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Abstract	
Our	ability	to	recognise	objects	in	peripheral	vision	is	fundamentally	limited	by	crowding,	the	
deleterious	effect	of	clutter	that	disrupts	the	recognition	of	features	ranging	from	orientation	and	
colour	to	motion	and	depth.	Prior	research	is	equivocal	on	whether	this	reflects	a	singular	process	
that	disrupts	all	features	simultaneously	or	multiple	processes	that	affect	each	independently.	We	
examined	crowding	for	motion	and	colour,	two	features	that	allow	a	strong	test	of	feature	
independence.	‘Cowhide’	stimuli	were	presented	15	degrees	in	peripheral	vision,	either	in	isolation	
or	surrounded	by	flankers	to	give	crowding.	Observers	reported	either	the	target	direction	
(clockwise/counterclockwise	from	upwards)	or	its	hue	(blue/purple).	We	first	established	that	
both	features	show	systematic	crowded	errors	(predominantly	biased	towards	the	flanker	
identities)	and	selectivity	for	target-flanker	similarity	(with	reduced	crowding	for	dissimilar	
target/flanker	elements).	The	multiplicity	of	crowding	was	then	tested	with	observers	identifying	
both	features:	a	singular	object-selective	mechanism	predicts	that	when	crowding	is	weak	for	one	
feature	and	strong	for	the	other	that	crowding	should	be	all-or-none	for	both.	In	contrast,	when	
crowding	was	weak	for	colour	and	strong	for	motion,	errors	were	reduced	for	colour	but	remained	
for	motion,	and	vice	versa	with	weak	motion	and	strong	colour	crowding.	This	double	dissociation	
reveals	that	crowding	disrupts	certain	combinations	of	visual	features	in	a	feature-specific	manner,	
ruling	out	a	singular	object-selective	mechanism.	The	ability	to	recognise	one	aspect	of	a	cluttered	
scene,	like	colour,	thus	offers	no	guarantees	for	the	correct	recognition	of	other	aspects,	like	
motion.	

	

Significance	statement	
Our	peripheral	vision	is	primarily	limited	by	crowding,	the	disruption	to	object	recognition	that	
arises	in	clutter.	Crowding	is	widely	assumed	to	be	a	singular	process,	affecting	all	of	the	features	
(orientation,	motion,	colour,	etc.)	within	an	object	simultaneously.	In	contrast,	we	observe	a	double	
dissociation	whereby	observers	make	errors	regarding	the	colour	of	a	crowded	object	whilst	
correctly	judging	its	direction,	and	vice	versa.	This	dissociation	can	be	reproduced	by	a	population-
coding	model	where	the	direction	and	hue	of	target/flanker	elements	are	pooled	independently.	
The	selective	disruption	of	some	object	features	independently	of	others	rules	out	a	singular	
crowding	mechanism,	posing	problems	for	high-level	crowding	theories,	and	suggesting	that	the	
underlying	mechanisms	may	be	distributed	throughout	the	visual	system.		

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2020. ; https://doi.org/10.1101/639450doi: bioRxiv preprint 

https://doi.org/10.1101/639450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

Introduction	
Our	ability	to	recognise	objects	declines	
sharply	in	peripheral	vision	(1).	This	is	not	
simply	due	to	resolution	or	acuity	–	objects	
that	are	visible	in	isolation	become	
indistinguishable	when	other	objects	fall	
within	surrounding	‘interference	zones’	(2-4).	
This	process,	known	as	crowding,	presents	
the	fundamental	limit	on	peripheral	vision,	
with	pronounced	elevations	in	central	vision	
in	disorders	including	amblyopia	(5)	and	
dementia	(6).	

Crowded	impairments	arise	due	to	a	
systematic	change	in	the	appearance	of	target	
objects	(7,	8),	particularly	outside	the	fovea	
(9)	where	targets	are	induced	to	appear	more	
similar	to	nearby	‘flankers’.	Crowding	
disrupts	the	recognition	of	features	
throughout	the	visual	system,	including	
orientation	(10),	position	(11),	colour	(12,	
13),	motion	(14),	and	depth	(15).	Within	these	
dimensions,	crowding	is	also	modulated	by	
the	similarity	between	target/flanker	
elements	–	differences	in	features	including	
orientation	and	colour	reduce	errors	
considerably	(10,	16).	Given	the	distributed	
processing	of	these	features	across	the	visual	
system	(17,	18),	can	one	process	produce	this	
multitude	of	effects?	Most	models	implicitly	
assume	that	crowding	is	a	single	mechanism	
that	affects	all	features	in	a	combined	manner,	
particularly	for	higher-order	approaches	
where	crowding	derives	from	attention	(19,	
20)	or	grouping	(21).	If	crowding	were	
instead	to	operate	independently	for	distinct	
visual	features,	these	effects	could	involve	an	
array	of	neural	substrates	with	varied	
mechanisms.		

A	key	prediction	for	a	combined	crowding	
process	is	that	a	release	from	crowding	in	one	
feature	domain	(e.g.	colour)	should	release	
other	features	(e.g.	motion)	at	the	same	time.	
Accordingly,	target-flanker	differences	in	
colour	or	contrast	polarity	can	reduce	
crowding	for	judgements	of	spatial	form	(16),	
while	differences	in	orientation	improve	
crowded	position	judgements	(22).	Others	
have	however	found	that	judgements	of	
spatial	frequency,	colour,	and	orientation	
show	a	mixture	of	independent	and	combined	

errors	(23).	This	discrepancy	may	reflect	the	
specific	features	used	in	each	study.	Here	we	
examined	whether	crowding	is	combined	or	
independent	for	judgements	of	motion	and	
colour	–	arguably	the	two	features	with	the	
clearest	separation	in	the	visual	system	(17,	
18).		

We	conducted	3	experiments	with	motion	and	
colour,	each	using	cowhide-like	stimuli	(24,	
25)	in	the	upper	visual	field.	Experiments	1	
and	2	examined	crowding	for	each	feature	
separately	to	determine	both	the	nature	of	the	
errors	(i.e.	their	systematicity)	and	the	flanker	
conditions	that	give	strong	vs.	weak	crowding.	
We	then	measured	the	independence	of	
crowding	with	conjoint	motion/colour	
judgements	in	Experiment	3	by	selecting	
conditions	where	crowding	was	strong	for	
one	feature	and	weak	for	the	other,	or	vice	
versa.		

Results	
In	Experiment	1,	observers	viewed	moving	
cowhide	stimuli	and	reported	the	movement	
direction	(clockwise/counterclockwise	of	
upwards)	of	a	target	presented	either	in	
isolation	or	surrounded	by	flankers	moving	in	
1	of	16	directions	(Figure	1A;	Movie	S1).	
Example	data	are	shown	in	Figure	1B,	where	
unflanked	judgments	(grey	points)	transition	
rapidly	from	predominantly	CW	to	CCW	at	
directions	around	upwards	(0°).	The	
psychometric	function	accordingly	shows	low	
bias	in	the	point	of	subjective	equality	with	
upwards	(PSE;	the	50%	midpoint),	with	the	
steep	slope	indicating	a	low	threshold	(the	
difference	from	50%	to	75%	CCW	responses).	
With	upwards-moving	flankers	(+0°;	blue	
points),	performance	declined,	with	a	
shallower	psychometric	function,	but	
nonetheless	remained	unbiased.	In	contrast,	
flankers	moving	30°	CCW	of	upwards	(red)	
induced	a	strong	bias	towards	CCW	
responses,	causing	a	leftwards	shift	of	the	
function	in	addition	to	the	shallower	slope.	
The	opposite	bias	arose	with	CW	flankers	
(yellow).	Both	aspects	of	crowding	are	thus	
captured	here:	assimilative	errors	via	the	PSE,	
and	the	impairment	in	performance	via	
threshold	values.		
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Psychometric	functions	were	fit	separately	for	
each	flanker	condition	and	observer.	Mean	
PSE	values	across	observers	are	plotted	as	a	
function	of	the	target-flanker	difference	in	
Figure	1C.	On	average,	upwards	moving	
flankers	(0°)	did	not	induce	any	bias,	as	with	
the	example	observer.	Flankers	moving	
slightly	CW	(e.g.	-15°)	induced	a	positive	PSE	
shift,	indicating	an	increase	in	CW	responses.	
These	assimilative	errors	were	mirrored	for	
small	target-flanker	differences	in	the	CCW	
direction.	Larger	target-flanker	differences	
(e.g.	±90°)	induced	a	repulsive	PSE	shift,	
indicating	that	the	perceived	target	direction	
was	biased	away	from	that	of	the	flankers.	
Further	increases	gave	a	reduction	in	bias,	
with	downwards	flankers	inducing	no	bias	on	
average.	Threshold	elevation	values	(flanked	
thresholds	divided	by	unflanked)	are	shown	
in	Figure	1D,	where	a	value	of	1	indicates	
performance	equivalent	to	unflanked	
thresholds	(dashed	line).	The	greatest	
threshold	elevation	occurred	with	upwards-
moving	flankers,	with	a	decline	in	threshold	
elevation	as	flanker	directions	diverged.	
Downwards-moving	flankers	gave	the	least	
threshold	elevation,	though	values	remained	
above	1	for	all	observers.	Altogether,	
crowding	was	strong	with	assimilative	errors	
when	target-flanker	differences	in	motion	
were	small,	and	reduced	for	large	target-
flanker	differences	with	either	repulsive	
errors	or	minimal	biases.		

We	next	examined	the	effect	of	crowding	on	
judgements	of	hue	in	Experiment	2.	Here	
observers	identified	whether	the	target	was	
blue/turquoise	or	purple/pink	(Figure	2A;	
Movie	S2).	When	present,	flankers	differed	
from	the	reference	hue	by	1	of	12	hue	angles	
in	DKL	colour	space	(26-28).	Example	data	
are	shown	in	Figure	2B.	Flankers	with	the	
same	hue	as	the	reference	boundary	(0°;	blue	
points)	did	not	induce	any	bias,	though	the	
slope	is	shallower	than	when	unflanked	(grey	
points).	Flankers	with	a	purple	+15°	hue	angle	
(purple	points)	induced	both	a	shallower	
slope	in	the	psychometric	function	and	a	shift	
in	the	PSE,	indicating	assimilative	errors,	as	
did	the	blue	-15°	flankers	(turquoise	points).		

	

	

Figure	1.	The	effect	of	crowding	on	motion	perception	
(Experiment	1).	A.	Left	panel:	An	unflanked	‘cowhide’	
stimulus.	Middle:	A	crowded	array	with	the	target	
between	flankers	moving	30°	CCW	of	upwards.	Right:	
Crowded	by	flankers	moving	150°	CCW	of	upwards.	B.	
Example	data	and	psychometric	functions	for	observer	
YL,	with	the	proportion	of	CCW	responses	plotted	as	a	
function	of	target	direction.	Data	are	shown	for	an	
unflanked	target	(grey),	and	with	flankers	moving	
upwards	(blue),	-30°	CW	of	upwards	(yellow),	and	30°	
CCW	(red).	C.	Midpoint	(PSE)	values	averaged	over	6	
observers	(blue	points	with	error	bars	±1	SEM),	plotted	
as	a	function	of	flanker	direction.	The	mean	output	of	a	
population	crowding	model	is	shown	(green	line)	
surrounded	by	the	95%	range	of	values.	D.	Threshold	
elevation	values	for	the	same	conditions,	plotted	as	in	
panel	C.		
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Figure	2.	Crowding	for	colour	perception	(Experiment	
2).	A.	Left:	An	unflanked	stimulus.	Middle:	A	flanked	
array	with	the	target	between	flankers	with	+15°	hues	
(purple).	Right:	A	target	with	+135°	flankers	
(pink/red).	B.	Example	data	and	psychometric	
functions	for	observer	AK,	plotting	the	proportion	of	
trials	with	a	purple/pink	response	as	a	function	of	
target	hue	(depicted	on	the	x-axis).	Data	are	shown	for	
an	unflanked	target	(grey),	and	flanked	by	stimuli	with	
hues	near	the	decision	boundary	(blue	points),	+15°	
CCW	(purple),	and	-15°	CW	(turquoise).	C.	Midpoint	
(PSE)	values	averaged	over	6	observers	(blue	points	±1	
SEM),	plotted	as	a	function	of	flanker	hue.	The	mean	
output	of	a	population	model	of	crowding	is	shown	
(green	line)	surrounded	by	the	95%	range	of	values.	D.	
Threshold	elevation	values	for	the	same	conditions,	
plotted	as	in	panel	C.	

Figure	2C	plots	the	mean	PSE	values	for	all	
flanker	conditions.	As	with	motion,	flanker	
hues	at	the	decision	boundary	(0°)	induced	no	
bias	on	average.	Flankers	with	CW	hue	
differences	(blue-to-green	in	appearance)	also	
induced	positive	shifts	in	PSE,	indicating	an	
increase	in	‘blue’	responses.	Assimilative	
errors	were	again	mirrored	for	flankers	with	
CCW	hue	angles,	ranging	from	purple/pink	
through	to	red,	while	larger	target-flanker	
differences	gave	little-to-no	assimilative	bias.	
Unlike	motion,	no	errors	of	repulsion	were	
observed.	Mean	threshold-elevation	values	
are	shown	in	Figure	2D.	Although	threshold	
elevation	values	are	lower	than	for	motion,	
the	pattern	of	data	is	broadly	similar,	with	the	
greatest	threshold	elevation	for	small	target-
flanker	differences	and	a	decrease	in	
crowding	strength	with	increasing	difference.	
Flankers	with	the	greatest	differences	
(yellow/brown	hues)	did	not	elevate	
thresholds	relative	to	unflanked	performance.		

Altogether,	the	crowding	of	both	motion	and	
colour	is	selective	for	target-flanker	similarity	
–	threshold	elevation	is	high	with	small	
target-flanker	differences	and	low	with	larger	
differences.	In	both	cases,	crowding	also	
produced	systematic	errors	that	were	
predominantly	assimilative	for	small	target-
flanker	differences	and	declined	with	larger	
differences	(though	direction	errors	were	
repulsed	at	intermediate	differences,	which	
was	not	apparent	for	hue).	More	generally,	the	
results	of	both	experiments	are	broadly	
consistent	with	observations	that	biases	
follow	the	derivative	of	squared	thresholds	in	
a	range	of	perceptual	domains	(29).	

With	this	knowledge,	we	can	now	make	
predictions	for	paired	judgements	of	motion	
and	colour.	Namely,	when	crowding	is	strong	
for	one	feature	(with	small	target-flanker	
differences,	e.g.	in	direction)	and	weak	for	the	
other	(with	larger	differences,	e.g.	in	hue),	
independent	crowding	processes	allow	
assimilative	errors	to	occur	for	the	feature	
with	strong	crowding,	without	errors	in	the	
other.	In	contrast,	a	combined	mechanism	
predicts	that	crowding	must	be	all-or-none:	if	
crowding	is	weak	for	one	feature	then	it	must	
be	either	reduced	or	persist	for	both.		
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Experiment	3	was	designed	to	distinguish	
these	alternatives:	observers	made	conjoint	
judgements	of	the	direction	(CW/CCW	of	
upwards)	and	hue	(blue/pink)	of	the	target	
cowhide	for	isolated	targets	and	in	three	
crowding-strength	conditions.	In	the	first,	
crowding	was	strong	for	both	features,	with	
small	target-flanker	differences	in	direction	
and	hue	(Movie	S3).	In	the	second,	crowding	
was	weak	for	direction	(large	direction	
difference)	and	strong	for	hue	(small	hue	
difference;	Movie	S4).	The	third	involved	
strong	crowding	for	direction	(small	
differences)	and	weak	crowding	for	hue	(large	
differences;	Movie	S5).	Each	crowding-
strength	condition	had	4	combinations	of	
target/flanker	elements	with	respect	to	the	
decision	boundary	for	each	feature	
dimension:	either	both	motion	and	colour	
matched	(e.g.	CW	moving	target	and	flankers,	
all	blue	in	hue),	motion	differed	(e.g.	a	CW	
target	with	CCW	flankers,	all	purple),	colour	
differed	(e.g.	a	purple	target	with	blue	
flankers,	all	moving	CW),	or	both	differed.	The	
crucial	condition	is	when	‘both	differ’:	the	all-
or-none	combined	mechanism	predicts	errors	
in	either	both	features	or	neither,	while	the	
independent	mechanism	allows	a	reduction	in	
crowding	in	one	feature	without	affecting	the	
other.		

With	an	unflanked	target,	observers	correctly	
identified	its	direction	in	87.71	±3.29%	(mean	
±SEM)	of	trials,	and	its	hue	in	93.96	±1.76%	of	
trials.	Figure	3A	shows	mean	responses	for	
the	first	crowding-strength	condition,	with	
strong	crowding	for	both	features.	When	
target	and	flankers	were	matched	in	both	
feature	dimensions	(red	point),	performance	
was	high	in	both	cases.	Here,	even	if	crowding	

occurred,	the	assimilative	effect	of	the	
flankers	would	pull	responses	toward	the	
correct	direction/hue.	In	the	motion	differs	
condition,	observers	were	largely	correct	on	
the	hue	and	incorrect	for	direction.	This	again	
is	predicted	by	assimilative	errors	for	
direction,	with	either	no	effect	on	hue	or	
assimilative	crowding	towards	the	correct	
hue.	The	converse	occurred	for	the	colour	
differs	condition,	with	a	predominance	of	
colour	errors.	Finally,	in	the	both	differ	
condition,	the	strong	assimilation	for	
direction	and	hue	induced	errors	for	both	
features.		

Figure	3B	shows	results	from	the	weak	
motion	+	strong	colour	crowding	condition.	
As	before,	in	the	both	match	condition,	
responses	were	correct	on	both	features.	In	
the	motion	differs	condition,	the	large	
direction	difference	gave	a	reduction	in	
crowding,	with	predominantly	correct	
responses	for	direction,	and	likewise	for	hue	
given	the	matched	target-flanker	colours.	For	
colour	differs,	the	small	hue	difference	
continued	to	induce	assimilative	errors,	while	
the	similar	target-flanker	directions	gave	
either	assimilative	errors	or	correct	target	
recognition.	Crucially,	in	the	both	differ	
condition,	responses	were	correct	for	
direction	(as	in	the	motion	differs	condition)	
but	errors	remained	for	hue,	shifting	
responses	into	the	‘colour	errors’	quadrant.	
Overall,	the	reduction	in	motion	errors	causes	
data	for	all	conditions	to	align	along	the	x-
axis,	while	the	separation	along	the	y-axis	for	
colour	is	retained.	In	other	words,	crowding	
was	weak	for	motion	and	strong	for	colour	in	
the	same	stimulus.		
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Figure	3.	Results	from	the	conjoint	crowding	of	motion	and	colour	(Experiment	3).	Data	(circles)	is	plotted	as	the	mean	
proportion	correct	(n=6)	for	the	target	direction	(x-axis)	and	hue	(y-axis)	±1	SEM.	The	mean	output	of	the	best-fitting	
independent	crowding	model	(triangles)	with	separate	weights	for	motion	and	colour	is	also	shown	±1	SEM.	Quadrants	
are	demarcated	to	show	the	predominant	error	type	(e.g.	‘motion	errors’).	In	each	crowding-strength	condition	
(separate	panels)	there	were	4	target-flanker	match	conditions:	where	the	2AFC	sign	was	matched	for	both	features,	
where	the	motion	differed,	colour	differed,	or	both	differed,	as	shown	by	the	legend.	A.	Strong	motion	+	strong	colour	
crowding	condition.	B.	Weak	motion	+	strong	colour	crowding.	C.	Strong	motion	+	weak	colour	condition.		

The	converse	pattern	can	be	seen	in	the	
strong	motion	+	weak	colour	condition	
(Figure	3C).	Responses	were	again	close	to	
ceiling	in	the	both	match	condition.	In	the	
motion	differs	condition,	the	small	target-
flanker	direction	difference	again	induced	a	
high	rate	of	assimilative	motion	errors	and	
low	rate	of	colour	errors.	Here	in	the	colour	
differs	condition,	the	large	colour	difference	
reduced	crowding	for	hue	judgements,	while	
the	matched	target-flanker	signs	for	direction	
led	to	correct	responses	for	both	features.	
Finally,	the	both	differ	condition	again	
revealed	a	dissociation	–	large	differences	in	

target-flanker	hue	coupled	with	a	small	
difference	in	direction	produced	errors	in	
direction	responses	despite	correct	responses	
for	hue.	The	reduction	in	colour	crowding	
thus	collapses	data	along	the	y-axis,	while	the	
separation	for	motion	errors	on	the	x-axis	is	
retained.	Here	too,	crowded	errors	can	occur	
for	one	feature	and	not	the	other.	

These	errors	follow	the	prediction	of	
independent	crowding	processes	for	motion	
and	colour,	and	are	inconsistent	with	the	
predictions	of	a	combined	mechanism,	
whereby	errors	should	have	clustered	in	
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either	the	‘both	correct’	or	‘both	errors’	
quadrants.	Accordingly,	although	errors	in	the	
both	differ	condition	appear	correlated	on	a	
trial-by-trial	basis	when	crowding	is	strong	
for	both	features	(SI	Appendix;	Figure	S1A),	
this	correlation	breaks	down	when	crowding	
is	reduced	for	either	feature	(Figures	S1B	and	
S1C).	We	have	further	replicated	these	results	
with	an	increase	in	crowding	strength	–	with	
additional	flankers,	we	find	stronger	
modulation	in	the	crowding	of	motion	and	
colour	(Figure	S2),	but	the	pattern	of	
independent	errors	for	conjoint	judgements	
of	the	two	features	remains	(Figure	S3).	
Finally,	we	also	report	that	these	dissociations	
in	crowding	are	not	confined	to	motion	and	
colour	–	conjoint	judgements	of	luminance-
contrast	polarity	and	direction	show	that	
errors	can	be	low	for	contrast	polarity	and	yet	
remain	high	for	the	direction	of	the	same	
stimulus	(Figure	S4).		

Models	
To	better	understand	the	mechanisms	
underlying	these	errors,	and	for	the	
quantitative	comparison	of	combined	vs.	
independent	mechanisms,	we	developed	a	set	
of	computational	models.	Given	the	
systematicity	of	crowded	errors	in	these	
experiments,	the	most	plausible	models	are	
those	based	on	averaging	or	substitution	(7,	
11).	A	more	general	approach	has	been	shown	
to	produce	both	averaging	and	substitution	
errors	by	combining	population	responses	to	
target/flanker	elements	(30).	To	simulate	
motion	crowding	in	Experiment	1,	we	
therefore	developed	a	model	population	of	
direction	detectors,	with	responses	to	target	
and	flanker	directions	combined	according	to	
a	weighting	field.	Where	prior	studies	have	
used	weighting	fields	that	decreased	with	
target-flanker	distance	(30),	here	the	weights	
altered	crowding	strength	as	a	function	of	
target-flanker	dissimilarity.	To	simulate	the	
observed	repulsion	errors,	we	incorporated	
inhibitory	interactions	between	target	and	
flanker	population	responses,	similar	to	
models	of	the	tilt	illusion	(31,	32).	Further	
details	and	best-fitting	parameters	are	given	
in	the	SI	Appendix.		

The	best-fitting	simulations	of	the	crowded	
biases	for	motion	in	Experiment	1	are	shown	
in	Figure	1C	(green	line).	The	model	follows	
the	increase	in	assimilative	bias	with	small	
target-flanker	direction	differences	(driven	by	
summation	of	the	target	and	flanker	
population	responses),	as	well	as	the	rise	and	
fall	of	repulsion	with	larger	differences	
(driven	by	inhibition	of	the	target;	SI	
Appendix	Figure	S5).	Similarly,	threshold	
elevation	values	(Figure	1D)	show	the	
greatest	elevation	for	small	direction	
differences,	with	a	decline	on	either	side.		

A	similar	population	model	was	developed	for	
colour	crowding	in	Experiment	2	(SI	Figure	
S5).	Given	the	lack	of	repulsion	for	colour,	
inhibitory	model	parameters	were	set	to	zero.	
Figure	2C	plots	simulated	biases	(green	line),	
which	again	capture	the	strong	assimilative	
errors	with	small	target-flanker	hue	
differences	and	their	decrease	at	larger	
differences.	Threshold	elevation	values	are	
similarly	well	described	(Figure	2D),	with	a	
strong	impairment	for	small	target-flanker	
differences	that	progressively	declines.	
Population-coding	models	can	thus	capture	
the	errors	observed	for	colour	as	well	as	for	
motion.		

We	next	used	these	population	models	to	
simulate	the	conjoint	motion	and	colour	
judgements	of	Experiment	3.	Given	the	
independent	pattern	of	errors	observed,	we	
focus	here	on	the	operation	of	an	independent	
crowding	model	where	responses	to	
target/flanker	elements	were	combined	via	
separate	weighting	fields	for	direction	and	
hue	(see	SI	Appendix).	The	independence	of	
these	weights	meant	that	the	strength	of	
crowding	for	one	feature	did	not	affect	the	
other.	Figure	3A	shows	the	best-fitting	
simulations	for	this	model	in	the	strong	
motion	+	strong	colour	condition,	which	
follow	the	pattern	of	data	well	because	the	
probability	of	crowding	is	high	for	both	
features.	The	model	performs	similarly	well	in	
the	weak	motion	+	strong	colour	condition	
(Figure	3B)	because	the	separate	weights	
allow	crowding	to	be	decreased	for	motion	
but	not	colour,	leaving	a	predominance	of	
colour	errors	in	the	both	differ	condition.	
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Similarly,	in	the	both	differ	condition	with	
strong	motion	+	weak	colour	crowding	
(Figure	3C),	errors	decreased	for	colour	but	
remained	strong	for	motion.	Overall,	the	
model	follows	the	observed	pattern	of	errors	
closely.		

We	have	also	developed	a	range	of	‘combined’	
models	that	use	the	same	weight	to	crowd	
motion	and	colour	on	each	trial.	As	outlined	in	
the	SI	Appendix,	these	models	consistently	fail	
to	replicate	the	pattern	of	errors	found	in	
Experiment	3	(Figures	S6	and	S7).	Variations	
of	the	combined	mechanism	do	little	to	
improve	performance	–	models	that	use	the	
minimum	or	maximum	probability	for	
crowding	in	both	features,	and	those	with	a	
single	weighting	field	all	produce	worse	fits	
than	the	independent	model.	Regardless	of	
the	precise	mechanism,	the	crowding	of	
motion	and	colour	is	best	explained	by	
independent	processes.		

Discussion	
Our	perception	of	motion	and	colour	is	
disrupted	by	crowding.	Here	we	show	that	
these	effects	are	dissociable,	indicating	that	
they	derive	from	independent	processes.	In	
Experiment	3,	observers	made	judgements	of	
both	features	while	we	manipulated	the	
strength	of	crowding	separately	for	each,	
using	values	from	Experiments	1	and	2.	When	
crowding	was	weak	for	motion	(via	large	
target-flanker	direction	differences)	and	
strong	for	colour	(via	small	differences),	
errors	were	reduced	for	motion	but	remained	
high	for	colour.	Similarly,	a	reduction	in	
colour	crowding	did	not	reduce	errors	for	
judgements	of	the	target	direction.	A	
population-coding	model	of	crowding	
reproduced	this	double	dissociation	by	
pooling	target	and	flanker	signals	with	
independent	weights	for	motion	and	colour.	
Models	where	crowding	operated	as	a	
combined	all-or-none	process	(with	matched	
crowding	strength	for	both	features)	failed	to	
replicate	these	results.		

Dissociations	were	also	evident	in	the	
crowded	errors	for	motion	and	colour	
measured	in	Experiments	1	and	2.	Firstly,	the	
overall	magnitude	of	biases	and	threshold	

elevation	was	lower	for	colour	than	for	
motion.	This	difference	decreased	with	
additional	flankers	(SI	Figure	S2),	further	
suggesting	that	crowding	increases	with	
flanker	number	at	different	rates	for	the	two	
features.	Secondly,	intermediate	target-
flanker	differences	in	motion	caused	a	
repulsion	in	perceived	target	direction,	while	
equivalent	colour	differences	simply	reduced	
the	rate	of	assimilative	errors.	Our	population	
models	reproduced	these	patterns	via	
inhibitory	interactions	for	motion,	which	
were	absent	for	colour.	This	does	not	mean,	of	
course,	that	contextual	modulations	for	colour	
are	never	repulsive.	Although	similar	
contextual	effects	tend	towards	assimilation	
in	the	periphery	(33),	repulsion	in	the	
perceived	hue	of	targets	does	occur	in	foveal	
vision	(34).	A	progression	from	foveal	
repulsion	to	peripheral	assimilation	also	
occurs	for	orientation	(9).	Given	that	motion	
repulsion	occurs	in	both	foveal	and	peripheral	
vision	(35),	it	may	be	that	the	progression	
from	repulsion	to	assimilation	is	more	rapid	
across	eccentricity	for	colour	than	motion.	In	
other	words,	these	distinct	patterns	of	
crowded	errors	offer	further	support	for	
independent	processes,	though	they	may	
reflect	variations	in	a	common	principle.		

Although	these	dissociations	for	motion	and	
colour	crowding	are	consistent	with	the	
separation	between	these	features	in	the	
visual	system	(17,	18),	our	findings	differ	
from	prior	studies	using	other	feature	pairs.	
We	attribute	this	to	the	degree	of	separation	
between	these	features	in	the	visual	system.	
For	instance,	the	mixed	pattern	of	
independent	and	combined	errors	with	
spatial	frequency,	colour,	and	orientation	(23)	
may	have	arisen	because	colour	is	dissociable	
from	orientation	and	spatial	frequency	(as	
suggested	recently;	36),	while	orientation	and	
spatial	frequency	are	more	closely	linked.	The	
combined	pattern	of	errors	found	for	
orientation	and	position	crowding	(22)	could	
similarly	reflect	the	interdependence	of	these	
features	(37).	That	is,	features	that	are	closely	
related	in	the	visual	system	may	show	linked	
performance,	while	more	distinct	feature	
pairs	give	dissociable	effects.	Comparable	
patterns	are	evident	in	other	visual	processes	
–	for	instance,	colour	and	orientation	show	
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independent	decay	rates	in	visual	working	
memory,	unlike	more	closely	linked	spatial	
dimensions	(38).	A	strong	feature	association	
could	similarly	explain	the	release	in	
crowding	for	spatial-form	judgements	by	
differences	in	colour	or	contrast	polarity	(16).	
In	these	cases,	however,	the	spatial	forms	are	
typically	defined	by	the	differential	features	
(i.e.	the	spatial	distribution	of	colour/polarity	
gives	both	the	object	surface	and	its	
boundaries;	39),	making	the	colour	or	polarity	
signals	informative	regarding	the	feature	
being	judged.	Dissociations	may	only	become	
evident	when	features	can	be	judged	
independently,	as	in	the	current	study.	

Importantly	however,	a	single	dissociation	
between	features	is	sufficient	to	reject	an	
object-selective	mechanism.	Our	results	rule	
out	this	mechanism	with	at	least	two	
dissociations:	colour	and	motion	(Figure	3),	
and	contrast	polarity	and	motion	(SI	Figure	
S4).	These	results	are	similarly	inconsistent	
with	higher-level	theories	of	crowding.	Gestalt	
approaches	(21)	argue	that	crowding	occurs	
when	the	target	is	‘grouped’	with	the	flankers,	
e.g.	by	forming	a	pattern	with	the	flankers	
(40),	and	that	it	is	reduced	when	the	flankers	
form	patterns	that	exclude	the	target	(41).	
The	top-down	nature	of	grouping	suggests	
that	it	should	apply	to	the	collection	of	
features	within	the	target	as	a	whole,	making	
it	an	all-or-none	process	that	is	inconsistent	
with	the	dissociations	found	here.	Our	
findings	are	equally	unlikely	to	be	accounted	
for	by	attentional	theories	(19,	20)	since	the	
high-level	nature	of	attentional	selection	
predicts	that	crowding	should	operate	at	the	
level	of	objects	or	locations,	rather	than	being	
divisible	for	specific	features	within	a	
localised	target.	Of	course,	attention	and	
grouping	could	certainly	modulate	the	
strength	of	crowding	–	our	findings	simply	
suggest	that	these	processes	are	not	central	to	
crowding.		

Our	population-coding	model	of	these	effects	
is	similar	to	prior	approaches	in	crowding	and	
related	contextual	modulations	(30-32).	Here	
we	show	their	generalizability	to	the	domains	
of	motion	and	colour.	In	fact,	the	dissociable	
nature	of	crowding	lends	itself	to	this	

approach	–	distinct	populations	with	
independent	weighting	fields	for	these	
features	require	fewer	assumptions	than	a	
combined	mechanism	(SI	Figure	S6).	
Population	coding	may	also	explain	the	above	
distinction	between	combined	crowding	
errors	with	some	feature	pairs	and	
independent	errors	with	others	–	the	
separation	between	these	features	in	a	multi-
dimensional	space	(driven	perhaps	by	their	
cortical	distance;	9,	42)	could	determine	the	
nature	of	these	target-flanker	interactions.	Of	
course,	it	is	also	possible	that	‘texturization’	
models	(43-45)	could	reproduce	many	of	
these	effects,	though	distinct	spatial	and	
temporal	texture	processes	would	be	needed	
to	reproduce	the	dissociations	for	motion	and	
colour.	

The	dissociation	between	motion	and	colour	
crowding	further	suggests	that	they	may	rely	
on	distinct	neural	substrates.	The	many	
neural	correlates	of	crowding	reported	from	
V1	through	to	V4	(46-49)	may	in	fact	reflect	
this	distributed	nature.	In	the	most	minimal	
sense,	crowding	in	the	ventral	stream	(44)	
may	differ	from	the	dorsal	stream	processes	
(17)	likely	involved	in	the	crowding	of	
motion.	Crowding	effects	for	other	dissociable	
feature	pairs	may	then	be	similarly	
distributed.	It	follows	that	crowding	may	be	
more	profitably	viewed	as	a	general	property	
of	the	visual	system,	similar	to	distributed	
processes	like	adaptation	that	affect	a	range	of	
visual	features	(50).	It	is	also	possible,	
however,	that	dissociations	could	arise	within	
a	single	cortical	region	through	the	operation	
of	distinct	neural	subpopulations	(as	argued	
for	feature-binding	processes;	51).		

At	first	glance,	the	distributed	basis	of	these	
crowding	effects	bears	some	similarity	to	
multi-level	theories	of	crowding	(4).	However,	
these	theories	are	based	on	an	apparent	
uniqueness	in	the	crowding	of	faces	(52,	53),	
an	effect	that	disappears	once	task	difficulty	is	
equated	for	upright	and	inverted	faces	(54).	
Although	we	do	observe	some	differences	in	
the	crowding	of	motion	and	colour	(e.g.	with	
repulsion	for	motion	vs.	pure	assimilation	for	
colour),	the	broad	selectivity	of	crowding	was	
nonetheless	highly	similar	in	Experiments	1	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2020. ; https://doi.org/10.1101/639450doi: bioRxiv preprint 

https://doi.org/10.1101/639450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

and	2.	Namely,	small	target-flanker	
differences	gave	strong	assimilative	errors	
and	high	threshold	elevation	for	both	
features,	while	large	differences	gave	a	
reduction	in	threshold	elevation.	In	other	
words,	wherever	crowding	occurs,	it	follows	
similar	principles.		

One	complication	with	this	distributed	view	of	
crowding	is	the	common	size	of	interference	
zones	observed	across	a	range	of	visual	
features	(Bouma's	law;	2,	3,	12).	Although	
differences	may	yet	emerge	for	the	specific	
comparison	of	motion	and	colour,	this	
common	spatial	region	may	again	be	
consistent	with	our	effects	deriving	from	
distinct	neural	subpopulations	with	varying	
featural	selectivity	but	common	spatial	
properties.	Alternatively,	the	proximity	of	
target	and	flanker	signals	on	the	cortical	
surface	(9,	42)	may	determine	their	potential	
for	interaction,	while	the	specific	features	
present	determine	the	nature	of	these	
interactions.		

Altogether,	we	demonstrate	that	crowding	
independently	disrupts	motion	and	colour,	
whilst	nonetheless	operating	via	common	
principles	(seen	in	the	implementation	of	our	
population	models).	This	dissociation	
excludes	the	possibility	that	crowding	
operates	as	a	singular	mechanism	and	
suggests	that	at	least	some	aspects	of	vision	
are	disrupted	by	clutter	in	a	feature-specific	
manner.		

Materials	and	methods	
Observers	
6	observers	(3	male,	including	the	authors)	
completed	all	3	experiments.	All	had	normal	
or	corrected-to-normal	acuity,	and	normal	
colour	vision	as	assessed	by	the	Ishihara	test	
(55).	Informed	consent	was	given,	with	
procedures	approved	by	the	Experimental	
Psychology	ethics	committee	at	University	
College	London.		

Apparatus	
Experiments	were	programmed	in	MATLAB	
(Mathworks,	Inc.)	on	an	Apple	Mac	Pro	using	
the	PsychToolbox	(56,	57).	Stimuli	were	
presented	on	a	21”	Mitsubishi	Diamond	Plus	

CRT	monitor	with	a	resolution	of	1400´1050	
pixels	and	75Hz	refresh	rate.	The	monitor	was	
calibrated	using	a	Minolta	photometer	and	
linearised	in	software	to	give	a	mean	and	
maximum	luminance	of	50	and	100	cd/m2,	
respectively,	and	a	white	point	near	the	
standard	CIE	Standard	Illuminant	D65.	
Maximum	luminance	values	for	red,	green,	
and	blue	were	28.3,	69.5,	and	8.1	cd/m2,	
respectively.	Observers	viewed	stimuli	
binocularly	from	50cm	distance,	with	head	
movements	minimised	using	a	head	and	chin	
rest.	Responses	were	given	by	keypad,	with	
auditory	feedback	provided	only	during	
practice	sessions.	

Stimuli	and	Procedures	
In	all	experiments,	target	and	flanker	stimuli	
were	‘cowhide’	elements	(24,	25),	created	by	
band-pass	filtering	white	noise	with	a	spatial	
frequency	cut-off	of	1.5cyc/deg,	and	rounding	
the	luminance	to	give	two	values	(light	and	
dark).	Each	element	was	presented	within	a	
circular	aperture	with	2°	diameter.	The	visible	
contours	in	these	elements	enabled	the	
percept	of	motion	with	minimal	ambiguity	
given	their	orientation	variance	(i.e.	avoiding	
the	aperture	problem;	24),	whilst	also	
allowing	alteration	of	the	surface	hue.		

Observers	were	required	to	maintain	fixation	
on	a	two-dimensional	Gaussian	blob	with	a	
standard	deviation	of	4’.	The	target	was	
presented	15°	above	fixation,	either	in	
isolation	or	with	one	flanker	above	and	one	
below.	The	centre-to-centre	separation	of	
target	and	flankers	was	2.25°,	corresponding	
to	0.15´	the	eccentricity	(well	within	standard	
interference	zones;	2,	3).	Stimuli	were	
presented	for	500ms,	followed	by	a	mask	for	
250ms	(a	patch	of	1/f	noise	in	a	circular	
window	of	diameter	4.8°	when	unflanked	and	
8.5°	when	flanked,	plus	a	cosine	edge).	The	
mask	was	followed	by	a	mean-grey	screen	
with	the	fixation	point,	at	which	time	
observers	responded.		

In	Experiment	1,	cowhide	stimuli	were	grey-
scale	elements	with	a	Weber	contrast	of	±0.75	
against	the	mean-grey	background.	Patches	
were	generated	as	a	long	strip	of	texture	that	
moved	behind	the	aperture	with	a	
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displacement	of	5.8’	per	frame	every	second	
monitor	frame	(to	allow	greater	resolution	of	
directional	displacements	with	larger,	less	
frequent	steps).	This	gave	an	effective	
stimulus	refresh	rate	of	37.5Hz	and	a	speed	of	
3.6deg/sec.		

When	unflanked,	the	target	moved	in	1	of	9	
equally	spaced	directions	between	±16°	
around	upwards	and	±32°	when	flanked	
(given	the	greater	difficulty).	Observers	
indicated	whether	the	target	moved	
counterclockwise	(CCW)	or	clockwise	(CW)	of	
upwards.	When	present,	flankers	moved	
together	in	1	of	16	directions	relative	to	
upwards:	0,	±15,	±30,	±60,	±90,	±120,	±150,	
±165,	or	180°.	Each	block	had	10	repeat	trials	
per	target	direction,	giving	90	trials	for	
unflanked	blocks	and	180	for	flanked	
conditions,	where	opposing	flanker	directions	
(e.g.	±15°)	were	interleaved	within	a	single	
block	to	ensure	a	balanced	likelihood	of	CW	
and	CCW	responses.	0°	and	180°	conditions	
were	also	interleaved	for	consistency.	Each	
block	was	repeated	3	times,	with	all	blocks	
randomly	interleaved,	to	give	4590	total	trials	
per	observer,	plus	practice,	completed	in	3-4	
sessions	of	1	hour	each.	

In	Experiment	2,	cowhides	were	static	and	
presented	with	a	range	of	hues.	Colours	were	
determined	using	the	DKL	colour	space	(26-
28)	with	a	luminance	contrast	of	±0.3	for	light	
and	dark	regions	and	a	colour	
contrast/saturation	of	0.2.	Variations	were	
applied	solely	to	the	hue	angle.	The	reference	
hue	angle	was	determined	individually,	given	
variation	in	the	categorical	boundaries	for	
colour	between	observers	(28).	We	did	so	by	
presenting	the	test	range	of	hues	(from	
blue/turquoise	to	pink/purple)	and	asking	
observers	to	indicate	the	neutral	midpoint.	
This	gave	a	reference	hue	of	262.5°	for	four	
observers,	262.0°	for	JG,	and	264.0°	for	CS.	
When	unflanked,	the	target	was	presented	
with	1	of	9	equally	spaced	hues	±12°	from	the	
base	hue,	and	from	±18°	when	flanked.	
Observers	judged	whether	the	target	
appeared	blue/turquoise	(CW	in	DKL	space)	
or	purple/pink	(CCW).	When	present,	flankers	
had	1	of	12	hue	angles	relative	to	the	base:	0,	
±15,	±30,	±45,	±135,	±150,	and	180°,	tested	in	

blocks	that	contained	opposing	angles	as	
above.	This	gave	90	trials	per	unflanked	block	
and	180	when	flanked,	giving	3510	total	trials	
per	observer,	plus	practice,	completed	in	3	
sessions.		

In	Experiment	3,	cowhides	varied	in	both	
direction	and	hue.	For	each	observer,	we	
selected	values	from	the	first	two	experiments	
that	gave	near-ceiling	performance	levels	
when	unflanked	but	that	were	clearly	
impaired	by	crowding	in	the	strongest	
crowding	conditions.	For	direction,	this	gave	
values	of	±5°	(YL),	±6°	(CS	and	JG),	±7°	(DO),	
±10°	(AK),	and	±16°	(MP),	and	for	hue	±3°	(CS	
and	YL),	±4°	(DO),	±5°	(JG),	±7°	(AK),	and	
±10°	(MP).	Observers	indicated	the	direction	
and	hue	of	the	target	as	a	4AFC	response	–	
either	Blue/CCW,	Blue/CW,	Pink/CCW,	or	
Pink/CW.	Targets	were	either	presented	in	
isolation	or	with	flankers	selected	for	each	
feature	to	give	either	‘strong’	or	‘weak’	
crowding	(as	above).	Strong	flanker	directions	
were	±10°	(DO),	±15°	(AK,	CS,	JG,	and	YL),	or	
±30°	(MP),	with	weak	values	of	±165°	for	5	
observers	or	±175°	(AK).	Strong	flanker	hues	
were	±15°	(AK	and	YL)	or	±30°	for	the	
remainder,	with	‘weak’	values	of	±150°	for	5	
observers	or	±165°	for	JG.		

In	addition	to	the	unflanked	condition,	the	
above	combinations	of	target-flanker	
elements	gave	3	crowding-strength	
conditions:	strong	motion	+	strong	colour	
crowding	(small	target-flanker	differences	for	
each),	weak	motion	+	strong	colour	crowding	
(large	motion,	small	colour	differences),	and	
strong	motion	+	weak	colour	crowding	(small	
motion,	large	colour	differences).	For	flanked	
conditions,	there	were	16	combinations	of	
direction	and	hue	values	in	the	target	and	
flanker	elements	(2	target	directions	´2	
flanker	directions	´2	target	hues	´2	flanker	
hues).	We	grouped	these	conditions	into	4	
combinations	of	target/flanker	elements	in	
terms	of	their	agreement	in	the	2AFC	decision	
space	for	each	feature.	In	the	both	match	
conditions,	both	motion	and	colour	were	
matched	in	target	and	flanker	elements.	When	
motion	differed,	the	sign	of	the	target	direction	
differed	from	that	of	the	flankers	(e.g.	a	CW	
target	with	CCW	flankers)	but	their	hues	
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matched.	Conversely,	when	colour	differed	the	
hue	of	the	target	differed	from	the	flankers,	
while	directions	were	matched.	Finally,	target	
and	flanker	elements	could	both	differ	in	their	
direction	and	hue	values.	Note	that	these	
distinctions	relate	to	the	decision	boundary,	
ignoring	precise	values	of	direction/hue	(e.g.	-
15°	and	-165°	flankers	have	the	same	sign	as	a	
-8°	target).	The	four	crowding-strength	
conditions	were	tested	in	separate	blocks,	
with	each	combination	of	target/flanker	
elements	repeated	10	times	per	block	to	give	
40	trials	when	unflanked	and	160	trials	for	
flanked	conditions.	Each	block	was	repeated	6	
times,	randomly	interleaved,	with	3120	total	
trials	per	observer	(plus	practice),	completed	
in	3	sessions.		

Analyses	
In	Experiments	1	and	2,	psychometric	
functions	were	fit	to	data	as	a	cumulative	
Gaussian	function	with	3	free	parameters:	
midpoint/PSE	(at	50%),	slope,	and	lapse	rate.	
Functions	were	fit	separately	for	each	flanker	
condition	and	observer.	Shifts	in	the	midpoint	
were	taken	as	changes	in	appearance	(i.e.	
assimilation	vs.	repulsion	errors).	Thresholds	
were	taken	as	the	difference	in	direction/hue	
required	to	shift	performance	from	the	
midpoint	to	75%	CCW	responses,	with	
threshold	elevation	obtained	by	dividing	
flanked	by	unflanked	thresholds.	Data	in	
Experiment	3	were	combined	from	the	16	
target-flanker	combinations	into	4	target-
flanker	match	conditions,	and	analysed	as	the	
percent	correct	in	each	feature	dimension,	
treating	each	as	a	2AFC	judgement.		

Models	
Data	in	Experiments	1	and	2	were	fit	with	a	
population-coding	model	based	on	that	by	

Harrison	&	Bex	(30).	The	motion-crowding	
model	of	Experiment	1	had	9	free	parameters,	
with	5	free	parameters	for	the	colour	model	in	
Experiment	2	(since	the	lack	of	repulsion	
allowed	inhibitory	components	to	be	
removed),	as	described	in	the	SI	Appendix	
(Figure	S5).	Table	S1	shows	the	best-fitting	
parameters,	with	final	outputs	in	Figures	1	
and	2.	In	Experiment	3,	the	independent	
model	for	motion	and	colour	crowding	
involved	population	responses	to	target	and	
flanker	elements	that	were	combined	via	
separate	weighting	fields	for	each	feature.	The	
majority	of	parameters	were	carried	forward	
from	Experiments	1	and	2,	leaving	3	free	
parameters	(Table	S2).	Outputs	of	the	best-
fitting	model	are	in	Figure	3.	A	series	of	
combined	models	were	also	developed,	which	
were	identical	to	the	independent	model,	save	
for	the	use	of	common	weights	for	both	
features.	Tables	S3	and	S4	show	the	best-
fitting	parameters,	with	outputs	in	Figures	S6	
and	S7.	

Data	availability	statement	
SI	datasets	are	available	in	proportion	CCW	
format	for	each	observer	in	Experiments	1	
and	2,	and	proportion	correct	for	each	
observer	in	Experiment	3.	MATLAB	code	for	
psychometric	functions	and	stimulus	
generation	is	available	at	
http://github.com/eccentricvision.		
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Supporting	Information	Appendix	
	
Trial-by-trial	correlations	in	the	crowding	
of	motion	and	colour	
	
We	demonstrate	in	Experiment	3	that	
crowded	errors	for	motion	and	colour	are	
dissociable.	Central	to	this	experiment	was	
the	both	differ	condition,	where	target	and	
flanker	elements	had	opposite	signs	relative	
to	the	decision	boundary	(e.g.	a	clockwise-
moving	blue	flanker	amongst	
counterclockwise-moving	purple	flankers).	In	
this	condition	when	crowding	was	strong	for	
both	motion	and	colour,	errors	were	high	for	
both	features.	In	contrast,	when	crowding	was	
strong	for	motion	and	weak	for	colour,	both	
differ	responses	were	predominantly	
incorrect	for	motion	and	correct	for	colour.	
Conversely,	with	weak	motion	and	strong	
colour	crowding,	responses	were	correct	for	
motion	and	incorrect	for	colour.	These	
dissociations	are	consistent	with	independent	
crowding	processes	for	motion	and	colour.		

Another	way	to	approach	this	issue	is	to	
examine	trial-by-trial	variations.	If	crowding	
were	driven	by	a	combined	all-or-none	
crowding	mechanism,	responses	on	individual	
trials	should	be	either	incorrect	for	both	
features	(due	to	crowding)	or	correct	on	both	
(when	crowding	is	released).	In	contrast,	
independent	crowding	mechanisms	allow	
trial-by-trial	dissociations	in	the	same	way	as	
observed	for	error	rates	across	the	whole	
experiment.	We	therefore	sought	to	test	these	
predictions	by	examining	the	correlation	
between	responses	for	motion	and	colour	
across	trials.		

Responses	on	each	trial	were	initially	encoded	
as	binary	variables	(incorrect	vs.	correct).	We	
first	determined	the	overall	proportion	of	
each	response	type	across	the	experiment	by	
converting	the	response	on	each	trial	to	one	of	
four	outcomes	–	responses	were	either	
incorrect	on	both	motion	and	colour,	correct	
on	both,	correct	on	motion	but	incorrect	on	
colour,	or	vice	versa.	Proportions	were	
calculated	for	each	observer	in	each	condition,	
collapsed	across	both	target	and	flanker	sign	
(e.g.	whether	the	target	was	moving	CW	or	

CCW).	Here	we	report	the	outcome	of	these	
analyses	for	the	both	differ	condition	only,	
given	that	this	was	the	condition	required	to	
separate	performance	of	the	independent	and	
combined	models.		

This	classification	provides	a	2´2	table	of	
outcomes.	The	mean	proportion	of	each	
response	across	observers	in	the	strong	
motion	+	strong	colour	condition	is	shown	in	
Figure	S1A.	Similar	to	the	percent-correct	
values	shown	in	Figure	3,	responses	were	
most	frequently	incorrect	for	both	features	in	
a	given	trial,	with	colour	errors	forming	the	
second-most	frequent	error	type,	closely	
followed	by	errors	in	both	features.	In	this	
case	then,	the	high	proportion	of	errors	in	
both	features	appears	consistent	with	a	trial-
by-trial	correlation.	To	quantify	this	further,	
we	computed	phi	coefficients	(used	to	
quantify	correlations	for	binary	variables)	
using	the	binary	response	outcomes	on	each	
both	differ	trial,	separately	for	each	observer.	
These	correlations	were	significant	for	5/6	
observers	(AK:	f=.217,	p<.001,	CS:	f=.378,	
p<.0001,	DO:	f=.228,	p<.0001,	JG:	f=.187,	
p=.004,	MP:	f=.458,	p<.0001,	YL:	f=.024,	
p=.705).	In	other	words,	an	error	for	motion	
was	likely	to	coincide	with	an	error	for	colour.	
Of	course,	the	correlated	outcome	in	this	
condition	derives	from	the	high	strength	of	
crowding	in	both	features	(coupled	with	the	
tendency	for	correct	responses	on	both	
features	in	around	20%	of	trials).	Both	models	
can	therefore	explain	this	outcome.		

Compare	now	the	results	for	the	both	differ	
condition	with	weak	motion	+	strong	colour	
crowding	(Figure	S1B).	A	combined	model	
predicts	that	observers	should	either	be	
correct	for	both	features,	or	incorrect	on	both.	
In	contrast,	the	most	likely	outcome	was	a	
correct	motion	and	incorrect	colour	response,	
followed	by	correct	responses	for	both	
features	at	half	the	rate,	and	negligible	
proportions	in	the	remaining	cells.	The	
correlation	between	these	responses	on	a	
trial-by-trial	basis	was	not	significant	for	any	
of	the	observers	(AK:	f=.092,	p=.154,	CS:	f=-
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.125,	p=0.053,	DO:	f=.042,	p=.514,	JG:	f=0,	
p=1,	MP:	f=.019,	p=.767,	YL:	f=.025,	p=.700).	
In	other	words,	the	response	shifted	to	a	

predominance	of	errors	in	colour	rather	than	
motion	for	all	of	our	observers,	consistent	
with	the	predictions	of	an	independent	model.		

	

	

Figure	S1.	The	frequency	of	response	errors	across	the	trials	of	Experiment	3.	Data	from	the	both	differ	condition	is	
shown	for	the	strong	motion	+	strong	colour	crowding	condition	(panel	A),	the	weak	motion	+	strong	colour	crowding	
condition	(panel	B)	and	the	strong	motion	+	weak	colour	crowding	condition	(panel	C).	Data	is	reported	as	the	mean	
proportion	of	trials	in	which	each	of	the	four	error	types	occurred,	as	indicated	both	by	the	colour	of	each	cell	(see	
colour	map)	and	numerically	±1	SEM.		

Finally,	results	for	the	both	differ	condition	
with	strong	motion	+	weak	colour	crowding	
are	shown	in	Figure	S1C.	Here	the	most	likely	
outcome	was	an	incorrect	motion	and	correct	
colour	response,	followed	by	correct	
responses	for	both	features,	and	negligible	
proportions	in	the	remaining	cells.	The	
correlation	between	these	responses	was	not	
significant	for	5/6	observers,	with	a	negligible	
correlation	for	the	remainder	(AK:	f=.034,	
p=.593,	CS:	f=.044,	p=.495,	DO:	f=.120,	
p=.064,	JG:	f=.080,	p=.216,	MP:	f=-.080,	
p=.214,	YL:	f=.058,	p=.028).	This	
predominance	of	errors	in	motion	rather	than	
colour	is	again	consistent	with	the	predictions	
of	an	independent	model.		

Altogether,	when	crowding	was	strong	in	both	
features,	the	high	proportion	of	errors	on	
each	gave	a	significant	trial-by-trial	
correlation.	In	contrast,	responses	were	
clearly	uncorrelated	in	the	latter	two	
crowding-strength	conditions	given	that	a	
reduction	in	crowding	for	one	feature	did	not	
affect	the	rate	of	errors	in	the	other.	These	
findings	are	again	consistent	with	
independent	crowding	processes	for	motion	
and	colour.		

Experiments	S1-S3:	Crowding	for	motion	
and	colour	with	increased	flanker	
numbers	
	
Experiments	1-3	reported	in	the	main	text	
used	two	flankers	to	induce	crowding,	
positioned	along	the	radial	axis	with	respect	
to	fixation.	We	selected	this	configuration	
because	radial	flankers	have	the	strongest	
influence	on	crowding	(59),	and	because	the	
effect	of	radial	vs.	tangential	flankers	on	
target	appearance	can	vary	depending	on	
their	contour	alignment	with	the	target	(60-
62).	It	is	possible	however	that	other	
configurations	could	increase	the	strength	of	
crowding,	and	in	turn	that	combined	effects	of	
crowding	on	motion	and	colour	judgements	
may	become	more	apparent	with	this	
increased	strength.	Because	crowded	
performance	impairments	have	been	shown	
to	increase	in	conjunction	with	the	number	of	
flankers	(63,	64,	though	cf.	65),	we	repeated	
our	experiments	with	four	flankers.	

Another	potential	complication	in	
Experiments	1-3	is	with	our	use	of	a	post-
stimulus	mask	–	in	each	experiment,	a	patch	
of	1/f	noise	was	presented	immediately	after	
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stimulus	offset	in	order	to	minimise	visual	
persistence	(66).	It	is	possible	however	that	
these	masks	interfered	with	the	stimulus.	In	
particular,	if	the	masks	were	to	interfere	more	
strongly	with	one	feature	than	the	other	(e.g.	
colour;	67),	this	may	have	promoted	
independent	effects	in	our	data.	We	therefore	
removed	the	post-stimulus	mask	for	these	
experiments.		

To	assess	whether	these	manipulations	
altered	crowding	strength,	whilst	also	
ensuring	that	large	target-flanker	differences	
continued	to	give	a	sufficient	reduction	in	
crowding,	we	examined	the	crowding	of	
motion	and	colour	separately	with	abridged	
versions	of	Experiments	1	and	2,	respectively	
(Experiments	S1	and	S2).	We	then	used	these	
parameters	to	measure	conjoint	judgements	
of	motion	and	colour,	as	in	Experiment	3	
(Experiment	S3).	Six	observers	were	tested	(4	
female),	including	one	of	the	authors	(JG),	one	
who	participated	in	the	prior	experiments	
(AK)	and	four	new	naïve	observers.	A	seventh	
observer	was	excluded	given	threshold	values	
for	direction	that	were	outside	the	
measurable	range.	

Experiment	S1	measured	motion	crowding	
under	these	circumstances.	As	above,	the	
number	of	flankers	was	increased	to	four,	
positioned	above,	below,	left	and	right	of	the	
target	when	present	(Figure	S2A).	The	post-
stimulus	mask	was	also	removed,	with	
participants	responding	immediately	after	
stimulus	offset.	Because	our	aim	was	to	find	
one	target-flanker	difference	with	strong	
crowding	and	another	with	weak	crowding	
(as	parameters	for	the	conjoint	Experiment	
S3),	we	also	reduced	the	number	of	flanked	
conditions	from	16	to	4.	Based	on	the	results	
of	Experiment	1,	observers	were	thus	
presented	with	a	small	target-flanker	
difference	(2	conditions,	±15°	from	upwards)	
expected	to	produce	strong	crowding	and	a	
large	difference	(±175°)	expected	to	give	
reduced	crowding.	Note	that	the	latter	

difference	was	increased	from	Experiment	1.	
Observers	were	presented	with	these	4	
flanked	conditions	in	2	blocks,	plus	a	third	
block	for	the	unflanked	condition,	with	3	
repeats	of	each	interleaved	randomly.	Target	
directions	ranged	from	±20°	in	11	steps	in	the	
unflanked	condition	and	±40°	in	11	steps	for	
flanked	conditions.	This	range	was	increased	
from	Experiment	1	given	observer	reports	of	
the	difficulty	in	these	conditions.	Observers	
began	with	practice	blocks	with	2	repeats	per	
target	direction,	repeated	until	performance	
stabilised.	They	then	began	the	final	testing	
phase	with	10	repeats	per	direction.	Testing	
took	1-2	hours	in	hour-long	sessions,	
including	practice.	Remaining	stimulus	
parameters	and	procedures	were	identical	to	
those	of	Experiment	1	in	the	main	text.		

As	before,	data	were	first	analysed	as	percent	
counterclockwise	responses,	with	
psychometric	functions	fit	to	the	data	to	
obtain	bias	and	threshold	estimates.	Given	
our	aim	to	determine	the	strength	of	
crowding	in	each	condition,	here	we	further	
converted	bias	values	to	‘assimilation	scores’	
by	reversing	the	sign	of	biases	for	clockwise	
flanker	conditions.	This	made	positive	and	
negative	values	indicative	of	assimilation	and	
repulsion,	respectively.	Values	within	each	
flanker	difference	condition	(±15	and	±175)	
were	averaged	for	each	observer.	Mean	
assimilation	scores	across	observers	are	
shown	in	Figure	S2B.	Here	the	small	target-
flanker	difference	led	to	strong	assimilative	
bias,	with	a	mean	of	21.08°,	reducing	to	a	
small	degree	of	repulsion	at	the	larger	
separation,	with	a	mean	of	-2.73°.	For	
comparison,	the	equivalent	conditions	in	
Experiment	1	(±15°	and	±165°)	gave	
assimilation	scores	of	13.18°	and	6.52°.	The	
manipulations	in	Experiment	S1	were	
therefore	successful	both	in	increasing	the	
strength	of	crowding	with	small	target-flanker	
differences,	as	well	as	increasing	the	
reduction	in	assimilative	errors	with	larger	
differences.		
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Figure	S2.	Results	for	Experiments	S1	and	S2	with	4	flankers.	A.	Example	stimuli	from	Experiment	S1	with	a	small	
directional	offset	in	the	flankers.	B.	Assimilation	scores	for	motion	crowding	in	Experiment	S1	with	small	(±15°)	and	
large	(±175°)	direction	differences	in	the	flankers.	Positive	values	indicate	assimilation	and	negative	values	repulsion.	
C.	Threshold	elevation	scores	for	Experiment	S1,	plotted	as	multiples	of	unflanked	thresholds.	D.	Example	stimuli	from	
Experiment	S2	with	a	small	hue	difference	in	the	flankers.	E.	Assimilation	scores	for	colour	crowding	in	Experiment	S2	
with	small	(either	±15°	or	±30°)	or	large	(±175°)	hue	angle	differences	in	the	flankers.	F.	Threshold	elevation	values	for	
Experiment	S2.		

Threshold	values	were	similarly	averaged	
across	clockwise	and	counterclockwise	
conditions	for	each	of	the	two	flanker	
difference	conditions,	before	being	divided	by	
unflanked	thresholds	to	give	threshold	
elevation	values,	plotted	in	Figure	S2C.	Here	
the	small	target-flanker	difference	gave	
thresholds	2.87´	higher	than	unflanked	levels,	
while	thresholds	with	the	large	difference	
were	1.99´	higher.	Equivalent	values	from	
Experiment	1	were	3.05	and	1.83.	Here	then	
there	is	little	change	in	threshold	elevation	
from	two	to	four	flankers,	though	the	slight	
increase	(for	both	target-flanker	separations)	
is	consistent	with	observer	reports	that	the	
target	was	occasionally	difficult	to	see	under	
these	conditions.	This	is	likely	consistent	with	
the	previously	observed	increase	in	the	
impairment	of	detection	thresholds	as	flanker	
number	increases	(63).	Nonetheless,	in	
conjunction	with	the	bias	values	reported	

above,	crowding	effects	were	more	strongly	
modulated	here	than	in	Experiment	1.	

Experiment	S2	was	then	conducted	to	
examine	similar	values	for	the	crowding	of	
colour.	As	above,	we	conducted	this	
experiment	with	four	flankers	(Figure	S2D),	
the	removal	of	the	post-stimulus	mask,	and	a	
reduction	in	the	number	of	target-flanker	
difference	conditions.	During	practice	blocks,	
two	observers	(AK	and	MH)	showed	only	
minimal	crowding	effects	with	hue	differences	
of	±30°	and	were	therefore	tested	with	±15°	
for	the	small	target-flanker	difference	
condition	(consistent	with	values	used	in	
Experiment	3).	The	large	target-flanker	hue	
difference	was	±175°	for	all	observers	(giving	
hues	that	were	rusty	orange	or	yellow/brown	
in	appearance).	Target	hue	differences	ranged	
from	±15°	in	11	steps	in	the	unflanked	
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condition	and	±25°	in	11	steps	for	flanked	
conditions,	again	increased	from	the	values	of	
Experiment	2	given	the	higher	difficulty	with	
this	configuration.	For	simplicity	all	observers	
were	set	to	have	the	same	decision	boundary	
for	hue	(262.5°),	unlike	the	variations	in	
Experiment	2	(which	had	only	minimal	
effect).	The	remaining	stimulus	parameters	
and	procedures	were	identical	to	Experiment	
2.		

Data	were	analysed	in	the	same	way	as	
Experiment	S1,	with	mean	assimilation	scores	
shown	in	Figure	S2E.	On	average,	small	hue	
differences	in	the	flankers	induced	a	strong	
assimilative	bias	of	27.98°,	whereas	large	
differences	gave	biases	of	only	2.06°.	This	
brings	colour	biases	in	line	with	those	seen	
above	for	motion,	presenting	a	marked	
increase	from	the	corresponding	values	in	
Experiment	2	(using	the	values	of	±15/30°	
and	±150/165°	selected	for	Experiment	3),	
which	were	7.02°	and	2.74°,	respectively.	
Similarly,	thresholds	were	elevated	by	2.80´	
and	1.18´	unflanked	levels	for	the	small	and	
large	differences,	respectively	(Figure	S2F).	
This	too	is	an	increase	on	the	values	of	2.34	
and	1.47	in	Experiment	2.	In	other	words,	this	
configuration	gave	more	bias	and	higher	
threshold	elevation	with	small	target-flanker	
differences,	as	well	as	a	larger	decrease	in	
these	values	with	large	target-flanker	
differences.		

Given	this	increase	in	crowding	strength,	we	
next	used	these	parameters	with	conjoint	
judgements	of	motion	and	colour	in	
Experiment	S3.	Observers	were	tested	with	
the	flanker	values	used	in	Experiments	S1	and	
S2,	again	with	4	flankers	and	the	removal	of	
the	post-stimulus	mask.	Target	direction	and	
hue	values	were	selected	as	in	Experiment	3	
as	values	that	were	gave	near-ceiling	
performance	in	the	unflanked	condition	
whilst	also	being	clearly	shifted	by	biases	in	
the	flanked	conditions.	This	gave	target	
directions	of	±8°	(for	AS,	MF,	MH,	and	JG)	and	
±10°	(for	AM	and	HC)	around	upwards,	and	
hue	differences	of	±5°	(for	MH),	±8°	(for	AS,	
MF,	HC,	and	JG)	and	10°	(for	AM)	from	262.5°.	
Remaining	parameters	were	identical	to	those	
of	Experiment	3.		

With	an	unflanked	target,	observers	correctly	
identified	its	direction	in	87.64	±	1.45%	
(mean	±	SEM)	of	trials,	and	its	hue	in	90.00	±	
2.59%	of	trials.	Figure	S3A	shows	mean	
responses	for	the	flanked	condition	with	small	
target-flanker	differences	in	each	feature	(to	
give	strong	crowding	for	both).	When	the	
target	and	flankers	were	matched	in	sign	for	
both	features	(red	point,	e.g.	a	purple	CW	
target	amongst	purple	CW	flankers),	
performance	was	again	high	in	both	cases.	
This	could	be	due	either	to	a	lack	of	crowding	
or	the	assimilative	effect	of	the	flankers	
pulling	responses	toward	the	correct	
direction/hue.	In	the	motion	differs	condition,	
observers	were	largely	correct	on	the	hue	and	
incorrect	for	direction.	This	again	is	predicted	
by	assimilative	errors	for	direction,	with	
either	no	effect	on	hue	or	assimilative	
crowding	towards	the	correct	hue.	The	
opposite	occurred	for	the	colour	differs	
condition,	leading	to	a	predominance	of	
colour	errors.	Finally,	the	both	differ	condition	
induced	a	high	rate	of	errors	in	both	features,	
indicative	of	strong	assimilation	for	each.		

Figure	S3B	shows	results	from	the	weak	
motion	+	strong	colour	crowding	condition.	
As	before,	in	the	both	match	condition,	
responses	were	clearly	correct	on	both	
features.	In	the	motion	differs	condition,	the	
large	direction	difference	gave	a	reduction	in	
crowding,	with	predominantly	correct	
responses	for	direction,	and	likewise	for	hue	
given	the	matched	target-flanker	colours.	For	
colour	differs,	the	small	hue	difference	
continued	to	induce	assimilative	errors,	while	
the	flanker	directions	gave	either	assimilative	
errors	or	correct	target	recognition.	Crucially,	
in	the	both	differ	condition,	responses	were	
correct	for	direction	(as	with	motion	differs)	
but	errors	remained	for	hue,	shifting	
responses	into	the	‘colour	errors’	quadrant.	In	
other	words,	crowding	was	strong	for	colour	
and	weak	for	motion	in	the	same	stimulus.		
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Figure	S3.	Results	from	the	conjoint	motion	and	colour	
judgements	of	Experiment	S3	with	4	flankers.	Data	is	
plotted	as	the	mean	proportion	correct	for	the	target	
direction	(x-axis)	and	hue	(y-axis)	±1	SEM,	as	in	Figure	
3	of	the	main	text.	Indicative	target-flanker	values	are	
shown	via	the	legend.	A.	Results	from	the	strong	
motion	+	strong	colour	crowding	condition.	B.	Results	
from	the	weak	motion	+	strong	colour	crowding	
condition.	C.	Results	from	the	strong	motion	+	weak	
colour	condition.		

	

The	reverse	pattern	can	be	seen	in	the	strong	
motion	+	weak	colour	condition	(Figure	S3C).	
Responses	were	again	close	to	ceiling	in	the	
both	match	condition.	In	the	motion	differs	
condition,	the	small	target-flanker	direction	
difference	induced	a	high	rate	of	assimilative	
motion	errors,	with	a	low	rate	of	hue	errors.	
Here	in	the	colour	differs	condition,	the	large	
colour	difference	reduced	crowding	for	hue	
judgements,	while	the	matched	target-flanker	

signs	for	direction	led	to	correct	responses	in	
both	features.	Finally,	the	both	differ	condition	
again	revealed	a	dissociation	–	small	target-
flanker	differences	in	direction	coupled	with	
large	differences	in	hue	produced	consistent	
errors	in	direction	despite	correct	responses	
for	hue.	Here	too,	crowding	can	occur	for	one	
feature	and	not	the	other.		

These	errors	again	follow	the	prediction	of	
independent	crowding	processes	for	motion	
and	colour,	and	replicate	our	earlier	result	
with	an	increased	number	of	flankers.	An	
increase	in	the	strength	of	crowding	did	not	
therefore	change	the	independence	of	these	
errors.	In	fact,	the	difference	between	
performance	in	the	target-flanker	match	
conditions	is	somewhat	larger	than	that	
shown	in	Figure	3	(e.g.	along	the	y-axis	in	the	
weak	motion	+	strong	colour	crowding	
condition),	given	the	greater	assimilative	
effects	for	colour	in	particular.	This	
replication	also	demonstrates	that	our	use	of	
a	post-stimulus	mask	in	Experiment	3	did	not	
artificially	produce	an	independent	pattern	of	
errors.		

The	differential	effect	of	flanker	number	
observed	these	experiments	offers	further	
support	for	the	independence	of	motion	and	
colour	crowding.	In	particular,	although	the	
increase	to	four	flankers	gave	a	modest	
increase	in	biases	and	threshold	elevation	for	
motion	in	Experiment	S1	relative	to	those	in	
Experiment	1,	the	average	rate	of	assimilative	
errors	for	colour	more	than	tripled	in	
Experiment	S2	from	the	values	in	Experiment	
2.	Observers	also	noted	that	the	judgements	
of	motion	in	Experiment	S1	were	highly	
difficult,	with	an	occasional	tendency	for	the	
target	to	disappear,	an	effect	that	was	not	
found	in	earlier	experiments	(corroborated	by	
AK	and	JG	who	completed	all	experiments).	
This	could	be	due	to	an	increase	in	the	
suppressive	effect	of	the	flankers	as	their	
number	increases,	seen	also	with	the	
increased	repulsive	effect	in	Experiment	S1	
with	large	direction	differences.	Suppression	
could	also	explain	the	lower	increase	in	
assimilative	biases	for	motion	relative	to	
Experiment	1,	compared	with	the	strong	
increase	in	the	purely	assimilative	biases	for	
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colour.	Nonetheless,	this	divergence	in	the	
effect	of	flanker	number	for	motion	and	
colour	offers	further	evidence	that	
independent	crowding	processes	affect	these	
two	features.	

Experiment	S4:	Crowding	for	motion	and	
luminance-contrast	polarity	
	
Our	results	demonstrate	that	crowding	is	
independent	for	judgements	of	direction	and	
hue.	It	is	possible,	however,	that	this	finding	is	
somehow	specific	to	these	two	feature	
dimensions.	A	common	manipulation	in	
studies	seeking	to	reduce	crowding	is	the	use	
of	target-flanker	differences	in	luminance	
contrast	polarity	–	a	black	target	amongst	
white	flankers	(or	vice	versa)	gives	
considerably	less	crowding	than	elements	
with	uniform	polarity	(16,	68,	69).	Here	we	
sought	to	test	the	generality	of	our	
conclusions	with	conjoint	judgements	of	
direction	and	luminance	contrast	polarity.		

Unlike	hue,	luminance	contrast	polarity	is	a	
binary	property	(light	or	dark),	with	linear	
variations	in	luminance	contrast	between	
these	extremes.	It	is	therefore	not	ideal	to	run	
our	full	paradigm	with	this	feature	–	the	
conjoint	judgements	of	Experiments	3	and	S3	
involve	fine	discriminations	around	a	decision	
boundary	with	flankers	that	are	either	close	
to	this	boundary	(small	differences	leading	to	
strong	crowding)	or	distant	(leading	to	weak	
crowding).	Here,	variations	in	luminance	
contrast	around	the	decision	boundary	would	
fall	close	to	zero	contrast	(mean	grey),	
affecting	the	visibility	of	these	stimuli.	This	in	
turn	would	likely	introduce	errors	in	the	
motion	judgements,	given	issues	with	target	
detectability,	potentially	making	errors	
appear	combined	simply	because	the	target	is	
invisible.	We	can	nonetheless	run	a	subset	of	
these	conditions	with	the	maximum	values	of	
luminance	contrast	(i.e.	full	white	vs.	full	
black)	and	examine	the	effect	of	reductions	in	
crowding	from	contrast	polarity	on	
judgements	of	direction.		

In	Experiment	S4	we	therefore	required	
observers	to	make	conjoint	judgements	of	
direction	and	contrast	polarity.	As	in	prior	

experiments,	a	combined	mechanism	for	
crowding	predicts	that	any	reduction	in	
crowding	for	contrast	polarity	must	also	
reduce	crowding	for	direction.	In	contrast,	
independent	mechanisms	allow	for	errors	in	
direction	to	remain	high	even	with	a	
reduction	in	crowding	for	contrast-polarity	
judgements.		

The	design	of	this	experiment	was	similar	to	
that	of	Experiments	3	and	S3.	Here,	cowhide	
elements	varied	in	both	direction	and	
luminance	contrast	polarity.	For	this	purpose,	
we	rendered	only	half	of	the	cowhide	
elements	(unlike	the	combined	light/dark	
regions	in	other	experiments),	with	one	half	
of	the	image	rendered	either	white	or	black,	
and	the	remainder	left	as	the	mean	grey	of	the	
background	(Figures	S4A	and	S4B).	The	same	
6	observers	who	completed	Experiments	S1-
S3	also	took	part	in	this	experiment.	Target	
values	for	direction	were	taken	from	those	
used	in	Experiment	S3:	±8°	around	upwards	
for	AS,	MF,	MH,	and	JG	and	±10°	for	AM	and	
HC.	Luminance	contrast	polarity	values	were	
set	at	their	maximum	value	of	±1,	giving	a	
Weber	contrast	of	100%	against	the	mean	
grey	background.		

Observers	made	conjoint	judgements	of	the	
direction	(CW/CCW	of	upwards)	and	contrast	
polarity	(black/white)	of	the	target	cowhide	
for	unflanked	targets	and	in	one	flanked	
condition	(strong	motion	+	weak	contrast	
polarity).	Following	Experiment	S3	above,	the	
flanked	condition	included	4	flankers	(above,	
below,	left	and	right	of	the	target).	When	
flankers	were	present,	their	directions	were	
similar	(±15°)	in	order	to	induce	strong	
crowding	for	motion.	Contrast	polarity	values	
were	set	to	their	maximum	contrast	
difference	(±1)	to	give	maximally	strong	
crowding	when	target	and	flanker	elements	
were	matched	in	polarity	and	maximally	weak	
crowding	when	polarity	differed.	Given	the	
above	issues	with	the	dimensionality	of	
contrast	polarity,	we	did	not	test	the	converse	
arrangement	with	large	directional	
differences.	Unflanked	and	flanked	conditions	
were	tested	in	separate	blocks.	Each	
combination	of	target	and	flanker	elements	
was	repeated	10	times	per	block	to	give	a	
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total	of	40	trials	in	the	unflanked	condition	
and	160	trials	for	the	flanked	condition.	Each	
block	was	repeated	3	times,	with	all	blocks	
interleaved	randomly.		

With	these	combinations	of	direction	and	
contrast	polarity,	there	were	4	possible	
combinations	of	target	and	flanker	elements	
with	respect	to	the	decision	boundary	for	
each	feature	dimension:	either	both	motion	
and	contrast	polarity	matched	(e.g.	CW	
moving	target	and	flankers,	all	black),	motion	
differed	(e.g.	a	CW	target	with	CCW	flankers,	
all	white),	contrast	polarity	differed	(e.g.	a	
white	target	with	black	flankers,	all	moving	
CW),	or	both	differed.	Given	the	known	effects	
of	differences	in	contrast	polarity	on	

crowding	(16,	68,	69),	judgements	of	contrast	
polarity	should	be	correct	in	conditions	where	
this	property	differs	(‘polarity	differs’	and	
‘both	differ’).	They	should	also	be	correct	
when	target	and	flanker	elements	share	the	
same	contrast	polarity	(‘both	match’	and	
‘motion	differs’),	either	because	there	is	no	
crowding	or	because	responses	are	driven	by	
assimilative	errors.	The	crucial	aspect	of	this	
experiment	is	the	motion	judgements,	
particularly	in	the	‘both	differ’	condition.	Here	
the	all-or-none	combined	mechanism	predicts	
errors	in	either	both	features	or	neither,	while	
the	independent	mechanism	allows	a	
reduction	in	crowding	in	contrast	polarity	
without	any	effect	on	motion	(i.e.	that	motion	
errors	should	remain	high).		

	
Figure	S4.	Stimuli	and	results	for	Experiment	S4	examining	judgements	of	motion	and	luminance	contrast	polarity.	A.	
Example	stimuli	when	all	black.	B.	Example	stimuli	when	contrast	polarity	differed	between	the	target	(here,	white)	
and	flankers	(black).	C.	Results	from	the	strong	motion	+	weak	contrast	polarity	condition.	Data	is	plotted	as	the	mean	
proportion	correct	for	the	target	direction	(x-axis)	and	contrast	polarity	(y-axis)	±1	SEM,	as	in	Figure	3	of	the	main	text,	
with	example	target-flanker	values	shown	via	the	legend.		

With	an	unflanked	target,	observers	correctly	
identified	its	direction	in	83.89	±	3.12%	
(mean	±	SEM)	of	trials,	and	its	contrast	
polarity	in	98.19	±	0.82%	of	trials.	Figure	S4C	
shows	mean	responses	for	the	flanked	
condition,	where	target-flanker	differences	
were	small	in	motion	(to	give	strong	
crowding)	and	large	in	contrast	polarity	(to	
give	a	release	when	target	and	flanker	
elements	differed).	When	target	and	flankers	
were	matched	in	both	features	(red	point),	
performance	was	high	for	both	features.	In	
the	motion	differs	condition,	the	small	target-
flanker	direction	difference	induced	a	high	
rate	of	assimilative	motion	errors	and	low	
rate	of	contrast	polarity	errors,	again	because	
target	and	flanker	elements	remained	

matched	in	polarity.	Judgements	of	polarity	
continued	to	be	accurate	in	the	polarity	differs	
condition,	given	the	large	contrast-polarity	
difference	(replicating	prior	findings	with	
polarity	differences;	16,	68,	69),	while	the	
matched	target-flanker	signs	for	direction	
allowed	correct	responses	in	both	features.	
Crucially,	the	both	differ	condition	again	
revealed	a	dissociation	–	the	large	differences	
in	target-flanker	polarity	coupled	with	a	small	
difference	in	direction	produced	errors	in	
direction	responses	despite	correct	responses	
for	contrast	polarity.	In	other	words,	here	too	
crowded	errors	can	occur	in	one	feature	and	
not	the	other.	
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Interestingly,	there	is	a	slight	increase	in	the	
percent	correct	for	motion	in	the	both	differ	
condition,	relative	to	the	error	rate	for	the	
motion	differs	condition	in	this	experiment	
(i.e.	a	separation	along	the	x-axis).	This	
difference	was	not	present	in	Experiments	3	
or	S3.	One	possibility	is	that	the	opposite	
polarity	elements	did	in	fact	induce	some	
degree	of	combined	errors,	perhaps	through	a	
reduction	in	positional	uncertainty	associated	
with	the	target	location	(70).	Alternatively,	
several	observers	noted	that	opposite-
polarity	targets	would	on	occasion	disappear,	
which	may	relate	to	our	use	of	four	flankers	in	
this	experiment,	and	the	rise	in	issues	related	
to	detection	as	the	number	of	flankers	
increases	(63),	as	noted	above.	This	may	be	
exacerbated	at	the	15°	eccentricity	used	
herein	(particularly	in	the	upper	visual	field;	
19,	71),	as	most	studies	that	have	examined	
the	release	from	crowding	with	opposite	
polarity	stimuli	have	utilised	closer	
eccentricities	of	5-10°	(16,	68,	69).	
Regardless,	the	reduction	in	these	errors	still	
leaves	a	predominance	of	motion	errors,	in	
contrast	to	the	clear	performance	levels	
(above	90%	correct)	for	contrast	polarity	
judgements	–	motion	judgements	never	
approach	this	level	of	performance.		

The	observed	pattern	of	errors	again	follows	
the	prediction	of	independent	crowding	
processes	for	motion	and	luminance	contrast	
polarity,	extending	our	findings	with	direction	
and	hue.	This	finding	does	however	stand	at	
odds	with	prior	demonstrations	that	
crowding	is	reduced	for	judgements	of	spatial	
form	(like	T	orientation)	when	target	and	
flanker	elements	differ	in	contrast	polarity	
(16,	68,	69).	As	outlined	in	the	main	
discussion,	the	linkage	found	in	these	prior	
studies	could	reflect	the	greater	similarity	
between	contrast	polarity	and	spatial	form	
than	between	polarity	and	motion.	Indeed,	
contrast	polarity	and	motion	have	been	found	
not	to	interact	at	higher	levels	of	the	motion	
hierarchy	(72).	Features	that	are	more	closely	
related	in	the	visual	system,	like	orientation	
and	position	(22),	may	therefore	show	linked	
performance	patterns,	while	more	distinct	
feature	pairings	like	direction	and	hue	or	

direction	and	polarity	allow	these	dissociable	
effects	to	emerge.		

Note	also	that	prior	studies	showing	a	
combined	release	for	polarity	and	form	(16,	
68,	69)	typically	utilise	spatial	letterforms	
(e.g.	T	elements)	defined	by	the	differential	
features	themselves.	That	is,	the	
colour/polarity	signals	define	both	the	object	
surface	and	its	boundary	(39),	making	the	
spatial	distribution	of	luminance-polarity	
signals	informative	regarding	the	feature	
being	judged.	This	may	then	allow	the	
differences	in	polarity	to	reduce	crowding	for	
spatial	form	simply	because	the	form	signals	
for	the	target	are	derived	from	the	
(uncrowded)	output	of	the	polarity	channels.	
The	same	is	true	for	studies	showing	a	release	
in	orientation	crowding	with	colour	
differences	(13,	16,	73).	Dissociations	may	
only	become	evident	when	features	can	be	
judged	independently,	as	in	the	current	study	
where	these	features	apply	only	to	the	object	
surfaces	(given	that	our	circular	object	
boundaries	were	always	held	constant).		

Population	models	for	the	crowding	of	
motion	and	colour	
	
As	shown	in	the	main	text,	data	from	
Experiments	1	and	2	were	fit	with	two	
population-coding	models	similar	to	prior	
models	of	the	crowding	of	orientation	(30,	
74).	This	approach	characterises	crowding	as	
the	weighted	combination	of	population	
responses	to	the	target	and	flanker	elements,	
which	has	previously	been	found	to	
reproduce	the	systematic	errors	that	arise	
(30),	including	both	averaging	(7,	11)	and	
substitution	(75)	errors.	Here	we	sought	to	
extend	this	modelling	approach	to	the	
domains	of	motion	and	colour	perception.	To	
replicate	the	results	of	Experiment	1,	we	
simulated	a	population	of	361	direction-
selective	neurons,	each	with	a	wrapped	
Gaussian	profile	of	responses	to	direction,	
similar	to	those	found	in	cortical	areas	V1	
(76)	and	MT/V5	(77),	characterised	as:		

𝑟" = 𝛼𝑒
('('))+

+,+ + γ𝑛	 	 	 	 (1)	
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where	rq	is	the	response	of	the	detector	for	a	
given	value	of	q,	the	direction	ranging	from	
±180	around	upwards.	The	value	a	sets	the	
height	of	the	tuning	function	(set	to	1),	µ	is	the	
direction	of	peak	response,	s	represents	the	
standard	deviation	of	the	Gaussian	(the	first	
free	parameter),	plus	Gaussian	noise	n	with	a	
magnitude	of g (the	second	free	parameter).	
Responses	outside	the	range	±180	were	
wrapped	by	either	subtracting	or	adding	360	
to	the	direction	and	summing	the	responses.	
Each	of	these	detectors	had	a	distinct	
preferred	direction	at	one	of	the	integer	
directions	from	±180°.	Flanker	population	
responses	had	the	same	form	(including	the	
same	standard	deviation),	with	a	separate	
free	parameter	for	the	g	value,	representing	a	
late	noise	parameter.		

Given	the	presence	of	repulsion	in	our	data	
(similar	to	the	pattern	of	direction	repulsion	
more	broadly;	35,	78),	we	followed	models	of	
the	tilt	illusion	(31,	32,	79,	80),	and	the	
physiology	of	MT/V5	neurons	(81),	by	adding	
inhibitory	surrounds	to	the	population	
response.	This	is	also	similar	to	weighted	
averaging	models	of	crowding	that	simulate	
repulsive	errors	using	negative	weights	(60).	
Here	we	incorporated	inhibitory	interactions	
via	a	second	Gaussian	distribution	(as	in	
equation	1),	with	a	peak	of	0.3	for	the	
population	responses	to	the	target	and	1.0	for	
flankers	(to	be	modulated	by	flanker	weights,	
below),	with	the	standard	deviation	of	this	
distribution	as	the	fourth	free	parameter.	This	
distribution	was	then	subtracted	from	the	
excitatory	Gaussian	response	described	
above.	The	peak	of	0.3	was	selected	given	
physiological	estimates	that	place	the	
strength	of	inhibition	at	around	30-40%	that	
of	excitation	in	early	visual	cortex	(82).	Values	
of	0	and	0.5	for	the	target	population	were	
also	simulated,	which	did	not	alter	the	pattern	
of	results	in	a	qualitative	fashion	(though	
parameters	varied	to	accommodate	this	
inhibition	of	the	flankers).		

Population	responses	were	determined	for	
both	the	target	and	flanker	directions	
separately.	These	responses	were	combined	
according	to	weights,	as	in	prior	models	(11,	
22,	30,	74,	83).	Variations	in	these	weights	

have	previously	been	used	to	reproduce	the	
decrease	in	crowding	with	increasing	target-
flanker	distance	(9,	30,	74)	via	‘weighting	
fields’.	Target-flanker	distance	was	fixed	in	
our	study,	though	we	utilise	this	weighting-
field	concept	to	allow	the	decrease	in	
crowding	with	increasing	target-flanker	
dissimilarity	(9,	10,	13,	16).	In	doing	so,	we	
follow	suggestions	that	both	of	these	
properties	may	in	fact	manipulate	the	cortical	
distance	between	target	and	flanker	
representations	(9,	42,	84).	Because	our	
population	used	both	positive	and	negative	
components,	two	weighting	fields	were	
applied	separately	(similar	to	prior	work;	9).	
Positive	weights	varied	from	0-1	and	were	
determined	using	a	Gaussian	distribution	(as	
in	equation	1,	though	without	noise),	set	as	a	
function	of	the	target-flanker	difference	in	
direction	(rather	than	absolute	direction	
above),	centred	on	a	difference	of	0.	The	peak	
and	standard	deviation	were	each	set	by	free	
parameters.	Negative	weights	also	varied	
from	0-1	and	were	set	by	a	bimodal	Gaussian	
distribution	of	the	form:	

𝑤∆" = 𝛼𝑒
('(')2)+

+,+ + 𝛼𝑒
('(')+)+

+,+ 	 	 (2)	

where	w	gives	the	flanker	weight	for	a	given	
difference	in	direction	(∆θ),	while	the	peak	a	
and	standard	deviation	s	were	matched	for	
each	Gaussian.	The	peak	was	set	as	a	free	
parameter,	as	well	as	the	difference	between	
the	peak	locations	(µ2-µ1),	with	the	overall	
distribution	centred	on	zero.	The	standard	
deviation	was	the	same	value	used	in	the	
positive	weighting	field.	The	shape	of	this	
function	allowed	for	the	peak	in	inhibitory	
interactions	at	large	target-flanker	differences	
where	repulsion	effects	were	dominant	over	
assimilation	(see	Figure	1C).	Overall	however,	
both	components	varied	with	the	direction	
difference	between	target	and	flanker	
elements	to	modulate	the	strength	of	these	
crowding	effects.	The	best-fitting	weighting	
fields	are	plotted	in	Figure	S5A,	which	plot	the	
change	in	flanker	weights	as	a	function	of	the	
target-flanker	difference	in	direction.	The	
corresponding	target	weight	was	always	1	
minus	the	flanker	weight	for	both	positive	and	
negative	components.		
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For	a	given	trial	of	the	simulated	experiment,	
flanker	weight	values	were	first	selected	
according	to	the	difference	between	target	
and	flanker	directions.	These	values	were	
then	used	as	multipliers	for	the	positive	and	
negative	components	of	the	population	
response	to	the	flanker	direction.	Altogether	
then,	flanked	responses	C	were	determined	as	
function	of	the	direction	𝜃,	with	the	form:	

𝐶" = (𝑟67𝑤67 − 𝑟69𝑤69) + :𝑟;7𝑤;7 − 𝑟;9𝑤;9<	 		(3)	

where	rte	represents	the	excitatory	Gaussian	
population	response	to	the	target	(following	
equation	1),	rti	is	the	inhibitory	response,	and	
rfe	and	rfi	the	excitatory	and	inhibitory	flanker	
responses,	respectively.	Weight	values	are	
denoted	as	wfe	for	the	excitatory	flanker	
values	and	Wfi	as	the	inhibitory	weight.	For	
the	target	wte	is	1-wfe	and	wti	is	1-wfi.		

This	combination	of	responses	and	weighting	
values	for	the	population	response	to	flankers	
is	plotted	in	Figure	S5B	for	a	continuous	range	
of	target-flanker	differences	(flanker	values	
tested	in	Experiment	1	are	shown	with	black	
points).	Responses	are	plotted	as	a	function	of	
the	preferred	direction	of	each	detector	in	the	
population	on	the	x-axis	against	the	target-
flanker	difference	on	the	y-axis.	The	
population	response	to	a	single	flanker	
direction	can	be	seen	by	taking	a	horizontal	

slice	across	the	plot,	with	red	areas	indicating	
a	predominance	of	positive	flanker	responses	
and	blue	areas	indicating	a	predominance	of	
inhibition.	Note	that	small	target-flanker	
differences	near	to	the	0°	decision	boundary	
tend	to	produce	predominantly	positive	
flanker	responses,	whereas	larger	target-
flanker	differences	tend	towards	inhibition.		

Example	population	distributions	(averaged	
across	1024	trials)	for	a	target	moving	8°	
counter-clockwise	from	upwards	and	flankers	
moving	90°	counter-clockwise	are	shown	in	
Figure	S5C.	Distributions	of	target	and	flanker	
responses	(red	and	blue	lines,	respectively)	
have	had	their	respective	weights	applied.	
The	combined	sum	is	shown	in	yellow.	
Veridical	values	of	the	target	and	flankers	are	
shown	as	red	and	blue	triangles.	Notice	that	
the	target	and	flanker	directions	are	both	
counter-clockwise,	yet	the	peak	response	for	
the	combined	distribution	lies	on	the	
clockwise	side	at	-9°	(yellow	triangle)	to	
produce	an	error	of	repulsion.	This	occurs	due	
to	the	greater	inhibition	from	the	flankers	on	
the	counter-clockwise	side	of	the	population.	
In	contrast,	target-flanker	combinations	
where	the	population	response	to	the	flankers	
was	predominantly	positive	tended	to	induce	
assimilation	effects	by	shifting	the	peak	of	the	
combined	response	to	intermediate	values	
between	the	target	and	flanker	directions	(see	
demonstration	for	colour	below).		
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Figure	S5.	Model	characteristics	for	the	population-pooling	models	of	Experiments	1	(left	column)	and	2	(right).	A.	
Weighting	fields	for	direction,	plotted	as	a	function	of	the	target-flanker	direction	difference,	separately	for	the	positive	
(red)	and	negative	(blue)	weights.	B.	The	combination	of	flanker	weights	and	the	population	response	to	the	flanker	
direction,	plotted	as	a	function	of	the	preferred	direction	of	each	detector	on	the	x-axis	and	the	target-flanker	direction	
difference	on	the	y-axis.	Flanker	values	tested	in	Experiment	1	are	shown	as	black	points.	Red	values	indicate	a	
predominance	of	positive	population	responses,	while	blue	areas	indicate	inhibition.	C.	Example	population	responses	
to	the	target	(red),	flankers	(blue),	and	combined	response	(yellow)	for	a	target	moving	8°	counter-clockwise	from	
upwards	and	flankers	moving	90°	counter-clockwise,	plotted	as	a	function	of	the	preferred	direction	of	each	detector	
on	the	x-axis.	The	veridical	values	of	the	target	and	flanker	directions	are	shown	as	red	and	blue	triangles,	with	the	peak	
response	of	the	combined	distribution	shown	as	a	yellow	triangle.	This	combination	gives	a	repulsion	error.	D.	
Weighting	fields	for	hue	in	Experiment	2,	plotted	with	conventions	in	panel	A.	E.	The	combination	of	flanker	weights	
and	the	population	response	to	hue,	plotted	as	in	panel	B.	F.	Example	population	responses	for	a	target	with	a	hue	-4.5°	
clockwise	from	the	decision	boundary	(blue	in	appearance)	and	flankers	45°	counter-clockwise	(pink	in	appearance),	
which	gives	an	error	of	assimilation.	Plotting	conventions	as	in	panel	C.		

The	perceived	target	direction	was	derived	
from	the	peak	response	of	this	combined	
population	response	distribution	(equation	3)	

on	each	of	the	simulated	trials,	with	the	sign	
of	this	response	used	to	determine	the	2AFC	
(CW/CCW	of	vertical)	response.	Target	and	
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flanker	direction	conditions	were	identical	to	
those	of	Experiment	1,	with	1024	trials	per	
condition	in	the	simulation.	As	with	the	
behavioural	responses,	the	percent	CCW	was	
then	computed	for	each	target	direction	in	
each	flanker	direction	condition,	with	
psychometric	functions	fit	to	determine	
midpoint	and	threshold	values.	The	squared	
difference	between	these	midpoint	and	
threshold	values	was	then	taken	from	the	
mean	behavioural	data	of	Experiment	1	to	
give	an	error	term.	The	best-fitting	
parameters	(for	the	above	8	free	parameters)	
were	determined	first	using	a	coarse	grid	
search	through	the	parameter	space	to	find	
the	least	squared	error,	which	was	then	used	
as	the	starting	point	for	a	fine	fitting	
procedure	using	the	fminsearch	function	in	
MATLAB.	Best-fitting	parameters	from	this	
procedure	are	shown	in	Table	S1,	with	the	
output	of	the	model	plotted	against	the	data	in	
Figure	1	of	the	main	text.		

A	similar	model	was	developed	to	account	for	
the	pattern	of	responses	to	the	colour	task	of	
Experiment	2.	Because	repulsion	was	not	
present	in	the	data	obtained	from	this	study,	
all	inhibitory	components	of	this	model	
(including	target	and	flanker	responses,	as	

well	as	weighting	fields)	were	set	to	zero,	
leaving	5	free	parameters.	The	structure	of	
the	model	was	otherwise	identical	to	that	for	
motion,	with	a	population	of	361	hue-
selective	neurons	with	a	Gaussian	profile	of	
responses	to	the	hue	angle	in	DKL	colour	
space	(26-28).	Each	detector	had	a	preferred	
hue	angle	at	one	of	the	integer	values	in	the	
space	with	a	Gaussian	tuning	function	on	
either	side,	consistent	with	suggestions	from	
both	physiological	(85)	and	psychophysical	
results	(86),	and	is	used	here	for	ease	of	
comparison	across	features.		

The	best-fitting	weighting	field	for	colour	is	
shown	in	Figure	S5D.	Notice	that	the	absence	
of	inhibitory	weighting	fields	meant	that	the	
sole	effect	of	crowding	in	the	domain	of	colour	
was	to	induce	assimilative	errors.	This	can	be	
seen	with	the	combination	of	the	weighting	
field	and	flanker	population	responses	across	
a	range	of	flanker	hue	angles	plotted	in	Figure	
S5E.	As	before,	these	values	were	produced	by	
combining	the	flanker	response	to	a	
continuous	range	of	target-flanker	differences	
with	the	weighting	field	values	for	those	same	
target-flanker	differences	(with	the	flanker	
values	tested	in	Experiment	2	presented	as	
black	points).		

Table	S1.	Best-fitting	free	parameter	values	for	the	population-based	crowding	model	for	motion	(Experiment	1)	and	
colour	(Experiment	2).		

Parameter	 Motion	model	
(Experiment	1)	

Colour	model	
(Experiment	2)	

Detector	SDpositive	 65.3691	 65.2458	
Detector	SDnegative	 85.4421	 0	
Detector	noise	 0.0122	 0.0044	
Weight	field	Peakpositive	 0.5069	 0.2358	
Weight	field	Peaknegative	 0.7077	 0	
Weight	field	SD	 70.8827	 124.6079	
Weight	field	Dµnegative	 233.5278	 0	
Late	noise	 0.1102	 0.0802	
	
As	with	motion,	the	combined	population	
response	was	generated	by	summing	the	
responses	to	target	and	flanker	directions.	
Example	population	distributions	for	a	target	
with	a	hue	angle	-4.5°	clockwise	from	the	
blue/purple	decision	boundary,	and	flankers	
with	a	30°	counter-clockwise	hue	are	shown	
in	Figure	S5F.	When	combined	(yellow	line)	

the	assimilative	nature	of	crowding	can	be	
seen	–	here	the	peak	response	for	the	
combined	distribution	lies	on	the	counter-
clockwise	side	at	2°	(yellow	triangle).	Best-
fitting	parameters	(for	the	5	free	parameters)	
were	determined	using	the	same	procedure	as	
for	motion,	and	are	presented	in	Table	S1,	
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with	the	output	of	this	model	plotted	against	
the	data	in	Figure	2	of	the	main	text.		

Figures	1	and	2	show	that	the	best-fitting	
output	of	these	models	provides	a	good	
characterisation	of	the	pattern	of	errors	
observed	for	motion	and	colour	crowding,	and	
particularly	in	the	case	of	motion	crowding.	
We	note	that	prior	models	have	used	a	similar	
difference-of-Gaussian	approach	to	model	
errors	of	repulsion	in	the	domain	of	
orientation,	with	mixed	results	(31,	32,	79,	
80).	The	improved	performance	of	the	model	
in	the	present	study	likely	derives	from	our	
addition	of	a	weighting	field	(30),	which	
allows	a	smooth	transition	from	
predominantly	assimilative	errors	at	small	
target-flanker	differences	through	to	strongly	
repulsive	errors	with	larger	differences	(for	
motion,	at	least).	Because	the	weighting	field	
modulates	the	noise	introduced	by	flankers	
(the	‘late	noise’	parameter),	this	approach	can	
also	replicate	the	rise	and	fall	of	threshold	
elevation	seen	in	Figures	1C	and	2C.	Although	
the	use	of	these	weighting	fields	will	likely	
need	adjustments	to	account	for	the	many	
complexities	of	crowding	(87),	here	we	show	
their	generalizability	to	the	domains	of	
motion	and	colour.	In	this	way	we	also	
reproduce	the	general	coupling	between	bias	
and	threshold	observed	in	a	range	of	
perceptual	contexts	(29).		

Independent	population	models	for	the	
crowding	of	motion	and	colour	
	
The	results	of	Experiment	3	followed	our	
predictions	for	independent	crowding	
processes	for	motion	and	colour.	Here	we	
quantify	these	processes	with	a	population	
coding	approach.	The	independent	model	
consisted	of	population	responses	to	motion	
and	colour,	generated	for	both	target	and	
flanker	elements	and	combined	according	to	
separate	weighting	fields	for	both	features.	
These	separate	weighting	fields	allowed	for	
crowding	to	occur	for	one	feature	(with	small	
target-flanker	differences,	e.g.	in	colour)	and	
not	in	the	other	(with	larger	target-flanker	
differences,	e.g.	in	motion).	The	majority	of	
model	properties	were	carried	forward	from	
Experiments	1	and	2,	including	the	standard	

deviation	of	detector	tuning	functions,	as	well	
as	the	peak	height	and	standard	deviation	of	
the	positive	weighting	field,	as	in	Table	S1.	
Inhibitory	parameters	were	included	for	the	
motion	population.	This	left	3	free	
parameters:	early	noise	for	direction,	early	
noise	for	hue,	and	the	combined	late	noise	
parameter	for	both	features.	Note	that	the	
latter	noise	parameter	applied	to	the	flanker	
population	responses	(which	was	then	
combined	with	the	target	population	
response).	Since	this	was	modified	by	the	
weights	for	each	feature,	we	used	a	single	
parameter	for	both	features	to	reduce	the	
number	of	free	parameters	and	for	greater	
ease	of	comparison	with	the	combined	
models.		

Because	the	precise	direction	and	hue	values	
varied	between	participants	in	this	
experiment	(see	values	in	the	main	text),	we	
used	the	modal	value	for	each	as	the	input	for	
the	model.	This	gave	a	target	direction	
difference	of	±8°	and	a	hue	angle	difference	of	
±5°.	For	direction,	flankers	differed	by	±15°	
and	±165°	for	the	strong	and	weak	motion	
crowding	conditions.	Flanker	hue	angles	were	
±30°	and	±150°.	Each	trial	simulated	the	
population	response	to	target	and	flanker	
values	for	both	motion	and	colour.		

For	the	independent	model,	separate	
weighting	fields	were	used	to	convert	the	
target-flanker	differences	in	direction	and	hue	
into	flanker	weights.	These	were	identical	to	
those	of	the	first	two	experiments.	Weights	
were	applied	to	target	and	flanker	population	
responses	to	generate	a	combined	population	
response	for	each	feature.	Each	peak	response	
was	then	used	to	determine	whether	
responses	would	be	CW/CCW	for	motion	and	
for	hue,	with	percent	correct	determined	
across	trials.	

The	3	free	parameters	were	fit	by	determining	
the	least-squared	error	between	the	percent	
correct	scores	for	motion	and	colour	in	each	
of	the	four	crowding-strength	conditions	
(unflanked,	strong	motion	+	strong	colour,	
weak	motion	+	strong	colour,	and	strong	
motion	+	weak	colour).	Performance	was	
simulated	with	1024	trials	per	point.	As	
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before,	a	coarse	grid	search	was	conducted	
through	the	parameter	space	prior	to	a	fine	
fitting	procedure.	Final	parameters	are	shown	

in	Table	S2,	with	the	output	of	this	model	
plotted	in	Figure	3	of	the	main	text.		

	

Table	S2.	Best-fitting	free	parameter	values	for	the	independent	crowding	model	and	an	alternative	version	of	this	
model	without	inhibitory	parameters,	both	used	to	simulate	the	data	of	Experiment	3.		

Parameter	 Independent	model	
	

Independent	model	
(no	inhibition)	

Direction	noise	 0.0126	 0.0353	
Colour	noise	 0.0057	 0.0038	
Late	noise	 0.0408	 0.0713	
	

For	the	strong	motion	+	strong	colour	
condition,	shown	in	Figure	3A,	the	
independent	model	follows	the	pattern	of	
data	well	because	the	probability	of	crowding	
(with	two	weighting	fields)	is	high	for	both	
features,	producing	assimilative	errors.	In	the	
weak	motion	+	strong	colour	condition	
(Figure	3B),	the	model	successfully	captures	
the	pattern	of	performance	because	the	
separate	weighting	fields	for	the	two	features	
allow	crowding	to	be	independently	
decreased	in	motion,	leaving	colour	errors	in	
the	both	differ	condition.	Conversely,	the	
model	again	reproduces	performance	in	the	
strong	motion	+	weak	colour	condition	
(Figure	3C)	because	crowding	can	be	reduced	
for	colour	and	remain	strong	for	motion,	
leading	to	a	high	rate	of	motion	errors	when	
both	differ.	It	is	therefore	plausible	that	
human	performance	could	rely	on	
independent	crowding	mechanisms	of	this	
nature.		

In	the	following	section,	we	outline	a	range	of	
combined	crowding	models	in	an	attempt	to	
more	quantitatively	rule	out	the	combined	
mechanism.	Several	of	these	approaches	
remove	the	inhibitory	aspects	of	the	model	for	
simpler	comparison	across	the	feature	
dimensions.	In	order	to	more	directly	
compare	these	models	with	the	independent	
crowding	model,	we	also	simulated	the	above	
independent	model	with	inhibitory	
parameters	set	to	zero	(both	in	population	
responses	and	the	corresponding	weighting	
fields).	Best-fitting	parameters	are	shown	in	

Table	S2.	Mean	squared	error	values	for	1000	
simulations	of	the	Independent	model	
without	inhibition	was	0.1086,	slightly	worse	
than	the	value	of	0.0752	obtained	for	the	
above	model	with	inhibition.	The	removal	of	
inhibition	thus	impaired	performance	of	this	
model	to	some	extent,	though	both	versions	of	
the	independent	model	vastly	outperformed	
any	of	the	combined	mechanisms	tested	
below	(see	Figure	S7).		

Combined	population	models	for	the	
crowding	of	motion	and	colour	
	
The	results	of	Experiment	3	and	associated	
simulations	demonstrate	that	crowding	is	
most	likely	to	be	subserved	by	independent	
processes	for	motion	and	colour.	In	order	to	
more	comprehensively	rule	out	the	possibility	
that	a	combined	mechanism	could	perform	
similarly	well	in	these	experiments,	we	
simulated	a	range	of	models	with	this	
combined	all-or-none	mechanism.	These	
models	were	similar	in	operation	to	the	
independent	models	described	above,	save	for	
the	use	of	common	weights	for	the	two	
features.	Here	we	show	that	these	models	all	
fail	to	fully	account	for	the	observed	
dissociations	in	motion	and	colour	crowding.	

Some	assumptions	must	be	made	in	
developing	a	combined	mechanism	for	two	
features.	If	we	begin	with	a	model	that	is	
otherwise	identical	to	the	independent	
approach	described	above,	then	motion	and	
colour	estimates	are	derived	from	each	
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population	of	detectors	for	both	target	and	
flanker	elements.	Responses	to	the	target	and	
flankers	must	then	be	combined	with	weights.	
Consider	first	a	model	that	retains	the	two	
best-fitting	weighting	fields	derived	from	
Experiments	1	and	2,	but	which	takes	the	
minimum	value	obtained	from	these	fields	
and	applies	it	equally	to	flankers	on	both	
features	(with	one	minus	this	value	applied	to	
target	responses).	In	this	case,	if	crowding	is	
reduced	for	one	feature	(based	on	a	low	
weight	for	motion,	for	instance)	then	it	is	
necessarily	reduced	for	both.	By	retaining	all	
aspects	of	the	best-fitting	models	derived	for	
the	first	two	experiments,	we	can	fit	this	
model	using	only	three	free	parameters	
(direction	noise,	colour	noise,	and	late	noise),	
making	the	model	directly	comparable	to	the	
independent	models	described	above.	
Parameters	were	determined	using	the	fitting	
approach	described	above,	with	best-fitting	
parameters	reported	in	Table	S3	(‘Min.	
weight’).		

The	output	of	these	best-fitting	simulations	is	
shown	in	the	left	column	of	Figure	S6	(square	
data	points),	plotted	with	conventions	as	in	

Figure	3.	Results	from	the	strong	motion	+	
strong	colour	condition	are	shown	in	Figure	
S6A,	where	the	model	successfully	captures	
the	pattern	of	error	for	colour	(data	points	
and	model	simulations	align	on	the	y-axis)	but	
under-predicts	the	rate	of	error	for	motion	
(particularly	for	the	motion	error	and	both	
error	conditions),	where	data	is	shifted	on	the	
x-axis.	This	occurs	because	the	lower	overall	
rate	of	colour	crowding	determines	the	
strength	of	crowding	for	both	features	(i.e.	
because	the	weighting	field	for	colour	has	a	
lower	peak	value,	it	drives	performance	when	
the	minimum	crowding	value	is	taken).	The	
model	fares	even	worse	in	the	weak	motion	+	
strong	colour	condition	(Figure	S6B)	where	
the	reduction	in	crowding	for	motion	predicts	
that	responses	should	be	predominantly	
correct	on	both	features.	The	low	rate	of	
errors	in	this	case	is	driven	by	the	large	
direction	difference,	which	gives	a	low	weight	
that	is	then	applied	to	both	motion	and	colour.	
The	model	similarly	fails	to	predict	sufficient	
errors	in	the	strong	motion	+	weak	colour	
condition	(Figure	S6C)	given	the	reduced	
weights	for	colour	that	are	equally	applied	to	
motion.	Altogether,	the	model	fails	to	capture	
the	errors	made	by	observers.

	

Table	S3.	Best-fitting	free	parameter	values	for	combined	all-or-none	models	of	crowding	used	to	simulate	the	data	of	
Experiment	3,	which	either	take	the	minimum	(‘Min.	weight’)	or	maximum	(‘Max.	weight’)	weights	for	crowding	on	
both	features.		

Parameter	 Min.	weight	 Min.	weight	
(no	inhibition)	

Max.	weight	 Max.	weight	
(no	inhibition)	

Direction	noise	 0.0309	 0.0365	 0.0120	 0.0192	
Colour	noise	 0.0114	 0.0101	 0.0062	 0.0090	
Late	noise	 0.0634	 0.0121	 0.0948	 0.1879	
	

It	is	possible	that	part	of	the	failure	of	this	
combined	mechanism	could	reflect	
differences	in	the	underlying	populations	of	
detectors.	Most	notably,	the	population	of	
motion	detectors	involves	both	excitatory	and	
inhibitory	interactions	whereas	colour	
interactions	are	purely	excitatory.	We	
therefore	set	these	inhibitory	values	to	zero	
for	both	populations	and	associated	weighting	

fields	and	re-fit	the	combined	mechanism,	
again	taking	the	minimum	weight	for	each	
feature	as	above.	Best-fitting	parameters	for	
this	model	are	shown	in	Table	S2,	listed	as	
‘Min.	Weight.	(no	inhibition)’,	and	the	output	
of	this	model	plotted	against	data	in	Figure	S6,	
panels	A-C	(diamonds).	The	model	performs	
similarly	to	the	combined	model	with	
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inhibition	and	again	fails	to	predict	the	
dissociable	errors	produced	by	our	observers.		

We	next	consider	a	combined	model	where	
flanker	weights	were	taken	as	the	maximum	
value	obtained	from	the	weighting	fields	for	
motion	and	colour.	Here,	if	crowding	was	
strong	in	either	feature	then	it	was	strong	in	
both.	The	model	was	otherwise	identical	to	
that	described	above.	Beginning	with	a	model	
that	includes	the	inhibitory	parameters	for	
the	motion	population,	best-fitting	
parameters	are	shown	in	Table	S3,	listed	as	
‘Max.	weight’.		

The	output	of	this	model	is	shown	in	Figure	
S6D	for	the	strong	motion	+	strong	colour	
condition	(squares).	Here	the	all-or-none	
model	does	well	because	the	strength	of	
crowding	is	strong	in	both	features,	driven	
primarily	by	the	higher	weights	for	motion	
crowding.	Interestingly,	the	model	also	
performs	well	in	the	weak	motion	+	strong	
colour	condition	(Figure	S6E),	matching	the	
high	degree	of	colour	errors	with	a	reduction	
in	motion	errors.	Model	outputs	do	however	
diverge	in	the	strong	motion	+	weak	colour	
condition	(Figure	S6F),	where	the	model	
predicts	a	high	degree	of	errors	in	both	
features,	contrary	to	the	observed	reduction	
in	colour	errors	for	our	observers.		

The	ability	of	the	model	to	mimic	independent	
processes	in	the	weak	motion	+	strong	colour	
condition	is	primarily	due	to	differences	in	the	
stimuli	used	for	these	features.	Note	that	
model	inputs	for	the	strong	crowding	

conditions	were	±15°	for	direction	and	±30°	
for	hue	(matching	the	values	used	for	our	
observers).	With	the	same	weight	applied	to	
both	features,	the	larger	difference	for	the	hue	
values	has	a	greater	‘pull’	on	the	target	
response	distribution	(particularly	given	the	
broad	tuning	of	detectors	in	these	
populations),	increasing	the	chance	of	errors	
for	colour.	This	can	be	seen	in	the	strong	
motion	+	strong	colour	condition,	where	
colour	errors	are	higher	than	motion	errors	in	
the	both	differ	condition	(with	both	driven	by	
the	±15°	direction	weights).	In	the	weak	
motion	+	strong	colour	condition,	the	higher	
likelihood	of	these	colour	errors	therefore	
pushes	responses	into	the	‘colour	errors’	
quadrant,	despite	the	overall	reduction	in	
weights	(given	the	lower	±30°	colour	weights	
here).	In	contrast,	the	strong	motion	+	weak	
colour	condition	is	driven	by	higher	weight	
values	(again	given	the	smaller	difference	for	
flanker	directions	than	for	hues),	pushing	
errors	back	into	the	‘both	errors’	quadrant.	In	
other	words,	the	asymmetric	performance	of	
these	maximum-probability	models	is	driven	
by	the	different	flanker	values	selected	for	
motion	and	colour.	Indeed,	running	these	
models	with	identical	values	for	both	features	
produces	a	more	symmetric	output	where	the	
model	either	responds	with	errors	for	both	
features	or	neither.	Nonetheless,	although	the	
best-fitting	parameters	could	mimic	an	
independent	model	in	some	conditions,	the	
same	model	necessarily	fails	in	others.	
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Figure	S6.	Simulations	of	the	data	in	Experiment	3	by	combined	models	of	crowding.	As	in	Figure	3,	each	panel	plots	
the	percent	correct	for	the	target	direction	on	the	x-axis	and	target	hue	on	the	y-axis.	Colours	show	the	4	target-flanker	
match	cases:	where	the	2AFC	sign	in	each	feature	matches	for	both	(red	points),	where	the	motion	differs	(green),	the	
colour	alone	differs	(blue),	or	both	differ	(purple).	Data	points	from	Experiment	3	are	shown	as	circles	with	reduced	
opacity.	Model	outputs	are	shown	for	combined	models	taking	the	minimum	(left	panels)	or	maximum	(right)	weight	
across	the	two	features.	In	each	case	models	are	compared	with	inhibitory	parameters	(squares),	without	(diamonds),	
or	with	a	common	weighting	field	(triangles).	All	points	show	the	mean	±1	SEM.	Panels	A.	and	D.	show	data	and	
simulations	for	the	strong	motion	+	strong	colour	crowding	condition.	Panels	B.	and	E.	show	the	weak	motion	+	strong	
colour	crowding	condition.	Panels	C.	and	F.	show	the	strong	motion	+	weak	colour	condition.		

As	with	the	minimum-weight	models	above,	
we	also	re-fit	this	model	with	all	inhibitory	
parameters	set	to	zero.	Best-fitting	
parameters	are	shown	in	Table	S3,	with	
outputs	shown	in	Figure	S6	(diamonds).	
Removing	inhibition	does	not	improve	the	
performance	of	the	model.	

Finally,	it	is	possible	that	these	combined	
models	underperformed	because	the	
weighting	field	for	each	feature	dimension	
had	distinct	parameters,	as	carried	forward	
from	Experiments	1	and	2	(despite	the	same	
value	being	applied	to	both	features	on	each	
trial).	We	therefore	developed	a	model	with	a	
common	weighting	field,	using	an	additional	
two	free	parameters	to	fit	the	peak	and	SD	
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values	of	the	weights	to	the	data	from	
Experiment	3.	To	simplify	this	approach	and	
reduce	the	number	of	free	parameters,	
inhibitory	parameters	were	set	to	zero	for	
these	models.	Even	with	a	common	weighting	
field,	we	still	need	to	take	either	the	minimum	
or	maximum	weight	derived	from	the	two	
features	in	order	to	determine	whether	

crowding	is	maintained	or	released	for	both	
when	discrepancies	arise.	We	thus	simulated	
both	minimum-	and	maximum-weight	
models.	Remaining	model	details	were	as	in	
the	other	versions	of	this	model,	as	was	the	
fitting	procedure.	Best-fitting	values	of	the	5	
free	parameters	in	these	two	models	are	
shown	in	Table	S4.		

Table	S4.	Best-fitting	free	parameter	values	for	the	combined	all-or-none	models	of	crowding	with	a	single	weighting	
field	to	simulate	the	data	of	Experiment	3.	Parameters	are	shown	for	one	model	that	takes	the	minimum	flanker	weight	
from	the	weighting	field	for	the	two	features	and	another	that	takes	the	maximum.	

Parameter	 One	weighting	field		
(minimum	weight)	

One	weighting	field		
(maximum	weight)	

Direction	noise	 0.0321	 0.0229	
Colour	noise	 0.0061	 0.0021	
Late	noise	 0.1267	 0.0638	
Weight	Field	SD	 103.4573	 31.2702	
Weight	Field	Peak	 0.5223	 0.3126	
	

Consider	first	the	minimum	weight	model	
with	a	common	weight	field,	whose	output	is	
shown	in	the	left	panels	of	Figure	S6	
(triangles).	In	the	strong	motion	+	strong	
colour	crowding	condition	(Figure	S6A),	the	
model	performs	well	because	the	weights	
selected	for	both	features	are	high.	Note	that	
percent	correct	performance	for	each	feature	
again	differs	because	the	larger	difference	in	
the	flanker	hues	(±30°)	has	a	greater	‘pull’	on	
the	target	response	distribution	for	hue	than	
does	the	direction	difference	(±15°).	This	
carries	through	to	the	weak	motion	+	strong	
colour	condition	(Figure	S6B),	where	the	
model	comes	closer	to	capturing	the	
predominance	of	colour	errors	than	the	other	
minimum	weight	models	(though	still	
undershoots	by	around	15%	correct).	As	with	
the	other	minimum-probability	combined	
models,	the	predicted	error	rates	are	then	
vastly	underpredicted	in	the	strong	motion	+	
weak	colour	condition	(Figure	S6C)	given	the	
low	weights	derived	from	the	±150°	flanker	
differences	in	colour.		

The	maximum-weight	model	similarly	fails	to	
account	for	observers’	performance,	shown	in	
the	right	panels	of	Figure	S6	(triangles).	In	the	
strong	motion	+	strong	colour	crowding	

condition	(Figure	S6D),	the	model	performs	
relatively	well	but	under-predicts	the	rate	of	
motion	errors	given	the	low	overall	weighting	
field	for	this	model	(see	Table	S4).	In	the	weak	
motion	+	strong	colour	condition	(Figure	
S6E),	the	model	performs	as	well	as	other	
maximum-probability	models,	given	again	the	
greater	pull	of	the	±30°	flanker	differences	in	
hue.	The	overall	reduction	in	flanker	weights	
for	this	model	can	then	be	seen	in	the	strong	
motion	+	weak	colour	condition	(Figure	S6F)	
where	overall	errors	are	reduced	to	the	extent	
that	the	simulated	responses	fall	largely	
within	the	‘both	correct’	quadrant.	On	the	
whole,	the	model	again	fails	to	accurately	
capture	the	performance	of	our	observers.		

In	order	to	compare	these	models	more	
quantitatively,	1000	simulations	were	run	for	
each	of	the	above	2	independent	and	6	
combined	models.	In	each	case,	simulated	
responses	were	subtracted	from	the	mean	
percent	correct	data	in	Experiment	3	to	obtain	
squared	error	values.	Given	the	variation	in	
the	number	of	free	parameters,	the	Akaïke	
Information	Criterion	(AIC;	88)	was	computed	
for	model	comparison.	The	resulting	mean	
and	distribution	of	AIC	values	are	shown	in	
Figure	S7	for	each	model,	where	more	
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negative	values	indicate	better	fits	to	the	data.	
Although	some	variants	of	the	combined	
model	perform	well	in	selected	conditions,	the	
independent	models	vastly	outperform	the	
combined	models.	Altogether	then,	both	our	
behavioural	evidence	and	the	outcome	of	
these	simulations	point	to	independent	

crowding	effects	that	disrupt	the	domains	of	
motion	and	colour.		

MATLAB	code	for	all	of	the	models	described	
in	this	manuscript	is	available	at	
http://github.com/eccentricvision	under	
MotionColourCrowdModels.		

	
Figure	S7.	Akaike	Information	Criterion	(AIC)	values	derived	from	the	best-fitting	independent	and	combined	models	
of	crowding.	Each	distribution	shows	the	AIC	value	for	1000	simulations	of	the	experiment	with	each	model,	where	the	
width	of	the	distribution	indicates	the	frequency	of	the	AIC	value	and	circles	show	the	mean	AIC	value.	Two	
independent	models	are	shown	–	one	is	the	form	shown	in	Figure	3	of	the	main	text,	the	second	excludes	the	inhibitory	
parameters	in	the	direction-selective	population.	All	6	combined	models	show	more	positive	AIC	values,	indicating	
worse	fits.	This	is	true	for	the	combined	models	taking	the	minimum	or	maximum	weight,	those	with	or	without	
inhibition,	and	those	with	a	specifically	fit	weighting	field.		
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