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Abstract 

    In the classical multiple-relaxation-time (MRT) lattice Boltzmann (LB) method, the transformation matrix is 

formed by constructing a set of orthogonal basis vectors. In this paper, a theoretical and numerical study is 

performed to investigate the capability and efficiency of a non-orthogonal MRT-LB model for simulating 

multiphase flows. First, a three-dimensional non-orthogonal MRT-LB is proposed. A non-orthogonal MRT 

collision operator is devised based on a set of non-orthogonal basis vectors, through which the transformation 

matrix and its inverse matrix are considerably simplified as compared with those of an orthogonal MRT collision 

operator. Furthermore, through the Chapman-Enskog analysis, it is theoretically demonstrated that the 

three-dimensional non-orthogonal MRT-LB model can correctly recover the macroscopic equations at the 

Navier-Stokes level in the low Mach number limit. Numerical comparisons between the non-orthogonal MRT-LB 

model and the usual orthogonal MRT-LB model are made by simulating multiphase flows on the basis of the 

pseudopotential multiphase LB approach. The numerical results show that, in comparison with the usual 

orthogonal MRT-LB model, the non-orthogonal MRT-LB model can retain the numerical accuracy while 

simplifying the implementation. 
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1. Introduction 

    The lattice Boltzmann (LB) method is becoming an increasingly important numerical approach for a wide 

range of phenomena and processes [1-8]. This method is based on the mesoscopic kinetic equation for particle 

distribution function. It simulates fluid flow by tracking the evolution of the particle distribution function, and 

then the macroscopic averaged properties are obtained by accumulating the distribution function. Compared with 

the conventional numerical methods, which are based on the direct discretization of macroscopic governing 

equations, the LB method exhibits some distinctive advantages, such as its inherent parallelizability on multiple 

processors and easy implementation of fluid-fluid/fluid-solid interactions. In addition, in the conventional 

numerical methods the convection terms of governing equations are non-linear, while in the LB method the 

convection terms are linear and the viscous effect is modeled through a linearized collision operator, such as the 

Bhatnagar-Gross-Krook (BGK) collision operator [2, 9, 10], the multiple-relaxation-time (MRT) collision 

operator [11-18], and the two-relaxation-time (TRT) collision operator [19-22].  

    Owing to its simplicity, the BGK collision operator is the most frequently used collision operator in the LB 

community. However, the LB equation using the BGK collision operator is usually found to have stability issues 

when the viscosity of the fluid is reduced or the Reynolds number is increased. The TRT collision operator is 

based on the decomposition of the population solution into its symmetric and anti-symmetric components and 

employs two relaxation parameters to relax the particle distribution function [19, 20]. The MRT collision operator 

is an important extension of the relaxation LB method proposed by Higuera et al. [23, 24]. The basic idea behind 

the MRT collision operator is a mapping from the discrete velocity space to the moment space via a 

transformation matrix M , which allows the moments to be relaxed with individual rates [12-14]. The MRT 

collision operator has been extensively demonstrated to be capable of improving the numerical stability of LB 

models by carefully separating the relaxation rates of hydrodynamic and non-hydrodynamic moments [25, 26]. 

The TRT collision operator has certain advantages over the BGK collision operator in terms of numerical stability 

and accuracy [27] while retaining the simplicity of the BGK collision operator in terms of implementation. 

    In the literature, the Gram-Schmidt procedure [12, 13] is often employed to construct a set of orthogonal 



3 
 

basis vectors to form the transformation matrix for an MRT-LB model. This procedure starts with the vectors for 

the conserved moments (density and momentum). The subsequent step is to take a combination of the velocity 

vectors αe  of appropriate order and find the coefficients in such a way that the resulting vector is orthogonal to 

all the previously found ones [28]. Through the transformation matrix, the particle distribution function can be 

projected onto the moment space, where the moments are relaxed with individual rates. The relaxed moments are 

then transformed back to the discrete velocity space and the streaming step of the LB equation is implemented as 

usual. In most of the existing MRT-LB models, the transformation matrix is an orthogonal matrix. Recently, some 

research [29-31] showed that the transformation matrix of an MRT-LB model is not necessary to be an orthogonal 

one. A non-orthogonal transformation matrix for the two-dimensional nine-velocity (D2Q9) lattice can be found 

in Refs. [29-31]. Moreover, De Rosis [32] showed that a non-orthogonal basis of moments is also efficient in the 

central-moment-based LB method. Usually, the transformation matrix of a non-orthogonal MRT collision 

operator is simpler than that of an orthogonal MRT collision operator. 

    The aim of the present study is to develop a three-dimensional non-orthogonal MRT-LB model and 

investigate its capability and efficiency for simulating multiphase flows. A non-orthogonal MRT collision 

operator is devised based on a set of non-orthogonal basis vectors for the three-dimensional nineteen-velocity 

(D3Q19) lattice. The transformation matrix and its inverse matrix are considerably simplified. The rest of the 

present paper is organized as follows. The three-dimensional non-orthogonal MRT-LB model is proposed in 

Section 2. Theoretical analysis of the non-orthogonal MRT-LB model is presented in Section 3. Numerical 

investigation is carried out in Section 4 and finally a brief summary is given in Section 5. 

 

2. Three-dimensional non-orthogonal MRT-LB model 

2.1. The MRT-LB framework 

    In the LB community, the D3Q15 and D3Q19 lattices are the most popular lattice velocity sets for three 

dimensions [13, 14]. The D3Q15 lattice is more computationally efficient than the D3Q19 lattice, while the 

numerical stability is usually better when using a larger velocity set [13, 28]. In the present study, a 
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three-dimensional non-orthogonal MRT-LB model is devised based on the D3Q19 lattice. The model for the 

D3Q15 lattice can be constructed in a similar way. The MRT-LB equation with a forcing term can be written as 

follows [14, 25]: 

 ( ) ( ) ( )
( ) ( ) ( ), ,,

, ,
2 t t

eq t
t t t tt

f t f t f f G G
α

α α α αβ β β α αδ δ

δ
δ δ

+ +
 + + = −Λ − + + x e xx

x e x ,  (1) 

where fα  is the density distribution function, 
eqfα  is the equilibrium density distribution function, x  is the 

spatial position, αe  is the discrete velocity in the α th direction, t  is the time, tδ  is the time step, Gα  is the 

forcing term in the discrete velocity space, and ( )1
αβ αβ

−Λ = ΛM M
 

is the collision operator, in which M  is the 

transformation matrix and Λ  is a diagonal matrix. The trapezoidal rule has been applied to the forcing term in 

Eq. (1), which was suggested by He et al. [33] in order to achieve second-order accuracy in time.  

    The lattice velocities { }αe  of the D3Q19 lattice are given by 

 
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 .
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1

α

− − − − − 
 = − − − − − 
 − − − − − 

e   (2) 

The implicitness of Eq. (1) can be eliminated by introducing 0.5 tf f Gα α αδ= − , through which the MRT-LB 

equation can be transformed to [14, 25]:  

 ( ) ( ) ( )
( )

( )
( ),,

, , 0.5eq
t t t tt

f t f t f f G Gα α α αβ β β α αβ βδ δ δ+ + = −Λ − + − Λx e x
xx

.  (3) 

Multiplying Eq. (3) by the transformation matrix M, the right-hand side of Eq. (3), i.e., the collision process, can 

be implemented in the moment space: 

 ( )
2

eq
tδ

∗  = − − + − 
 

m m m m I SΛ
Λ ,  (4) 

where I  is the unit matrix, =m Mf , eq eq=m Mf , and =S MG , in which ( )0 1 18, , ... ,f f f=
T

f , 

( )0 1 18, , ... ,eq eq eq eqf f f=
T

f , and ( )0 1 18, , ... ,G G G= TG . Then the streaming process is implemented as follows: 

 ( ) ( ), ,t tf t f tα α αδ δ ∗+ + =x e x ,  (5) 

where 1∗ − ∗=f M m  and 1−M  is the inverse matrix of the transformation matrix. The macroscopic density and 

velocity are calculated by 
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 ,
2

tf fα α α
α α

δ
ρ ρ= = +∑ ∑u e F ,  (6) 

where F  is the total force exerted on the system.  

 

2.2. Non-orthogonal MRT-LB model 

    A three-dimensional non-orthogonal MRT collision operator is now constructed based on the D3Q19 lattice. 

The following set of non-orthogonal basis vectors is proposed, which can be divided into four groups: (i) the 

zeroth-order and first-order vectors, which are the vectors related to the conserved moments: 

 0, 1M α = , 1, xM eα α= , 2, yM eα α= , 3, zM eα α= ,  (7) 

(ii) the second-order vectors related to the viscous effect at the Navier-Stokes level: 

2
4,M α α= e , 22

5, 3 xM eα α α= − e , 2 2
6, y zM e eα α α= − , 

 7, x yM e eα α α= , 8, x zM e eα α α= , 9, y zM e eα α α= ,   (8) 

(iii) the third-order vectors: 

 2
10, x yM e eα α α= , 2

11, x yM e eα α α= , 2
12, x zM e eα α α= , 

 2
13, x zM e eα α α= , 2

14, y zM e eα α α= , 2
15, y zM e eα α α= ,   (9) 

(iv) the fourth-order vectors: 

 2 2
16, x yM e eα α α= , 2 2

17, x zM e eα α α= , 2 2
18, y zM e eα α α= .   (10) 

    The first ten vectors are related to the macroscopic density, momentum, and viscous stress tensor, whereas 

the additional vectors are related to higher-order moments that do not affect the Navier-Stokes level 

hydrodynamics. Using such a set of non-orthogonal basis vectors, the relaxation matrix Λ  (the matrix for 

relaxation rates) in Eq. (4) can be defined as follows: 

 ( )diag 1, 1, 1, 1, , , , , , , , , , , , , , ,e v q q q q q qs s s s s s s s s s s s s s sν ν ν ν π π π=Λ ,  (11) 

where es  and sν  determine the bulk and shear viscosities, respectively, while qs  and sπ  are related to 

non-hydrodynamic moments. The relaxation rates of the conserved moments have been set to 1.0  following Ref. 

[14]. Note that 4,M α  in Eq. (8) is related to the energy mode while 5,M α  and 6,M α  are retained from the 
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orthogonal MRT-LB method [13, 14]. Theoretically, the vectors 4,M α , 5,M α , and 6,M α  can be chosen as 

2
4, xM eα α= , 2

5, yM eα α= , and 2
6, zM eα α= , respectively, which will yield a fixed bulk viscosity b 2 3µ µ=  

when employing a diagonal relaxation matrix like Eq. (11). For such a choice, an alternative approach is to 

modify the diagonal relaxation matrix as a block-diagonal relaxation matrix to achieve a flexible bulk viscosity 

[34, 35]. According to Eqs. (7)-(10), the transformation matrix M  is given by 

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1

− − − − −
− − − − −

− − − − −

− − − − − − − −
− − − − − −

− −
−

=M
1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0

−
− −

− −
− −

− −
− −

− −
− −

.

0 0 0 0 0 0 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (12) 

    The inverse matrix of M , namely the matrix 1−M , is given in the Appendix. It can be found that the 

present non-orthogonal transformation matrix has 145 non-zero elements and its inverse matrix has 96 non-zero 

elements. However, from Refs. [13, 14] we can find that for the D3Q19 lattice the usual transformation matrix 

and its inverse matrix both have 213 non-zero elements. The matrix-vector calculations =m Mf  and 

1∗ − ∗=f M m  in Eqs. (4) and (5), respectively, are usually expanded in practical programming [36]. For example, 

according to the above transformation matrix, the moment 18m  is given by 18 15 16 17 18m f f f f= + + + . Therefore, 

reducing the number of non-zero elements in M  and 1−M  can simplify the programming and also reduce the 

computational cost to some extent.  

    According to Eqs. (7)-(10), the equilibria eq eq=m Mf  in Eq. (4) are given by 
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 0
eqm ρ= , 1

eq
xm uρ= , 2

eq
ym uρ= , 3

eq
zm uρ= , 2

4
eqm ρ ρ= + u , 

( )2 2 2
5 2eq

x y zm u u uρ= − − , ( )2 2
6
eq

y zm u uρ= − , 7
eq

x ym u uρ= , 8
eq

x zm u uρ= , 9
eq

y zm u uρ= , 

 2
10
eq

s ym c uρ= , 2
11
eq

s xm c uρ= , 2
12
eq

s zm c uρ= , 2
13
eq

s xm c uρ= , 2
14
eq

s zm c uρ= , 2
15
eq

s ym c uρ= , 

 ( )2 2 2
16
eq

s x ym c u uϕ ρ= + + , ( )2 2 2
17
eq

s x zm c u uϕ ρ= + + , ( )2 2 2
18
eq

s y zm c u uϕ ρ= + + ,   (13) 

where 2 1 3sc =  and ( )24 1 1.5scϕ ρ= − u . Correspondingly, the forcing term S  in Eq. (4) is given by 

 

( )
( )

( )
( )
( )

2

2

2

2

2

2

2

2

2

0

2

2 2

2

,

2

2

2

x

y

z

x x y y z z

y y z z

x y y x

x z z x

y z z y

s y

s x

s z

s x

s z

s y

s x x y y

s x x z z

s y y z z

F
F
F

F u F u F u

F u F u

F u F u
F u F u
F u F u

c F
c F
c F
c F
c F
c F

c u F u F

c u F u F

c u F u F

 
 
 
 
 
 
 ⋅
 
 − −
 
 −
 

+ 
 + 
 = +
 
 
 
 
 
 
 
 
 
 
 +
 
 +
 

+  

F u

S

  (14) 

where F  is the total force exerted on the system. In the pseudopotential multiphase LB approach, the  

pseudopotential interaction force is given by [6]: 

 ( ) ( )m tG wα α α
α

ψ ψ δ= − +∑F x x e e ,  (15) 

where G  is the interaction strength, ( )ψ x  is the pseudopotential, and wα  are the weights. For the D3Q19 

lattice, the weights wα  in Eq. (15) are given by 1 6 1 6w − =  and 7 18 1 12w − = . In the literature, two types of 

pseudopotentials are widely used. One is the exponential-form pseudopotential [37], i.e., 

( ) ( )0 0expψ ψ ρ ρ= −x , where 0ψ  and 0ρ  are constant, and the other is the square-root-form pseudopotential 

( ) ( )2 2
EOS2 sp c Gcψ ρ= −x  [38, 39], in which 1c =  is the lattice constant and EOSp  is a prescribed 
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non-ideal equation of state. 

    Using the square-root-form pseudopotential, the pseudopotential multiphase LB model usually suffers from 

the problem of thermodynamic inconsistency [40], namely the coexistence curve predicted by the pseudopotential 

LB model is inconsistent with that given by the Maxwell equal-area law. To solve this problem, Li et al. [41, 42] 

proposed that the thermodynamic consistency can be achieved by adjusting the mechanical stability condition of 

the pseudopotential LB model through an improved forcing scheme. Moreover, in the original pseudopotential 

LB model the surface tension is dependent on the density ratio. An alternative approach has been developed by Li 

and Luo [43] to decouple the surface tension from the density ratio. Some extensions of Li et al.’s approaches 

[41-43] have been made by Zhang et al. [44], Xu et al. [45], Lycett-Brown and Luo [46], and Ammar et al. [47]. 

To achieve thermodynamic consistency, the fifth moment of the forcing term S  in Eq. (14) can be changed to 

 
( )

2

4 2 1

6
2

0.5
m

t e

S
s

σ

ψ δ −
= ⋅ +

−

F
F u ,  (16) 

where the constant σ  is employed to adjust the mechanical stability condition of the pseudopotential LB model 

[42, 44, 45, 48].  

 

3. Theoretical analysis 

    In this section, the Chapman-Enskog analysis is performed for the three-dimensional non-orthogonal 

MRT-LB model, which can be implemented by introducing the following multi-scale expansions [49]: 

 ( ) ( )1 22
0 1, eq

t t t t t tf f f fα α α αδ δ δ∂ = ∂ + ∂ = + + .  (17) 

The Taylor series expansion of Eq. (1) yields 

 ( ) ( ) ( ) ( ) ( )
2 2

2
,|

2 2
eqt t

t t t t ttf f f f G Gα α α α αβ β β α α α
δ δ

δ δ∂ + ⋅ + ∂ + ⋅ = −Λ − + + ∂ + ⋅xe e e∇ ∇ ∇ .  (18) 

Using the multi-scale expansions, Eq. (18) can be rewritten in the consecutive orders of tδ  as follows: 

 ( ) ( ) ( )
( )

1
0 ,: |eq

t t tf f Gα α αβ β αΟ δ ∂ + ⋅ = −Λ +xe ∇ ,  (19) 

 ( ) ( ) ( ) ( )
( ) ( )2 22 (1)

1 0 0 ,
1 1: |
2 2

eq eq
t t t t ttf f f f Gα α α α α αβ β α αΟ δ ∂ + ∂ + ⋅ + ∂ + ⋅ = −Λ + ∂ + ⋅xe e e∇ ∇ ∇ .  (20) 

Multiplying Eqs. (19) and (20) by the transformation matrix M  leads to the following equations: 
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 ( ) ( )1
0: eq

tΟ δ = − +D m m SΛ ,  (21) 

 ( ) ( ) ( )1 22 2
1 0 0 0

1 1:
2 2

eq eq
t tΟ δ ∂ + + = − +m D m D m m D SΛ ,  (22) 

where 0 0t i i= ∂ + ∂D I C , in which I  is the unit matrix, i i x x y y z z∂ = ∂ + ∂ + ∂C C C C  , and 1
i i

−=C ME M  with 

( )0, 1, 18,diag , , ... ,i i i i=E e e e . Substituting Eq. (21) into Eq. (22), we can obtain 

 ( ) ( )1 2
1 0 2

eq
t

 ∂ + − = − 
 

m D I m mΛ
Λ .  (23) 

    The matrix iC  in 0D  can be obtained according to the lattice velocities { }αe , the transformation matrix 

M , and its inverse matrix 1−M . According to the expression of iC  and Eq. (21), we can obtain 

 0 1 2 3 0eq eq eq
t x y zm m mρ∂ + ∂ + ∂ + ∂ = ,   (24) 

 ( ) ( )0 4 5 7 8
1
3

eq eq eq eq
t x x y z xu m m m m Fρ∂ + ∂ + + ∂ + ∂ = ,  (25) 

 ( )0 7 4 5 6 9
1 1 1
3 6 2

eq eq eq eq eq
t y x y z yu m m m m m Fρ  ∂ + ∂ + ∂ − + + ∂ = 

 
,  (26) 

 ( )0 8 9 4 5 6
1 1 1
3 6 2

eq eq eq eq eq
t z x y z zu m m m m m Fρ  ∂ + ∂ + ∂ + ∂ − − = 

 
.  (27) 

Substituting Eq. (13) into the above equations leads to 

 ( ) ( ) ( )0 0t x x y y z zu u uρ ρ ρ ρ∂ + ∂ + ∂ + ∂ = ,  (28) 

 ( ) ( ) ( ) ( )2
0t x x x y y x z z x xu p u u u u u Fρ ρ ρ ρ∂ + ∂ + + ∂ + ∂ = ,  (29) 

 ( ) ( ) ( ) ( )2
0t y x x y y y z z y yu u u p u u u Fρ ρ ρ ρ∂ + ∂ + ∂ + + ∂ = ,  (30) 

 ( ) ( ) ( ) ( )2
0t z x x z y y z z z zu u u u u p u Fρ ρ ρ ρ∂ + ∂ + ∂ + ∂ + = ,  (31) 

where 2
sp cρ= . Similarly, from Eq. (23) we can obtain 

 1 0t ρ∂ = ,  (32) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1
1 4 5 7 8

1 1 1 1 1 0
3 2 2 2 2

e
t x x y z

s s s s
u m m m mν ν νρ

        ∂ + ∂ − + − + − ∂ + − ∂ =        
        

,  (33) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
1 7 4 5 6 9

1 1 11 1 1 1 1 0
2 3 2 6 2 2 2 2

e
t y x y z

s s s s s
u m m m m mν ν ν νρ

          ∂ + − ∂ + ∂ − − − + − + − ∂ =          
          

, (34) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
1 8 9 4 5 6

1 1 11 1 1 1 1 0
2 2 3 2 6 2 2 2

e
t z x y z

s s s s s
u m m m m mν ν ν νρ

          ∂ + − ∂ + − ∂ + ∂ − − − − − =          
          

.  (35) 

Meanwhile, according to Eq. (21) we have 
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 ( ) ( ) ( ) ( )1
0 4 1 11 13 2 10 15 3 12 14 4 4

eq eq eq eq eq eq eq eq eq eq
t x y z em m m m m m m m m m s m S∂ + ∂ + + + ∂ + + + ∂ + + = − + ,  (36) 

 ( ) ( ) ( ) ( )1
0 5 1 11 13 2 10 15 3 12 14 5 52 2 2eq eq eq eq eq eq eq eq eq eq

t x y zm m m m m m m m m m s m Sν∂ + ∂ − − + ∂ − + − + ∂ − + − = − + ,  (37) 

 ( ) ( ) ( ) ( )1
0 6 11 13 2 15 3 14 6 6

eq eq eq eq eq eq eq
t x y zm m m m m m m s m Sν∂ + ∂ − + ∂ − + ∂ − + = − + ,  (38) 

 ( )1
0 7 10 11 7 7

eq eq eq
t x ym m m s m Sν∂ + ∂ + ∂ = − + ,  (39) 

 ( )1
0 8 12 13 8 8

eq eq eq
t x zm m m s m Sν∂ + ∂ + ∂ = − + ,  (40) 

 ( )1
0 9 14 15 9 9

eq eq eq
t y zm m m s m Sν∂ + ∂ + ∂ = − + .  (41) 

Substituting Eqs. (13) and (14) into Eqs. (36)-(41) yields 

 ( ) ( ) ( ) ( ) ( )2 12 2 2
0 42 2 2 2t x x s x y y s y z z s z eu c u u c u u c u s mρ ρ ρ ρ ρ ρ ρ ρ∂ + + ∂ + + ∂ + + ∂ + = − + ⋅u F u ,  (42) 

 ( ) ( ) ( ) ( ) ( ) ( )12 2 2 2 2 2
0 52 4 2 2 2 2t x y z x s x y s y z s z x x y y z zu u u c u c u c u s m F u F u F uνρ ρ ρ ρ ∂ − − + ∂ − ∂ − ∂ = − + − −  ,  (43) 

 ( ) ( ) ( ) ( ) ( )12 2 2 2
0 62 2 2t y z y s y z s z y y z zu u c u c u s m F u F uνρ ρ ρ ∂ − + ∂ − ∂ = − + −  ,  (44) 

 ( ) ( ) ( ) ( )12 2
0 7t x y x s x y s y x y y xu u c u c u s m F u F uνρ ρ ρ∂ + ∂ + ∂ = − + + ,  (45) 

 ( ) ( ) ( ) ( )12 2
0 8t x z x s x z s z x z z xu u c u c u s m F u F uνρ ρ ρ∂ + ∂ + ∂ = − + + ,  (46) 

 ( ) ( ) ( ) ( )12 2
0 9t y z y s y z s z y z z yu u c u c u s m F u F uνρ ρ ρ∂ + ∂ + ∂ = − + + .  (47) 

The equilibrium moments ( )2 2 2
5 2eq

x y zm u u uρ= − − , ( )2 2
6
eq

y zm u uρ= − , 7
eq

x ym u uρ= , 8
eq

x zm u uρ= , and 

9
eq

y zm u uρ=  can also be found in the classical orthogonal MRT-LB models [14]. It can be readily verified that 

Eqs. (43)-(47) are consistent with those obtained from the orthogonal MRT-LB models [14]. The difference lies in 

the form of Eq. (42). In the present non-orthogonal MRT-LB model, the equilibrium moment related to the energy 

mode is given by 2
4

eq eqe m ρ ρ= = + u , while in the orthogonal MRT-LB model 2eqe ρ ρ= − + u  (taking the 

D3Q15 model for example) and the equation of eqe  at 0t  time scale is given by (see Eq. (45) in Ref. [14]) 

 ( ) ( ) ( ) ( ) ( )2 1
0

1 1 1 2
3 3 3t x x y y z z eu u u s eρ ρ ρ ρ ρ∂ − + − ∂ − ∂ − ∂ = − + ⋅u F u .  (48) 

By combining Eq. (42) with Eq. (28), we can rewrite Eq. (42) as follows: 

 ( ) ( ) ( ) ( ) ( )2 12 2 2
0 42 2 2 2t x x s x y y s y z z s z eu c u u c u u c u s mρ ρ ρ ρ ρ ρ ρ ρ∂ − + + ∂ − + + ∂ − + + ∂ − + = − + ⋅u F u .  (49) 

Since 2 1 3sc = , it can be found that Eq. (49) and Eq. (48) are identical.  
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    With the help of Eqs. (28)-(31), we can derive the following equations from Eqs. (42)-(47) (the third-order 

velocity terms are neglected according to the low Mach number limit): 

 ( ) ( )1 2
4 2e s x x y y z zs m c u u uρ− ≈ ∂ + ∂ + ∂ , ( ) ( )1 2

5 2 2s x x y y z zs m c u u uν ρ− ≈ ∂ − ∂ − ∂ ,  

 ( ) ( )1 2
6 2 s y y z zs m c u uν ρ− ≈ ∂ − ∂ , ( ) ( )1 2

7 s x y y xs m c u uν ρ− ≈ ∂ + ∂ , 

 ( ) ( )1 2
8 s x z z xs m c u uν ρ− ≈ ∂ + ∂ , ( ) ( )1 2

9 s y z z ys m c u uν ρ− ≈ ∂ + ∂ . (50) 

Substituting Eq. (50) into Eqs. (33)-(35) and then multiplying the results with tδ , we can obtain 

   ( ) ( ) ( ) ( ) ( )1 b
2 2 0
3t t x x x x y y z z y y x x y z z x x zu u u u u u u uµδ ρ µ µ µ   ∂ = ∂ ∇ ⋅ + ∂ − ∂ − ∂ + ∂ ∂ + ∂ + ∂ ∂ + ∂ =      

u , (51) 

   ( ) ( ) ( ) ( ) ( )1 b
2 2 0
3t t y x x y y x y y y x x z z z z y y zu u u u u u u uµδ ρ µ µ µ    ∂ = ∂ ∂ + ∂ + ∂ ∇ ⋅ + ∂ − ∂ − ∂ + ∂ ∂ + ∂ =     

u , (52) 

   ( ) ( ) ( ) ( ) ( )1 b
2 2 0
3t t z x x z z x y y z z y z z z x x y yu u u u u u u uµδ ρ µ µ µ  ∂ = ∂ ∂ + ∂ + ∂ ∂ + ∂ + ∂ ∇ ⋅ + ∂ − ∂ − ∂ =       

u , (53) 

where the dynamic shear viscosity µ  and the bulk viscosity bµ  are given by 

 2 2
b

1 1 2 1 1,
2 3 2s t s t

e

c c
s sν

µ ρ δ µ ρ δ
   

= − = −   
   

.  (54) 

Combining Eq. (28) with Eq. (32) through 0 1t t t tδ∂ = ∂ + ∂ , the continuity equation can be obtained 

 ( ) 0tρ ρ∂ + ⋅ =u∇ ,  (55) 

Similarly, combining Eqs. (29)-(31) with Eqs. (51)-(53), we can obtain the Navier-Stokes equation as follows: 

 ( ) ( ) ( )( ) ( ) ( )T
b

2
3t pρ ρ µ µ µ ∂ + ⋅ = − + ⋅ + − ∇ ⋅ + ∇ ⋅ +  

u uu u u u I u I F∇ ∇ ∇ ∇ ∇ .  (56) 

The above analysis clearly shows that the macroscopic equations at the Navier-Stokes level can be correctly 

recovered from the three-dimensional non-orthogonal MRT-LB model in the low Mach number limit. Note that, 

when the square-root-form pseudopotential is employed, the fifth moment of the forcing term is given by Eq. (16), 

which will introduce an additional term into the Navier-Stokes equation to modify the pressure tensor and adjust 

the mechanical stability condition of the pseudopotential LB model [42, 44, 45, 48]. 

 

4. Numerical simulations 

    In this section, numerical simulations are carried out to investigate the capability and efficiency of the three 

dimensional non-orthogonal MRT-LB model for simulating multiphase flows. In particular, comparisons between 
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the non-orthogonal MRT-LB model and the usual orthogonal MRT-LB model will be made so as to identify 

whether the non-orthogonal MRT-LB model can serve as an alternative to the usual orthogonal MRT-LB model. 

The exponential-form pseudopotential is employed in Sec. 4.1 to Sec. 4.3 and the simulations using the 

square-root-form pseudopotential are performed in the last two subsections.  

 

4.1. Phase separation 

    First, we consider three-dimensional phase separation in a cubic domain of 120 120 120× ×  with periodic 

boundary conditions in all directions. The exponential-form pseudopotential ( ) ( )0 0expψ ψ ρ ρ= −x  is adopted. 

For such a pseudopotential, the thermodynamic consistency or the Maxwell equal-area law is satisfied as long as 

the macroscopic equations at the Navier-Stokes level are correctly recovered. Some previous studies [50, 51] 

have shown that the numerical coexistence densities produced by the pseudopotential LB model are very 

sensitive to the error terms in the recovered macroscopic equations. In the present study, we adopt 0 1ψ = , 

0 1ρ = , and 10 3G = −  [51], which corresponds to the coexistence densities 2.783Lρ ≈  and 0.3675Vρ ≈  

according to the Maxwell equal-area law. 

    Initially, the density in the computational domain is taken as 0 rand 5000Nρ ρ= − , where randN  is a 

random number in the interval [ ]0, 10 . The relaxation parameter es , which determines the bulk viscosity, is 

chosen as 0.8es = . The relaxation parameter sν  changes with the kinematic viscosity ν µ ρ= , which varies 

from 0.01ν =  to 0.15 , while the other relaxation parameters are fixed at 1.2 . The same choices are applied to 

the usual orthogonal MRT-LB model based on the D3Q19 lattice [13, 14]. Some snapshots of the results obtained 

by the non-orthogonal MRT-LB model with 0.1ν =  are displayed in Fig. 1. During the phase separation 

process, the system changes from single phase to two phases. The equilibrium state of the system can be observed 

in Fig. 1(d), which is taken at 8000 tt δ= . From Fig. 1(d) we can see that the region occupied by the liquid is in 

the form of a cylinder, with the liquid density 2.801Lρ ≈  inside the cylinder and the vapor density 0.369Vρ ≈  

outside the cylinder, which are in good agreement with the coexistence liquid and vapor densities given by the 

Maxwell equal-area law.  
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(a)                              (b) 

 

(c)                              (d) 

Fig. 1 Snapshots of three-dimensional phase separation at (a) 400 tt δ= , (b) 800 tδ , (c) 2800 tδ , and (d) 

8000 tδ . The pseudopotential is taken as ( ) ( )exp 1ψ ρ= −x  and the interaction strength is chosen as 

10 3G = − . The coexistence liquid and vapor densities obtained from the Maxwell equal-area law are 

given by 2.783Lρ ≈  and 0.3675Vρ ≈ , respectively.  

    Table I depicts a comparison of the numerical coexistence densities obtained by the non-orthogonal 

MRT-LB model and the orthogonal MRT-LB model when the kinematic viscosity varies from 0.01ν =  to 0.15 . 

For both models, it can be seen that their numerical results agree well with the results given by the Maxwell 

equal-area law. More importantly, in all the cases there are only very minor differences between the results of the 

non-orthogonal MRT-LB model and those of the orthogonal MRT-LB model. Previously, it has been mentioned 

that the pseudopotential LB model is very sensitive to the additional (error) terms in the recovered macroscopic 

equations. The good agreement shown in Table I numerically confirms that the non-orthogonal MRT-LB model 
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can recover the correct macroscopic equations at the Navier-Stokes level. Furthermore, we find that in this test 

both models are unstable when the kinematic viscosity is taken as 310ν −= , but stable with 32 10ν −= × , which 

implies the numerical stability of the MRT-LB method is retained when employing a non-orthogonal MRT 

collision operator to simplify the implementation.  

Table I. Comparison of the coexistence densities obtained by the non-orthogonal and orthogonal MRT-LB models. 

Model 
0.01ν =  0.05ν =  0.1ν =  0.15ν =  

ρL ρV ρL ρV ρL ρV ρL ρV 

Non-orthogonal 2.794 0.365 2.794 0.368 2.801 0.369 2.797 0.369 

Orthogonal 2.792 0.366 2.791 0.367 2.797 0.369 2.798 0.369 

 

4.2. Static droplets 

    In this subsection, the Laplace law for a static droplet immersed in its vapor phase is employed to examine 

the three-dimensional non-orthogonal MRT-LB model. In three-dimensional space, the Laplace law is given by 

in out d2p p p Rϑ∆ = − = , where inp  and outp  are the fluid pressures inside and outside the droplet, respectively, 

dR  is the droplet radius, and ϑ  is the surface tension. When the surface tension is given, the pressure 

difference is proportional to d1 R . Simulations are carried out in a cubic domain of 150 150 150× ×  with 

periodic boundary conditions in all directions. The kinematic viscosity is taken as 0.1ν = , which corresponds to 

1 0.8sν
− = . The other relaxation parameters are the same as those used in the previous subsection. A spherical 

droplet is initially located at the center of the computational domain. The pressure difference is measured at 

42 10 tt δ= × , at which the equilibrium state is approximately achieved. The numerical results are plotted in Fig. 2. 

For comparison, the results of the orthogonal MRT-LB model are also shown in the figure. The linear relationship 

between the pressure difference and d1 R  can be clearly observed for both models. Similar to the previous test, 

the present test also shows that there are only very minor differences between the results of the non-orthogonal 

MRT-LB model and the orthogonal MRT-LB model.  
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Fig. 2 Validation of the Laplace law. 
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Fig. 3 Comparison of the maximum spurious velocities given by the non-orthogonal MRT-LB model and the 

orthogonal MRT-LB model.  

    Furthermore, we also compare the maximum spurious velocities yielded by the non-orthogonal MRT-LB 

model and the orthogonal MRT-LB model. The spurious velocities, also called spurious currents, have been 

observed in almost all the simulations of multiphase flows involving curved interfaces. The grid system is now 

chosen as 80 80 80x y zN N N× × = × ×  and the droplet radius is fixed at 15  (lattice unit). The relaxation 

parameter sν  varies from 1 0.55sν
− =  to 1.0 . The maximum spurious velocities produced by the 

non-orthogonal and orthogonal MRT-LB models are compared in Fig. 3, from which no significant differences 

are observed between the results of the two models. In addition, for both models it can be found that the 

maximum spurious velocity increases significantly when 1sν
−  is close to 0.5 . Such a phenomenon is consistent 
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with the findings in the literature for other multiphase LB models. For the pseudopotential LB model, the 

spurious velocities can be reduced by using high-order isotropic gradient operators to calculate the interaction 

force or widening the interface [6].  

 

4.3. Contact angles 

    The capability of the three-dimensional non-orthogonal MRT-LB model for simulating contact angles is 

examined in this subsection. There have been many studies of wetting phenomena using the pseudopotential 

multiphase LB method [6] and applying a fluid-solid interaction to implement contact angles is a commonly used 

treatment in the pseudopotential LB method, which was introduced by Martys and Chen in 1996 [52]. Since then 

different types of fluid-solid interactions have been developed, which have been reviewed in Ref. [53]. In recent 

years, the geometric formulation [54, 55], originally devised for implementing contact angles in the phase-field 

method, has also been applied to the pseudopotential LB method [56, 57]. In three-dimensional space, the 

geometric formulation for the pseudopotential LB method can be given by [57] 

 ( )o
, ,0 , ,2 atan 90i j i jρ ρ φ θ= + − ,  (57) 

where ( ) ( )2 2

1, ,1 1, ,1 , 1,1 , 1,1i j i j i j i jφ ρ ρ ρ ρ+ − + −= − + − , aθ  is an analytically prescribed contact angle, and , ,0i jρ  

represents the density at the ghost layer ( ), ,0i j  beneath the solid wall. The first and the second indexes 

represent the coordinates along the x- and y-directions, respectively, whereas the third index denotes the 

coordinate normal to the solid wall. 

    In our simulations, the grid system is taken as 160 160 120x y zN N N× × = × × . The kinematic viscosity is set 

to 0.1ν = . Initially, a spherical droplet of radius 0 30r =  (lattice unit) is placed on the bottom surface. The 

non-slip boundary condition [58] is applied at the solid surfaces and the periodic boundary condition is utilized in 

the x and y directions. The modeling results are displayed in Fig. 4 with the prescribed contact angle aθ  in Eq. 

(57) being setting to o30 , o60 , o90 , and o135 , respectively. According to the numerical results, the contact 

angles produced by the non-orthogonal MRT-LB model are o29.1θ ≈ , o60.8 , o89.93 , and o135.4 , 

respectively, which are in good agreement with the analytically prescribed contact angles and the maximum error 
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is within o1± , which demonstrates the capability of the non-orthogonal MRT-LB model for simulating contact 

angles.  

 
(a)                                  (b) 

 
(c)                                  (d) 

Fig. 4 Simulation of contact angles using the non-orthogonal MRT-LB model. (a) o29.1θ ≈ , (b) o60.8θ ≈ , (c) 

o89.93θ ≈ , and (d) o135.4θ ≈ . 

 

4.4. The square-root-form pseudopotential 

    In this subsection, some simulations are performed using the square-root-form pseudopotential. A 

comprehensive review of the pseudopotential multiphase LB method using this type of pseudopotentials can be 

found in Ref. [6]. Here the Carnahan-Starling (C-S) equation of state is adopted [39] 

 
( ) ( )

( )

2 3
2

EOS 3

1 4 4 4

1 4

b b b
p RT a

b

ρ ρ ρ
ρ ρ

ρ

+ + −
= −

−
, (58) 

where 2 2
c c0.4963a R T p=  and c c0.18727b RT p=  with ( )c 0.37733T a bR= . Using the square-root-form 

pseudopotential, the only requirement for G  is to ensure that the whole term inside the square root is positive. 

The parameters R  and b  are taken as 1R =  and 4b = , respectively. Note that the interface thickness can be 

adjusted by tuning the parameter a  in the equation of state [42].  

    First, the numerical coexistence curve predicted by the non-orthogonal MRT-LB model is compared with the 

analytical coexistence curve given by the Maxwell equal-area law through simulating flat interfaces. The grid 
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system is taken as 100 100 100x y zN N N× × = × ×  with periodic boundary conditions in all directions. The flat 

liquid-vapor interfaces are located at 0.25 zz N=  and 0.75 zz N= . For simplicity, the parameter a  in the C-S 

equation of state is chosen as 0.5a =  for all the investigated reduced temperatures, but it should be noted that 

the interface thickness usually decreases with the decrease of the reduced temperature (see Fig. 3 in Ref. [42] for 

details). The constant σ  in Eq. (16) is set to 0.116  for flat interfaces. The parameter sν  is chosen as 

1 0.8sν
− = , which corresponds to the kinematic viscosity 0.1ν = , and the other parameters are the same as those 

used in the previous subsections. The numerical results are displayed in Fig. 5, from which we can see that the 

numerical coexistence curve produced by the non-orthogonal MRT-LB model agrees well with the analytical 

coexistence curve given by the Maxwell equal-area law in a wide range of reduced temperatures. 
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Fig. 5 Comparison of the numerical coexistence curve predicted by the non-orthogonal MRT-LB model with the 

analytical coexistence curve given by the Maxwell equal-area law.  

    Furthermore, the non-orthogonal MRT-LB model and the orthogonal MRT-LB model [44] are compared in 

terms of the maximum spurious velocity through simulating static droplets. The computational domain is chosen 

as 120 120 120x y zN N N× × = × ×  and a spherical droplet of radius 0 40r =  (lattice unit) is initially located at 

the center of the computational domain. The reduced temperature is set to c 0.6T T = , which corresponds to the 

coexistence densities 0.406Lρ ≈  and 0.00308Vρ ≈ , and the density field is initialized as follows: 

 ( ) ( )02
, , tanh

2 2
L V L V r r

x y z
W

ρ ρ ρ ρ
ρ

− + −
= −  

 
, (59) 



19 
 

where 5W =  is the initial interface thickness and ( ) ( ) ( )2 2 2
0 0 0r x x y y z z= − + − + − , in which ( )0 0 0, ,x y z  

is the center of the computational domain. The parameter a  in the C-S equation of state is taken as 0.25a =  

for the reduced temperature c 0.6T T = , which yields an interface thickness around five lattices [42]. The 

constant σ  in Eq. (16) is chosen as 0.105, which is different from the value of σ  for flat interfaces because 

the Maxwell equal-area law is theoretically established for the cases in which the pressure of liquid phase is equal 

to that of vapor phase, while the pressure difference across a curved interface is non-zero according to the 

Laplace law. An investigation of this issue can be found in Ref. [40].  

Table II. Comparison of the numerical coexistence densities obtained by the non-orthogonal and orthogonal 

MRT-LB models at 0.6cT T = . The analytical coexistence densities are 0.406Lρ ≈  and 0.00308Vρ ≈ .  

Model 
0.01ν =  0.05ν =  0.1ν =  0.15ν =  

ρL ρV ρL ρV ρL ρV ρL ρV 

Non-orthogonal 0.408 0.00304 0.408 0.00303 0.408 0.00300 0.408 0.00298 

Orthogonal 0.408 0.00313 0.408 0.00319 0.408 0.00321 0.408 0.00323 

    The numerical coexistence densities predicted by the non-orthogonal MRT-LB model and the orthogonal 

MRT-LB model at c 0.6T T =  are shown in Table II with the kinematic viscosity varying from 0.01ν =  to 

0.15  ( 1sν
−  changing from 0.53  to 0.95 ). The table shows that the results of the non-orthogonal and 

orthogonal MRT-LB models are basically in good agreement with the coexistence densities given by the Maxwell 

equal-area law. Meanwhile, it can also be observed that there are some slight differences between the two models 

in the vapor density and these differences are larger than those in Table I, which may be attributed to the fact that 

the present test has a larger density ratio. The maximum spurious velocities given by the non-orthogonal MRT-LB 

model and the orthogonal MRT-LB model at c 0.6T T =  are plotted against 1sν
−  in Fig. 6, from which we can 

see that there are no significant differences between the results of the non-orthogonal MRTL-LB model and those 

of the orthogonal MRT-LB model. For both models, it can be seen that the maximum spurious velocity is smaller 

than 0.005  in the cases of 1 0.65sν
− ≥ , but increases to about 0.01 at 1 0.6sν

− = , and further increases to about 

0.04  at 1 0.53sν
− = .  
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Fig. 6 Comparison of the maximum spurious velocities given by the non-orthogonal and orthogonal MRT-LB 

models at c 0.6T T = . 

    For the results displayed in Fig. 6, the same sν  is applied in the whole computational domain, which means 

that the vapor kinematic viscosity is equal to the liquid kinematic viscosity, namely V Lν ν ν= = , and hence the 

ratio L Vµ µ  is the same as the density ratio, i.e., ( ) ( )L V L V V L L Vµ µ ρ ρ ν ν ρ ρ≡ = . In the literature [42, 53] 

it has been shown that, besides widening the interface and using high-order isotropic gradient operator to 

calculate the interaction force, increasing the ratio V Lν ν  can also reduce the spurious velocities in the cases of 

large density ratios. For example, when the liquid kinematic viscosity is taken as 0.01Lν =  ( 1 0.53sν
− =  for the 

liquid phase), we find that the maximum spurious velocity can be reduced from about 0.04  to about 0.006  as 

the ratio V Lν ν  increases from 1  to 10 .  

 

4.5. Droplet impingement on a flat surface 

    Finally, we consider a dynamic test, the impingement of a droplet with an initial velocity on a flat surface, so 

as to validate the capability of the three-dimensional non-orthogonal MRT-LB model for simulating multiphase 

flows at large density ratios. Impingement of droplets on solid surfaces is a very important phenomenon in many 

engineering applications, ranging from ink-jet printing to spray cooling. In our simulations, the computational 

domain is taken as 300 300 150x y zN N N× × = × × . Initially, a spherical droplet of diameter 0 100D =  (lattice 

unit) is placed on the center of the bottom surface. The initial velocity of the droplet is given by 

( ) ( )0 0, , 0, 0,x y zu u u U= = −u , in which 0 0.075U = . The no-slip boundary condition [58] is employed at the 

solid surfaces and the periodic condition is applied in the x and y directions. The droplet dynamics is 
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characterized by the following two non-dimensional parameters: 

 
2

0 0We L D Uρ
ϑ

= , 0 0Re L

L

U Dρ
µ

= ,  (60) 

where We  and Re  are the Weber number and the Reynolds number, respectively. Besides, another 

non-dimensional parameter can also be found in some studies, i.e., the Ohnesorge number 0Oh L L Dµ ρ ϑ= , 

which is related to the Weber number and the Reynolds number via Oh We Re= . 

    In this test, the density ratio is chosen as 800L Vρ ρ =  and the dynamic viscosity ratio is set to 

50L Vµ µ =  (under normal temperature and atmospheric pressure, the density ratio of water to air is around 830 

and the corresponding dynamic viscosity ratio is about 56). A piecewise linear equation of state [40] is employed 

in the square-root-form pseudopotential. The surface tension ϑ  is evaluated via the Laplace law and the static 

contact angle is taken as o60θ ≈ . The Reynolds number in our simulations varies from Re 80=  to 1000 . 

Figure 7 displays some snapshots of the droplet impingement process at Re 1000=  and We 36≈ . Immediately 

after the impingement, it can be seen that the shape of the droplet resembles a truncated sphere ( 500 tt δ= ). 

Subsequently, a lamella is formed as the liquid moves radially ( 1000 tt δ= ). The lamella continues to grow 

radially and its thickness decreases ( 2500 tt δ= ). After reaching the maximum spreading diameter, the lamella 

begins to retract because of the surface tension. All of these observations agree well with those reported in the 

previous experimental and numerical studies [44, 59-61].  

 

 

 

 
 (a)                                  (b)                                (c) 

 
 
 
 
 
 
  

(d)                                  (e)                                (f) 
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Fig. 7 Snapshots of droplet impingement on a flat surface at 800L Vρ ρ = , Re 1000= , and We 36≈ . (a) 

0t = , (b) 500 tt δ= , (c) 1000 tt δ= , (d) 2500 tt δ= , (e) 5000 tt δ= , and (f) 20000 tt δ= . 

   In the literature, the maximum spreading factor max 0D D  is usually employed to quantify the numerical 

results [44, 61]. In Ref. [59], Asai et al. established a correlation formula for the maximum spreading factor 

according to their experimental data: ( )0.5 0.22 0.21
max 0 1 0.48We exp 1.48We ReD D −= + − . Scheller and Bousfield 

[60] have also proposed a correlation formula by plotting their experimental data against 2Oh Re We Re≡ . A 

comparison of the maximum spreading factor between the correlation formula of Asai et al., the experimental 

data of Scheller and Bousfield, and the present simulation results is provided in Fig. 8, where the maximum 

spreading factor max 0D D  is plotted against 2Oh Re We Re= . Figure 8 shows that our numerical results are 

in good agreement with the experimental correlation/data in the previous studies, which demonstrates the 

capability of the three-dimensional non-orthogonal MRT-LB model for simulating multiphase flows at large 

density ratios.  

102 103 104

2

4

6

8
10

D m
ax

/D
0

OhRe2

 Experimental correlation [59]
 Scheller and Bousfield [60]
 Present simulation

 

Fig. 8 Comparison of the maximum spreading factor between the present simulation results, the experimental 

correlation in Ref. [59], and the experimental data in Ref. [60].  

5. Summary 

    A theoretical and numerical study has been performed to investigate the capability and efficiency of a 

three-dimensional non-orthogonal MRT-LB method for simulating multiphase flows. The model is developed 
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based on the D3Q19 lattice with a non-orthogonal MRT collision operator, which is devised from a set of 

non-orthogonal basis vectors for the D3Q19 lattice. Using the non-orthogonal MRT collision operator, the 

transformation matrix M  and its inverse matrix 1−M  are much simpler than those of the usual orthogonal 

MRT collision operator. Through the Chapman-Enskog analysis, it has been demonstrated that the 

three-dimensional non-orthogonal MRT-LB model can correctly recover the Navier-Stokes equations in the low 

Mach number limit. Numerical investigations have been carried out based on the pseudopotential multiphase LB 

approach. Both the exponential-form pseudopotential and the square-root-form pseudopotential have been 

considered in our simulations. Numerical comparisons show that the non-orthogonal MRT-LB model retains the 

numerical accuracy when simplifying the implementation, and can serve as an alternative to the usual orthogonal 

MRT-LB model. 

    Finally, we would like to mention that the present method can also be extended to the D3Q27 lattice [62, 63]. 

Actually, for the 3D lattices, there are only ten basis vectors related to the hydrodynamics at the Navier-Stokes 

level. The zeroth-order vector 0, 1M α =  is related to mass conservation, the three first-order vectors ( 1, xM eα α= , 

2, yM eα α= , 3, zM eα α= ) are related to the momentum, and the six second-order vectors in Eq. (8) ( 2
4,M α α= e , 

22
5, 3 xM eα α α= − e , 2 2

6, y zM e eα α α= − , 7, x yM e eα α α= , 8, x zM e eα α α= , 9, y zM e eα α α= ) are related to the viscous 

effect at the Navier-Stokes level. The high-order vectors are related to non-hydrodynamic moments, and these 

vectors can be non-orthogonal to the ten basis vectors.  
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Appendix A: The inverse matrices of the orthogonal and non-orthogonal transformation matrices 

based on the D3Q19 lattice 
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1

1 19 5 399 1 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 19 11 2394 1 63 1 10 1 10 0 0 0 0 0 1 18 1 18 0 0 0 0 0 0 0
1 19 11 2394 1 63 1 10 1 10 0 0 0 0 0 1 18 1 18 0 0 0 0 0 0 0
1 19 11 2394 1 63 0 0 1 10 1 10 0 0 0 1 36 1 36 1 12 1 12 0 0 0 0 0
1 19 11 2394 1 63 0 0 1 10 1 10 0 0 0 1 36 1 36 1 12 1 12 0 0 0 0

−

−
− − − −
− − − −
− − − − −
− − − − −

=M

0
1 19 11 2394 1 63 0 0 0 0 1 10 1 10 1 36 1 36 1 12 1 12 0 0 0 0 0 0
1 19 11 2394 1 63 0 0 0 0 1 10 1 10 1 36 1 36 1 12 1 12 0 0 0 0 0 0
1 19 4 1197 1 252 1 10 1 40 1 10 1 40 0 0 1 36 1 72 1 12 1 24 1 4 0 0 1 8 1 8 0
1 19 4 1197 1 252 1 10 1 40 1 10 1 40 0 0 1 36 1 72 1 12 1 24 1 4 0 0 1 8 1 8 0
1 19 4 1197 1

− − − − −
− − − − −

−
− − − − −

252 1 10 1 40 1 10 1 40 0 0 1 36 1 72 1 12 1 24 1 4 0 0 1 8 1 8 0
1 19 4 1197 1 252 1 10 1 40 1 10 1 40 0 0 1 36 1 72 1 12 1 24 1 4 0 0 1 8 1 8 0
1 19 4 1197 1 252 1 10 1 40 0 0 1 10 1 40 1 36 1 72 1 12 1 24 0 0 1 4 1 8 0 1 8
1 19 4 1197 1 252 1 10 1 40 0 0 1 10 1 40 1 36 1 72 1 12 1 24 0 0 1 4 1 8 0 1 8
1 19 4 1

− − −
− − − − −

− − −
− − − − −

197 1 252 1 10 1 40 0 0 1 10 1 40 1 36 1 72 1 12 1 24 0 0 1 4 1 8 0 1 8
1 19 4 1197 1 252 1 10 1 40 0 0 1 10 1 40 1 36 1 72 1 12 1 24 0 0 1 4 1 8 0 1 8
1 19 4 1197 1 252 0 0 1 10 1 40 1 10 1 40 1 18 1 36 0 0 0 1 4 0 0 1 8 1 8
1 19 4 1197 1 252 0 0 1 10 1 40 1 10 1 40 1 18 1 36 0 0 0 1 4 0 0 1 8 1 8
1

− − − − − − −
− − − − − − −

− − −
− − − − − − −

.

19 4 1197 1 252 0 0 1 10 1 40 1 10 1 40 1 18 1 36 0 0 0 1 4 0 0 1 8 1 8
1 19 4 1197 1 252 0 0 1 10 1 40 1 10 1 40 1 18 1 36 0 0 0 1 4 0 0 1 8 1 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − − − − 
 − − − − − − − 

1

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 2 0 0 1 6 1 6 0 0 0 0 0 1 2 0 1 2 0 0 1 2 1 2 0
0 1 2 0 0 1 6 1 6 0 0 0 0 0 1 2 0 1 2 0 0 1 2 1 2 0
0 0 1 2 0 1 6 1 12 1 4 0 0 0 1 2 0 0 0 0 1 2 1 2 0 1 2
0 0 1 2 0 1 6 1 12 1 4 0 0 0 1 2 0 0 0 0 1 2 1 2 0 1 2
0 0 0 1 2 1 6 1 12 1 4 0 0 0 0 0 1 2 0 1 2 0 0 1 2 1 2
0 0 0 1 2 1 6 1 12 1 4 0 0 0

−

−
− − − −

− − −
− − − − −

− − − −
− − − − − −

− − −

=M

0 0 1 2 0 1 2 0 0 1 2 1 2
0 0 0 0 0 0 0 1 4 0 0 1 4 1 4 0 0 0 0 1 4 0 0
0 0 0 0 0 0 0 1 4 0 0 1 4 1 4 0 0 0 0 1 4 0 0
0 0 0 0 0 0 0 1 4 0 0 1 4 1 4 0 0 0 0 1 4 0 0
0 0 0 0 0 0 0 1 4 0 0 1 4 1 4 0 0 0 0 1 4 0 0
0 0 0 0 0 0 0 0 1 4 0 0 0 1 4 1 4 0 0 0 1 4 0
0 0 0 0 0 0 0 0 1 4 0 0 0 1 4 1 4 0 0 0 1 4 0
0 0 0 0 0 0 0 0 1 4 0 0 0 1 4 1 4 0 0 0 1 4 0
0 0 0 0 0 0 0 0 1 4 0 0 0

− −

− −
− −
− −

− −
− −
−

.

1 4 1 4 0 0 0 1 4 0
0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 1 4 1 4 0 0 1 4
0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 1 4 1 4 0 0 1 4
0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 1 4 1 4 0 0 1 4
0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 1 4 1 4 0 0 1 4

 
 
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 
 
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 
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 −
 
 
 − −
 

− − 
 − − 

    The inverse matrix of the usual orthogonal transformation matrix is given by 

According to the non-orthogonal transformation matrix defined by Eq. (12), its inverse matrix is given by 

  

Appendix B: Comparison of the non-orthogonal and orthogonal MRT models in terms of the Mach 

number effect. 

    In this Appendix, the three-dimensional non-orthogonal MRT-LB model is compared with the usual 

orthogonal MRT-LB model in terms of the Mach number effect through modeling the three-dimensional 
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lid-driven cavity flow [64]. The grid system is taken as x y zN N N L L L× × = × ×  and the driving lid is placed at 

y L= , moving along the direction of x-axis with a speed U . To investigate the effect of the Mach number, three 

cases are considered, i.e., 0.1U = , 0.3, and 0.5, which correspond to the Mach numbers Ma 0.173sU c= ≈ , 

0.520, and 0.866, respectively. The Reynolds number is chosen as Re 400UL ν= =  and L  is set to 80 (lattice 

unit). Comparisons of the transversal velocity ( )yu x  at 0.5y L =  and 0.5z L =  and the horizontal velocity 

( )xu y  at 0.5x L =  and 0.5z L =  are made in Fig. 9, in which the driving speed is 0.1U =  and the Mach 

number is Ma 0.173≈ , fulfilling the low Mach number limit. From the figure we can see that the numerical 

results of the non-orthogonal and orthogonal MRT-LB models are both in good agreement with the results 

reported in the study of Mei et al. [64], and there are no visible differences between the results of the two models. 
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   (a)                                             (b) 

Fig. 9 Comparison of the numerical results obtained by the non-orthogonal and orthogonal MRT models with the 

results reported in Ref. [64]. The driving speed is 0.1U = , which corresponds to the Mach number 

Ma 0.173sU c= ≈ . (a) The transversal velocity ( )yu x  at 0.5y L =  and 0.5z L = . (b) The horizontal 

velocity ( )xu y  at 0.5x L =  and 0.5z L = .  

    Figure 10 displays the influence of the Mach number on the numerical results of the non-orthogonal and 

orthogonal MRT-LB models. From the figure it can be seen that the deviations between the numerical results of 

the two MRT-LB models and the results reported in Ref. [64] are getting larger when the Mach number 

( Ma sU c= ) increases, confirming that neglected the third-order velocity terms gradually have an important 
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influence with the increase of the Mach number. Meanwhile, in Fig. 10 there are no obvious differences between 

the results of the non-orthogonal MRT-LB model and those of the orthogonal MRT-LB model, which implies that 

the two models behave the same in terms of the Mach number effect.  
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 Fig. 10 Effect of the Mach number. The numerical results are obtained by the non-orthogonal MRT-LB model 

(left) and the orthogonal MRT-LB model (right) with 0.3U =  and 0.5 , which correspond to the Mach 

numbers Ma 0.520sU c= ≈  and 0.866 , respectively. (a) The transversal velocity ( )yu x  at 0.5y L =  

and 0.5z L = . (b) The horizontal velocity ( )xu y  at 0.5x L =  and 0.5z L = . 
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