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Abstract

In the classical multiple-relaxation-time (MRT) lattice Boltzmann (LB) method, the transformation matrix is
formed by constructing a set of orthogonal basis vectors. In this paper, a theoretical and numerical study is
performed to investigate the capability and efficiency of a non-orthogonal MRT-LB model for simulating
multiphase flows. First, a three-dimensional non-orthogonal MRT-LB is proposed. A non-orthogonal MRT
collision operator is devised based on a set of non-orthogonal basis vectors, through which the transformation
matrix and its inverse matrix are considerably simplified as compared with those of an orthogonal MRT collision
operator. Furthermore, through the Chapman-Enskog analysis, it is theoretically demonstrated that the
three-dimensional non-orthogonal MRT-LB model can correctly recover the macroscopic equations at the
Navier-Stokes level in the low Mach number limit. Numerical comparisons between the non-orthogonal MRT-LB
model and the usual orthogonal MRT-LB model are made by simulating multiphase flows on the basis of the
pseudopotential multiphase LB approach. The numerical results show that, in comparison with the usual
orthogonal MRT-LB model, the non-orthogonal MRT-LB model can retain the numerical accuracy while

simplifying the implementation.

Keywords: lattice Boltzmann model; non-orthogonal; multiple-relaxation-time; multiphase flows

*Corresponding author: gingli@csu.edu.cn



1. Introduction

The lattice Boltzmann (LB) method is becoming an increasingly important numerical approach for a wide
range of phenomena and processes [1-8]. This method is based on the mesoscopic kinetic equation for particle
distribution function. It simulates fluid flow by tracking the evolution of the particle distribution function, and
then the macroscopic averaged properties are obtained by accumulating the distribution function. Compared with
the conventional numerical methods, which are based on the direct discretization of macroscopic governing
equations, the LB method exhibits some distinctive advantages, such as its inherent parallelizability on multiple
processors and easy implementation of fluid-fluid/fluid-solid interactions. In addition, in the conventional
numerical methods the convection terms of governing equations are non-linear, while in the LB method the
convection terms are linear and the viscous effect is modeled through a linearized collision operator, such as the
Bhatnagar-Gross-Krook (BGK) collision operator [2, 9, 10], the multiple-relaxation-time (MRT) collision
operator [11-18], and the two-relaxation-time (TRT) collision operator [19-22].

Owing to its simplicity, the BGK collision operator is the most frequently used collision operator in the LB
community. However, the LB equation using the BGK collision operator is usually found to have stability issues
when the viscosity of the fluid is reduced or the Reynolds number is increased. The TRT collision operator is
based on the decomposition of the population solution into its symmetric and anti-symmetric components and
employs two relaxation parameters to relax the particle distribution function [19, 20]. The MRT collision operator
is an important extension of the relaxation LB method proposed by Higuera et al. [23, 24]. The basic idea behind
the MRT collision operator is a mapping from the discrete velocity space to the moment space via a
transformation matrix M, which allows the moments to be relaxed with individual rates [12-14]. The MRT
collision operator has been extensively demonstrated to be capable of improving the numerical stability of LB
models by carefully separating the relaxation rates of hydrodynamic and non-hydrodynamic moments [25, 26].
The TRT collision operator has certain advantages over the BGK collision operator in terms of numerical stability
and accuracy [27] while retaining the simplicity of the BGK collision operator in terms of implementation.

In the literature, the Gram-Schmidt procedure [12, 13] is often employed to construct a set of orthogonal



basis vectors to form the transformation matrix for an MRT-LB model. This procedure starts with the vectors for
the conserved moments (density and momentum). The subsequent step is to take a combination of the velocity
vectors e of appropriate order and find the coefficients in such a way that the resulting vector is orthogonal to
all the previously found ones [28]. Through the transformation matrix, the particle distribution function can be
projected onto the moment space, where the moments are relaxed with individual rates. The relaxed moments are
then transformed back to the discrete velocity space and the streaming step of the LB equation is implemented as
usual. In most of the existing MRT-LB models, the transformation matrix is an orthogonal matrix. Recently, some
research [29-31] showed that the transformation matrix of an MRT-LB model is not necessary to be an orthogonal
one. A non-orthogonal transformation matrix for the two-dimensional nine-velocity (D2Q9) lattice can be found
in Refs. [29-31]. Moreover, De Rosis [32] showed that a non-orthogonal basis of moments is also efficient in the
central-moment-based LB method. Usually, the transformation matrix of a non-orthogonal MRT collision
operator is simpler than that of an orthogonal MRT collision operator.

The aim of the present study is to develop a three-dimensional non-orthogonal MRT-LB model and
investigate its capability and efficiency for simulating multiphase flows. A non-orthogonal MRT collision
operator is devised based on a set of non-orthogonal basis vectors for the three-dimensional nineteen-velocity
(D3Q19) lattice. The transformation matrix and its inverse matrix are considerably simplified. The rest of the
present paper is organized as follows. The three-dimensional non-orthogonal MRT-LB model is proposed in
Section 2. Theoretical analysis of the non-orthogonal MRT-LB model is presented in Section 3. Numerical

investigation is carried out in Section 4 and finally a brief summary is given in Section 5.

2. Three-dimensional non-orthogonal MRT-LB model
2.1. The MRT-LB framework

In the LB community, the D3Q15 and D3Q19 lattices are the most popular lattice velocity sets for three
dimensions [13, 14]. The D3Q15 lattice is more computationally efficient than the D3Q19 lattice, while the

numerical stability is usually better when using a larger velocity set [13, 28]. In the present study, a



three-dimensional non-orthogonal MRT-LB model is devised based on the D3Q19 lattice. The model for the
D3Q15 lattice can be constructed in a similar way. The MRT-LB equation with a forcing term can be written as
follows [14, 25]:

f,(x+e,6,t+6,)= fa(x,t)—/_\aﬂ(fﬂ_ f;q) +i[Ga

(xt 2

) G |M] , 1)

where f_ is the density distribution function, f is the equilibrium density distribution function, x is the

a

spatial position, e, is the discrete velocity in the ¢« th direction, t isthe time, o, is the time step, G, isthe

forcing term in the discrete velocity space, and Kaﬂ :(M‘lAM) ; is the collision operator, in which M is the

transformation matrix and A is a diagonal matrix. The trapezoidal rule has been applied to the forcing term in
Eqg. (1), which was suggested by He et al. [33] in order to achieve second-order accuracy in time.

The lattice velocities {e,} of the D3Q19 lattice are given by

01-10 00 01 -1 1-11-1 1-10 0 0 0
e,={00 01 -10 01-1-1 10 0 0 01 -1 1 -1|. @)
00 00 01 -10 0 0 01 -1 -1 11 -1 -1 1

The implicitness of Eq. (1) can be eliminated by introducing f_a = f,-0.55,G,, through which the MRT-LB

equation can be transformed to [14, 25]:

T (xre,0,t+8) =T, (x1)-K, (7, - 1)

o O (G, —0.57\aﬂeﬂ)\w. 3)

Multiplying Eqg. (3) by the transformation matrix M, the right-hand side of Eq. (3), i.e., the collision process, can

be implemented in the moment space:

m*:m—A(m—meq)m(l—%js, (4)

where | is the unit matrix, m=Mf, m*=Mf", and S=MG, in which =(f,F,.., flg)T ,
fe = ( fod, 159, ., By )T ,and G =(G,,G,, ...,Gy )T . Then the streaming process is implemented as follows:
f,(x+e,d,t+3)=f (x1), (5)

where f*=M"m" and M™ is the inverse matrix of the transformation matrix. The macroscopic density and

velocity are calculated by



p= Zfa, puU = Ze f +— (6)

where F is the total force exerted on the system.

2.2. Non-orthogonal MRT-LB model

A three-dimensional non-orthogonal MRT collision operator is now constructed based on the D3Q19 lattice.
The following set of non-orthogonal basis vectors is proposed, which can be divided into four groups: (i) the
zeroth-order and first-order vectors, which are the vectors related to the conserved moments:

,a ay ! M3,a=eaz’ (7)

(ii) the second-order vectors related to the viscous effect at the Navier-Stokes level:

2 2 2 2 2
M4,a:|ea| ! MS,a:3eax_|ea| ' Mﬁ,a:eay_eaz'
M7,a = eaxeay ! Ms,a = eaxeaz ! Mg,a = eayeaz 1 (8)
(iii) the third-order vectors:
M,, =e’e , M, =e e’ M, =e’e
10, ¢ ax~ay ! 11, a ax“ay ! 12, ax~az !
M, =e e, M, =e’e , M, =e € 9)
13, a ax~“az ! 14, a ay“az ! 15, ay“az !
(iv) the fourth-order vectors:
2 A2 2 .2 2 A2
M].G,a = eaxeay’ M17,a = eaxeaz ' MlS,a( = eayeaz . (10)

The first ten vectors are related to the macroscopic density, momentum, and viscous stress tensor, whereas
the additional vectors are related to higher-order moments that do not affect the Navier-Stokes level
hydrodynamics. Using such a set of non-orthogonal basis vectors, the relaxation matrix A (the matrix for
relaxation rates) in Eq. (4) can be defined as follows:

=diag(L 1 1, L, 5,,5,15,15,15,15,15154154+54+54:54:5:1 5,5, ) (1)
where s, and s, determine the bulk and shear viscosities, respectively, while s, and s_ are related to

non-hydrodynamic moments. The relaxation rates of the conserved moments have been set to 1.0 following Ref.

[14]. Note that M, , in Eq. (8) is related to the energy mode while M, , and M, , are retained from the
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orthogonal MRT-LB method [13, 14]. Theoretically, the vectors M, ., M, and M, , can be chosen as

M,,=¢e, Mg, =e’, and M, =e,, respectively, which will yield a fixed bulk viscosity u, =2u/3

ax? ay? az !
when employing a diagonal relaxation matrix like Eq. (11). For such a choice, an alternative approach is to
modify the diagonal relaxation matrix as a block-diagonal relaxation matrix to achieve a flexible bulk viscosity

[34, 35]. According to Egs. (7)-(10), the transformation matrix M is given by

$ 711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 -1 0 0 O 1 -1 1-1 1-1 1-1 0 0O 0O O
0o 0 0 1 -1 O 1 -1 -1 1 0 0 O O 1 -1 1 1
o oo o o0 1 -1 0 0 0 01 -1-111-1-1 1
o 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
o 2 2 -1-1-1-1 11 1 1 1 1 1 -2 -2 -2 -2
o 0 o 1 1 -1-11111-1-1-1-1 0 0 0 O
o o o o o0 o0 0 1 1-1-1 0 00 O0O O0 0 0 O
o 0 o o 0o o 0 06 0600 12 1-1-1 0 0 0 O
M=0 0 0 0O 0 0 0 0 0 0 0 0O OO0 O 1 1 -1 -1

o 0 o o o o 0 1-1-11 00 0 O0O O0O O0O O O
o o o o o0 o0 01 -1 1-1 0 0 0 0 0 0 0 O
o 0 o o 0o o 0 06 060001212 -1 1 0 0 0 O
o o o o 0o 0o o 06060 01 -1 1-1 0 0 0O
o 0 o o 0 06 06 0O0 0 0 OO O O 1 -1 -1 1
o o o o 06 06 06 0OOO OO OOUOT1T-1 1 -1
o 0 o o 0 0o 06 11217100 0 0 0 0 0 o0
o o o o 0 06 06 00O 0 1 1 1 1 O 0

o o o 0o 0 0 0 0 0 0 0 0O 0O O 0 1 1 ] (12)

The inverse matrix of M, namely the matrix M™, is given in the Appendix. It can be found that the
present non-orthogonal transformation matrix has 145 non-zero elements and its inverse matrix has 96 non-zero
elements. However, from Refs. [13, 14] we can find that for the D3Q19 lattice the usual transformation matrix
and its inverse matrix both have 213 non-zero elements. The matrix-vector calculations m=Mf and
f*=M™m" inEgs. (4) and (5), respectively, are usually expanded in practical programming [36]. For example,

according to the above transformation matrix, the moment m,, is givenby m, = f, + f,, + f, + f,, . Therefore,

reducing the number of non-zero elements in M and M™ can simplify the programming and also reduce the
computational cost to some extent.

According to Egs. (7)-(10), the equilibria m® =Mf* in Eq. (4) are given by



e _ eq _ eq _ eq _ eq _ 2
m =p, m?*=pu, m?=pu, m=pu, m=p+plu,
meq _ 2 2 2 2 meq _ 2 2 meq _ eq __ meq _
5 =P ux_uy_uz ' s =P uy_uz ' 7 _puxuy' mg* = puu,, 9 _puyuz’
m = pclu 4= pclu,, MY =pciu, m?=pciu M — pclu 4= pclu
lO_ps y'mll_ps X! 12_ps z? 13_105 x’ml4_ps z? rnlS_ps y!
eq _ 2 2 2 eq _ 2 2 2 eq _ 2 2 2
M =g+ pcl (U +ul), M =g+ pc? (ul +ul), m =g+ pc? (uf +ul), (13)

where ¢’ =1/3 and ¢ = pc! (1—1.5|u|2) . Correspondingly, the forcing term S in Eq. (4) is given by

2¢? (u,F, +u,F,)

X' x y

2052 (U F +Uze) (14)

X" X

2c§(uy|:y +uZFZ)

where F is the total force exerted on the system. In the pseudopotential multiphase LB approach, the
pseudopotential interaction force is given by [6]:

Fo =Gy (x) 2w (x+e,d)e, , (15)
where G is the interaction strength, y(x) is the pseudopotential, and w, are the weights. For the D3Q19
lattice, the weights w, in Eq. (15) are given by w, .=1/6 and w, ,,=1/12. In the literature, two types of
pseudopotentials are widely used. One is the exponential-form pseudopotential [37], i.e.,

v (X)=vy,exp(—p,/p), where y, and p, are constant, and the other is the square-root-form pseudopotential

z//(x):\/Z(pEOS—,ocf)/Gc2 [38, 39], in which c=1 is the lattice constant and p., is a prescribed

7



non-ideal equation of state.

Using the square-root-form pseudopotential, the pseudopotential multiphase LB model usually suffers from
the problem of thermodynamic inconsistency [40], namely the coexistence curve predicted by the pseudopotential
LB model is inconsistent with that given by the Maxwell equal-area law. To solve this problem, Li et al. [41, 42]
proposed that the thermodynamic consistency can be achieved by adjusting the mechanical stability condition of
the pseudopotential LB model through an improved forcing scheme. Moreover, in the original pseudopotential
LB model the surface tension is dependent on the density ratio. An alternative approach has been developed by Li
and Luo [43] to decouple the surface tension from the density ratio. Some extensions of Li et al.’s approaches
[41-43] have been made by Zhang et al. [44], Xu et al. [45], Lycett-Brown and Luo [46], and Ammar et al. [47].

To achieve thermodynamic consistency, the fifth moment of the forcing term S in Eq. (14) can be changed to

60|Fm|2

S, = 2F.u+—l//2§t (5;1_0.5) ,

(16)

where the constant o is employed to adjust the mechanical stability condition of the pseudopotential LB model

[42, 44, 45, 48].

3. Theoretical analysis

In this section, the Chapman-Enskog analysis is performed for the three-dimensional non-orthogonal

MRT-LB model, which can be implemented by introducing the following multi-scale expansions [49]:

8t =a[0 +5[a[1’ fa = f:q +5t fa(l) +512 foEZ)‘ (17)

The Taylor series expansion of Eq. (1) yields
5.(0 V) f (o V)Y f =—A (f,—f 56, +9 (0 V)G 18
I(t+ea- )a+7(t+ea' ) a aﬂ(ﬂ_ ﬂ)l(x,l)+l a+?(t+ea. ) o’ ( )

Using the multi-scale expansions, Eq. (18) can be rewritten in the consecutive orders of &, as follows:
0(8,): (8p+e, V) fF=-A, 17|, +G,, (19)
1 2 — 1
0(82): 8,1 +(0, +e, V) f;“+5(am+ea.v) fe =R, t7 |y +5(8t+ea~V)Ga- (20)

Multiplying Egs. (19) and (20) by the transformation matrix M leads to the following equations:



0(5,): Dym™ =-Am" +§, (21)
0(62): 8,m™ +D;m® +%D§me‘1 =—Am' +%D05 : (22)

where D, = 0,1 +C;0;, in which 1 is the unit matrix, C,0,=C,0,+C,0,+C,0

I 27z )

and C,=ME,M™ with
E, = diag(eoyi, [ elsyi). Substituting Eq. (21) into Eq. (22), we can obtain

0,m* +D, (I —%J @ = _Am®, (23)

The matrix C, in D, can be obtained according to the lattice velocities {e,} , the transformation matrix

M, and its inverse matrix M™. According to the expression of C, and Eq. (21), we can obtain

0P +0,m* +0,m* +0,m* =0, (24)
0P+ 22, (M7 -t 0, + 0, = F,, @)
A e @)
eq eq 1 eq 1 eq 1 €q
Oy (pU,)+0,m" +0,mg* +0, P =F,. (27)
Substituting Eq. (13) into the above equations leads to
80P +0,(pu,)+d,(pu,)+0,(pu,)=0, (28)
0 (pu,)+0, (p+pul)+0,(puu,)+o,(puu,)=F, (29)
0,0 (puy)+0,(pu,u, )+, (p+pul)+o,(puu,)=F,, (30)
80 (pu,)+0, (puu,)+8, (puyu,)+0,(p+pul)=F, (31)
where p = pc?. Similarly, from Eq. (23) we can obtain
Oup =0, (32)
1 S, S, S, S,
dy (pux)+§(3x Kl—?j m{! +[1—?) mé”}(l—?]aym?) +(1-?jazm§§> =0, (33)
8 (pu, )+ 12 Jo.m® v o, | 212 m® - L{1-% |m® 4 2125 |0 |1 [1-2 o m <0, (38)
Y 2 13 2 6 2 2 2 2
0 (pu,)+[1-2 Jo,m® 4 [1-3 o m® vo,| H1-Ze |m® ~ L1 S |mo L1 3 )po | _o. (35
2 2)" 3 2 6 2 2 2

Meanwhile, according to Eq. (21) we have



O,om +0, (my® +m7 +m )+, (M +mgy +m )+, (ms? +my7 +my7 ) =-s,m) +5,, (36)

0,m® +0, (2my* —myf —my3 )+ 0, (-m5 +2mi5 ~miZ )+9, (-m$ +2m —mF )= -s, m{? +S;,  (37)
B,om® +0, (M} —mg3 )+, (5" —m2 )+, (-m5* +mgJ ) = —s, m{ + S, (38)

O +8,m +0,m =—s mi’ +5,, (39)

DM +0,m +0,m? = —s m’ +5,, (40)

oM +8,mi +0,me = —s m{ +,. (41)

Substituting Egs. (13) and (14) into Egs. (36)-(41) yields
ato (p+p|U|2)+6X (pux + 2pC§UX)+ay (puy + 2pC§Uy)+aZ <puz + chszuz ) =-S5 mz(tl) +2F-u, (42)

Dy [p(Zuf —u? —uf)J+46X (pclu,)-20, (pclu,)-20,(pclu,)=-s,m +2(2F,u, - Fu, - Fu,), (43)

0| p(u; —u?)]+20, (pctu, )-20, (pclu, ) = s, mf) +2(Fu, - Fu,), (44)
0 (PUu,)+0, (pclu, )+0, (pctu, ) =-s,m + Fu, +Fu,, (45)
0,0 (pu,u,)+0, (pclu, )+0,(pclu,)=-s,m +Fu, + Fu,, (46)
0,0 (puyu, )+0, (pclu,)+0,(pctu, ) =-s,m? +Fu, + Fu,. (47)

Uy M, . and

The equilibrium moments mg' = p(2u7 —u? —u?), me=p(u;-u’), m=puu,, me=pu
= pu,u, can also be found in the classical orthogonal MRT-LB models [14]. It can be readily verified that

Eqgs. (43)-(47) are consistent with those obtained from the orthogonal MRT-LB models [14]. The difference lies in

the form of Eq. (42). In the present non-orthogonal MRT-LB model, the equilibrium moment related to the energy
mode is given by €* =m:" —p+p|u| while in the orthogonal MRT-LB model e® = p+p|u| (taking the
D3Q15 model for example) and the equation of e* at t, time scale is given by (see Eqg. (45) in Ref. [14])
(fﬂm(—,o+p|u|2)—%ax(pux)—%ay(,ouy)—%aZ (pu,)=-s.e" +2F-u. (48)
By combining Eq. (42) with Eq. (28), we can rewrite Eq. (42) as follows:
o (—,o+p|u|2)+6x (=pu, +2pcu, )+8, (—pu, +2pclu, )+0,(-pu, +2pcu, ) =—s,m{’ + 2F-u. (49)

Since ¢’ =1/3, it can be found that Eq. (49) and Eq. (48) are identical.

10



With the help of Egs. (28)-(31), we can derive the following equations from Eqs. (42)-(47) (the third-order
velocity terms are neglected according to the low Mach number limit):
—s,m}) = 2pc? (0,u, +0,u, +0,u, ), -s,m ~2pc?(20,u,-0,u,-8,u,),
s, my) ~2pc? (8,u, -0,u, ), -s,m ~ pcZ(8,u, +8,u, ),
—s,m ~ pc? (0,u, +0,u,), —s,m{ ~ pc? (d,u, +0,u, ). (50)
Substituting Eq. (50) into Egs. (33)-(35) and then multiplying the results with &, , we can obtain
5,04 (pu,)=2, [,ub (V- u)+2?“(zaxux ~0,u,-d,u, )} +0,[u(6,u,+o,u,)]+8, [u(8,u, +0,u,)]=0, (51)
804 (pu,)=0,[u(0,u, +0,u,)]+0, [ﬂb (V.u)+2?’u(26yuy —o,u, —o,u, )}az [#(0,u,+8,u,)]=0, (52)
8,04 (pu,)=0,[ u(0,u, +0,u,)]+9, [,u(ayuz + 0Zuyﬂ +0, [ﬂb (V- u)+2?ﬂ(26zuz ~o,u, —d,u, )} =0, (53)

where the dynamic shear viscosity x and the bulk viscosity g, are given by

1 1 2 1 1
=pcl| —-=13, =—pci| —-=15,. 54
H ps(sv ZJt Hy Sps[se 2}1 (54)
Combining Eq. (28) with Eq. (32) through 0, =9,, +J,0,, , the continuity equation can be obtained
d,p+V-(pu)=0, (55)

Similarly, combining Eqgs. (29)-(31) with Egs. (51)-(53), we can obtain the Navier-Stokes equation as follows:
d,(pu)+V-(puu) =—Vp+V.|:y(Vu+(VU)T)—§;1(V.U)I +,ub(V.u)I}+F . (56)
The above analysis clearly shows that the macroscopic equations at the Navier-Stokes level can be correctly
recovered from the three-dimensional non-orthogonal MRT-LB model in the low Mach number limit. Note that,
when the square-root-form pseudopotential is employed, the fifth moment of the forcing term is given by Eq. (16),
which will introduce an additional term into the Navier-Stokes equation to modify the pressure tensor and adjust

the mechanical stability condition of the pseudopotential LB model [42, 44, 45, 48].

4. Numerical simulations
In this section, numerical simulations are carried out to investigate the capability and efficiency of the three

dimensional non-orthogonal MRT-LB model for simulating multiphase flows. In particular, comparisons between

11



the non-orthogonal MRT-LB model and the usual orthogonal MRT-LB model will be made so as to identify
whether the non-orthogonal MRT-LB model can serve as an alternative to the usual orthogonal MRT-LB model.
The exponential-form pseudopotential is employed in Sec. 4.1 to Sec. 4.3 and the simulations using the

square-root-form pseudopotential are performed in the last two subsections.

4.1. Phase separation

First, we consider three-dimensional phase separation in a cubic domain of 120x120x120 with periodic

boundary conditions in all directions. The exponential-form pseudopotential  (x) =y, exp(—p,/p) is adopted.

For such a pseudopotential, the thermodynamic consistency or the Maxwell equal-area law is satisfied as long as
the macroscopic equations at the Navier-Stokes level are correctly recovered. Some previous studies [50, 51]

have shown that the numerical coexistence densities produced by the pseudopotential LB model are very

sensitive to the error terms in the recovered macroscopic equations. In the present study, we adopt y, =1,
p, =1, and G =-10/3 [51], which corresponds to the coexistence densities p ~2.783 and p, ~0.3675
according to the Maxwell equal-area law.

Initially, the density in the computational domain is taken as p=p,—N,,/5000, where N, is a
random number in the interval [0, 10]. The relaxation parameter s,, which determines the bulk viscosity, is
chosen as s, =0.8. The relaxation parameter s, changes with the kinematic viscosity v = u/p , which varies
from v=0.01 to 0.15, while the other relaxation parameters are fixed at 1.2. The same choices are applied to
the usual orthogonal MRT-LB model based on the D3Q19 lattice [13, 14]. Some snapshots of the results obtained
by the non-orthogonal MRT-LB model with v =0.1 are displayed in Fig. 1. During the phase separation
process, the system changes from single phase to two phases. The equilibrium state of the system can be observed
in Fig. 1(d), which is taken at t=280000, . From Fig. 1(d) we can see that the region occupied by the liquid is in
the form of a cylinder, with the liquid density p, ~2.801 inside the cylinder and the vapor density p, ~0.369
outside the cylinder, which are in good agreement with the coexistence liquid and vapor densities given by the

Maxwell equal-area law.

12



@ (b)

() (d)

Fig. 1 Snapshots of three-dimensional phase separation at (a) t=4005,, (b) 8004, , (c) 28005,, and (d)
80005, . The pseudopotential is taken as  (x)=exp(—1/p) and the interaction strength is chosen as

G =-10/3. The coexistence liquid and vapor densities obtained from the Maxwell equal-area law are

givenby p, =2.783 and p, ~0.3675, respectively.

Table | depicts a comparison of the numerical coexistence densities obtained by the non-orthogonal
MRT-LB model and the orthogonal MRT-LB model when the kinematic viscosity varies from v =0.01 to 0.15.
For both models, it can be seen that their numerical results agree well with the results given by the Maxwell
equal-area law. More importantly, in all the cases there are only very minor differences between the results of the
non-orthogonal MRT-LB model and those of the orthogonal MRT-LB model. Previously, it has been mentioned
that the pseudopotential LB model is very sensitive to the additional (error) terms in the recovered macroscopic

equations. The good agreement shown in Table | numerically confirms that the non-orthogonal MRT-LB model

13



can recover the correct macroscopic equations at the Navier-Stokes level. Furthermore, we find that in this test
both models are unstable when the kinematic viscosity is taken as v =10, but stable with v =2x107°, which
implies the numerical stability of the MRT-LB method is retained when employing a non-orthogonal MRT

collision operator to simplify the implementation.

Table I. Comparison of the coexistence densities obtained by the non-orthogonal and orthogonal MRT-LB models.

v=0.01 v =0.05 v=0.1 v=0.15

Model

O Opv o Ope Opv O Oy Ope Opy

Non-orthogonal 2794 0365 2794 0368 2801 0369 2797 0.369

Orthogonal 2792 0366 2791 0367 2797 0369 2798 0.369

4.2. Static droplets

In this subsection, the Laplace law for a static droplet immersed in its vapor phase is employed to examine
the three-dimensional non-orthogonal MRT-LB model. In three-dimensional space, the Laplace law is given by
AP = Py, — Pou = 29/Ry , where p, and p,, are the fluid pressures inside and outside the droplet, respectively,
R, is the droplet radius, and 4 is the surface tension. When the surface tension is given, the pressure
difference is proportional to 1/R,. Simulations are carried out in a cubic domain of 150x150x150 with
periodic boundary conditions in all directions. The kinematic viscosity is taken as v =0.1, which corresponds to
s,' =0.8. The other relaxation parameters are the same as those used in the previous subsection. A spherical
droplet is initially located at the center of the computational domain. The pressure difference is measured at
t =2x10%6,, at which the equilibrium state is approximately achieved. The numerical results are plotted in Fig. 2.
For comparison, the results of the orthogonal MRT-LB model are also shown in the figure. The linear relationship
between the pressure difference and 1/R, can be clearly observed for both models. Similar to the previous test,

the present test also shows that there are only very minor differences between the results of the non-orthogonal

MRT-LB model and the orthogonal MRT-LB model.
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Fig. 2 Validation of the Laplace law.
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Fig. 3 Comparison of the maximum spurious velocities given by the non-orthogonal MRT-LB model and the

orthogonal MRT-LB model.

Furthermore, we also compare the maximum spurious velocities yielded by the non-orthogonal MRT-LB
model and the orthogonal MRT-LB model. The spurious velocities, also called spurious currents, have been
observed in almost all the simulations of multiphase flows involving curved interfaces. The grid system is now

chosen as N,xN xN, =80x80x80 and the droplet radius is fixed at 15 (lattice unit). The relaxation

parameter s, varies from s'=055 to 1.0 . The maximum spurious velocities produced by the

v

non-orthogonal and orthogonal MRT-LB models are compared in Fig. 3, from which no significant differences
are observed between the results of the two models. In addition, for both models it can be found that the

maximum spurious velocity increases significantly when s * is close to 0.5. Such a phenomenon is consistent
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with the findings in the literature for other multiphase LB models. For the pseudopotential LB model, the
spurious velocities can be reduced by using high-order isotropic gradient operators to calculate the interaction

force or widening the interface [6].

4.3. Contact angles

The capability of the three-dimensional non-orthogonal MRT-LB model for simulating contact angles is
examined in this subsection. There have been many studies of wetting phenomena using the pseudopotential
multiphase LB method [6] and applying a fluid-solid interaction to implement contact angles is a commonly used
treatment in the pseudopotential LB method, which was introduced by Martys and Chen in 1996 [52]. Since then
different types of fluid-solid interactions have been developed, which have been reviewed in Ref. [53]. In recent
years, the geometric formulation [54, 55], originally devised for implementing contact angles in the phase-field
method, has also been applied to the pseudopotential LB method [56, 57]. In three-dimensional space, the

geometric formulation for the pseudopotential LB method can be given by [57]

Piio =P, Hotan (900 _Ha) ) (57)

2

where ¢=\/(piﬂ’jyl—pi_lvjvl)z+(pivj+1’l—pivj_1‘1) , 0, is an analytically prescribed contact angle, and p, ;,
represents the density at the ghost layer (i, j,O) beneath the solid wall. The first and the second indexes
represent the coordinates along the x- and y-directions, respectively, whereas the third index denotes the
coordinate normal to the solid wall.

In our simulations, the grid system is takenas N, xN, x N, =160x160x120 . The kinematic viscosity is set
to v=0.1. Initially, a spherical droplet of radius r, =30 (lattice unit) is placed on the bottom surface. The
non-slip boundary condition [58] is applied at the solid surfaces and the periodic boundary condition is utilized in
the x and y directions. The modeling results are displayed in Fig. 4 with the prescribed contact angle 6, in Eq.
(57) being setting to 30°, 60°, 90°, and 135°, respectively. According to the numerical results, the contact
angles produced by the non-orthogonal MRT-LB model are 6~29.1°, 60.8°, 89.93°, and 135.4°,
respectively, which are in good agreement with the analytically prescribed contact angles and the maximum error
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is within +1°, which demonstrates the capability of the non-orthogonal MRT-LB model for simulating contact

angles.

(©) (d)
Fig. 4 Simulation of contact angles using the non-orthogonal MRT-LB model. (a) 6 ~29.1°, (b) 9 ~60.8°, (c)

0~89.93°, and (d) 6 ~135.4°.

4.4. The square-root-form pseudopotential
In this subsection, some simulations are performed using the square-root-form pseudopotential. A
comprehensive review of the pseudopotential multiphase LB method using this type of pseudopotentials can be

found in Ref. [6]. Here the Carnahan-Starling (C-S) equation of state is adopted [39]

_|_1+bp/4+(b,0/4)23—(b/3/4)3 _ap?, (58)
(1-bp/4)

Peos =

where a=0.4963R*T/p, and b=0.18727RT,/p, with T, =0.37733a/(bR). Using the square-root-form
pseudopotential, the only requirement for G is to ensure that the whole term inside the square root is positive.
The parameters R and b aretakenas R=1 and b =4, respectively. Note that the interface thickness can be
adjusted by tuning the parameter a in the equation of state [42].

First, the numerical coexistence curve predicted by the non-orthogonal MRT-LB model is compared with the

analytical coexistence curve given by the Maxwell equal-area law through simulating flat interfaces. The grid
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system is taken as N, xN, xN, =100x100x100 with periodic boundary conditions in all directions. The flat

liquid-vapor interfaces are located at z=0.25N, and z=0.75N,. For simplicity, the parameter a in the C-S
equation of state is chosen as a=0.5 for all the investigated reduced temperatures, but it should be noted that
the interface thickness usually decreases with the decrease of the reduced temperature (see Fig. 3 in Ref. [42] for
details). The constant o in Eq. (16) is set to 0.116 for flat interfaces. The parameter s, is chosen as
s, = 0.8, which corresponds to the kinematic viscosity v =0.1, and the other parameters are the same as those
used in the previous subsections. The numerical results are displayed in Fig. 5, from which we can see that the
numerical coexistence curve produced by the non-orthogonal MRT-LB model agrees well with the analytical

coexistence curve given by the Maxwell equal-area law in a wide range of reduced temperatures.

1.00+ )
—— Maxwell construction

0.95¢ O Numerical

0.90

10° 10? 10?

Fig. 5 Comparison of the numerical coexistence curve predicted by the non-orthogonal MRT-LB model with the

analytical coexistence curve given by the Maxwell equal-area law.

Furthermore, the non-orthogonal MRT-LB model and the orthogonal MRT-LB model [44] are compared in
terms of the maximum spurious velocity through simulating static droplets. The computational domain is chosen
as N, xN,xN, =120x120x120 and a spherical droplet of radius r, =40 (lattice unit) is initially located at
the center of the computational domain. The reduced temperature is set to T/T. =0.6, which corresponds to the

coexistence densities p, ~0.406 and g, =~0.00308, and the density field is initialized as follows:

p(xy.2)=

Pt _pL_pV tanh 2(r_r0) ' (59)
2 2 W
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where W =5 is the initial interface thickness and r =\/(x—x0 Y +(y=y,) +(z-2)", in which (x,,¥,.2,)
is the center of the computational domain. The parameter a in the C-S equation of state is taken as a =0.25
for the reduced temperature T/T. =0.6, which yields an interface thickness around five lattices [42]. The
constant o in Eg. (16) is chosen as 0.105, which is different from the value of o for flat interfaces because
the Maxwell equal-area law is theoretically established for the cases in which the pressure of liquid phase is equal
to that of vapor phase, while the pressure difference across a curved interface is non-zero according to the

Laplace law. An investigation of this issue can be found in Ref. [40].

Table 11. Comparison of the numerical coexistence densities obtained by the non-orthogonal and orthogonal

MRT-LB models at T/T, =0.6. The analytical coexistence densities are p, ~0.406 and p, ~ 0.00308.

v=0.01 v=0.05 v=0.1 v=0.15

Model

Up Lpv Up Lpv Up Lpv Up Lpv

Non-orthogonal 0.408 0.00304 0.408 0.00303 0.408 0.00300 0.408 0.00298

Orthogonal 0.408 0.00313 0.408 0.00319 0.408 0.00321 0.408 0.00323

The numerical coexistence densities predicted by the non-orthogonal MRT-LB model and the orthogonal

MRT-LB model at T/T, =0.6 are shown in Table Il with the kinematic viscosity varying from v =0.01 to
0.15 (s, changing from 0.53 to 0.95). The table shows that the results of the non-orthogonal and
orthogonal MRT-LB models are basically in good agreement with the coexistence densities given by the Maxwell
equal-area law. Meanwhile, it can also be observed that there are some slight differences between the two models

in the vapor density and these differences are larger than those in Table I, which may be attributed to the fact that

the present test has a larger density ratio. The maximum spurious velocities given by the non-orthogonal MRT-LB
model and the orthogonal MRT-LB model at T/T, =0.6 are plotted against s,* in Fig. 6, from which we can
see that there are no significant differences between the results of the non-orthogonal MRTL-LB model and those
of the orthogonal MRT-LB model. For both models, it can be seen that the maximum spurious velocity is smaller

than 0.005 in the cases of s;'>0.65, but increases to about 0.01 at s, =0.6, and further increases to about

0.04 at s;'=0.53.
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Fig. 6 Comparison of the maximum spurious velocities given by the non-orthogonal and orthogonal MRT-LB

modelsat T/T, =0.6.
For the results displayed in Fig. 6, the same s, is applied in the whole computational domain, which means
that the vapor kinematic viscosity is equal to the liquid kinematic viscosity, namely v, =v, =v, and hence the

ratio 1 /4, s the same as the density ratio, i.e., u /u, =(p./p,)/(W /v.)= P/ P, - Inthe literature [42, 53]

it has been shown that, besides widening the interface and using high-order isotropic gradient operator to

calculate the interaction force, increasing the ratio v, /v, can also reduce the spurious velocities in the cases of
large density ratios. For example, when the liquid kinematic viscosity is taken as v, =0.01 (s,* =0.53 for the

liquid phase), we find that the maximum spurious velocity can be reduced from about 0.04 to about 0.006 as

the ratio v, /v, increases from 1 to 10.

4.5. Droplet impingement on a flat surface

Finally, we consider a dynamic test, the impingement of a droplet with an initial velocity on a flat surface, so
as to validate the capability of the three-dimensional non-orthogonal MRT-LB model for simulating multiphase
flows at large density ratios. Impingement of droplets on solid surfaces is a very important phenomenon in many
engineering applications, ranging from ink-jet printing to spray cooling. In our simulations, the computational

domain is taken as N, xN xN, =300x300x150. Initially, a spherical droplet of diameter D, =100 (lattice

unit) is placed on the center of the bottom surface. The initial velocity of the droplet is given by

U =(u,., u,,u,)=(0,0,-U,), in which U, =0.075. The no-slip boundary condition [58] is employed at the

x1 Hy1 ¥z

solid surfaces and the periodic condition is applied in the x and y directions. The droplet dynamics is
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characterized by the following two non-dimensional parameters:

~Y,Dy
He

2
Wez%, Re = , (60)

where We and Re are the Weber number and the Reynolds number, respectively. Besides, another

non-dimensional parameter can also be found in some studies, i.e., the Ohnesorge number Oh = ,uL/JpLSD ,

which is related to the Weber number and the Reynolds number via Oh = \/M/Re .

In this test, the density ratio is chosen as p /p, =800 and the dynamic viscosity ratio is set to
4, /1, =50 (under normal temperature and atmospheric pressure, the density ratio of water to air is around 830
and the corresponding dynamic viscosity ratio is about 56). A piecewise linear equation of state [40] is employed
in the square-root-form pseudopotential. The surface tension & is evaluated via the Laplace law and the static
contact angle is taken as &~ 60°. The Reynolds number in our simulations varies from Re=80 to 1000.
Figure 7 displays some snhapshots of the droplet impingement process at Re =1000 and We ~ 36. Immediately
after the impingement, it can be seen that the shape of the droplet resembles a truncated sphere (t =5000, ).
Subsequently, a lamella is formed as the liquid moves radially (t=10006,). The lamella continues to grow
radially and its thickness decreases (t =25006, ). After reaching the maximum spreading diameter, the lamella
begins to retract because of the surface tension. All of these observations agree well with those reported in the

previous experimental and numerical studies [44, 59-61].

(@) (b) (©)

(d) O ()
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Fig. 7 Snapshots of droplet impingement on a flat surface at p, /p, =800, Re=1000, and We ~36. (a)

t=0, (b) t=5005,,(c) t=10005,,(d) t=25005,,(e) t="50005,,and (f) t=200000, .

In the literature, the maximum spreading factor D, /D, is usually employed to quantify the numerical
results [44, 61]. In Ref. [59], Asai et al. established a correlation formula for the maximum spreading factor
according to their experimental data: D, /D, =1+0.48We*° exp(—1.48We°'22 Re’”l). Scheller and Bousfield
[60] have also proposed a correlation formula by plotting their experimental data against OhRe* = JWeRe. A
comparison of the maximum spreading factor between the correlation formula of Asai et al., the experimental
data of Scheller and Bousfield, and the present simulation results is provided in Fig. 8, where the maximum
spreading factor D,, /D, is plotted against OhRe” = JWeRe. Figure 8 shows that our numerical results are
in good agreement with the experimental correlation/data in the previous studies, which demonstrates the
capability of the three-dimensional non-orthogonal MRT-LB model for simulating multiphase flows at large

density ratios.

10¢
8 _ ------- Experimental correlation [59]
O Scheller and Bousfield [60]
6F O Presentsimulation
o 4F
o) :
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2L . @QDQﬂ?EP ¥
r _’___.-—""(ﬂ--—oq:‘
P o
10° 10° 10*
OhRe’

Fig. 8 Comparison of the maximum spreading factor between the present simulation results, the experimental

correlation in Ref. [59], and the experimental data in Ref. [60].

5. Summary

A theoretical and numerical study has been performed to investigate the capability and efficiency of a

three-dimensional non-orthogonal MRT-LB method for simulating multiphase flows. The model is developed
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based on the D3Q19 lattice with a non-orthogonal MRT collision operator, which is devised from a set of
non-orthogonal basis vectors for the D3Q19 lattice. Using the non-orthogonal MRT collision operator, the
transformation matrix M and its inverse matrix M™ are much simpler than those of the usual orthogonal
MRT collision operator. Through the Chapman-Enskog analysis, it has been demonstrated that the
three-dimensional non-orthogonal MRT-LB model can correctly recover the Navier-Stokes equations in the low
Mach number limit. Numerical investigations have been carried out based on the pseudopotential multiphase LB
approach. Both the exponential-form pseudopotential and the square-root-form pseudopotential have been
considered in our simulations. Numerical comparisons show that the non-orthogonal MRT-LB model retains the
numerical accuracy when simplifying the implementation, and can serve as an alternative to the usual orthogonal
MRT-LB model.

Finally, we would like to mention that the present method can also be extended to the D3Q27 lattice [62, 63].
Actually, for the 3D lattices, there are only ten basis vectors related to the hydrodynamics at the Navier-Stokes

level. The zeroth-order vector M, , =1 is related to mass conservation, the three first-order vectors (M, , =€

ax !

. . 2
M,,=¢, ., M,;, =e,)arerelated to the momentum, and the six second-order vectors in Eq. (8) (M, , = |ea| ,
) .
M, =3¢, —le,| . M, =¢l —¢€:, M, =e.e. . Mg, =¢e.e.. Mg, =e,e,)arerelated to the viscous

effect at the Navier-Stokes level. The high-order vectors are related to non-hydrodynamic moments, and these

vectors can be non-orthogonal to the ten basis vectors.
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Appendix A: The inverse matrices of the orthogonal and non-orthogonal transformation matrices

based on the D3Q19 lattice
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The inverse matrix of the usual orthogonal transformation matrix is given by
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According to the non-orthogonal transformation matrix defined by Eq.
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(12), its inverse matrix is given by

0 o
0 o
0 o0
0 o
0 o
0 o
0 o0
-8 0
~1/8 0
18 0
18 0
0 18
0 18
0 -18
0 -18
1/8 -1/8
~1/8 -1/8
18 1/8
-8 1/8]

Appendix B: Comparison of the non-orthogonal and orthogonal MRT models in terms of the Mach

number effect.

In this Appendix, the three-dimensional non-orthogonal MRT-LB model is compared with the usual

orthogonal MRT-LB model in terms of the Mach number effect through modeling the three-dimensional
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lid-driven cavity flow [64]. The grid system is takenas N, xN xN, =LxLxL and the driving lid is placed at

y = L, moving along the direction of x-axis with a speed U . To investigate the effect of the Mach number, three
cases are considered, i.e., U =0.1, 0.3, and 0.5, which correspond to the Mach numbers Ma=U/c, ~0.173,

0.520, and 0.866, respectively. The Reynolds number is chosen as Re=UL/v =400 and L is setto 80 (lattice

unit). Comparisons of the transversal velocity u, (x) at y/L=0.5 and z/L=0.5 and the horizontal velocity

U, (y) at x/L=0.5 and z/L=0.5 are made in Fig. 9, in which the driving speed is U =0.1 and the Mach

number is Ma = 0.173, fulfilling the low Mach number limit. From the figure we can see that the numerical
results of the non-orthogonal and orthogonal MRT-LB models are both in good agreement with the results

reported in the study of Mei et al. [64], and there are no visible differences between the results of the two models.

10
O Meietal [64]
0.2 —— Non-orthogonal O Meietal. [64]
------ Orthogonal 0.8 —— Non-orthogonal
------ Orthogonal
0.0 0.6
) |
2 B
> 02 04
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1 1 1 00 " " 1 " 1 " 1 L
0.00 0.25 0.50 0.75 1.00 -0.25 0.25 0.50 0.75 1.00
L u/U
@) (b)

Fig. 9 Comparison of the numerical results obtained by the non-orthogonal and orthogonal MRT models with the

results reported in Ref. [64]. The driving speed is U =0.1, which corresponds to the Mach number

Ma =U/c, ~0.173. (a) The transversal velocity u,(x) at y/L=05 and z/L=0.5. (b) The horizontal

velocity u,(y) at x/L=05 and z/L=025.

Figure 10 displays the influence of the Mach number on the numerical results of the non-orthogonal and
orthogonal MRT-LB models. From the figure it can be seen that the deviations between the numerical results of

the two MRT-LB models and the results reported in Ref. [64] are getting larger when the Mach number

(Ma=U/c, ) increases, confirming that neglected the third-order velocity terms gradually have an important
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influence with the increase of the Mach number. Meanwhile, in Fig. 10 there are no obvious differences between
the results of the non-orthogonal MRT-LB model and those of the orthogonal MRT-LB model, which implies that

the two models behave the same in terms of the Mach number effect.
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Fig. 10 Effect of the Mach number. The numerical results are obtained by the non-orthogonal MRT-LB model

(left) and the orthogonal MRT-LB model (right) with U =0.3 and 0.5, which correspond to the Mach

numbers Ma=U/c, ~0.520 and 0.866, respectively. (a) The transversal velocity uy(x) at y/L=05

and z/L =0.5. (b) The horizontal velocity u,(y) at x/L=05 and z/L=05.
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