
medicine, known as pharmacogenomics, may mean that drugs that have failed in
clinical trials of large cohorts may be effective when applied to specific patient groups
(as discussed in[158]).

Human cell models, including those based on iPSCs, are the most appropriate for
modelling  the  human  genetic  variation  underlying  sAD  since  they  are  derived
directly from sAD patient cells. Despite this, disease phenotypes are not observed in
all  sAD  iPSC  lines[17,53].  Moreover,  some  cell  lines  exhibit  extracellular  Aβ  ac-
cumulation whereas other lines exhibit  intracellular Aβ and only the latter were
responsive to DHA treatment[53], suggesting an additional parameter that should be
considered  when  designing  personalized  treatments.  Part  of  the  issue  here
understands which of these readouts most reliably reflects meaningful AD patho-
physiology. The lack of a “disease phenotype” observed in some cell lines is likely
due  to  the  “rejuvenation”  of  markers  of  ageing  that  occurs  during  iPSC  repro-
gramming and includes not  only epigenetic  signatures but  also telomere length,
mitochondrial  function  and  the  levels  of  oxidative  stress[159-161].  To  address  this
challenge it has been suggested that “ageing” could be accelerated in cell cultures by
exposure  to  toxins  including  hydrogen  peroxide  or  compounds  that  trigger
mitochondrial  stress  such  as  CCCP  or  rotenone[162,163].  Interestingly,  it  has  been
suggested that rotenone (an inhibitor of complex I of the respiratory chain) treatment
may mimic Parkinson’s disease (PD)[164], again showing similar molecular mechanisms
underlying neurodegeneration between AD and PD. Alternatively, the epigenetic
signature  could  be  maintained by  generating  iNs  instead of  iPSCs  as  described
previously[117,165,166]. Importantly, Mertens et al[167] showed that iNs from donors aged 0-
89 retained ageing-associated molecular signatures whereas iPSCs did not. Another
potential  approach to  combat  this  problem is  to  overexpress  Progerin which re-
establishes age-related markers in iPSC-derived fibroblasts and neurons[159].

Despite  the  huge  promise  of  personalized  medicine,  therapeutics  with  wider
applicability  will  be  more  cost-efficient.  Due  to  the  widespread  mitochondrial
dysfunction observed not only across sAD and fAD but also across various different
neurodegenerative  disorders  it  is  likely  that  mitochondrial  disease  targets  may
constitute a more global approach.

CONCLUSION
Recent advances in iPSC technology have highlighted the importance of metabolic
dysfunction  in  the  progression of  AD.  Our  hope and expectation  is  that  under-
standing the molecular mechanisms underlying this metabolic dysfunction will reveal
novel therapeutic targets for this devastating disease[168-177].
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