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Abstract—Network topology plays an important role in many
network operations. However, it is very difficult to obtain
the topology of public networks due to the lack of internal
cooperation. Network tomography provides a powerful solution
that can infer the network routing topology from end-to-end
measurements. Existing solutions all assume that routes from a
single source form a tree. However, with the rapid deployment
of Software Defined Networking (SDN) and Network Function
Virtualization (NFV), the routing paths in modern networks are
becoming more complex. To address this problem, we propose
a novel inference problem, called the weight inference problem,
which infers the finest-granularity information from end-to-end
measurements on general routing paths in general topologies.
Our measurements are based on emulated multicast probes with
a controllable “width”. We show that the problem has a unique
solution when the multicast width is unconstrained; otherwise,
we show that the problem can be treated as a sparse approx-
imation problem, which allows us to apply variations of the
pursuit algorithms. Simulations based on real network topologies
show that our solution significantly outperforms a state-of-the-
art network tomography algorithm, and increasing the width of
multicast substantially improves the inference accuracy.

I. INTRODUCTION

Topology information is at the foundation of many network
operations such as path selection, service placement, overlay
construction, and load balancing. Meanwhile, for public net-
works such as the Internet, it is very hard to obtain the global
topology information as such information is distributed across
multiple service providers. While there have been several
experimental projects to map the Internet, e.g., Skitter [1],
Archipelago [2], and Rocketfuel [3], these projects heavily
rely on measurement primitives (e.g., traceroute) and
data feeds (e.g., BGP tables, DNS records), which require
cooperation of the target network. However, due to security
concerns, an increasing fraction of service providers start to
block traceroute [4], [5] or even return false measure-
ments [6].

Alternatively, it is known that end-to-end performance mea-
surements can reveal topology information. Techniques known
as network tomography have been developed to infer the
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network routing topology from end-to-end measurements such
as delays and losses, e.g., [7], [8] and followups. However, all
the existing solutions are designed for traditional communi-
cation networks, where probes from each source follow an
(unknown) routing tree.

The tree assumption causes existing network tomography
solutions to severely underestimate the complexity of modern
communication networks, where technologies like Software
Defined Networking (SDN) [9] and Network Function Virtu-
alization (NFV) [10] can generate complex non-tree routing
topologies. For example, the generalized forwarding rules
in SDN allow probes with the same source and destination
to follow different paths, and the requirement of service
chains in NFV can cause certain probes to deviate from their
default routing paths. This triggers a research question: Can
we still infer useful topology information from end-to-end
measurements in networks with general (possibly non-tree)
routing topologies?

In this work, we take a first step towards answering this
question by inferring the network’s internal performance at
the “finest granularity” (see Section II-C), which provides
valuable information about the routing topology.

A. Related Work

Network (topology) tomography was initially studied based
on multicast probing [7], [8], where correlation among probes
is used to infer the multicast tree. Unicast-based solutions
were also developed, using stripes of back-to-back unicast
probes [11], [12] or “sandwiches” of small and large probes
[13]. It was shown in [14] that one can use stripes of unicast
probes to emulate multicast.

Only a few works considered non-tree topologies. Solutions
in [15], [16] still constructed trees, except that the accuracy
was analyzed with respect to a non-tree ground truth. So-
lutions in [17], [18], [19], [20] merged 2-by-2 topologies
(i.e., quartets) depicting the connections between two sources
and two destinations, and a similar idea was used in [21]
by merging 1-by-3 topologies. However, all these solutions
assumed that routes from/to each node form a tree.

B. Summary of Contributions

To our knowledge, we are the first to investigate network
tomography for general topologies under general routing. Our
main contributions are:
1) We characterize the finest-granularity information, called



category weights (see Section II-C), that can be uniquely de-
termined from end-to-end measurements based on multicast.
2) We show that (i) if a multicast can involve all the paths (i.e.,
broadcast), then the solution of category weights is unique; (ii)
otherwise, the solution is not unique, but always has a sparse
approximation.
3) Our simulations show that (i) our solution based on sparse
approximation can significantly outperform a state-of-the-art
network tomography algorithm, and (ii) increasing the “width”
of multicast significantly improves the inference accuracy.

Roadmap. Section II formulates our problem. Section III
presents our multicast-based solution and analyzes its proper-
ties. Section IV evaluates our solution against a state-of-the-art
algorithm. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model the network (routing) topology as an edge-
weighted directed graph G = (V,E). Each vertex v ∈ V
represents a probing source, a probing destination, or a
branching/joining point between multiple measurement paths.
Each edge e ∈ E represents a connection between two
vertices, which may map to a sequence of links. Given an
edge e, let ue be its weight which can represent various
performance metrics as defined below. We use “edge” to refer
to a logical link (i.e., a connection), and “link” to refer to a
physical link.

In this work, we focus on loss-based weight. Specifically,
let αe be the probability for a probe to successfully traverse
edge e. Then its weight is defined as ue := − logαe [11]. This
weight has the properties that (i) it is non-negative, and (ii) the
sum weight over edges on a path or a set of simultaneously
probed paths can be measured, as explained in Section II-B.
This definition can be extended to other performance metrics,
e.g., by replacing αe by the no-queueing probability or the
congestion-free probability.

B. Observation Model

We measure the network from a given probing source
s, which can send probes on n different paths, e.g., using
different combinations of the header fields1. Let {p1, . . . , pn}
denote the entire set of measurement paths. To model gen-
eralized forwarding (in SDN) and service chain traversal (in
NFV), we allow the paths to be non-simple, i.e., a path can
traverse the same edge/vertex multiple times [22].

It is well-known [7], [8] that multicast probing is
particularly useful for topology inference. However, IP
multicast is not widely deployed, and SDN offers no support
of multicast out of the box [23]. Nevertheless, existing studies
[11], [12] have shown that stripes of k unicast probes sent
back to back on k paths can emulate multicast on these paths
(solutions therein are limited to k = 2). In this work, we use
this trick to emulate multicast, where k ∈ {1, . . . , n} =: [n]

1While it is possible for different headers to result in the same path, we
can easily detect this by sending back-to-back unicast probes with each of the
combinations in the header and measuring similarity in their performances.

is a design parameter. In the sequel, we call such an emulated
multicast a “k-cast”, and the parameter k the “width” of the
multicast. A “probe” refers to a k-cast probe, emulated by k
back-to-back unicast probes. For simplicity, we assume that
all the unicast probes in a k-cast probe experience the same
performance at shared edges. In practice, this is usually
a good approximation for small k, as the total duration
of transmitting k unicast probes is typically much smaller
than the duration of network congestion events [14]. We
leave evaluation of the approximation error to future work.

The power of k-cast is that it allows us to measure the
joint success probability on up to k paths. Let XC (C ⊆ [n],
0 < |C| ≤ k) be the indicator that all the unicast probes sent
back to back on paths {pi : i ∈ C} successfully reach their
destinations. Under the assumption that different edges exhibit
independent losses, we have

φC :=− log(Pr{XC=1}) = − log(
∏

e∈
⋃

i∈C pi

αe) =
∑

e∈
⋃

i∈C pi

ue. (1)

We define φC as the cast weight of a |C|-cast on paths {pi :
i ∈ C}. As we can estimate Pr{XC =1} by the fraction of
joint successes on paths {pi : i ∈ C} among all the k-cast
probes covering these paths, we can estimate φC consistently,
i.e., the estimated value converges to the true value as the
number of probes goes to infinity. Let C := {C ⊆ [n] : 0 <
|C| ≤ k} be the subsets of paths for which the cast weights
can be measured.

C. Weight Inference Problem

We are interested in inferring the edge weights from the
measured cast weights. However, instead of specifying the
weights of individual edges, the measurements can only
specify the weights at the level of (edge) categories. Each
category is a subset of edges, all traversed by the same set of
measurement paths, and we use the set of path indices to index
the category. That is, for A ⊆ [n] and A 6= ∅, category ΓA is
defined as {e ∈ E : e ∈ pi iff i ∈ A}. By this definition, we
have a total of 2n − 1 categories, which form a partition of
E. Let A := 2[n] \ {∅} (where 2[n] denotes the power set of
[n]). Let wA denote the sum of the weights of the edges in
category ΓA, referred to as category weight.

Definition 1. The weight inference problem aims at infer-
ring the category weights (wA)A∈A from the measured cast
weights (φC)C∈C .

The reason for targeting at category weights is that (i) they
represent the finest granularity of information that can be
inferred about edge weights, as the end-to-end performances
are invariant to variations in individual edge weights as long
as the category weights are fixed (as indicated by (2)), and
(ii) their relationship to the measurements is known even if
the topology is unknown. Specifically, by definition, we have∑

A∈A:A∩C 6=∅

wA = φC , ∀C ∈ C. (2)

Moreover, category weights provide valuable information
about the topology. If wA > 0, the paths in {pi : i ∈ A}
must share at least one edge. We can thus infer which paths
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w1=0.0440
w2=0.0815
w3=0.0794
w1,2=0.0071
w1,3=0.0066
w2,3=0.0363
w1,2,3=0.0175

(c) category weight

φ1 = w1 +w1,2+w1,3+w1,2,3 = 0.0752
φ2 = w2 +w1,2+w2,3+w1,2,3 = 0.1424
φ3 = w3 +w1,3+w2,3+w1,2,3 = 0.1398
φ1,2 = w1+w2+w1,2+w1,3+w2,3+w1,2,3 = 0.1930
φ1,3 = w1+w3+w1,2+w1,3+w2,3+w1,2,3 = 0.1909
φ2,3 = w2+w3+w1,2+w1,3+w2,3+w1,2,3 = 0.2284
φ1,2,3 = w1+w2+w3+w1,2+w1,3+w2,3+w1,2,3 = 0.2724

(d) cast weight (k = 3)

Fig. 1. An example network and the corresponding weight inference problem (inferring (c) from (d)).

share edges, which is very useful in constructing overlay paths
(e.g., in CDN) and planning backup paths, where disjoint
paths are desired to maximize throughput or resilience. There
are also algorithms to construct topologies that can explain all
the measurements based on category weights [24].

Example: Fig. 1 gives an illustrative example. The ground
truth topology shown in Fig. 1 (a) has 10 vertices and 11
edges. Suppose that source s can measure 3 paths in this
network, marked as p1, . . . , p3. The weight and category of
each edge are listed in Fig. 1 (b). For example, ue1 = 0.0175
means that packets have e−0.0175 = 98.27% chance to
successfully traverse edge e1 without being lost. Since p1,
p2, and p3 all traverse edge e1, the category for edge e1 is
{1, 2, 3}. The category weights we want to infer are shown
in Fig. 1 (c). For instance, w1 = ue5 + ue10 = 0.0440,
which is the sum weight of all the edges in category {1}.
Fig. 1 (d) lists all the cast weights that can be measured by
3-cast (ignoring measurement error), and their relationship to
the category weights according to (2). A few observations are
in order:

First, the linear system in Fig. 1 (d) has a full rank,
and hence we can uniquely determine the category weights
from 3-cast. Second, no tree-based solution can reconstruct
these category weights, as at most one of w1,2, w1,3,
and w2,3 can be non-zero in any rooted tree with three
leaves. Moreover, if we send bi-cast (i.e., k = 2), we can
only measure φ1, φ2, φ3, φ1,2, φ1,3, and φ2,3. The linear
system will not have a unique solution, and could give
a feasible solution like (w1, w2, w3, w1,2, w1,3, w2,3, w1,2,3)
= (0.0506, 0.0881, 0.0860, 0.0005, 0, 0.0297, 0.0241), which
differs from the ground truth.

III. WEIGHT INFERENCE ALGORITHMS

Written in vector form, the weight inference problem aims
at solving the linear system

D ·w = φ (3)
under the constraint

w ≥ 0, (4)
where w := (wA)A∈A, φ := (φC)C∈C , and D :=
(1A∩C 6=∅)C∈C,A∈A (1·: indicator function).

When k = n, the linear system has a unique solution.

Theorem III.1. If k = n, then (3) has a unique solution.

Proof. We will show that each wA (A ∈ A) is uniquely
determined by φ by an induction on |A|.

For |A| = 1, i.e., A = {i} (i ∈ [n]), (3) implies that
w{i} = φ[n] − φ[n]\{i}. (5)

For |A| = m > 1, suppose that wA′ is uniquely determined
by φ for all A′ ∈ A with |A′| ≤ m− 1. By (3), we have∑

A′∈A:A′⊆A

wA′ = φ[n] − φ[n]\A. (6)

By induction, terms on the left-hand side of (6) except for wA

are all uniquely determined by φ. Hence, wA is also uniquely
determined by φ. This completes the proof.

When k < n, the linear system (3) is underdetermined, and
hence there is no unique solution. To resolve the ambiguity,
we adopt the principle of Occam’s razor, i.e., preferring
the “simplest” solution over alternatives. In our context, the
simplest solution is the one with the fewest non-zero category
weights. As the number of non-zero-weight categories gives
a lower bound on the size of the inferred topology [24], this
objective helps to find the simplest topology that can explain
the measurements, and is consistent with the objectives in
[13], [21]. Then the weight inference problem becomes2

min ‖w‖0 (7a)
s.t. (3), (4). (7b)

Problem (7) is an instance of the sparse approximation
problem with noiseless observations [25]. Here we assume
that sufficiently many probes have been sent to accurately
measure the cast weights. Otherwise, we can easily incorpo-
rate measurement errors by relaxing (3) into an error bound.

Since such problems are generally NP-hard [26], approx-
imate solutions have been proposed. A popular solution is
basis pursuit (BP), which aims to minimize the `-1 norm,
i.e., min ‖w‖1. As the category weights are non-negative,
this objective becomes minimizing the sum weight over all
the categories, i.e., min

∑
A∈A wA, which is a linear program

(LP). We can thus apply existing LP solvers. In particular, we
find that the simplex method provides a guaranteed sparsity.

Theorem III.2. BP based on the simplex method provides a
solution to (7) with no more than

∑k
i=1

(
n
i

)
non-zero entries,

i.e., the solution is O(nk)-sparse if k = O(1).

Proof. Consider the polytope that forms the feasible region of
the problem, defined by (3), (4). Each vertex of the polytope
must satisfy 2n − 1 constraints with equality. Since there are
only

∑k
i=1

(
n
i

)
constraints in (3), at least 2n − 1−

∑k
i=1

(
n
i

)
2Here ‖ · ‖q (q ≥ 0) denotes the `-q norm.



Algorithm 1 Non-negative Matching Pursuit
1: Initialization: w = 0 and r = φ
2: while maxDTr > 0 do
3: l← arg maxDTr
4: wl ← wl +DT

l r
5: r ← φ−Dw
6: end while

of these equations are in the form of wA = 0. Hence, each
vertex has at most

∑k
i=1

(
n
i

)
non-zero entries. The conclusion

follows from the fact that the solution found by the simplex
method always lies on a vertex of the polytope.

The main challenge in applying this solution is the com-
plexity. Since the linear system (3) has 2n − 1 variables, the
worst-case complexity of the simplex method is exponential
in 2n − 1, which is super-exponential in the number of
measurement paths n.

To reduce the complexity, we borrow from the greedy
heuristics for sparse approximation problems, known as
matching pursuit (MP) and orthogonal matching pursuit
(OMP), both iteratively finding non-zero entries one at a time.
By default, however, these algorithms can produce negative
solutions, as the original sparse approximation problem does
not have the nonnegativity constraint (4). Only a couple of
works have discussed how to extend the pursuit algorithms
for non-negative sparse approximation problems [27], [28].
Below we summarize them in the context of our problem.

Non-negative matching pursuit (nMP): Just like the original
MP, nMP is a greedy algorithm that iteratively updates one
variable at a time, as in Algorithm 1. Here r denotes the
residual φ − Dw, and Dl denotes the l-th column in D
(called an atom). The difference from MP is that instead of
selecting the most correlated atom, i.e., l ← arg max |DTr|
(| · | takes absolute values for each element), nMP selects the
most positively correlated atom as in line 3 of Algorithm 1.

Non-negative orthogonal matching pursuit (nOMP): MP
has several drawbacks, e.g., the solution may not provide
the best approximation using the selected atoms, and the
same atom may be selected repeatedly, which slows down
the convergence. OMP is designed to eliminate these issues
at the cost of more complex computation, by computing an
orthogonal projection onto the selected atoms using least
square programming. Similarly, as shown in Algorithm 2,
nOMP updates the solution using non-negative least square
programming arg minx≥0 ‖φ − DLx‖2 (line 5 of Algo-
rithm 2), where L denotes the set of indices of the selected
atoms, DL the sub-matrix of D formed by these atoms, and
wL the sub-vector of w with indices in L.

Remark: We note that since our problem (7) has O(2n)
variables, even greedy algorithms like nMP and nOMP have
a complexity that is exponential in n, the number of measure-
ment paths. This is likely to be the inherent complexity of
our problem, as in the language of sparse approximation, our
problem has an exponentially large “dictionary”.

Algorithm 2 Non-negative Orthogonal Matching Pursuit
1: Initialization: L = ∅, w = 0 and r = φ
2: while maxDTr > 0 do
3: l← arg maxDTr
4: L← L ∪ {l}
5: wL ← arg minx≥0 ‖φ−DLx‖2
6: r ← φ−DLwL

7: end while

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithms
(BP based on the simplex method, nMP, and nOMP) against a
state-of-the-art topology inference algorithm in terms of their
performance for the weight inference problem.

Benchmark: As we are the first to study the weight in-
ference problem, we use a state-of-the-art topology infer-
ence algorithm as the benchmark, and deduce the category
weights from the inferred topology and paths. The algorithm
is called Rooted Neighbor-Joining (RNJ) [11], which infers a
tree topology using bi-cast probing, and is guaranteed to be
accurate when the ground truth topology is a canonical tree.

Simulation setting: Our simulation is conducted on Internet
Service Provider (ISP) topologies from the Rocketfuel project
[3], which are router-level topologies collected from diverse
ISPs. In our experiment, we choose topology AS6461, which
represents the ISP Abovenet in US with 182 vertices and 294
edges. The weight of each edge is uniformly distributed in
[0.005, 0.05], which means that the success rate of each edge
ranges from 95.12% to 99.50%.

In our simulation, we randomly choose destinations from
nodes with degree ≤ 2, and the source from nodes with
degree ≥ 6. To create sufficiently complex paths, we randomly
choose a sequence of 8 to 10 nodes with degree ≥ 6
(excluding the source node) as waypoints a path must traverse
(in the specified order), which can represent locations of
the required network functions. We use Dijkstra’s algorithm
to route between consecutive waypoints, which generates
piecewise shortest paths with an average length of 30 hops.
All our results are averaged over 300 Monte Carlo runs.

All algorithms are implemented in Matlab. The non-
negative least square program in nOMP (line 5 of Algo-
rithm 2) is solved by CPLEX.

Performance measure: We measure the performance of in-
ferring ρ by ρ̂ by the relative error, defined as ‖ρ̂−ρ‖2/‖ρ‖2.
If ρ is the vector of true cast weights and ρ̂ is the estimated
value, this is the measurement error3. If ρ is the vector of
estimated cast weights and ρ̂ is the value computed from the
inferred category weights by (2), this is the reconstruction
error. If ρ is the vector of true category weights and ρ̂ is the
inferred value, this is the inference error.

Bi-cast accuracy: We first set k = 2 (bi-cast) to compare
our algorithms with RNJ. We fix the number of bi-cast probes
to 10000 and vary the number of paths n. The probes are

3Actually, the measurement error is the error in estimating cast weights
from raw measurements. We refer to it as the “measurement error” to
differentiate from the “inference error” in estimating the category weights.
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Fig. 2. Relative error as the number of paths n varies (k = 2, 10000 k-cast
probes).

evenly distributed among the
(
n
2

)
path pairs. To solve (7), we

apply BP (simplex), nMP, and nOMP, respectively.
Fig. 2 (a) shows that the error of estimating the true

cast weights φ from raw measurements (i.e., loss indicators)
increases with the increase of n, due to the decrease in the
number of probes per pair of paths. Note that the measurement
error is independent of the weight inference algorithm.

After we infer the category weights ŵ from the measured
cast weights φ̂, we compare the cast weights φ̃ reconstructed
from ŵ to the input φ̂ in Fig. 2 (b). We find that: (i) our
proposed nOMP approach performs the best in reconstruction,
followed by the simplex method, RNJ, and nMP; (ii) none of
these methods reconstruct the measured cast weights perfectly,
because measurement error prevents the linear system from
having a feasible solution. The poor performance of nMP and
RNJ is because nMP has known limitations (see discussions
about Algorithm 2), and RNJ is limited to tree topologies,
resulting in missing categories.

Fig. 2 (c) shows the error in inferring the category weights
w. Our proposed nOMP approach has the highest accuracy
among all the evaluated algorithms, followed closely by the
simplex method. nMP still performs poorly. RNJ achieves a
higher accuracy, especially when n is very small (e.g., 3 or
4). This is because in this case the paths are likely to form a
tree, and RNJ can infer the category weights in trees correctly.
As expected, the inference error increases with the number of
paths for all the algorithms due to the increasing error in the
input (Fig. 2 (a)).

Fig. 2 (d) shows that the simplex method differs signifi-
cantly from nOMP in running time. As n grows, the running
time of the simplex method grows much faster than the
other algorithms. This makes nOMP more attractive as it can
achieve similar accuracy with a much shorter running time4.

4For a fair comparison with the Matlab-based implementation of
the other algorithms, we used a Matlab-based implementation of the
simplex method available at https://www.12000.org/my_notes/
simplex/index.htm. Although faster implementation exists, the simplex
method will eventually be the slowest due to its super-exponential complexity.
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Fig. 3. Relative error as k and the number of k-cast probes vary (n = 5).

K-cast accuracy: We then evaluate the impact of multicast
width k and the rate of convergence with respect to the number
of probes. In this simulation, we fix n = 5 and vary k from 2
to 5. We send 10000 k-cast probes for each value of k, evenly
distributed among all subsets containing k paths. At 100, 200,
300, 600, 1000, 2000, 4000 and 10000 probes, we estimate
the cast weights φ, and use the estimates to infer the category
weights w by nOMP method. For k = 2, we also compare
our results with the category weights inferred by RNJ.

Fig. 3 (a) shows the error in estimating the cast weights
φ (i.e., measurement error). Given the number of k-cast
probes, the measurement error decreases as we increase k.
For example, the error is below 5% if we send 1000 5-cast
probes, but it is above 10% if we send 1000 2-cast or 3-cast
probes. This is because the absolute number of packets sent
on each path increases (linearly) with k.

Fig. 3 (b) shows the error of inferring category weights w.
These curves show the same trend as the curves in Fig. 3 (a),
but with much larger gaps. In particular, the error remains
large when k < n, even with a very large number of probes,
since in these cases the weight inference problem does not
have a unique solution. While the proposed algorithms can
find a feasible solution, it may not be the closest approxima-
tion to the ground truth. Nevertheless, increasing k still helps
to reduce the error due to having more constraints. When
k = n, we have a unique solution, which equals the ground
truth if there is no measurement error. With measurement
error, this plot shows that n-cast still significantly outperforms
the other k-casts (k < n), e.g., 5-cast reduces the error of 4-
cast by 80% at 10000 probes. These plots show the importance
of (emulating) broadcast in inferring general topologies.

Breakdown of error: From the previous simulation, we have
seen that increasing k leads to a more accurate estimation of
φ. On one hand, when k increases, we send more packets
in one k-cast probe, which means that we actually collect
more information from each path, resulting in the increase
of the accuracy. On the other hand, when k increases, the
dimension of φ increases. For instance, when k = 2 and
n = 5, the dimension of φ is 15. However, if k = 5 and
n = 5, the dimension of φ becomes 31. The increase of
the dimension implies more unknown values to estimate. To
understand the exact impact of k, we analyze the measurement
error for each type of cast weights. To this end, we define a
vector ψi := (φA)|A|=i to represent the weights of i-casts. For
k ≥ i, each k-cast probe also provides an i-cast measurement
for each subset of i of the k probed paths, and hence we can
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Fig. 4. Breakdown of measurement error (n = 5, 1000 k-cast probes).

TABLE I
NUMBER OF PROBES FOR EACH ELEMENT IN ψi

ψ1 ψ2 ψ3 ψ4 ψ5

2-cast 400 100 0 0 0
3-cast 600 300 100 0 0
4-cast 800 600 400 200 0
5-cast 1000 1000 1000 1000 1000

estimate ψi from k-cast probes for any k ≥ i. We break down
the measurement error into the errors in estimating each ψi

(i ≤ k), as shown in Fig. 4. The variation in these errors
is mainly caused by the different numbers of probes used to
estimate each element in ψi. To be precise, Table I gives
the number of (effective) i-cast probes for estimating each
element in ψi.

We see that as k increases, the error in estimating each ψi

decreases, accompanied by an increase in the number of i-cast
probes. Our results indicate that the error for estimating each
ψi strongly depends on the number of probes.

V. CONCLUSION

Motivated by the complex forwarding behaviors in SDN
and NFV, we revisit the problem of inferring routing topolo-
gies from end-to-end measurements, under a new assumption
that the underlying routing paths may not follow routing
trees. As a first step towards solving this problem, we
formulate the weight inference problem to infer the finest-
granularity information about edge weights from multicast
probes. Modeling the problem as a linear system, we show that
the problem has a unique solution when using unconstrained
multicast (i.e., broadcast), and a sparse approximation when
using constrained multicast. Our empirical evaluations show
that applying sparse approximation algorithms to our problem
can yield much higher reconstruction and inference accuracy
than a state-of-the-art network tomography algorithm. We also
find that increasing the width of multicast can significantly
improve the inference accuracy. Our result is in sharp contrast
to the existing result on inferring tree topologies, where bi-cast
probing suffices for reconstructing the ground truth [11].
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