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Abstract

Groups of humans are often able to find ways to cooperate with one another
in complex, temporally extended social dilemmas. Models based on behavioral
economics are only able to explain this phenomenon for unrealistic stateless matrix
games. Recently, multi-agent reinforcement learning has been applied to generalize
social dilemma problems to temporally and spatially extended Markov games.
However, this has not yet generated an agent that learns to cooperate in social
dilemmas as humans do. A key insight is that many, but not all, human individuals
have inequity averse social preferences. This promotes a particular resolution of
the matrix game social dilemma wherein inequity-averse individuals are personally
pro-social and punish defectors. Here we extend this idea to Markov games and
show that it promotes cooperation in several types of sequential social dilemma,
via a profitable interaction with policy learnability. In particular, we find that
inequity aversion improves temporal credit assignment for the important class
of intertemporal social dilemmas. These results help explain how large-scale
cooperation may emerge and persist.

1 Introduction
In intertemporal social dilemmas, there is a tradeoff between short-term individual incentives and
long-term collective interest. Humans face such dilemmas when contributing to a collective food
storage during the summer in preparation for a harsh winter, organizing annual maintenance of
irrigation systems, or sustainably sharing a local fishery. Classical models of human behavior based
on rational choice theory predict that cooperation in these situations is impossible [1, 2]. This poses
a puzzle since humans evidently do find ways to cooperate in many everyday intertemporal social
dilemmas, as documented by decades of fieldwork [3, 4] and laboratory experiments [5, 6]. Providing
an empirically grounded explanation of how individual behavior gives rise to societal cooperation is
seen as a core goal in several subfields of the social sciences and evolutionary biology [7, 8, 9].

[10, 11] proposed influential models based on behavioral game theory. However, these models have
limited applicability since they only generate predictions when the problem can be cast as a matrix
game (see e.g. [12, 13]). Here we consider a more realistic video-game setting, like those introduced
in the behavioral research of [14, 15, 16]. In this environment, agents do not simply choose to
cooperate or defect like they do in matrix games. Rather they must learn policies to implement their
strategic decisions, and must do so while coping with the non-stationarity arising from other agents
learning simultaneously. Several papers used multi-agent reinforcement learning [17, 18, 19] and
∗Equal contribution.
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planning [20, 21, 22, 23] to generate cooperation in this setting. However, this approach has not yet
demonstrated robust cooperation in games with more than two players, which is often observed in
human behavioral experiments. Moreover naïvely optimizing group reward is also ineffective, due to
the lazy agent problem [24].†

It is difficult for both natural and artificial agents to find cooperative solutions to intertemporal social
dilemmas for the following reasons:

1. Collective action – individuals must learn and coordinate policies at a group level to avoid
falling into socially deficient equilibria.

2. Temporal credit assignment – rational defection in the short-term must become associated
with long-term negative consequences.

Many different research traditions, including economics, evolutionary biology, sociology, psychology,
and political philosophy have all converged on the idea that fairness norms are involved in resolving
social dilemmas [25, 26, 27, 28, 29, 30, 31]. In one well-known model, agents are assumed to have
inequity-averse preferences [10]. They balance their selfish desire for individual rewards against a
need to keep deviations between their own rewards and the rewards of others as small as possible.
Inequity-averse individuals are able to solve social dilemmas by resisting the temptation to pull ahead
of others or—if punishment is possible—by punishing and discouraging free-riding. The inequity
aversion model has been successfully applied to explain human behavior in a variety of laboratory
economic games, such as the ultimatum game, the dictator game, the gift exchange game, market
games, the trust game and public goods [32, 33].‡

In this research, we generalize the inequity aversion model to Markov games, and show that it
resolves intertemporal social dilemmas. Crucial to our analysis will be the distinction between
disadvantageous inequity aversion (negative reward received by individuals who underperform
relative to others) and advantageous inequity aversion (negative reward received by individuals who
overperform relative to others). Colloquially, these may be thought of as reductionist models of envy
(disadvantageous inequity aversion) and guilt (advantageous inequity aversion) respectively [36]. We
hypothesise that these directly address the two challenges set out above in the following way.

Inequity aversion mitigates the problem of collective action by changing the effective payoff structure
experienced by agents through both a direct and an indirect mechanism. In the direct mechanism,
defectors experience advantageous inequity aversion, diminishing the marginal benefit of defection
over cooperation. The indirect mechanism arises when cooperating agents are disadvantageous-
inequity averse. This motivates them to punish defectors by sanctioning them, reducing the payoff
incentive for free-riding. Since agents must learn a defecting strategy via exploration, initially
cooperative agents are deterred from switching strategies if the payoff bonus does not outweigh the
cost of inefficiently executing the defecting strategy while learning.

Inequity aversion also ameliorates the temporal credit assignment problem. Learning the association
between short-term actions and long-term consequences is a high-variance and error-prone process,
both for animals [37] and reinforcement learning algorithms [38]. Inequity aversion short-circuits
the need for such long-term temporal credit assignment by acting as an “early warning system” for
intertemporal social dilemmas. As before, both a direct and an indirect mechanism are at work.
With the direct mechanism, advantageous-inequity-averse defectors receive negative rewards in the
short-term, since the benefits of defection are delivered on that timescale. The indirect mechanism
operates because cooperators experience disadvantageous inequity aversion at precisely the time
when other agents defect. This leads cooperators to punish defectors on a short-term timescale.
Both systems have the effect of operant conditioning [39], incentivizing agents that cannot resolve
long-term uncertainty to act in the lasting interest of the group.

2 Reinforcement learning in sequential social dilemmas
2.1 Partially observable Markov games
We consider multi-agent reinforcement learning in partially-observable general-sum Markov games
[40, 41]. In each game state, agents take actions based on a partial observation of the state space and
†For more detail on the motivations for our research program, see the supplementary information.
‡For alternative theories of the other-regarding preferences that may underlie human cooperative behavior in

economic games, see [34, 35].
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Figure 1: Screenshots from (A) the Cleanup game, (B) the Harvest game, (C) the Dictate apples
game, and (D) the Take apples and Give apples games. The size of the agent-centered observation
window is also shown in (B). The same size observation was used in all experiments.

receive an individual reward. Agents must learn through experience an appropriate behavior policy
while interacting with one another. We formalize this as follows.

Consider an N -player partially observable Markov gameM defined on a finite set of states S. The
observation function O : S × {1, . . . , N} → Rd specifies each player’s d-dimensional view on
the state space. From each state, players may take actions from the set A1, . . . ,AN (one for each
player). As a result of their joint action a1, . . . , aN ∈ A1, . . . ,AN the state changes following
the stochastic transition function T : S × A1 × · · · × AN → ∆(S) (where ∆(S) denotes the set
of discrete probability distributions over S). Write Oi = {oi | s ∈ S, oi = O(s, i)} to indicate
the observation space of player i. Each player receives an individual extrinsic reward defined as
ri : S ×A1 × · · · × AN → R for player i.§

Each agent learns, independently through its own experience of the environment, a behavior policy
πi : Oi → ∆(Ai) (written π(ai|oi)) based on its own observation oi = O(s, i) and extrinsic reward
ri(s, a1, . . . , aN ). For the sake of simplicity we will write ~a = (a1, . . . , aN ), ~o = (o1, . . . , oN )
and ~π(.|~o) = (π1(.|o1), . . . , πN (.|oN )). Each agent’s goal is to maximize a long term γ-discounted
payoff defined as follows:

V i~π(s0) = E

[ ∞∑
t=0

γtri(st,~at)|~at ∼ ~πt, st+1 ∼ T (st,~at)

]
. (1)

2.2 Learning agents
We deploy asynchronous advantage actor-critic (A3C) as the learning algorithm for our agents [42].
A3C maintains both value (critic) and policy (actor) estimates using a deep neural network. The
policy is updated according to the policy gradient method, using a value estimate as a baseline to
reduce variance. Gradients are generated asynchronously by 24 independent copies of each agent,
playing simultaneously in distinct instantiations of the environment. Explicitly, the gradients are
∇θ log π(at|st; θ)A(st, at; θ, θv), where A(st, at; θ, θv) is the advantage function, estimated via
k-step backups,

∑k−1
i=0 γ

iut+i + γkV (st+k; θv)− V (st; θv) where ut+i is the subjective reward. In
section 3.1 we decompose this into an extrinsic reward from the environment and an intrinsic reward
that defines the agent’s inequity-aversion.

2.3 Intertemporal social dilemmas
An intertemporal social dilemma is a temporally extended multi-agent game in which individual
short-term optimal strategies lead to poor long-term outcomes for the group. To define this term

§In our games, N = 5, d = 15× 15× 3 and |Ai| ranges from 8 to 10, with actions comprising movement,
rotation and firing.
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Figure 2: The public goods game (Cleanup) and the commons game (Harvest) are social dilemmas.
(A) shows the Schelling diagram for Cleanup. (B) shows the Schelling diagram for Harvest. The
dotted line shows the overall average return were the individual to choose defection.

precisely, we employ a formalization of empirical game theoretic analysis [43, 44]. Our definition
is consistent with that of [17]. However, since that work was limited to the 2-player case, it relied
on the empirical payoff matrix to represent the relative values of cooperation and defection. This
quantity is unwieldy for N > 2 since it becomes a tensor. Therefore we base our definition on a
different representation of the N -player game. Explicitly, a Schelling diagram [45, 18] depicts the
relative payoffs for a single cooperator or defector given a fixed number of other cooperators. Thus
Schelling diagrams are a natural and convenient generalization of payoff matrices to multi-agent
settings. Game-theoretic properties like Nash equilibria are readily visible in Schelling diagrams; see
[45] for additional details and intuition.

An N -player sequential social dilemma is a tuple (M,Π = Πc t Πd) of a Markov game and
two disjoint sets of policies, said to implement cooperation and defection respectively, satisfying
the following properties. Consider the strategy profile (π1

c , . . . , π
`
c, π

1
d, . . . , π

m
d ) ∈ Π`

c × Πm
d with

`+m = N . We shall denote the average payoff for the cooperating policies by Rc(`) and for the
defecting policies by Rd(`). A Schelling diagram plots the curves Rc(`+ 1) and Rd(`). Intuitively,
the diagram displays the two possible payoffs to the N th player given that ` of the remaining players
elect to cooperate and the rest defect. We say that (M,Π) is a sequential social dilemma iff the
following hold:

1. Mutual cooperation is preferred over mutual defection: Rc(N) > Rd(0).
2. Mutual cooperation is preferred to being exploited by defectors: Rc(N) > Rc(0).
3. Either the fear property, the greed property, or both:

• Fear: mutual defection is preferred to being exploited. Rd(i) > Rc(i) for sufficiently
small i.

• Greed: exploiting a cooperator is preferred to mutual cooperation. Rd(i) > Rc(i) for
sufficiently large i.

We show that the matrix games Stag Hunt, Chicken and Prisoner’s Dilemma satisfy these properties
in Supplementary Fig. 1.

A sequential social dilemma is intertemporal if the choice to defect is optimal in the short-term. More
precisely, consider an individual i and an arbitrary set of policies for the rest of the group. Given a
starting state, for all k sufficiently small, the policy πik ∈ Π with maximum return in the next k steps
is a defecting policy. There is thus a tension between short-term personal gain and long-term group
utility.

2.4 Examples
[46] divides all multi-person social dilemmas into two broad categories:

1. Public goods dilemmas, in which an individual must pay a personal cost in order to provide
a resource that is shared by all.

2. Commons dilemmas, in which an individual is tempted by a personal benefit, depleting a
resource that is shared by all.
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Figure 3: Advantageous inequity aversion facilitates cooperation in the Cleanup game. (A) compares
the collective return achieved by A3C and advantageous inequity averse agents, (B) shows contribu-
tions to the public good, and (C) shows equality over the course of training. (D-F) demonstrate that
disadvantageous inequity aversion does not promote greater cooperation in the Cleanup game.

We consider two dilemmas in this paper, one of the public goods type and one of the commons
type. Each was implemented as a partially observable Markov game on a 2D grid. Both are
also intertemporal social dilemmas because individually selfish actions produce immediate benefits
while their impacts on the collective develop over a longer time horizon. The availability of costly
punishment is of critical importance in human sequential social dilemmas [47, 48] and is therefore an
action in the environments presented here.¶

In the Cleanup game, the aim is to collect apples from a field. Each apple provides a reward of 1.
The spawning of apples is controlled by a geographically separate aquifer that supplies water and
nutrients. Over time, this aquifer fills up with waste, lowering the respawn rate of apples linearly. For
sufficiently high waste levels, no apples can spawn. At the start of each episode, the environment
resets with waste just beyond this saturation point. To cause apples to spawn, agents must clean some
of the waste.

Here we have a dilemma. Provided that some agents contribute to the public good by cleaning up the
aquifer, it is individually more rewarding to stay in the apple field. However, if all players defect,
then no-one gets any reward. A successful group must balance the temptation to free-ride with the
provision of the public good. Cooperative agents must make a positive commitment to group-level
well-being to solve the task.

The goal of the Harvest game is to collect apples. Each apple provides a reward of 1. The apple
regrowth rate varies across the map, dependent on the spatial configuration of uncollected apples: the
more nearby apples, the higher the local regrowth rate. If all apples in a local area are harvested then
none ever grow back. After 1000 steps the episode ends, at which point the game resets to an initial
state.

The dilemma is as follows. The short-term interests of each individual leads toward harvesting
as rapidly as possible. However, the long-term interests of the group as a whole are advanced if
individuals refrain from doing so, especially when many agents are in the same local region. Such
situations are precarious because the more harvesting agents there are, the greater the chance of
permanently depleting the local resources. Cooperators must abstain from a personal benefit for the
good of the group.‖

¶In both games, players can fine each other using a punishment beam. This contrasts with [18], in which a
timeout beam was used.
‖Precise details of the ecological dynamics may be found in the supplementary information.
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2.5 Validating the environments
We would like to demonstrate that these environments are social dilemmas by plotting Schelling dia-
grams. In complex, spatially and temporally extended Markov games, it is not feasible to analytically
determine cooperating and defecting policies. Instead, we must study the environment empirically.
One method employs reinforcement learning to train such policies. We enforce cooperation or
defection by making appropriate modifications to the environment, as follows.

In Harvest, we enforce cooperation by modifying the environment to prevent some agents from
gathering apples in low-density areas. In Cleanup, we enforce free-riding by removing the ability
of some agents to clean up waste. We also add a small group reward signal to encourage the
remaining agents to cooperate. The resulting empirical Schelling diagrams in Figure 2 prove that our
environments are indeed social dilemmas.

Figure 4: Inequity aversion promotes cooperation in the Harvest game. When all 5 agents have
advantageous inequity aversion, there is a small improvement over A3C in the three social outcome
metrics: (A) collective return, (B) apple consumption, and (C) sustainability. Disadvantageous
inequity aversion provides a much larger improvement over A3C, and works even when only 1
out of 5 agents are inequity averse. (D) shows collective return, (E) apple consumption, and (F)
sustainability.

3 The model
We first introduce the inequity aversion model of [10]. It is directly applicable only to stateless games.
We then extend their model to sequential or multi-state problems, making use of deep reinforcement
learning.

3.1 Inequity aversion
The [10] utility function is as follows. Let r1, . . . , rN be the extrinsic payoffs achieved by each of N
players. Each agent receives a utility

Ui(ri, . . . rN ) = ri −
αi

N − 1

∑
j 6=i

max (rj − ri, 0)− βi
N − 1

∑
j 6=i

max (ri − rj , 0) , (2)

where the additional terms may be interpreted as intrinsic payoffs, in the language of [49].

The parameter αi controls an agent’s aversion to disadvantageous inequity. A larger value for αi
implies a larger utility loss when other agents achieve rewards greater than one’s own. Likewise, the
parameter βi controls an agent’s aversion to advantageous inequity, utility lost when performing
better than others. [10] argue that α > β. That is, most people are loss averse in social comparisons.
There is some empirical support for this prediction [50], though the evidence is mixed [51, 52]. In a
sweep over values for α and β, we found our strongest results for α = 5 and β = 0.05.
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Figure 5: Inequity aversion promotes cooperation by improving temporal credit assignment. (A)
shows collective return for delayed advantageous inequity aversion in the Cleanup game. (B) shows
apple consumption for delayed disadvantageous inequity aversion in the Harvest game.

3.2 Inequity aversion in sequential dilemmas
Experimental work in behavioral economics suggests that some proportion of natural human pop-
ulations are inequity averse [8]. However, as a computational model, inequity aversion has only
been expounded for the matrix game setting. Equation (2) can be directly applied only to stateless
games [53, 54]. In this section we extend this model of inequity aversion to the temporally extended
Markov game case.

The main problem in re-defining the social preference of equation (2) for Markov games is that the
rewards of different players may occur on different timesteps. Thus the key step in extending (2) to
this case is to introduce per-player temporal smoothing of the reward traces.

Let ri(s, a) denote the reward obtained by the i-th player when it takes action a from state s. For
convenience, we also sometimes write it with a time index: rti := ri(s

t, at). We define the subjective
reward ui(s, a) received by the i-th player when it takes action a from state s to be

ui(s
t
i, a

t
i) = ri(s

t
i, a

t
i)−

αi
N − 1

∑
j 6=i

max(etj(s
t
j , a

t
j)− eti(sti, ati), 0) (3)

− βi
N − 1

∑
j 6=i

max(etj(s
t
i, a

t
i)− etj(stj , atj), 0) ,

where the temporal smoothed rewards etj for the agents j = 1, . . . , N are updated at each timestep t
according to

etj(s
t
j , a

t
j) = γλet−1j (st−1j , at−1j ) + rtj(s

t
j , a

t
j) , (4)

where γ is the discount factor and λ is a hyperparameter. This is analogous to the mathematical
formalism used for eligibility traces [55]. Furthermore, we allow agents to observe the smoothed
reward of every player on each timestep.

4 Results
We show that advantageous inequity aversion is able to resolve certain intertemporal social dilem-
mas without resorting to punishment by providing a temporally correct intrinsic reward. For this
mechanism to be effective, the population must have sufficiently many advantageous-inequity-averse
individuals. By contrast disadvantageous-inequity-averse agents can drive mutual cooperation even
in small numbers. They achieve this by punishing defectors at a time concomitant with their offences.
In addition, we find that advantageous inequity aversion is particularly effective for resolving public
goods dilemmas, whereas disadvantageous inequity aversion is more powerful for addressing com-
mons dilemmas. Our baseline A3C agent fails to find socially beneficial outcomes in either category
of game. We define the metrics used to quantify our results in the supplementary information.

4.1 Advantageous inequity aversion promotes cooperation
Advantageous-inequity-averse agents are better than A3C at maintaining cooperation in both public
goods and commons games. This effect is particularly pronounced in the Cleanup game (Figure 3).
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Here groups of 5 advantageous-inequity-averse agents find solutions in which 2 consistently clean
large amounts of waste, producing a large collective return.∗∗ We clarify the effect of advantageous
inequity aversion on the intertemporal nature of the problem by delaying the delivery of the intrinsic
reward signal. Figure 5 suggests that improving temporal credit assignment is an important function
of inequity aversion since delaying the time at which the intrinsic reward signal is delivered removes
its beneficial effect.

4.2 Disadvantageous inequity aversion promotes cooperation

Disadvantageous-inequity-averse agents are better than A3C at maintaining cooperation via pun-
ishment in commons games (Figure 4). In particular, a single disadvantageous-averse agent can
fine defectors, generating a sustainable outcome.†† In Figure 5, we see that the disadvantageous-
inequity-aversion signal must be temporally aligned with over-consumption for effective policing
to arise. Hence, it is plausible that inequity aversion bridges the temporal gap between short-term
incentives and long-term outcomes. Disadvantageous inequity aversion has no such positive impact
in the Cleanup game, for reasons that we discuss in section 5.

5 Discussion
In the Cleanup game, advantageous inequity aversion is an unambiguous feedback signal: it en-
courages agents to contribute to the public good. In the direct pathway, trial and error will quickly
discover that the fastest way to diminish the negative rewards arising from advantageous inequity
aversion is to clean up waste, since doing so creates more apples for others to consume. However the
indirect mechanism of disadvantageous inequity aversion and punishment lacks this property; while
punishment may help exploration of new policies, it does not directly increase the attractiveness of
waste cleaning.

The Harvest game requires passive abstention rather than active provision. In this setting, advan-
tageous inequity aversion provides a noisy signal for sustainable behaviour. This is because it is
sensitive to the precise apple configuration in the environment, which changes rapidly over time.
Hence advantageous inequity aversion does not greatly aid the exploration of policy space. Pun-
ishment, on the other hand, operates as a valuable shaping reward for learning, dis-incentivizing
overconsumption at precisely the correct time and place.

In the Harvest game, disadvantageous inequity aversion generates cooperation in a grossly ineffi-
cient manner: huge amounts of collective resource are lost to fines (compare Figures 4D and 4E).
This parallels human behavior in laboratory matrix games, e.g. [56, 57]. In the Cleanup game,
advantageous-inequity averse agents resolve the social dilemma without such losses, but must com-
prise a large proportion of the population to be successful. This mirrors the cultural modulation of
advantageous inequity aversion in humans [58]. Evolution is hypothesized to have favored fairness
as a mechanism for continued human cooperation [59]. It remains to be seen whether emergent
inequity-aversion can be obtained by evolving reinforcement learning agents.

We conclude by putting our approach in the context of prior work. Since our mechanism does not
require explicitly training cooperating and defecting agents or modelling their behaviour, it scales
more easily to complex environments and large populations of agents. However, our method has
several limitations. Firstly, our guilty agents are quite exploitable, as evidenced by the necessity of a
homogeneous guilty population to achieve cooperation. Secondly, our agents use outcomes rather
than predictions to inform their policies. This is known to be a problem in environments with high
stochasticity [22]. Finally, the heterogeneity of the population is an additional hyperparameter in our
model. Clearly, one must set this appropriately, particularly in games with asymmetric outcomes. It
is likely that a hybrid approach will be required to solve these challenging issues at scale.

∗∗For a video of this behavior, visit https://youtu.be/N8BUzzFx7uQ.
††For a video of this behavior, visit https://youtu.be/tz3ZpTTmxTk.
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A Supplementary information
A.1 Motivating research on emergent cooperation
The aims of this new research program are twofold. First, we seek to better understand the individual
level inductive biases that promote emergent cooperation at the group level in humans. Second,
we want to develop agents that exhibit these inductive biases, in the hope that they might navigate
complex multi-agent tasks in a human-like way. Much as the fields of neuroscience and reinforcement
learning have enjoyed a symbiotic relationship over the past fifty years, so also can behavioral
economics and multi-agent reinforcement learning.

Consider, for comparison, maximizing joint utility. Firstly, this assumes away the problem of
emergent altruism on the individual level, which is exactly our object of study. Therefore, it is not a
relevant baseline for our research. Moreover, it is known to suffer from a serious spurious reward
problem (Sunehag et al. 2017), which gets worse as the number of agents increases. Furthermore, in
realistic environments, one may not have access to the collective reward function, for privacy reasons
for example. Finally, groups of agents trained with a group reward are by definition overfitting
to the outcomes of their co-players. Thus maximizing joint utility does not easily generalize to
complicated multi-agent problems with large numbers of agents and subtasks that mix cooperation
and competition.

Individual-level inductive biases sidestep these issues, while allowing us to learn from the extensive
human behavioral literature. In this paper, we have taken an extremely well-studied model in the
game-theoretic setting (Fehr and Schmidt 1999) and recast it as an intrinsic reward for reinforcement
learning. We can thus evaluate the strengths and weaknesses of inequity aversion from a completely
new perspective. We note its success in solving social dilemmas, but find that the success is task-
conditional, and that the policies are sometimes quite exploitable. This suggests various fascinating
extensions, such as a population-based study with evolved intrinsic rewards (Wang et al. to appear).

A.2 Illustrative Schelling diagrams for 2-player matrix games and SSDs
Figure 1 shows Schelling diagrams and the associated payoff matrices for the canonical matrix games
Chicken, Stag Hunt and Prisoner’s Dilemma. We may read off the pure strategy Nash equilibria by
considering the social pressure generated by the dominant strategy. Where this is defection, then
there is a negative pressure on the number of cooperators; where this is cooperation, there is a positive
pressure. Hence the pure strategy Nash equilibria in Chicken are (c, d) and (d, c), in Stag Hunt (c, c)
and (d, d) and in Prisoner’s Dilemma (d, d). Moreover, the different motivations for defection are
immediately apparent. In Chicken, greed promotes defection: Rd(1) > Rc(1). In Stag Hunt, the
problem is fear: Rd(0) > Rc(0). Prisoner’s Dilemma suffers from both temptations to defect.

A.3 Parameters for Cleanup and Harvest games
In both Cleanup and Harvest, all agents are equipped with a fining beam which administers−1 reward
to the user and −50 reward to the individual that is being fined. There is no penalty to the user for
unsuccessful fining. In Cleanup each agent is additionally equipped with a cleaning beam, which
allows them to remove waste from the aquifer. In both games, eating apples provides a reward of 1.
There are no other extrinsic rewards.

In Cleanup, waste is produced uniformly in the river with probability 0.5 on each timestep, until
the river is saturated with waste, which happens when the waste covers 40% of the river. For a
given saturation x of the river, apples spawn in the field with probability 0.125x. Initially the river is
saturated with waste, so some contribution to the public good is required for any agent to receive a
reward.

In Harvest, apples spawn relative to the current number of other apples within an `1 radius of 2. The
spawn probabilities are 0, 0.005, 0.02, 0.05 for 0, 1, 2 and ≥ 3 apples inside the radius respectively.
The initial distribution of apples creates a number of more or less precariously linked regions.
Sustainable policies must preferentially harvest denser regions, and avoid removing the important
apples that link patches.

A.4 Social outcome metrics
Unlike in single-agent reinforcement learning where the value function is the canonical metric of
agent performance, in multi-agent systems with mixed incentives, there is no scalar metric that can
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Figure 6: These Schelling diagrams demonstrate that classic matrix games are social dilemmas by
our definition.

adequately track the state of the system (see e.g. [60, 18]). Thus we use several different social
outcome metrics in order to summarize group behavior and facilitate its analysis.

Consider N independent agents. Let {rit | t = 1, . . . , T} be the sequence of rewards obtained by
the i-th agent over an episode of duration T . Likewise, let {oit | t = 1, . . . T} be the i-th agent’s
observation sequence. Its return is given by Ri =

∑T
t=1 r

i
t.

The Utilitarian metric (U ), also known as collective return, measures the sum total of all rewards
obtained by all agents. It is defined as the average over players of sum of rewards Ri. The Equality
metric (E) is defined using the Gini coefficient [61]. The Sustainability metric (S) is defined as the
average time at which the rewards are collected. For the Cleanup game, we also consider a measure
of total contribution to the public good (P ), defined as the number of waste cells cleaned.

U = E

[∑N
i=1R

i

T

]
, (5)

E = 1−
∑N
i=1

∑N
j=1 |Ri −Rj |

2N
∑N
i=1R

i
, (6)

S = E

[
1

N

N∑
i=1

ti

]
where ti = E[t | rit > 0] , (7)

P =

N∑
i

pi . (8)

where pi is the number of waste cells cleaned by player i.

A.5 Dictate apples, Give apples and Take apples games

In each game, two players are isolated from one another in separate “rooms”. They can interact only
by pressing buttons. In the Dictate apples game, initially all apples are in the left room. At any time,
the left agent can press a button that transports all the apples it has not yet consumed to the right
room. In the Take apples game, both players begin with apples in their room, but there are twice as
many in the left room as the right room. The right agent has the option at any time of pressing a
button that removes all the apples from the other player’s room that have not yet been collected. In
the Give apples game, both players begin with apples, and the left player again has twice as many as
the right player. The left player can press a button to add more apples on the right side. Unlike in the
Dictate apples game, this has no effect on the left agent’s own apple supply. Each episode terminates
when all apples are collected.
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A.6 Inequity aversion models “irrational” behavior
The inequity aversion model of [10] is supported by experimental evidence from behavioral game
theory. In particular, human behavior in the Dictator game is consistent with the prediction that some
people have inequity-averse social preferences. A subject in a typical Dictator game experiment must
decide how much of an initial endowment (if any) to give to another subject in a one-shot anonymous
manner. In contrast to the prediction of rational choice theory that subjects would offer 0—but in
accord with the prediction of [10]’s inequity aversion model—most subjects offer between 10% and
50% [62].

Figure 7: Behavioral economics laboratory paradigms can be simulated by gridworld Markov games.
Agent behavior is shown in (A) for the Dictate apples game, in (B) for the Take apples game, and in
(C) for the Give apples game.

To test whether our temporally extended inequity-aversion model makes predictions consistent with
these findings, we introduce 3 simple 2-player gridworld games (see Figure 1). These capture the
essential features of Dictator game laboratory experiments. As in all our experiments, positive agent
external rewards can only be obtained by collecting apples. In addition an agent can press buttons
which Dictate apples (give from its own store), Give apples from an external store or Take apples
from the other agent. A full description is provided in the supplementary information.

A selfish rational agent would never press the button in any of these games. This prediction was
borne out by our A3C agent baseline (Figure 7). On the other hand, advantageous-inequity-averse
agents pressed their buttons significantly more often in the Give apples and Dictate apples games.
They pressed the button even in the Dictate apples game when doing so could only reduce their own
(extrinsic) payoff. Disadvantageous-inequity-averse agents pressed their button in the Take apples
game to reduce the rewards obtained by the player with the larger initial endowment despite there
being no extrinsic benefit to doing this.

A.7 Theoretical arguments for the success of inequity aversion
We provide theoretical arguments for inequity aversion as an improvement to temporal credit as-
signment, extending the work of (Fehr and Schmidt 1999) beyond simple market games. In an
intertemporal social dilemma, defection dominates cooperation in the short term. To leading order,
the short-term Schelling diagram for an intertemporal social dilemma looks like Figure 8A, since by
definition defection must dominate cooperation. Here and in the sequel we work in the limit of large
number of players N . Mathematically, we denote defector payoff by D, cooperator payoff by C and
average payoff across the population by R̄, writing:

C = c , D = d , R̄ = −d− c
N

x+ d , with d > c . (9)

First consider the effect of advantageous inequity aversion (AIA) on the short-term payoffs. Clearly
the cooperator line is unchanged, since it is dominated. Hence the cooperator and defector lines
become:

C̃ = c , D̃ = D − α(D − R̄) = d− α (d− c)
N

x , with α > 0 . (10)

The transformed short-term payoffs are shown in Figure 8B. Since the C curve dominates D̃ in some
region, cooperative behavior can be self-sustaining in the short-term. Thus AIA improves temporal
credit assignment. AIA can resolve the social dilemma when the earliest learned behavior generates
multiple cooperators. This is the case for the Cleanup game but not the Harvest game, explaining the
results.
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The primary effect of disadvantageous inequity aversion (DIA) is to lower the payoff to a cooperator.
However, it also motivates the cooperator to use the fining tool to reduce R̄. There are several simple
reasons why defectors might end up being especially targeted. Firstly, the behavior that avoids the
policing agent may be cooperative (as in the Harvest game). Secondly, policing agents are motivated
to avoid tagging other policers, because of the danger of retaliation.

Assuming that defectors are especially targeted, the cooperator and defector lines become:

C̃ = C − βC(R̄− C) = c+ βC

(
d− c
N

x− (d− c)
)
, (11)

D̃ = D − βD(R̄− C) = d+ βD

(
d− c
N

x− (d− c)
)
, (12)

with βD > βC > 0. The transformed short-term payoffs are shown in Figure 8C. Here the Nash
equilibrium has moved to a positive number of cooperators. Hence DIA has improved temporal credit
assignment. Of course, this argument requires the policing effect to emerge in the first place. This
is possible when the earliest learned behavior is defection (Harvest), but not when it is cooperation
(Cleanup), explaining the results.

Figure 8: Inequity aversion alters the effective payoffs from cooperation and defection in the short-
term, in such a way that cooperative behavior is rationally learnable. Hence, helps to solve the
intertemporal social dilemma.
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