
1

Interfering Channel Estimation in Radar-Cellular
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Abstract—In this paper, we focus on the coexistence between a
MIMO radar and cellular base stations. We study the interfering
channel estimation, where the radar is operated in the “search
and track” mode, and the BS receives the interference from the
radar. Unlike the conventional methods where the radar and the
cellular systems fully cooperate with each other, in this work we
consider that they are uncoordinated and the BS needs to acquire
the interfering channel state information (ICSI) by exploiting the
radar probing waveforms. For completeness, both the line-of-
sight (LoS) and Non-LoS (NLoS) channels are considered in the
coexistence scenario. By further assuming that the BS has limited
a priori knowledge about the radar waveforms, we propose
several hypothesis testing methods to identify the working mode
of the radar, and then obtain the ICSI through a variety of
channel estimation schemes. Based on the statistical theory,
we analyze the theoretical performance of both the hypothesis
testing and the channel estimation methods. Finally, simulation
results verify the effectiveness of our theoretical analysis and
demonstrate that the BS can effectively estimate the interfering
channel even with limited information from the radar.

Index Terms—Radar-communication coexistence, channel es-
timation, hypothesis testing, search and track.

I. INTRODUCTION

RECENT years have witnessed an explosive growth of
wireless services and devices. As a consequence, the

frequency spectrum has become one of the most valuable
resources. Since 2015, mobile network operators in the UK
have been required to pay a combined annual total of £80.3
million for the 900MHz and £119.3 million for the 1800MHz
bands [1]. Given the crowdedness within the sub-10GHz band,
policy regulators and network providers are now seeking for
the opportunity to reuse spectrum currently restricted to other
applications. Indeed, the frequency bands occupied for radar
are among the best candidates to be shared among various
communication systems in the near future [2], [3].

A. Existing Approaches

Aiming for realizing the spectral coexistence of radar and
communication, existing contributions mainly focus on mit-
igating the mutual interference between the two systems by
use of precoding/beamforming techniques [4], [5]. Such efforts
can be found in the pioneering work of [4], in which the radar
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signals are precoded by a so-called null-space projector (NSP),
and thus the interference generated to the communication
systems is zero-forced. To achieve a favorable performance
trade-off, the NSP method is further improved in [5] via
Singular Value Decomposition (SVD), where the interference
level can be adjusted considering the singular values of the
channel matrix.

As a step further, more recent works have exploited convex
optimization techniques for jointly designing transmit wave-
forms/precoders of radar and communication systems, such
that certain performance metrics can be optimized [6]–[14].
For instance, in [7], the receive signal-to-interference-plus-
noise ratio (SINR) of the radar is maximized in the presence
of both the clutters and the communication interference, while
the capacity of the communication system is guaranteed. The
inverse problem has been tackled in [8], where the communi-
cation rate has been maximized subject to the radar SINR con-
straint, as well as the power budgets for both systems. While
the aforementioned works are well-designed via sophisticated
techniques, it is in general difficult for them to be applied to
current radar applications, given the fact that the governmental
and military agencies are unwilling to make major changes in
their radar deployments, which may impose huge costs on
their financial budgets [15]. Hence, a more practical approach
is to develop transmission schemes at the communication
side only, where the radar is agnostic to the interference or
even the operation of the communication system. In this line,
[16] considers the coexistence between a MIMO radar and
a BS performing multi-user MIMO (MU-MIMO) downlink
transmissions, in which the precoder of the BS is the only
optimization variable. In [11], the BS precoder has been
further developed by exploiting the constructive multi-user
interference, which demonstrates orders-of-magnitude power-
savings.

It is worth highlighting that precoding based techniques
require the knowledge of the interfering channel either at
the radar or the communication BS. In fact, perfect/imperfect
channel state information (CSI) assumptions are quite typical
in the above works. To obtain such information, the radar and
the BS are supposed to fully cooperate with each other and
transmit training symbols, in line with conventional channel
estimation methods. In [16], the MIMO radar needs to estimate
the channel based on the received pilot signals sent by the BS,
which inevitably occupies extra computational and signaling
resources. Other works such as [7] require an all-in-one control
center to be connected to both systems via a dedicated side
information link, which conducts the information exchange
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and the waveform optimization. In practical scenarios, how-
ever, the control center brings forward considerable complexity
in the system design, and is thus difficult to implement.
Moreover, since it is the cellular operator who exploits the
spectrum of the radar, it is the performance of the latter that
should be primarily guaranteed, i.e., the radar resources should
be allocated to target detection rather than obtaining the CSI.
Unfortunately, many existing contributions failed to address
this issue, and, to the best of our knowledge, the channel es-
timation approaches tailored for the radar-cellular coexistence
scenarios remain widely unexplored. In light of the above
drawbacks regarding the CSI acquisition, the natural question
is, 1) is it possible to estimate the channel when there is
limited cooperation between the radar and the communication
systems? And if so, 2) how much information do we need for
the estimation?

B. The Contribution of Our Work

This paper aims at answering the above issues, where we
focus on interfering channel estimation between a MIMO radar
and a MIMO BS:

1) To cope with the first issue above, we hereby propose
to exploit the radar probing waveforms for estimating the
interfering channel. In this case the radar does not need to
send training symbols or estimate the channel by itself, and
thus the need for cooperation is fully eliminated. Following
the classic MIMO radar literature [17], [18], we assume that
the radar has two working modes, i.e., searching and tracking.
In the search mode, the radar transmits a spatially orthogonal
waveform, which formulates an omni-directional beampattern
for searching potential targets over the whole angular domain.
In the track mode, the radar transmits directional waveforms
to track the target located at the angle of interest, and thus
to obtain a more accurate observation. In the meantime, the
BS is trying to estimate the channel based on the periodically
received radar interference, which is tied to the duty cycle
of the radar. As the searching and tracking waveforms are
randomly transmitted, we propose to identify the operation
mode of the radar by use of the hypothesis testing approach,
and then estimate the channel at the BS.

2) To answer the second question raised above, we further
investigate different cases under both LoS and NLoS channels,
where different levels of prior knowledge about the radar
waveforms are assumed to be known at the BS, i.e., from full
knowledge of searching and tracking waveforms by the BS,
to knowledge of searching waveform only, to a fully agnostic
BS to the radar waveforms. From a realistic perspective, the
second and the third cases are more likely to appear in practice
while the first case serves as a performance benchmark. Ac-
cordingly, the theoretical performance analysis of the proposed
approaches are provided.

The remainder of this paper is arranged as follows. Section
II introduces the system model, Section III and Section IV
propose interfering channel estimation approaches for NLoS
and LoS scenarios, respectively. Subsequently, Section V an-
alyzes the theoretical performance of the proposed schemes,
Section VI provides the corresponding numerical results, and
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Fig. 1. MIMO Radar and BS coexistence. (a) Radar search mode; (b) Radar
track mode.

finally Section VII concludes the paper.
Notations: Unless otherwise specified, matrices are denoted

by bold uppercase letters (i.e., X), vectors are represented
by bold lowercase letters (i.e., z), and scalars are denoted by
normal font (i.e., ρ). tr (·) and vec (·) denote the trace and the
vectorization operations. ⊗ denotes the Kronecker product. ‖·‖
and ‖·‖F denote the l2 norm and the Frobenius norm. (·)T ,
(·)H , and (·)∗ stand for transpose, Hermitian transpose and
complex conjugate, respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a MIMO radar with Mt

transmit antennas and Mr receive antennas that is detecting
targets located in the far field. For simplicity, we assume that
the MIMO radar employs the same antenna array for both
transmission and reception, and denote Mt = Mr = M .
Meanwhile, an N-antenna BS operating in the same frequency
band is receiving interference from the radar and trying to
acquire the ICSI between them. Below we provide the system
models for both the radar and the BS.

A. Radar Signal Transmission - Search and Track

It is widely known that by employing incoherent waveforms,
the MIMO radar achieves higher Degrees of Freedom (DoFs)
and better performance than the conventional phased-array
radar that transmits correlated waveforms [17]. By denoting
the MIMO radar probing waveform as X ∈ CM×L, its spatial
covariance matrix can be given as [17], [19], [20]

RX =
1

L
XXH , (1)
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Fig. 2. Radar working mode - “search and track” and operations performed
by the communications BS.

where L is the length of the radar pulse. Throughout the paper
we consider L ≥ N ≥ M > 2, and assume uniform linear
arrays (ULA) at both the radar and the BS. The corresponding
beampattern can be thus given in the form [17], [19], [20]

Pd (θ) = aH (θ) RXa (θ) , (2)

where θ denotes the azimuth angle, and a (θ) =[
1, ej2π∆ sin(θ), ..., ej2π(M−1)∆ sin(θ)

]T ∈ CM×1 is the steer-
ing vector of the transmit antenna array with ∆ being the
spacing between adjacent antennas normalized by the wave-
length.

When the orthogonal waveform is transmitted by the MIMO
radar, it follows that [19]

RX =
PR
M

IM , (3)

where PR is the total transmit power of the radar, and IM is
the M-dimensional identity matrix. It is easy to see from (2)
that the covariance matrix (3) generates an omni-directional
beampattern, which is typically used for searching when there
is limited information about the target locations [17]. Once
a target is detected, the radar switches to the tracking mode,
where it will no longer transmit orthogonal waveforms and
will generate a directional beampattern that points to the
specific location, thus obtaining a more accurate observation.
This, however, results in a non-orthogonal transmission, i.e.,
RX 6= PR

M IM . In this paper, we assume that the radar adopts
both the searching and tracking modes subject to a probability
transition model. This model is illustrated in Fig. 2 and can
be summarized as follows [21]:

Assumption 1: At the i-th pulse repetition interval (PRI)
of the radar, the probability that the radar is operating at the
tracking mode is P (i−1)

D , where P (i−1)
D is the target detection

probability of the (i− 1)-th PRI1.
The above assumption entails that the MIMO radar changes

its probing waveform X randomly within each PRI, which
makes it challenging for the BS to estimate the interfering
channel between them.

1In Assumption 1 we aim to characterize the basic behavior of MIMO
radar by the above simple probability transition model. In general, the radars
behavior can also be characterized through a first-order Markov chain, where
the current state of the radar is only determined by the previous state [22].

B. Interfering Channel Model

The interfering channel between the BS and the radar could
be characterized through different models, depending on their
specific positions. For instance, the military and weather radars
are typically located at high-altitude places such as top of the
hills, in which case the channel between the BS and radar
is likely to be a Line-of-Sight (LoS) channel. On the other
hand, if the radar is used for monitoring the low-altitude
flying objects (such as drones) or the urban traffic, it is
usually deployed in urban areas at similar heights with the
BS, thus resulting in a Non-Line-of-Sight (NLoS) channel.
For completeness, we will discuss both cases in this paper.
Since both the radar and the BS are located in fixed positions,
we also adopt the following assumption:

Assumption 2: For the LoS coexistence scenario, we assume
that the interfering channel from the radar to the BS is fixed.
For the NLoS coexistence scenario, we assume the interfering
channel is flat Rayleigh fading2, and remains unchanged
during several radar PRIs.

C. BS Signal Reception Model

Denoting the interfering channel as G ∈ CN×M , the
received signal matrix at the BS can be given as

Y = GX + W, (4)

where W = [w1,w2, ...,wL] ∈ CN×L is the noise matrix,
with wl ∼ CN (0, N0IN ) ,∀l. In the proposed hypothesis
testing framework, the noise power N0 plays an important role
for normalizing the test statistic. Note that when radar keeps
silent, the BS will receive nothing but the noise, and N0 can
be measured at this stage. Since the radar antenna number and
its transmit power are fixed parameters, they can also be easily
known to the BS operators. Therefore, it is reasonable to adopt
the following assumption:

Assumption 3: The BS knows the value of N0, M and PR.
In order to estimate the channel and the noise power N0,

the BS needs to know when is radar transmitting, i.e., it
must synchronize its clock with the radar pulses. As shown
in Fig. 2, during one PRI, the radar only transmits for a
portion of the time, typically below 10%, and employs the
remaining 90% for receiving, during which the radar remains
silent. Such a ratio is called duty cycle [8]. By exploiting this
property, the BS is able to blindly estimate the beginning and
the end of a radar pulse by some simple methods, such as
energy detection. Note that for the NLoS channel scenario,
there will be random time-spread delays within each pulse,
which makes the synchronization inaccurate. However, since
we assume a flat fading channel in the NLoS case, the time-
spread delay will be contained within one snapshot of the
radar, which results in negligible errors [23]. In addition, as
the radar typically transmits at high power with a relatively
fixed duty cycle, the BS can accurately synchronize its clock
with the radar pulses by simple synchronization schemes, e.g.
energy detection [24], [25]. Based on the above discussion, and

2Note that the study of the Rician channel scenario is out of scope of this
paper, and will be discussed in our future work.
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following most of the existing literature in the field of radar-
communication coexistence [6]–[12], we employ the following
assumption:

Assumption 4: The BS can perfectly synchronize its clock
with the radar pulses, i.e., it is able to know the beginning and
the end of each radar pulse.

D. Channel Estimation Procedure

In light of the above discussion, we summarize below the
channel estimation procedure at the BS:

1) Synchronize the system clock with the radar transmitted
pulses.

2) Identify the working mode of the radar based on the
received radar interference, i.e., whether the radar is
searching or tracking.

3) Estimate the interfering channel by exploiting the limited
knowledge about the radar waveforms.

In the following, we will develop several approaches for the
BS to acquire the ICSI when radar is randomly changing its
probing waveform. We will first consider the NLoS channel
case, and then the LoS channel case.

III. NLOS CHANNEL SCENARIO

Consider the ideal case where the BS knows exactly the
waveform sent by the radar in each PRI. Recalling (4), the
well-known maximum likelihood estimation (MLE) of the
channel G is given as [26]

Ĝ = YXH
(
XXH

)−1
, (5)

which is also known as the Least-Squares estimation (LSE)
for G. Unfortunately, the BS is not able to identify which
waveform is transmitted, since the radar changes its waveform
randomly at each PRI. Hence, (5) can not be directly applied
and it is difficult to estimate the channel directly. In this
section, we discuss several cases where different levels of
knowledge about the radar waveforms are available at the BS.
At each level, we propose specifically tailored approaches to
acquire the ICSI.

A. BS Knows the Searching and Tracking Waveforms - Gen-
eralized Likelihood Ratio Test (GLRT)

In this reference case, we assume that the BS knows both
the searching and the tracking waveforms that the radar may
transmit at the i-th PRI, which we denote as X0 and X1,
respectively. Since X0 is orthogonal, we have

1

L
X0X

H
0 =

PR
M

IM ⇒ X0X
H
0 =

LPR
M

IM . (6)

Before estimating the channel, the BS needs to identify which
waveform is transmitted based on the received noisy data Y ∈
CN×L. This leads to the following hypothesis testing (HT)
problem [27]

Y =

{
H0 : GX0 + W,

H1 : GX1 + W.
(7)

As per Assumption 1, the a priori probabilities of the above
two hypotheses can be given as

P (H0) = 1− P (i−1)
D , P (H1) = P

(i−1)
D . (8)

The HT problem (7) can be solved via the generalized likeli-
hood ratio test (GLRT), which is given by [27]

LG (Y) =
p
(
Y; Ĝ1,H1

)
P (H1)

p
(
Y; Ĝ0,H0

)
P (H0)

=
p
(
Y; Ĝ1,H1

)
P

(i−1)
D

p
(
Y; Ĝ0,H0

)(
1− P (i−1)

D

) H1

≷
H0

γ,

(9)

where γ is the detection threshold, p
(
Y; Ĝ,H1

)
and

p
(
Y; Ĝ,H0

)
are the likelihood functions (LFs), for the two

hypotheses respectively, and can be given in the form

p
(
Y; Ĝ0,H0

)

=

exp

(
− 1
N0

tr

((
Y − Ĝ0X0

)H (
Y − Ĝ0X0

)))
(πN0)

NL
,

(10)

p
(
Y; Ĝ1,H1

)

=

exp

(
− 1
N0

tr

((
Y − Ĝ1X1

)H (
Y − Ĝ1X1

)))
(πN0)

NL
.

(11)

In the above expressions, Ĝ1 and Ĝ0 are the MLEs under H1

and H0, which are obtained as

Ĝ1 = YXH
1

(
X1X

H
1

)−1
, (12)

Ĝ0 = YXH
0

(
X0X

H
0

)−1
=

M

LPR
YXH

0 . (13)

Overall, once the BS determines which hypothesis to choose
based on Y, it can successfully estimate the channel by use
of (12) or (13). However, it can be observed that the GLRT
detector in (9) requires the detection probability P (i−1)

D to be
known to the BS, which is impossible in practice. Therefore,
the detector (9) can only serve as the optimal performance
bound. Since the actual P (i−1)

D is unknown to the BS, the
reasonable choice for the a priori probabilities is P (H0) =

P (H1) = 0.5, namely P
(i−1)
D = 0.5. We can then apply the

similar GLRT procedure for solving the HT problem. The test
statistic in (9) is thus simplified as

LG (Y) =
p
(
Y; Ĝ1,H1

)
p
(
Y; Ĝ0,H0

) H1

≷
H0

γ. (14)

B. BS Knows Only the Searching Waveform - Rao Test

In a realistic scenario, the tracking waveform X1 may vary
from pulse to pulse. This is because the target to be detected
may move very fast, which results in rapid changes in its
parameters such as the distance, velocity and the azimuth
angle. Hence, it is far from realistic to assume the BS knows
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X1, not to mention PD (in fact, both quantities are only
determined after a target is detected). Nevertheless, as an
omni-directional searching waveform, there is no reason for
X0 to be changed rapidly. Indeed, in some cases, the radar
may only use one waveform for omni-searching. Based on the
above, to assume that the BS only knows X0 seems to be a
more practical choice3. In this case, the HT problem (7) can
be recast as

H0 : X = X0,G,

H1 : X 6= X0,G.
(15)

In (15), the channel to be estimated is called the nuisance
parameter [27].

Remark 1: At first glance, the GLRT procedure seems to
be applicable to (15) as well. However, note that to obtain the
MLE of G under H1 is equivalent to solving the following
optimization problem

min
G,X
‖Y −GX‖2F s.t. ‖X‖2F = LPR, (16)

where the constraint is to ensure the power budget of the
radar-transmitted waveform. While the above problem is non-
convex, it yields trivial solutions that achieve zero with a
high probability. This is because the problem (16) is likely
to have more than enough DoFs to ensure that Y = GX,
since G is unconstrained, and X can be always scaled to
satisfy the norm constraint, where the scaling factor can be
incorporated in G. Therefore, the likelihood function under
H1 will always be greater than that of H0, which makes the
HT design meaningless.

Realizing the fact above, we propose to use the Rao test
(RT) to solve the HT problem (15), which does not need the
MLE under H1. Based on [28], let us define

Θ =
[
vecT (X) , vecT (G)

]T
,
[
θTr ,θ

T
s

]T
. (17)

Then, the RT statistic for the complex-valued parameters can
be given in the form
TR (Y)

= 2
∂ ln p (Y;Θ)

∂ vec (X)

∣∣∣∣T
Θ=Θ̃

[
J−1

(
Θ̃
)]

θrθr

∂ ln p (Y;Θ)

∂vec* (X)

∣∣∣∣
Θ=Θ̃

H1

≷
H0

γ,

(18)

where Θ̃ =
[
θTr , θ̂

T
s

]T
=
[
vecT (X0) , vecT

(
Ĝ0

)]T
is the

MLE underH0, and
[
J−1

(
Θ̃
)]

θrθr
is the upper-left partition

of J−1
(
Θ̃
)

, with J (Θ) being the Fisher Information Matrix
(FIM).

Unlike the GLRT, the Rao test only lets the BS determine
if the radar is using the searching mode, i.e., whether the
orthogonal waveform matrix X0 is transmitted in the current
radar PRI. In that case, the BS could obtain the MLE of the
channel by use of (13). Otherwise, the BS is required to wait
until an orthogonal waveform is transmitted by the radar 4.

3At this stage we note the fact that such information exchange can be easily
performed once prior to transmission, since the searching waveform of the
radar remains unchanged. In contrast, conventional training based techniques
require the radar or the BS to frequently send pilot symbols, which entails a
much tighter cooperation between both systems.

4We remark that the proposed GLRT and Rao test approaches are also
applicable to NLoS rank-deficient channel scenarios in a straightforward
manner.

C. Agnostic BS

We now consider the hardest case that the BS does not know
any of the waveforms transmitted by the radar. In this case, the
BS still knows that XXH = LPR

M IM for an omni-directional
radar transmission. Therefore, the HT problem in (15) can be
recast as

H0 : XXH =
LPR
M

IM ,G,

H1 : XXH 6= LPR
M

IM ,G.

(19)

Remark 2: At first glance, we might be able to apply a
generalized RT to solve the HT problem, where both the true
values of G and X0 are replaced by their MLEs. This is
because X0 is also unknown to the BS. Note that to obtain
the MLEs of these two parameters is equivalent to solving the
following optimization problem

min
G,X
‖Y −GX‖2F s.t. XXH =

LPR
M

IM . (20)

Again, the above problem will unfortunately yield trivial so-
lutions and make the HT design meaningless. This is because
X can be viewed as a group of orthogonal basis, and the
unconstrained G spans the whole space, which makes any
given Y achievable with a high probability.

The above remark involves that it is challenging to blindly
estimate the ICSI for an agnostic BS under the NLoS channel
scenario. Instead, we will show in the next section that blind
channel estimation is feasible for the LoS channel scenario.

IV. LOS CHANNEL SCENARIO

In this section, we consider the scenario that the interfering
channel between radar and BS is a LoS channel, where the
received signal matrix at the BS is given by

Y = αb (θ) aH (θ) X + W, (21)

where α represents the large-scale fading factor, θ is the
angle of arrival (AoA) from the radar to the BS, b (θ) =[
1, ej2πΩ sin(θ), ..., ej2π(N−1)Ω sin(θ)

]T ∈ CN×1 is the steering
vector of the BS antenna array, with Ω being the normalized
spacing, and a (θ) is radar’s steering vector defined in Sec.
II-A. Since the ULA geometry of the radar is fixed, we
assume that the BS knows the spacing between the adjacent
antennas of radar. Hence, the channel parameters that need to
be estimated at the BS are α and θ.

Adopting the ideal assumption that the BS has instantaneous
knowledge of the radar-transmitted waveform X in each PRI,
the MLEs of the two parameters could be obtained by solving
the optimization problem

min
α,θ

∥∥Y − αb (θ) aH (θ) X
∥∥2

F
. (22)

Note that if θ is fixed, the MLE of α can be given as

α̂ =
bH (θ) YXHa (θ)

L‖b (θ)‖2aH (θ) RXa (θ)
=

bH (θ) YXHa (θ)

NLaH (θ) RXa (θ)
,

(23)
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which suggests that the MLE of α depends on that of θ.
Substituting (23) into the objective function of (22), the MLE
of θ can be thus given by

θ̂ = arg min
θ
f (Y; θ,X) , (24)

where

f (Y; θ,X) =

∥∥∥∥Y − bH (θ) YXHa (θ) b (θ) aH (θ) X

NLaH (θ) RXa (θ)

∥∥∥∥2

F

.

(25)
While (25) is non-convex, the optimum can be easily obtained
through a 1-dimensional search over θ.

A. BS Knows the Searching and Tracking Waveforms - GLRT

By assuming that the BS knows both X0 and X1, the HT
problem (7) can be reformulated as

Y =

{
H0 : αb (θ) aH (θ) X0 + W,

H1 : αb (θ) aH (θ) X1 + W.
(26)

The GLRT detector can be again applied to the LoS channel, in
which case the likelihood functions under the two hypotheses
are given as

p
(
Y; θ̂0,H0

)
= (πN0)

−NL
exp

(
− 1

N0
f
(
Y; θ̂0,X0

))
,

p
(
Y; θ̂1,H1

)
= (πN0)

−NL
exp

(
− 1

N0
f
(
Y; θ̂1,X1

))
,

(27)
where f is defined in (25), and θ̂0 and θ̂1 are the MLEs of θ
under the two hypotheses, respectively. By recalling (9), the
GLRT detector can be expressed as

LLoSG (Y) =
1

N0

(
f
(
Y; θ̂0,X0

)
− f

(
Y; θ̂1,X1

))H1

≷
H0

γ.

(28)
Note that the analytic distribution for (28) is not obtainable,
since there is no closed-form solution of θ̂ under both hy-
potheses.

B. BS Knows Only the Searching Waveform - Energy Detec-
tion

Similar to the NLoS channel case, a more practical as-
sumption is to consider that the BS knows only the searching
waveform X0. In this case, the GLRT detector is no longer
applicable and the HT is given by

H0 : X = X0, α, θ,

H1 : X 6= X0, α, θ.
(29)

At first glance, it seems that the Rao detector (18) can be
trivially extended from the NLoS channel scenario to the LoS
case. Nevertheless, the following proposition puts an end to
such a possibility.

Proposition 1. The Rao test does not exist for the scenario
of the LoS channel.

Proof. See Appendix A. �

The algebraic explanation behind Proposition 1 is intuitive.
As shown in (21), by multiplying the rank-1 LoS channel

Fig. 3. Searching and tracking beampatterns of the MIMO radar.

to the radar waveform, the latter is mapped to a rank-1
subspace, which leads to serious information losses and yields
a non-invertible FIM. Recalling (18), the Rao test requires to
compute the inverse of the FIM. Hence, it simply does not
work in this specific case.

To resolve the aforementioned issue, we consider an energy
detection (ED) approach for the LoS channel. According to
(21), the average power of the received radar signal is given
as
PLoS = E

(
tr
(
YYH

))
= E

(
tr
(
|α|2b (θ) aH (θ) XXHa (θ) bH (θ) + WWH

))
≈ 1

L
tr
(
|α|2b (θ) aH (θ) XXHa (θ) bH (θ)

)
+NN0

= |α|2Pd (θ) tr
(
b (θ) bH (θ)

)
+NN0

= N |α|2Pd (θ) +NN0,
(30)

where Pd (θ) is the radar transmit beampattern defined in (2),
and the approximation in the third line of (30) is based on
the Law of Large Numbers. From (30), it is obvious that
the received power at the BS is proportional to the radar’s
transmit power at the angle θ. If the searching waveform X0

is transmitted, we have

Pd (θ) =
PR
M

aH (θ) IMa (θ) = PR, (31)

which suggests that the BS will receive equal power at each
angle θ. On the other hand, if the tracking waveform X1 is
transmitted, most of the power will focus at the mainlobe,
while less power will be distributed among the sidelobes, in
which case the BS receives high power when it is located at the
mainlobe of the radar, and much lower power at other angles.
According to the aforementioned observations, in this paper
we let the BS define two power measurement thresholds to
determine whether the radar is in searching or tracking mode.
As shown in Fig. 35, the BS chooses H0 if the received power

5The tracking beampattern in Fig. 3 is generated based on the convex
optimization method in [Eq. (17), 17].
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falls between the two proposed thresholds, and it chooses H1

otherwise. Accordingly, the ED detector can be given as

TE (Y) =
1

L
tr
(
YYH

)
∈ [γ, η]→ H0,

TE (Y) =
1

L
tr
(
YYH

)
∈ (0, γ] ∪ [η,+∞)→ H1,

(32)

where γ and η are the two power thresholds.
Remark 3: Note that the performance of the detector in (32)

depends on the size of the ambiguity regions shown in Fig.
3. By narrowing the distance between γ and η, the detector
trades-off the tolerance of the noise with the ambiguity area.

By using the ED detector, the BS could choose from the
two hypotheses without knowing both waveforms. Once H0 is
chosen, the BS can estimate the AoA by finding the minimum
of f (Y; θ,X0).

C. Agnostic BS

Finally, we consider the hardest case where the BS does
not know either the searching or the tracking waveform. First
of all, note that by denoting |α|2Pd (θ) , E (θ), (30) can be
rewritten as

PLoS =
1

L
tr
(
YYH

)
≈ NE (θ) +NN0. (33)

Therefore, the estimation of E (θ) can be given as

|α|2Pd (θ) ≈ Ê (θ) =
tr
(
YYH

)
NL

−N0. (34)

Further, the covariance matrix of the received signal Y can be
obtained as

RY =
1

L
YYH = |α|2b (θ) aH (θ) RXa (θ) bH (θ) + RW

= |α|2Pd (θ) b (θ) bH (θ) + RW ≈ Ê (θ) b (θ) bH (θ) +N0IN ,
(35)

where RW ≈ N0IN is the noise covariance matrix. Based on
above, θ can be estimated by

θ̂ = arg min
θ

∥∥∥RY −RW − |α|2Pd (θ) b (θ) bH (θ)
∥∥∥2

F

≈ arg min
θ

∥∥∥∥YYH

L
−N0IN − Êb (θ) bH (θ)

∥∥∥∥2

F

.

(36)

By finding the minimum of (36) with simple 1-dimensional
search, the AoA can be estimated without knowing any
information about the waveforms.

It remains to estimate the large-scale fading factor α. In
order to do so, we first note that for the case that the radar is
in tracking mode, the BS has no prior knowledge about Pd (θ).
Nevertheless, for the searching mode we have Pd (θ) = PR
as shown in (31), which is assumed to be known to the
BS. Recalling (34), the squared absolute value of α can be
estimated as follows if the radar is operated in searching mode

|α̂|2 =
tr
(
YYH

)
NLPR

− N0

PR
. (37)

From (37) we can observe that, while the AoA θ can be
estimated without knowing the waveforms, we still need to
identify the radar working mode in order to estimate the

TABLE I
PROPOSED APPROACHES FOR DIFFERENT SCENARIOS

NLoS Channel LoS Channel

BS Knows Both Waveforms GLRT GLRT
BS Knows Searching Waveform Rao Test Energy Detection
Agnostic BS None Energy Detection

absolute value of α. Fortunately, the energy detector (32) still
works in this case, as it does not require any information about
X0 or X1. Finally, we remark that since the noise covariance
matrix RW is no longer Gaussian distributed, (36) and (37)
are not MLEs of the parameters.

V. THEORETICAL PERFORMANCE ANALYSIS

In this section, we provide the theoretical performance
analysis for the proposed hypothesis testing and channel esti-
mation approaches. With this purpose, we use decision error
probability and the mean squared error (MSE) as performance
metrics.

A. GLRT for NLoS Channels

To analyze the performance of the GLRT detector, the MLEs
of the unknown parameters under different hypotheses must
be derived in closed-forms. While we consider GLRT for both
NLoS and LoS channels in the previous discussion, the closed-
form MLE of the AoA is not obtainable for the LoS channel.
Therefore, we will only analyze the GLRT performance for
the NLoS channel in this subsection. Firstly, let us substitute
(12) and (13) into (10) and (11), which yield

p
(
Y; Ĝ0,H0

)
= (πN0)

−NL exp

(
− 1

N0
tr

((
Y − Ĝ0X0

)H (
Y − Ĝ0X0

)))
= (πN0)

−NL exp

(
− 1

N0
tr

(
Y

(
I− M

LPR
XH

0 X0

)
YH

))
,

(38)
and

p
(
Y; Ĝ1,H1

)
= (πN0)

−NL exp

(
− 1

N0
tr

((
Y − Ĝ1X1

)H (
Y − Ĝ1X1

)))
= (πN0)

−NL exp

(
− 1

N0
tr

(
Y

(
I−XH

1

(
X1X

H
1

)−1

X1

)
YH

))
.

(39)
Taking the logarithm of (9) we obtain

ln
p
(
Y; Ĝ1,H1

)
P

(i−1)
D

p
(
Y; Ĝ0,H0

)(
1− P (i−1)

D

)
=

1

N0
tr

(
Y

(
XH

1

(
X1X

H
1

)−1
X1 −

M

LPR
XH

0 X0

)
YH

)
− ln

(
1− P (i−1)

D

P
(i−1)
D

)
H1

≷
H0

γ0.

(40)
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TR (Y) =
2

N0
tr

((
IL −

M

LPR
XH

0 X0

)
YHYXH

0

(
X0Y

HYXH
0

)−1

X0Y
HY

)
H1

≷
H0

γ. (51)

Finally, the GLRT detector can be given as

LG (Y) =
1

N0
tr

(
Y

(
XH

1

(
X1X

H
1

)−1

X1 −
M

LPR
XH

0 X0

)
YH

)
H1

≷
H0

γ = γ0 + ln

(
1− P (i−1)

D

P
(i−1)
D

)
.

(41)
Note that both XH

1

(
X1X

H
1

)−1
X1 and M

LPR
XH

0 X0 are projec-
tion matrices [26]. The physical meaning of (41) is intuitive,
i.e., to project the received signal onto the row spaces of X1

and X0 respectively, and to compute the difference between
the lengths of the projections to decide which hypothesis to

choose. Letting P
(i−1)
D = 0.5, we have ln

(
1−P (i−1)

D

P
(i−1)
D

)
= 0

and γ = γ0, which represents the case that PD is unknown.
We now derive the Cumulative Distribution Function (CDF)

of LG. Defining

A = XH
1

(
X1X

H
1

)−1
X1,B =

M

LPR
XH

0 X0,

ỹ =
vec
(
YH

)
√
N0

,D = IN ⊗ (A−B) ,

(42)

it follows that

LG (Y) = ỹH (IN ⊗ (A−B)) ỹ = ỹHDỹ. (43)

If D is an idempotent matrix, then the test statistic subjects
to the non-central chi-squared distribution [26]. While both A
and B are idempotent, it is not clear if their difference is still
idempotent. Moreover, their is no guarantee that D is semidef-
inite. Hence, D is an indefinite matrix in general, which makes
LG an indefinite quadratic form (IQF) in Gaussian variables.

Given the non-zero mean value of ỹ, LG becomes a non-
central Gaussian IQF, which is known to have no closed-form
expression for its CDF [29], [30]. Based on [31], here we
consider a so-called saddle-point method to approximate the
CDF of the test statistic. It is clear that ỹ ∼ CN (b, INL),
where

b =

H0 : vec
(
XH

0 GH
)/√

N0,

H1 : vec
(
XH

1 GH
)/√

N0,
(44)

which are the mean values for ỹ under H0 and H1 respec-
tively. Let us denote the eigenvalue decomposition of D as
D = QΛQH , where Λ = diag (λ1, λ2, ..., λNL) contains the
eigenvalues. Based on the saddle-point approximation [31], the
CDF of LG is given as

P (LG ≤ γ) ≈ 1

2π
exp (s (ω0))

√
2π

|s′′ (ω0)|
, (45)

where

s (ω) = ln

(
eγ(jω+β)e−c(ω)

(jω + β) det (I + (jω + β) Λ)

)
, (46)

c (ω) =

NL∑
i=1

∣∣b̄i∣∣2 − NL∑
i=1

∣∣b̄i∣∣2
1− (jω + β)λi

, (47)

b̄ = QHb =
[
b̄1, b̄2, ..., b̄NL

]T
. (48)

The above results hold for any β > 0. ω0 is the so-called
saddle point, which is the solution of the following equation

s′ (jω) = − 1

(−ω + β)
−

NL∑
i=1

λi
1 + λi (−ω + β)

+γ −
NL∑
i=1

∣∣b̄i∣∣2λi
(1 + λi (−ω + β))

2 = 0,

(49)

where ω = j (β + p). It has been proved that (49) has a single
real solution on p ∈ (−∞, 0) [31], which can be numerically
found through a 1-dimensional searching.

At the i-th PRI, it is natural to measure the performance of
GLRT by use of the decision error probability given the CDF
of LG, which is obtained as

P
(i)
G = P (LG ≥ γ;H0)P (H0) + P (LG ≤ γ;H1)P (H1)

= (1− P (LG ≤ γ;H0))
(

1− P (i−1)
D

)
+P (LG ≤ γ;H1)P

(i−1)
D ,

(50)
where the CDF of LG under each hypothesis can be computed
using the above equations (45)-(49), by accordingly substitut-
ing the values of b under the two hypotheses, which are given
in (44).

B. Rao Test for NLoS Channels

We start from the following proposition.

Proposition 2. The Rao detector for solving (15) is given by
(51), shown at the top of this page.

Proof. See Appendix B. �

It is clear from (51) that we do not need any information
about X1 for solving the HT problem (15), which makes it a
suitable detector for the practical scenario where the BS only
knows X0. While Y is Gaussian distributed, it is very difficult
to analytically derive the CDF of (51) due to the highly non-
linear operations involved. By realizing this, here we only
focus our attention on a special case, where the distribution
becomes tractable. Note that if L ≥ M = N holds true,
YXH

0 ∈ CN×N and X0Y
H ∈ CN×N become the invertible

square matrices with a high probability, in which case we have

YXH
0

(
X0Y

HYXH
0

)−1

X0Y
H

=

((
X0Y

H
)−1

X0Y
HYXH

0

(
YXH

0

)−1
)−1

= IN .

(52)
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It follows that

TRs (Y) =
2

N0
tr

((
IL −

M

LPR
XH

0 X0

)
YHY

)
=

2

N0
tr

(
Y

(
IL −

M

LPR
XH

0 X0

)
YH

)
,

2

N0
tr
(
YPYH

)H1

≷
H0

γ

(53)

is the Rao detector under this special case. It can be seen
that (53) is also a quadratic form in Gaussian variables.
Interestingly, the matrix P = IL− M

LPR
XH

0 X0 is a projection
matrix, which projects any vector to the null-space of XH

0 .
Therefore, we have

tr
(
GX0PXH

0 GH
)

= 0, (54)

which leads to

tr
(
GX1PXH

1 GH
)
≥ 0 = tr

(
GX0PXH

0 GH
)
. (55)

The above equations (54) and (55) can be viewed as the
hypothesis testing for the noise-free scenario, where we see
that the Rao detector (53) is effective in differentiating the
two hypotheses. This makes the detector (53) valid.

Proposition 3. TRs subjects to central and non-central chi-
squared distributions under H0 and H1, respectively, which
are given as

TRs ∼

{
H0 : X 2

K ,

H1 : X 2
K (µ) ,

(56)

where µ = 2
N0

tr
(
GX1

(
IL − M

LPR
XH

0 X0

)
XH

1 GH
)

is the
non-centrality parameter, and K = 2N (L−M) represents
the DoFs of the distributions.

Proof. See Appendix C. �

Similar to (50), the decision error probability at the i-th PRI
for the special Rao detector (53) is given by

P
(i)
Rs =

(
1−FX 2

K
(γ)
)(

1− P (i−1)
D

)
+ FX 2

K(µ) (γ)P
(i−1)
D ,

(57)
where FX 2

K
and FX 2

K(µ) are the CDFs of central and non-
central chi-squared distributions, respectively.

C. Channel Estimation Performance for NLoS Channels

As discussed in Sec. IV, there are no closed-form solutions
for the estimations of the AoA under the LoS channel.
Hence, we only consider the channel estimation performance
for the NLoS channel case, where the MSE is used as the
performance metric. By denoting the estimated channel as
Ĝ = YXH

(
XXH

)−1
, the squared error can be given in the

form

φ =
∥∥∥Ĝ−G

∥∥∥2

F
=
∥∥∥YXH

(
XXH

)−1 −G
∥∥∥2

F

=
∥∥∥(XXH

)−1
XYH −GH

∥∥∥2

F
.

(58)

Let us define
ȳ = vec

(
YH

)
∼ CN

(
vec
(
XHGH

)
, N0INL

)
,

T = IN ⊗
(
XXH

)−1
X, ḡ = vec

(
GH

)
.

(59)

Then, (58) can be simplified as

φ = ‖Tȳ − ḡ‖2. (60)

Based on basic statistics and linear algebra, we also have

yeq , Tȳ − ḡ ∼ CN
(
0, N0TTH

)
, (61)

where

TTH = IN ⊗
(
XXH

)−1
X · IN ⊗XH

(
XXH

)−1

= IN ⊗
(
XXH

)−1
.

(62)

Based on the above, the MSE of the channel estimation can
be obtained as

E (φ) = E
(
‖yeq‖2

)
= E

(
tr
(
yeqy

H
eq

))
= tr

(
E
(
yeqy

H
eq

))
= N0 tr

(
IN ⊗

(
XXH

)−1
)

=
N0N

L
tr
(
R−1
X

)
.

(63)
It is clear from (63) that the MSE is determined by the
covariance matrix and the length of the radar waveforms, as
well as the antenna number at the BS.

D. Energy Detection for LoS Channels

In this subsection, we analyze the performance of the energy
detector (32). First of all, let us rewrite (32) by the following
normalization with respect to the noise power as

2

N0
tr
(
YYH

)
= 2ỹH ỹ, (64)

where ỹ ∼ CN (d, INL) is given in (42), with d being defined
as

d =

H0 : vec
(
α∗XH

0 a (θ) bH (θ)
)/√

N0,

H1 : vec
(
α∗XH

1 a (θ) bH (θ)
)/√

N0.
(65)

Eq. (62) is the sum of the squared Gaussian variables, which
subjects to the non-central chi-squared distribution [26]. Recall
the proof of Proposition 3. By replacing the matrix P in (53) as
the identity matrix IL, we obtain the non-centrality parameters
under two hypotheses as

ε0 =
2|α|2

N0
tr
(
b (θ) aH (θ) X0X

H
0 a (θ) bH (θ)

)
=

2|α|2NLPR
N0

,

(66)

ε1 =
2|α|2

N0
tr
(
b (θ) aH (θ) X1X

H
1 a (θ) bH (θ)

)
. (67)

The DoFs of both distributions are obtained as

κ = 2 rank (INL) = 2NL. (68)

Given any η̃ ≥ γ̃ ≥ 0 as the thresholds for the energy detector
(32), it follows that

1

L
tr
(
YYH

)
∈ [γ̃, η̃]⇔ 2

N0
tr
(
YYH

)
∈
[

2Lγ̃

N0
,

2Lη̃

N0

]
.

(69)
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Let γ ,
2Lγ̃

N0
, η ,

2Lη̃

N0
. Under the two hypotheses, the

probability that the test statistic does not fall into the decision
region can be accordingly given by

P (TE (Y) /∈ [γ̃, η̃] ;H0) = P

(
2

N0
tr
(
YYH

)
/∈ [γ, η] ;H0

)
= 1−

(
1−FX 2

κ(ε0) (γ)
)
FX 2

κ(ε0) (η) ,

P (TE (Y) ∈ [γ̃, η̃] ;H1) = P

(
2

N0
tr
(
YYH

)
∈ [γ, η] ;H1

)
=
(
1−FX 2

κ(ε1) (γ)
)
FX 2

κ(ε1) (η) .
(70)

Finally, at the i-th PRI, the decision error probability for the
energy detector is

P
(i)
E =

[
1−

(
1−FX 2

κ(ε0) (γ)
)
FX 2

κ(ε0) (η)
] (

1− P (i−1)
D

)
+
(
1−FX 2

κ(ε1) (γ)
)
FX 2

κ(ε1) (η)P
(i−1)
D .

(71)

E. Discussion on the Hypothesis Testing Thresholds

It is worth highlighting that the performance of all the
detectors above relies on the given thresholds. Typically, the
threshold is chosen to optimize certain performance metrics,
i.e., the decision error probability in our case. Note that the
GLRT detector is equivalent to the maximum likelihood ratio.
Hence the optimal threshold can be straightforwardly given as

γ = ln

(
1− P (i−1)

D

P
(i−1)
D

)
. (72)

Nevertheless, as the true value of P (i−1)
D is unknown to the

BS, only the suboptimal threshold γ = 0 can be adopted.
For the Rao detector, the BS is unable to determine the

optimal hypothesis testing thresholds, since it does not know
the tracking waveform X1 under such scenarios. Instead,
we may employ the ergodic empirical thresholds, which are
computed by Monte Carlo simulations with a large number of
channel realizations, and can guarantee that the average error
probability is minimized.

For the energy detector, the optimal thresholds are also
difficult to obtain. To this end, we propose the following
scheme to numerically obtain the empirical thresholds:

1) The BS first receives NP pulses from the radar, and then
measures the received power pulse by pulse, where the
i-th power value is denoted as Pi.

2) As the radar randomly changes the mainlobe direction of
its tracking beampattern, it is possible that the BS lies in
the mainlobe or the sidelobe of the radar. Therefore, the
following three cases should be taken into consideration:
a) the radar is in seaching mode; b) the radar is tracking,
and the BS is in the sidelobe; c) the radar is tracking,
and the BS is in the mainlobe. Accordingly, Pi can be
generally classified into three levels. We then estimate
the average received power in a logarithmic scale by

P̄dB = 10E (logPi) =
10

NP

NP∑
i=1

logPi, (73)

where P̄ can be also viewed as the received power when
the searching waveform is transmitted. Here we use the
logarithmic power to compute the mean value, as the
tracking and the searching beampatterns shown in Fig.
3 are more comparable in a logarithmic scale. By doing
so, the empirical thresholds can be obtained as6

γdB = P̄dB − 3 dB, ηdB = P̄dB + 3 dB . (74)

VI. NUMERICAL RESULTS

In this section, numerical results are provided to verify the
effectiveness of the proposed approaches. Below we introduce
the parameters used in our simulations.

1) Radar Waveforms: We use X0 =
√

LPR
M U as the radar

searching waveform, where U ∈ CM×L is an arbitrarily given
unitary matrix. For the tracking waveform X1, we firstly solve
the classic 3dB beampattern design problem to obtain the
waveform covariance matrix R ∈ CM×M , which is given by
[Eq. (17), 13]. We then obtain the tracking waveform X1 by
the Cholesky decomposition of R. Without loss of generality,
we assume that the mainlobe focuses on the angle of 0◦, and
the desired 3dB beamwidth is 10◦.

2) Threshold Setting: As discussed in the above, we
use suboptimal and empirical thresholds for GLRT, Rao test
and energy detectors, since these are the practical thresholds
that can be used in realistic scenarios. For comparison, we
also show the performance of the optimal thresholds as the
benchmarks. For GLRT, the optimal threshold is given by (72).
For Rao test, the optimal threshold can be only obtained via 1-
dimensional search when M = N holds, which minimizes the
decision error probability (56) for a single channel realization.
For the energy detector, the optimal thresholds is numerically
computed to minimize (71) for a given LoS channel.

3) Other Parameters: For simplicity, we assume that the
detection probability of radar is the same at each PRI, namely
P iD = PD,∀i. Without loss of generality, we set PR = 1,
and define the transmit SNR of radar as SNR = PR/N0.
Unless otherwise specified, we fix L = 20, and assume half-
wavelength separation between adjacent antennas.

A. Detection Performance under the NLoS Channel Scenario

In this subsection, we assume a Rayleigh fading channel G,
i.e., the entries of G are independent and identically distributed
(i.i.d.) and subject to the standard complex Gaussian distribu-
tion. We firstly consider the case that M = N = 16, L =
20, PD = 0.9. To understand the impact of the ergodic HT
thresholds on the performance of the Rao test, Fig. 4 shows
the decision error probability computed through Monte Carlo
simulations for increasing values of the HT thresholds. It can
be observed that, for each SNR value, the error probability
curve has a unique minimum point, which determines the
ergodic threshold for the detector. We then use these results
for the following Rao test simulations.

In Fig. 5 (a), the performances of the GLRT and the Rao

6Although not explicitly shown for reasons of space, the simple 3dB gap
criterion has been selected because it provides a performance close to that of
the optimal threshold for the considered scenarios.
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Fig. 4. Decision error probability of the Rao test for varying HT thresholds
γ. M = N = 16, L = 20, PD = 0.9.

test are compared under the same parameter configuration
of Fig. 4, where the theoretical and simulated curves are
denoted by solid and dashed lines, respectively. For GLRT,
we employ both the optimal and suboptimal thresholds men-
tioned above. For the Rao test, we investigate not only the
empirical thresholds shown in Fig. 4, but also the optimal
thresholds for the specific instantaneous channel realization. It
can be noted that the theoretical curves match well with their
simulated counterparts for both detectors, which validates our
performance analysis of (50) and (57) in Sec. V. Moreover, the
Rao detector outperforms the GLRT in the low SNR regime,
where the associated error probability is close to 0.1. The
reason for this is explained as follows. In light of Fig. 4, the
optimal threshold for Rao test is close to 0 when the SNR is
low. Due to the non-negativity of the Rao test statistic (53),
hypothesis H1 will always be chosen by the detector, which
has the prior probability of P (H1) = PD = 0.9, leading to
an error probability of 0.1. It can be further noted that the
GLRT statistic (41) can be either positive or negative. When
the SNR is low, the GLRT detector choose randomly from the
two hypotheses, resulting in an error probability of 0.5. At
the high SNR regime, however, GLRT outperforms the Rao
detector, as it employs the information of both X0 and X1.

We further show in Fig. 5 (b) the detection performance
for PD = 0.5, where we fix N = 16, and set M = 10 and
M = 16 respectively. Note that the optimal and the suboptimal
thresholds for GLRT are exactly the same, given the prior
probability of 0.5 for each hypothesis. For the Rao test, since
the analytical performance for the nonequal-antenna case is
intractable, we only show the performance with empirical
threshold for M = 16. It can be observed that, when M = 10,
the performance for both detectors are superior to that of
the case of M = 16, which is sensible given that the BS
exploits more DoFs for hypothesis testing in the former case.
In addition, the GLRT outperforms the Rao test for both low
and high SNR regimes. This is because the a priori probability
for H1 is now 0.5, leading to an error probability of 0.5 for
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Fig. 5. Decision error probability vs. SNR for the GLRT and Rao tests. (a)
M = N = 16, L = 20, PD = 0.9; (b) M = {10, 16} , N = 16, L =
20, PD = 0.5.

Rao test for the low SNR regime, which further verifies the
correctness of our observations in the analysis of Fig. 5 (a).

B. Detection Performance under the LoS Channel Scenario

In this subsection, we show the detection performance for
the LoS channel scenario. Unless otherwise specified, we
assume that the BS is located at θ = −70◦ relative to the
radar. In each Monte Carlo simulation, a unit-modulus path-
loss factor α is randomly generated.

We first look at the detection performance of GLRT and
ED in Fig. 6 (a) with M = N = 16, L = 20, PD = 0.9.
For simplicity, we use “ED” to refer to the energy detection
in Fig. 6 (a). Again, we observe that the theoretical curves
match well with their simulated counterparts. It is interesting
to see that the energy detector outperforms the GLRT detector
under high SNR regime. This is a counter-intuitive behavior,
as the GLRT exploits both X0 and X1 while the energy
detector requires nothing from the radar. However, this result
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can be explained by realizing that the performance of GLRT is
highly dependent on the Kullback-Leibler divergence (KLD)
between the associated two PDFs [32]–[34]. Specifically, since
the LoS channel projects the received signal matrix onto
a rank-1 subspace, this breaks down the structure of the
transmitted waveforms, and makes the two PDFs become
closer to each other in the sense of KLD. Therefore, the two
hypotheses become indistinguishable in general. In contrast,
the energy detection exploits the power gap between the two
beampatterns, which is preserved during the transmission in
the LoS channel, and hence leads to better performance.
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Fig. 6. Decision error probability under a LoS channel. (a) GLRT and ED
performance with increased SNR, M = N = 16, L = 20, PD = 0.9; (b)
GLRT and ED performance with varying azimuth angle, M = N = 16, L =
20, PD = 0.9, SNR = −6dB and −4dB.

We show in Fig. 6 (b) the decision error probability for

both GLRT and ED at the BS by varying its azimuth angle
θ. All of the curves in the figure show a shape similar to
that of the tracking beampattern in Fig. 3. This is because
the detection performance of ED is mainly determined by the
power gap between the two beampatterns. Moreover, when
the radar transmits the tracking waveform, the receive SNR
at the BS varies when it is located at different angles, despite
the transmit SNR being fixed. Given the fact that the KLD
of the two PDFs is also dependent on the receive SNR, the
performance of the GLRT detector will be affected, which
suggests that GLRT also relies implicitly on the angle of the
BS. In the mainlobe area, we see that the error performance
for both detectors is better than that of the other areas,
owing to the largest power gap within omnidirectional and
directive antenna patterns in this region as well as the highest
receive SNR at the BS. Nevertheless, as predicted in Sec.
IV-B, the detection performance for ED becomes worse if
the BS is located at an angle that falls into the ambiguity
region, where the two beampatterns are unable to be effectively
differentiated. Thanks to the high SNR received, the GLRT
works well in the ambiguity region, though it fails to obtain
an acceptable error probability in the sidelobe region.

C. Channel Estimation Performance

We investigate the channel estimation performance for
NLoS channel in Fig. 7 (a), where we fix the radar antenna
number as M = 5, and increase the BS antennas from N = 4
to N = 20. Note that the hypothesis testing exploits the power
of all the entries in the received signal matrix to make the
binary decision, which does not require a high SNR per entry
to guarantee a successful outcome. This is very similar to the
concept of diversity gain. Nevertheless, for the NLoS channel
estimation, we need to estimate each entry individually, where
the diversity gain does not exist. For this reason, we fix the
SNR at 15dB to achieve the normal estimation performance7.
It can be seen from Fig. 7 (a) that the theoretical curves match
well with the simulated ones, which proves the correctness
of (63). Secondly, the MSE increases with the rise of the BS
antenna number, owing to the increasing number of the matrix
entries to be estimated. Finally, it is worth highlighting that
better estimation performance can be achieved by use of the
searching waveform X0 rather than the tracking waveform
X1. This is because the optimal pilot signals are orthogonal
waveforms such as X0 according to the channel estimation
theory [35].

Fig. 7 (b) shows the channel estimation performance for
the LoS scenario with an increasing number of BS antennas,
where M = 4, L = 20,SNR = −6dB. In this figure, the
maximum likelihood (ML) estimator (23)-(24) and the least-
squares (LS) estimators (36) are employed for the cases of
known and unknown waveforms, respectively. In contrast to
the NLoS channel shown in Fig. 7 (a), Fig. 7 (b) illustrates

7Note that in realistic scenarios, the receive SNR will be high enough in
general for channel estimation given the high transmission power of the radar
(typically at the order of kWatts). Nevertheless, we use different SNR scales
when showing detection and estimation results, as the proposed detectors work
satisfactorily enough in low-SNR regime. This does not necessarily mean that
the receive SNR is that low in practice.
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Fig. 7. Channel estimation MSE vs. number of antennas at the BS. (a) NLoS
scenario, M = 5, SNR = 15dB; (b) LoS scenario, M = 4, L = 20, SNR =
−6dB.

that the MSE of both the estimated θ and α decreases with
the increase of the BS antennas under the LoS channel. This
is because unlike the NLoS channel case where MN entries
of the channel matrix need to be estimated individually, θ
and α are the only two parameters to be estimated in the
LoS channel, which can be more accurately obtained by
increasing the DoFs at the BS. It can be again observed
that the accuracy of X0 is superior to that of X1 when the
ML estimator is used, thanks to the orthogonal nature of the
searching waveform. Nevertheless, we still need to identify
the working mode of the radar before we can estimate the
channel parameters. Moreover, there exists a 3dB performance
gap between the LS estimator and the ML estimator using X0.
This is because the LS estimator (36) is solely based on the
searching waveform X0, which is definitely worse than the
associated ML estimator, as the latter is typically the optimal
estimator in a statistical sense. Even so, the performance of
the LS estimator is satisfactory enough, as it does not require

any information of the radar waveforms. Finally, we compare
the performance of the proposed AoA estimator (36) and the
classic MUSIC method [36], both of which require no prior
information on the waveforms. It should be highlighted that
while both approaches require a 1-dimensional search over the
angular domain, our method performs slightly better than the
MUSIC algorithm.

VII. CONCLUSIONS

This paper deals with the issue of interfering channel
estimation for radar and cellular coexistence, where we assume
that the radar switches randomly between the searching and
tracking modes, and the BS is attempting to estimate the
radar-cellular interfering channel by use of the radar probing
waveforms. To acquire the channel state information, the BS
firstly identifies the working mode of the radar by use of
hypothesis testing approaches, and then estimates the channel
parameters. For completeness, both the LoS and NLoS chan-
nels are considered, where different detectors are proposed as
per the available prior knowledge at the BS, namely GLRT,
Rao test and energy detection. As a step further, the theoretical
performance of the proposed approaches are analyzed in detail
using statistical techniques. Our simulations show that the
theoretical curves match well with the numerical results, and
that the BS can effectively estimate the interfering channel,
even with limited information from the radar. Future research
may focus on evaluating the proposed interfering channel esti-
mation schemes with more practical radar configurations, such
as staggered pulses with non-fixed PRI and other searching
strategies, e.g. beam-scanning or random beamforming.

APPENDIX A
PROOF OF PROPOSITION 1

In the LoS channel case, the logarithmic probability density
function (log-PDF) of the received signal matrix can be given
as
ln p (Y) = −NL lnπN0

− 1

N0
tr

((
Y − αb (θ)aH (θ)X

)H (
Y − αb (θ)aH (θ)X

))
.

(75)
According to [26], the FIM can be partitioned as

J (Θ) =

[
Jrr Jrs
Jsr Jss

]
, (76)

where

Jrr = E
(

∂ ln p

∂vec* (X)

∂ ln p

∂vecT (X)

)
=

4N |α|2

N0
IL ⊗ a∗ (θ) aT (θ) ∈ CML×ML.

(77)

Let θs = [α, θ]
T ∈ C2×1 be the nuisance parameters, then

Jrs = E

(
∂ ln p

∂vec* (X)

(
∂ ln p

∂θs

)T)
∈ CML×2,

Jsr = JHrs ∈ C2×ML,

Jss = E

(
∂ ln p

∂θ∗s

(
∂ ln p

∂θs

)T)
∈ C2×2.

(78)
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From (77) and (78), it can be observed that

rank (Jrr) = L,

rank (Jrs) ≤ 2, rank (Jsr) ≤ 2, rank (Jss) ≤ 2.
(79)

To compute the upper-left partition of the inverse FIM, let us
define

J̄ = Jrr

(
Θ̃
)
− Jrs

(
Θ̃
)

J−1
ss

(
Θ̃
)

Jsr

(
Θ̃
)
. (80)

By using the property of the rank operator, and recalling that
L ≥M > 2, we have

rank
(
J̄
)
≤ L+ 2 < ML, (81)

which indicates that J̄ ∈ CML×ML is a singular matrix and
is thus non-invertible. Hence, the Rao test statistic does not
exist. This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

In the NLoS channel case, the log-PDF can be given as

ln p = −NL lnπN0 −
1

N0
tr
(

(Y −GX)
H

(Y −GX)
)
.

(82)
To compute the Fisher Information, we calculate the deriva-
tives as

∂ ln p

∂ vec (X)
=

2

N0

(
IL ⊗GH

)
z,

∂ ln p

∂vec* (X)
=

2

N0

(
IL ⊗GT

)
z∗,

∂ ln p

∂ vec (G)
=

2

N0
(X∗ ⊗ IN ) z,

∂ ln p

∂vec∗ (G)
=

2

N0
(X⊗ IN ) z∗,

(83)
where z = vec (Y −GX). Recalling (78)-(80), and by using
the fact that E

(
z∗zT

)
= N0INL, we have

Jrr = E
(

∂ ln p

∂vec* (X)

∂ ln p

∂vecT (X)

)
=

4

N2
0

(
IL ⊗GT

)
E
(
z∗zT

)
(IL ⊗G∗)

=
4

N0
IL ⊗GTG∗,

(84)

Jrs = E
(

∂ ln p

∂vec* (X)

∂ ln p

∂vecT (G)

)
=

4

N0
XH ⊗GT , (85)

Jsr = JHrs =
4

N0
X⊗G∗, (86)

Jss = E
(

∂ ln p

∂vec* (G)

∂ ln p

∂vecT (G)

)
=

4

N0
XXH ⊗ IN . (87)

The FIM can be therefore expressed as

J (Θ) =
4

N0

[
IL ⊗GTG∗ XH ⊗GT

X⊗G∗ XXH ⊗ IN

]
. (88)

By recalling the definition of Θ̃, and noting that X0X
H
0 =

LPR
M IM , ρIM , we have[

J−1
(
Θ̃
)]

θrθr

=
(
Jrr

(
Θ̃
)
− Jrs

(
Θ̃
)

J−1
ss

(
Θ̃
)

Jsr
(
Θ̃
))−1

=
N0

4

(
IL ⊗ ĜT

0 Ĝ∗0 −
1

ρ

(
XH

0 ⊗ ĜT
0

)
IMN

(
X0 ⊗ Ĝ∗0

))−1

=
N0

4

((
IL −

1

ρ
XH

0 X0

)
⊗
(
ĜT

0 Ĝ∗0

))−1

,

(89)
where ρ = LPR

M , and Ĝ0 is given by (13). By using (13), (18),
(83), and (89), the Rao test statistic can be expressed as (51),
which completes the proof.

APPENDIX C
PROOF OF PROPOSITION 3

We first rewrite (53) as

TRs (Y) =
2

N0
tr
(
YPYH

)
= 2ỹH (IN ⊗P) ỹ, (90)

where ỹ is defined in (42). In this expression, both the real
and imaginary parts of

√
2ỹ subject to the standard normal

distribution. Since IN ⊗P is also an idempotent matrix, (90)
subjects to non-central chi-squared distribution under both
hypotheses [26]. Under H0, the non-centrality parameter is
given by

µ0 =
2

N0
tr

(
GX0

(
IL −

M

LPR
XH

0 X0

)
XH

0 GH

)
= 0,

(91)
which indicates that TRs (Y;H0) is in fact central chi-squared
distributed. Under H1, the non-centrality parameter is given
as

µ =
2

N0
tr

(
GX1

(
IL −

M

LPR
XH

0 X0

)
XH

1 GH

)
. (92)

The DoFs of the two distributions are given by

K = 2 rank (IN ⊗P)

= 2N rank (P) = 2N tr (P) = 2N (L−M) ,
(93)

where we use the property of the idempotent matrix that
rank (P) = tr (P). This completes the proof.
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