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ABSTRACT
This article introduces a new class of models for multiple networks. The core idea is to parameterize a
distribution on labeled graphs in terms of a Fréchet mean graph (which depends on a user-specified choice
of metric or graph distance) and a parameter that controls the concentration of this distribution about its
mean. Entropy is the natural parameter for such control, varying from a point mass concentrated on the
Fréchet mean itself to a uniform distribution over all graphs on a given vertex set. We provide a hierarchical
Bayesian approach for exploiting this construction, along with straightforward strategies for sampling
from the resultant posterior distribution. We conclude by demonstrating the efficacy of our approach via
simulation studies and two multiple-network data analysis examples: one drawn from systems biology and
the other from neuroscience. This article has online supplementary materials.
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1. Introduction

This article introduces a new class of models for data consisting
of observations of multiple networks. With advances in mea-
surement technology, these types of data are rapidly becoming
prominent in fields such as systems biology and neuroscience,
among others. In systems biology, inferences must often be
combined on the same gene interaction network, where differ-
ent inferences correspond to different datasets or to different
analysis procedures applied to the same data (Bartlett, Olhede,
and Zaikin 2014). In neuroscience, a population of networks
encodes the way different regions of the brain interact when
individuals perform a given task (Biswal, Menness, and Zuo
2010), or characterizes a population of individuals suffering
from a neurological or psychiatric disorder (Lynall, Bassett, and
Kerwin 2010; Nelson et al. 2017).

The developments proposed herein are therefore motivated
by the problem of modeling populations of networks. The class
of models we propose is based on the idea that distributions on
graph space are naturally parameterized in terms of a mean—
the Fréchet mean, which is itself a network—and a measure
of how concentrated the distribution is about this mean. A
benefit of our approach is that the Fréchet mean itself can be
interpreted as the representative of a population of networks,
relative to a user-specified choice of metric or graph distance. To
specify concentration around the Fréchet mean, we use entropy
as described below. We then provide general strategies for per-
forming Bayesian inference for these new models, allowing for
the modeler to decide which metric is most suitable for the given
application at hand.

By multiple networks we mean two or more networks com-
prising a set of independent observations, which we assume
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here are defined over the same vertex set. Generalizing this
problem to map networks of arbitrary different sizes to a com-
mon reference or with scrambled order of nodes is a nontriv-
ial extension, solving a potentially computationally intractable
problem (we elaborate more on this point in the discussion). In
for example medical imaging and bioinformatics this assump-
tion is not unreasonable, if admittedly restrictive. A brain con-
nectome example (which we study later in Section 6) drawn
from neuroscience is displayed in Figure 1, with regions of
the brain assigned to nodes according to the CC200 atlas,
which was proposed by Craddock et al. (2012). Note from
Figure 1 that if we consider each possible pair of observations
(first three figures, from left to right), any member of such
pair can be seen as a modification of the other member or as
a modification from a representative of the population (Fig-
ure 1, on the right). Thus, although one modeling approach
would be to treat such networks as realizations from a sin-
gle random graph model based on global features, such as
a stochastic block model, this limits the inferential insights
that can be gained from multiple networks as opposed to a
single one.

Indeed, the questions arising from multiple network data
demand a different perspective:

1. How does one find a summary or representative (at the
population level) for multiple observed networks? In other
words, what type of structure must the modeler impose on
the space of labeled graphs to define a suitable estimand?
Without such an estimand (e.g., in the case of block modeling
or link prediction) we risk our inference yielding a summary
of the population that does not look like any of its elements,
and cannot be used in place of them.
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Figure 1. Example of multiple network data in the context of neuroscience, with each node representing a region of the brain (see Zuo et al. 2014; Arroyo et al. 2019).
The networks are defined over the same set of 200 nodes. First three figures (from left to right): Discrepancies of three observed brain networks with respect to the point
estimate of the Frechét mean. Edges only present in the observed network are colored in blue, while edges present in the point estimate but not in the data point are
colored in pink. Right: Posterior mode estimate GFM of the Frechét mean of 300 brain networks using a metric on graph space based on diffusion.

2. In the Bayesian setting, if we have multiple networks (such
as those in Figure 1) as historical data, how do we perform
prior elicitation without resorting to global assumptions on
the network structure? For example, in systems biology it is
typical that past inferences regarding a given gene interac-
tion network may provide a very accurate idea about what
a newly inferred network might be expected to look like,
when obtained using a new measurement technology. This
is illustrated in Section 6.1.

We show here that both questions can be answered by first
assuming that the observed networks are perturbations of a
“typical” network, and then characterizing the variability of the
data in those terms. Specifically, the Fréchet mean implied by
a given metric will parameterize a generative model, under the
assumption that the probability of generating a specific network
is given by a strictly decreasing function only of its distance from
this Fréchet mean.

To construct our models, we borrow ideas from the graphical
models and shape theory literatures, where authors have consid-
ered the notion of a “typical” non-Euclidean observation, and
random perturbations from that observation. Previous work on
multiple networks in the statistics literature includes the fol-
lowing: The approaches proposed by Balachandrian, Kolaczyk,
and Viles (2017) and Chang, Kolaczyk, and Yao (2018) for
estimating features (subgraph counts and density, respectively)
from network data; the model proposed by Gollini and Murphy
(2016) (which is an extension of the latent space model proposed
by Hoff, Raftery, and Handcock (2002)) for describing the vari-
ability of a homogeneous population of networks; the Bayesian
nonparametric approach proposed by Durante, Dunson, and
Vogelstein (2017) for modeling heterogeneous populations of
networks; and the approach for comparing populations of net-
works via testing by Ginestet et al. (2017). The methodology of
the last paper is based on the asymptotic theory for the space of
unlabeled networks developed by Kolaczyk et al. (2020), which
serves to quantify how concentrated the distribution is around
a mean network when formulated in terms of a very specific
metric. Kolaczyk et al. (2020) and earlier Feragen et al. (2011)
discussed the problem of estimating a mean and the geometry
associated to the space of possible values for that estimand, the
former for the space of graphs while the latter for the space of
trees.

Recently, Nielsen and Witten (2018) proposed a multiple
network model based on the random dot product graph model;

their approach builds on work by Wang, Vogelstein, and Priebe
(2017), who proposed a gradient-descent method to compute
the simultaneous embedding of a set of graphs. In terms of
inference, Nielsen and Witten (2018) focused on the problem of
comparing populations of networks. Tang et al. (2017) focused
on the problem of testing for the difference of two populations
of networks; the authors assume a random dot product graph
model, as in Wang, Vogelstein, and Priebe (2017), but computa-
tion is done using the bootstrap. We also note the model-based
approach for estimating the generating mechanism of multiple
networks given by Bhattacharyya and Chatterjee (2018). Finally,
some of the ideas developed in this paper have parallels in
the literature for modeling measurement error for networks,
including recent work by Newman (2018), Peixoto (2018b), and
Le, Levin, and Levina (2018).

In a different direction, similarity measures on the local
structure of a network have been used to perform prior elic-
itation on graph space, particularly in the graphical models
literature; this idea has been discussed by Mukherjee and Speed
(2008) as well as Mitra et al. (2013). Our approach can also be
related to work by Tan et al. (2017) and the work by Ni et al.
(2018) in the graphical models literature, who proposed hierar-
chical models on graph space. From the shape theory literature,
we borrow insight from the work of Mardia and Dryden (1998),
which uses the idea of modeling a set of non-Euclidean objects
(shapes) in terms of a centroid and parameters that control how
concentrated the distribution will be around that centroid.

From a Bayesian point of view, computing a Fréchet mean
at the population level is analogous to minimizing the posterior
expected loss, and becomes the same problem when the loss is
a metric. Wade and Ghahramani (2018) exploited this idea, in
the context of cluster analysis. In our work, we use entropy in
conjunction with the Fréchet mean to define a distribution for
non-Euclidean data, and in that sense, our work relates to the
methodology developed by Pennec (2006).

Distinct from the literature discussed above, the method-
ology we propose here achieves different goals: (1) It enables
the modeler to characterize the variability of a set of observed
networks in terms of a Fréchet mean and a measure of how
concentrated the distribution is around this mean, and to per-
form Bayesian inference, without resorting to asymptotics; (2)
It enables the practitioner interested in network data to perform
prior elicitation on graph space by using an observed network
as starting point; and (3) It provides tools for incorporating
different metrics on graph space into the modeling procedure,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

enabling the encoding of different assumptions the practitioner
may have regarding similarity among graphs. We also are able
to discuss a looser notion of a location-scale family for random
graph models using this set of technology, taking inspiration
from Fang, Kotz, and Ng (1990), we use the functional form
of a symmetric multivariate distribution whose both location
and scale need to be relaxed to apply. Concrete examples of this
notion are provided, along with theoretical results that show
that these examples are legitimate. We show how these examples
relate to one another.

The remainder of this article is organized as follows. Section 2
first introduces the necessary preliminaries, including metrics
on graph space and the Fréchet mean. Section 3 then details the
general concepts on which the generative models proposed in
this article are be based on, along some examples. The corre-
sponding strategies for Bayesian modeling and computation are
presented in Section 4. Section 5 documents the behavior of our
models via simulation studies, and Section 6 describes fully the
fitting of our models to the multiple-network data introduced in
Figure 1. Finally, Section 7 discusses briefly the contributions of
our approach, placing it in context and outlining limitations as
well as future possibilities.

2. Preliminaries

A simple labeled graph G = (V , E) comprises a set of vertices V
and a set of edges E ⊂ {E ⊂ V : |E| = 2}. Letting N = |V|, we
may represent G by an N × N adjacency matrix AG such that

AG(i, j) =
{

1 if there is an edge between nodes i and j,
0 otherwise.

The models and methods we propose can all be applied equally
to directed graphs (with AG(i, j) distinct from AG(j, i) for i <

j) and those having self-loops (AG(i, i) = 1), as well as more
generally any weighted graph such that each AG(i, j) takes values
in some finite, discrete set. We write that a graph G1 = (V1, E1)
is a subgraph of G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. For a set
{Gs}s∈S, we denote by AGk(i, j) the (i, j)th entry of the adjacency
matrix of Gk, k ∈ S.

For N ∈ N and V := {1, 2, . . . , N}, define
G := {

G[N]
}

:= {G = (V , E) : |V| = N} ,
so that

{
G[N]

}
represents the set of all N-node labeled networks

of a given type (simple, directed, etc.). If we consider simple
graphs, for example, then

∣∣{G[N]
}∣∣ = 2(N

2). We refer to
{
G[N]

}
for the simple directed case as a graph space. This term tends to
be used in this way (rather informally) in the graphical models
literature.

Metrics on graph spaces in turn allow for an appropriate
definition of network structural similarity (Donnat and Holmes
2018). We are interested in developing probability models on{
G[N]

}
given the choice of a metric dG(·, ·) on

{
G[N]

}
. Two

examples of metrics which can be used to formulate the models
introduced in Section 3 are as follows:

1. The Hamming distance between two graphs when their adja-
cency matrices are treated as strings, which is given by the
number of entries that disagree. We will use the notation

dH(G1,G2) = |AG1 − AG2 |H ,

to denote this distance independently of the type of network
under consideration by the modeler (e.g., simple, directed).

2. A diffusion distance based on the graph Laplacian, for exam-
ple the choice made by Hammond, Gur, and Johnson (2013):

dL(G1,G2; t) = ‖ exp(−tLG1) − exp(−tLG2)‖2
F , t > 0;

where ‖·‖F is the Frobenius norm and LG is the combinatorial
Laplacian matrix associated to an undirected graph G:

LG(i, j) =
{∑N

k=1 AG(i, k) if i = j,
−AG(i, j) otherwise.

Note that this is referred to by the letter L in Chung (1997),
whilst Chung (unlike Hammond et al.) defines the Laplacian
to be normalized. The normalized version of the matrix is an
operator related to the Laplace–Beltrami operator for objects
different than networks via the discretization of a derivative.

Hammond, Gur, and Johnson (2013) argued that the dif-
fusion distance is natural as two graphs are similar if they
transmit information in the same way. Generic transmission
is by them modeled using heat diffusion on the network. The
distance therefore arises as exp(−tLG) is the kernel associated
with (e.g., classical heat) diffusion on a graph G via the
discrete Laplace operator LG . The value of t is here the time
of diffusion. As t → 0 we should return to whatever initial
conditions were specified, and at t → ∞ equal proportions
of diffused “stuff ” should be at each node.

The value of dL(G1,G2) measures the discrepancy after t
units of time between the diffusion on G1 versus that on G2.
For our purposes t may be regarded as a parameter whose
value can be elicited a priori using information from the
application domain under consideration. As t decreases, it
becomes harder to distinguish between diffusion patterns
(no diffusion has happened yet) and therefore to distin-
guish between different elements of

{
G[N]

}
. Finally, the graph

Laplacian is discussed in detail in Chung (1997), and we
use the unnormalized version. Hammond, Gur, and Johnson
(2013) argued that this captures the temporal evolution of the
vector representing the diffusion. Thus, this metric captured
how differently things have flowed up to time t.

While the Hamming distance focuses on simple flips of edges
into non-edges (changes in very local structure), the diffusion
distance is treating the objects functionally (i.e., it focuses on
changes that may impact the global structure).

One might ask what choice of metric should be made? Don-
nat and Holmes (2018) provided some guidelines in this choice
of metric. The Hamming distance can be interpreted as simple
flips of edges (a local modification of the network). The diffusion
distance allow information to diffuse on the network, and then
lets us compare that diffusion. As Donnat and Holmes (2018)
discussed, the Hamming distance assume deletions and addi-
tions carry the same weight, even if their structural impact may
not be equivalent. The Hamming distance is strongly affected
by the sparsity of the graph, as already pointed out by the
aforementioned authors. To take into account the sparsity into
the metric, the Jaccard distance is used (Donnat and Holmes
2018). The authors additionally discuss global metrics based on
spectral distances. The diffusion distance balances information
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differently taking the diffusion of information on the network
into account. Other balances between global and local can be
made (Donnat and Holmes 2018). Computational cost factor
into our usage of these two metrics. Later on (see Section 4.2),
we will illustrate how a model based on a simple metric can aid
the computation of the posterior for a model based on a more
sophisticated metric.

We conclude this section by introducing the Fréchet (1948)
mean for use in the context of the metric spaces (

{
G[N]

}
, dG)

and associated probability models that we will consider below.
Given an arbitrary metric space (Y , d) and a probability measure
on Y , the Fréchet mean provides the notion of an average or
measure of central tendency with respect to d. It generalizes the
first moment to non-Euclidean settings and has seen wide use
in areas such as shape theory.

Definition 2.1 (Fréchet mean). Let Y be a random element
defined on sample space Y and let d(·, ·) be a metric on Y .
The set

ψm = arg inf
ψ∈Y EY [d2(Y , ψ)] (1)

is called the Fréchet mean set of Y .

We will use the Fréchet mean in conjunction with unimodal-
ity to formulate natural and intuitive models on the space

{
G[N]

}
of labeled N-node networks.

3. Modeling Approach

In this section, we propose a generative modeling approach
for datasets consisting of multiple networks. Our models are
parameterized in terms of a unique mode and a univariate
measure of dispersion around that mode. The mode in the space
of labeled N-node networks

{
G[N]

}
is itself a network defined

on the same vertex set as each individual observation, allowing
us to define a suitable estimand to obtain directly a population-
level summary of multiple networks.

In analogy to a location–scale family, we provide concepts
that enable us to propose probability models on

{
G[N]

}
in terms

of a central graph (location) and concentration around that
central graph (scale of variation). We use the terms loosely given
that we are working in a non-Euclidean setting. In contrast with
the location–scale family, which takes the vector space structure
for granted, we are constrained by the structure entailed by a
metric in

{
G[N]

}
and the fact that the space is finite.

Definition 3.1 (Unimodal network distribution based on loca-
tion). Fix a metric dG on

{
G[N]

}
for N ∈ N, and consider a

family of probability mass functions
{

p(· | Gm)
}
Gm∈{G[N]} on{

G[N]
}

such that

1. Each p(· | Gm) is unimodal with mode Gm ∈ {
G[N]

}
;

2. For G1,G2 ∈ {
G[N]

}
, we have that dG(G1,Gm) > dG(G2,Gm)

implies p(G2) > p(G1), while dG(G1,Gm) = dG(G2,Gm)

implies p(G2) = p(G1).

The most straightforward example is as follows: the centered
Erdös–Rényi (CER) model, which will be introduced later on
this section. We shall now need another important concept from

information theory, namely that of entropy, see Mézard and
Montanari (2009). This is used to measure the uncertainty of
a random variable and takes the form of

HG = −
∑
G∈G

p(G | Gm) · log
(
p(G | Gm)

)
. (2)

Sometimes log(·) in the above expression is replaced by log2(·).
We set 0 · log(0) to equate to zero, as usual.

Building from unimodality we also need to introduce scale,
which is our next step.

Definition 3.2 (Unimodal network distribution with location and
scale). Fix a metric dG(·, ·) on

{
G[N]

}
for N ∈ N, nonempty set

� ⊂ R+, and consider a family
{

p(· | Gm, γ )
}
Gm∈{G[N]},γ∈�

:

1. For every fixed scale parameter γ ∗ ∈ �, the family{
p(· | Gm, γ ∗)

}
Gm∈{G[N]} satisfies Definition 3.1 with respect

to the metric dG.
2. For every fixed location parameter G∗ ∈ {

G[N]
}

, the entropy
associated to the family

{
p(· | G∗, γ )

}
γ∈�

is a strictly mono-
tone function of γ ∈ �.

For finite, discrete sets such as
{
G[N]

}
and associated prob-

ability mass function p(·), entropy −E
{

log p(·)} provides a
convenient characterization akin to variance, ranging from 0 for
a point mass to log(| {G[N]

} |) for the uniform distribution on{
G[N]

}
. Entropy can thus be used to parameterize a family of

discrete distributions on
{
G[N]

}
with the same unique mode, in

an analogous way to how the scale parameter would parame-
terize a member of the location–scale family when the location
parameter has been specified. The metric provides a ranking of
the elements

{
G[N]

}
given the mode, the entropy enables the

statistician to control the decay of the values of the probability
mass function given that ranking. To take the analogy with a
Gaussian distribution γ plays the role of 1/σ for the Gaussian,
where σ 2 is the variance. Therefore we expect γ → 0 to play
the role of σ → ∞, or the maximum entropy solution that
should be the least peaked. In contrast, γ → ∞, we expect to
correspond to the minimum entropy solution, and be the most
concentrated distribution. Therefore intuitively, we expect the
entropy to decay in γ . This allows us to consider the analogy of
“peaked” versus “flat” distributions where γ controls the peak.

We now provide two examples for the random graph distri-
bution based on distance and entropy. These examples will be
discussed in detail in Sections 4.1 and 4.2, respectively.

We will now introduce a first example of a random graph
distribution based on distance and entropy; we call it the CER
model. The intuition behind this model is that noisy versions of
the centroid (which is denoted by Gm) are generated by flipping
edges independently at random with probability α. From a
modeling perspective, it is sensible to penalize (or constrain) α

so it takes values much smaller than the density of Gm; there
is little utility for a model where the trend is overwhelmed by
noise.

Definition 3.3 (CER model). Given a graph Gm ∈ {
G[N]

}
and

1/2 > α > 0, consider a model p(· | Gm, α) on
{
G[N]

}
of the

form:
Pr

(
AG(i, j) = AGm(i, j)

) = 1 − α. (3)
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We call this the CER model with mode Gm and parameter α.

Note that AG(i, j) generating mechanism can also be writ-
ten as

AG(i, j) | AGm(i, j), α = |AGm(i, j) − Z(i, j)|,

where the Z(i, j)’s are iid Ber(α) for 1 ≤ i < j ≤ N.

This way of describing AG(i, j)’s generating mechanism high-
lights that edges or flipped to non-edges, or non-edges to edges,
with probability α. This clarifies why we expect α ≤ 1

2 , as oth-
erwise we are more likely to flip all edges and not be “centered”
at AGm(i, j). This condition also will be required in the proofs
of Proposition 3.1 (online appendix), which exactly establishes
mode etc. Thus, for the CER to effectively serve as an error
measurement model, the α parameter should be constrained to
be smaller than the edge density parameter ofGm. The condition
1/2 > α > 0 furthermore ensures that the maximum likelihood
estimator (of Gm) will be the graph that minimizes the average
number of mismatches with respect to the observed networks.
For this model, we do not expect the observed graphs to be,
on average, of different density than Gm; this is because the
error model affects edges and non-edges equally. Observe that
if a parametric random graph model is further imposed upon
Gm (e.g., Erdös–Rényi), then this model can be cast into the
approach proposed by Newman (2018).

Proposition 3.1. We let dG(·, ·) denote the Hamming distance
on

{
G[N]

}
. If two graphs G1 and G2 are generated from the CER

model with centroid Gm ∈ {
G[N]

}
and 0 < α ≤ 1/2 then we

have that dG(G1,Gm) > dG(G2,Gm) implies p(G2) > p(G1),
while dG(G1,Gm) = dG(G2,Gm) implies p(G2) = p(G1). We
deduce that p(G) is unimodal, and that the CER model is a
unimodal network distribution based on location and scale.

As a second example of a unimodal network distribution
based on location and scale, we introduce a model motivated by
the notion that the similarity with respect to the centroid is made
concrete by the choice of dG(·, ·) (e.g., the metrics proposed
by Zelinka (1975), Hammond, Gur, and Johnson (2013), or the
ones discussed in Donnat and Holmes (2018)), and covered by
our discussion in Section 2 earlier in the article.

Definition 3.4 (Spherical network family). Given a graph Gm ∈{
G[N]

}
, a metric dG(·, ·) on

{
G[N]

}
, and γ > 0, we propose

p(G | Gm, γ ) ∝ exp
{−γφ(dG(G,Gm))

}
, (4)

where φ(·) is a nonnegative strictly increasing function such
that φ(0) = 0. This is the spherical network family (SNF) with
parameters Gm and γ .

This model is related to the prior introduced by Mitra et
al. (2013), which was introduced in the context of graphical
modeling. A main difference with respect to their approach
is that the SNF is aimed to serve as the functional form for
both the likelihood and the prior. This model also relates to the
similarity measure proposed by Dahl, Day, and Tsai (2017) for
random partitions. The normalizing constant for this model is

the reciprocal of

Z(Gm, γ ) =
∑

G∈{G[N]}
exp

{−γφ(dG(G,Gm))
}

, (5)

here Z(Gm, γ ) is known as the partition function of p(G | Gm, γ ).
We observe directly that Z(γ ) > 0 as it is a sum of positive
terms. Just like the normalizing constant of any probability mass
function, as (5) aggregates over G ∈ {

G[N]
}

, the sum will not be
a function directly of φ(dG(G,Gm)), only implicitly as the sum
will vary depending on the functional form. Therefore Z(Gm, γ )

is a positive constant that does not depend on dG(G,Gm).

The functional form proposed for the SNF is inspired by the
notion of symmetry of the density discussed in Fang, Kotz, and
Ng (1990). A random variable X on X has the symmetry of the
density property if its density p(· | μ, γ ) is of the form

p(X | μ, γ ) = Z−1(γ ) · exp [−γφ(d(X, μ))] ,
where μ ∈ X , γ > 0, φ(·) ≥ 0 is a nondecreasing function,
d(·, ·) is a metric on X .

Proposition 3.2. The CER is a member of the SNF.

The above proposition demonstrates that the SNF is not
empty. There are some other properties we would like to see,
and to be clear on what properties that we desire, let us show
that they hold in the following proposition.

Proposition 3.3. We let dG(·, ·) denote a graph metric on
{
G[N]

}
.

If two graphs G1 and G2 are generated from the SNF with
centroid Gm and γ ∈ R

+ then we have that dG(G1,Gm) >

dG(G2,Gm) implies p(G2) > p(G1), while dG(G1,Gm) =
dG(G2,Gm) implies p(G2) = p(G1). As a consequence
p(G) is unimodal, and the SNF is a unimodal network
distribution based on location. In addition, the SNF is unimodal
network distribution based on location and scale if
Var {φ [d(G,Gm)]} > 0.

The next step consists in verifying if the examples we have
presented fulfill the condition stated in Proposition 3.3.

Proposition 3.4. The CER and SNF equipped with the diffusion
distance fulfill the condition Var {φ [d(G,Gm)]} > 0 when φ(·)
is the identity function.

The following property of the sample Fréchet mean will pro-
vide insight regarding the behavior of the MLE for both models
defined above and supports our intuition that the posterior
mode will tend to the true value of the Fréchet mean as the
sample size increases.

Proposition 3.5. The sample Fréchet mean in
{
G[N]

}
converges

to the true Fréchet mean when the later exists and is unique, for
N ∈ N.

Definition 3.1 is expressed in terms of the mode of the dis-
tribution. The following result indicates how the Fréchet mean
and mode relate for the CER model:

Proposition 3.6. The mode and Fréchet mean coincide for the
CER model defined on

{
G[N]

}
, N ∈ N.
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For the SNF, the Fréchet mean maximizes the kernel of
the Boltzmann distribution in Equation (4). This is a direct
consequence of Definitions 2.1 and 3.4.

Now, we have enough elements for presenting our model for
multivariate network data. Let N ∈ N and dG a metric on

{
G[N]

}
.

To describe the variability of a set observations {G1,G2, . . . ,Gn}
in

{
G[N]

}n, we propose a model of the form:

p(G1,G2, . . . ,Gn | Gm, γ ) = p(Gm | G0, γ 0)p(γ )

n∏
i=1

p(Gi | Gm, γ ), (6)

where p(· | Gm, γ ) is the likelihood, which is given by a
unimodal network distribution based on location and scale;
p(· | G0, γ 0) is the prior on the mode of the distribution, such
prior is also given by a distribution with the same functional
form as the likelihood; finally, p(γ ) is the prior on the entropy
of the distribution. One implication of choosing this parame-
terization is that the inference will be in terms of the population
centroid, which is a network by itself. This enables the statisti-
cian to perform an operation equivalent to smoothing in graph
space.

We propose this model with the aim to represent the vari-
ability of a set of observations {G1,G2, . . . ,Gn} in

{
G[N]

}n such
that, for every pair

{
Gi,Gj

}
with 1 ≤ i < j ≤ n, Gi is a

small perturbation ofGj according to dG. The main assumptions
encoded by the model presented in Equation (6) are

1. The distribution of the observations is assumed to be uni-
modal a priori.

2. The variability of the observations is characterized in terms
of the dispersion around the mode. Such dispersion is defined
in terms of dG a metric on

{
G[N]

}
.

3. The prior distribution for the mode is assumed to have
the same functional form as the likelihood. This implies
that it will be unimodal; its mode will be denoted by G0.
We will not assume any structure on G0, unless we state
otherwise.

The first condition is set to guarantee identifiability of the
model. The second condition enables the statistician to use
the notion of similarity between networks, which can be sub-
ject to elicitation, to define variability in the space of graphs,
which is, in contrast, very challenging to elicit. The third
condition has parallel versions in the functional data analysis
literature: we assume a parametric model for the error, with
very simple structure, while allowing the trend to be as com-
plex as it needs to be. An alternative approach would be to
assume a trend with more defined structure and allow for a
richer error structure. We elaborate more on this point in the
discussion.

4. Bayesian Modeling and Computation

In this section, we introduce Bayesian hierarchical models based
on the distributions presented in Section 3. For these models, we
assume the same functional form for the sampling distribution
and for the prior on the Fréchet mean. We also discuss strategies
for sampling from the posterior, with emphasis on the case when
the normalizing constant depends on the Fréchet mean.

4.1. Bayesian Inference for the Centered Erdös–Rényi
Model

We now discuss a model of the form given in (6) that is inspired
by the CER model. The intuition behind this model is the
following: given a set of observed networks {G1,G2, . . . ,Gn} in{
G[N]

}n, their variability can be characterized in terms of the
network Gm that serves as the mode of the distribution and the
dispersion around that network. The network Gm can also be
interpreted as the Fréchet mean of

{
G[N]

}n implied by the metric
and the probability model.

Within this context, the contribution to the likelihood by
each observation Gi is therefore given by

p(Gi | Gm, α) = αdH(Gi,Gm)(1 − α)
(N−1)N

2 −dH(Gi,Gm), (7)

where dH(·, ·) is the Hamming norm for matrices. Expressions
(6) and (7) provide the elements we need to propose the follow-
ing Bayesian model:

Definition 4.1 (CER/CER model). Let N and n be elements of N,
and take 0 < α0 < 1/2. The CER/CER model is a multivariate
network model on

{
G[N]

}n of the form

p(G1,G2, . . . ,Gn | Gm, α) (8)

= α
dH(Gm,G0)
0 (1 − α0)

(N−1)N
2 −dH(Gm,G0)p(α)

×
n∏

i=1
αdH(Gi,Gm)(1 − α)

(N−1)N
2 −dH(Gi,Gm),

where the prior p(·) for α is a scaled Beta on (0, 1
2 ). Here, G0 ∈{

G[N]
}

and α0 ∈ (0, 1) are the hyperparameters of the model.

We make no assumptions regarding N and n. Expression (8)
is a consequence of the independence of the error, which should
be noted. We assume a Beta distribution for α is reasonable,
since it can be specified in such a way that it is unimodal and
favors values close to zero.

Equation (7) proves helpful for understanding the properties
of an Erdös–Rényi random graph as an measurement error
model. This implies the following properties for the CER/CER
model:

1. The log-likelihood can be computed using O(N2n) opera-
tions; this should be kept in mind when performing Bayesian
computations, such as MCMC.

2. For α specified, the MLE is the graph Ĝm that minimizes the
average number of mismatches with respect to the observed
networks.

The prior for Gm has G0 as its mode and its entropy is
determined by the Hamming norm and α0. For the CER/CER
model, the normalizing constant does not depend on either
Gm or α, therefore, samples of the posterior for (Gm, α) can be
obtained via a Metropolis/Hastings algorithm with a mixture of
kernels. To update AGm , the adjacency matrix associated to Gm,
we use the following proposals:

1. Each AGm(i, j) changes its value independently to 1−AGm(i, j)
with probability 0 < τ < 1, or stays fixed with probability
1 − τ .
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2. Each AGm(i, j) is sampled independently from a
Ber

{ 1
n

∑n
k=1 AGk(i, j)

}
.

To update α, we use a mixture of random walks that reflect at
0 and 0.5. For each of these random walks (indexed by k), the
proposed value α∗ for α(i+1) is given by

1. y = α(i) + ζ (i+1), with ζ ∼ Unif(−υk, υk), if 0 < y < 0.5;
2. −y, if y < 0;
3. 1 − y, if y > 0.5.

The mixture is over {υ1, υ2, . . . , υK}.

4.2. Bayesian Inference for Models in the SNF

The SNF was defined following the intuition that the likelihood
should decrease as a function of the distance dG(·, ·) with respect
to a graph Gm that serves as the Fréchet mean. When proposing
the functional form, we adopted concepts from the rotationally
symmetric family, proposed by Mardia and Dryden (1998).
In contrast to the CER/CER model discussed in Section 4.1,
more structure is left unspecified and the model presented in
this section allows us to specify dG(·, ·). To perform Bayesian
inference for (Gm, γ ) as described in Definition 3.4 , we propose
to use a hierarchical model, following the form proposed in
Equation (6):

Definition 4.2 (SN/SN model). Let N and n be elements ofN and
dG(·, ·) a metric on

{
G[N]

}
. The SN/SN model is a multivariate

network model on
{
G[N]

}n of the form
p(G1,G2, . . . ,Gn | Gm, γ ) (9)

∝ exp
{−γ0φ(dG(Gm,G0))

}
p(γ )

× exp

{
−γ

n∑
i=1

φ(dG(Gi,Gm))

}
,

where p(·) is the prior on γ , which has support on R
+. Here,

G0 ∈ {
G[N]

}
and γ0 ∈ R

+ are the hyperparameters of the model.

Some features of this model are

1. The model allows for different specifications of the metric
dG(·, ·), which can be chosen with flexibility, for concreteness,
for example, distance based on the graph Laplacian, or a
metric based on subgraph counts.

2. It is straightforward to set up a Metropolis/Hastings algo-
rithm to sample from the prior. The Metropolis ratio for
updating G(·) is of the form:

H(t,t+1) = exp
{−γ 0φ(dG(G(t+1),G0))

}
exp

{−γ 0φ(dG(G(t),G0))
} × q(G(t) | G(t+1))

q(G(t+1) | G(t))
,

(10)
where q is the proposal distribution; here, we are condition-
ing on the value of γ 0.

3. The argument Ĝm that maximizes the log of the function:

log

( n∏
i=1

Z(Gm, γ ) × p(Gi | Gm, γ )

)
= −γ

n∑
i=1

φ(dG(Gi,Gm)), (11)

where γ is specified, coincides with the Fréchet mean of
the observed networks when φ(x) = x2. This follows from
applying the definition of a centroid directly.

From a computational perspective, the fact that the normal-
izing constant for the observations (i.e., the reciprocal of Z(·)
in Equation (5)) depends on Gm implies that the Metropolis/
Hastings algorithm cannot be implemented directly for sam-
pling from the posterior of (Gm, γ ). For Gm unspecified, this
model falls into the double-intractable constant distributions.
Fortunately, sampling from the posterior for the SN/SN model
falls into the setup discussed by Møller et al. (2006). Therefore,
the techniques proposed by Møller et al. (2006) and Andrieu
and Roberts (2009) can be implemented to sample from the
posterior.

The MCMC scheme proposed by Møller et al. (2006) is based
on the idea of simulating auxiliary variables G∗,i, which are
defined on the same sample space as the data Gi, 1 ≤ i ≤ n.
These variables are sampled so the factors Z(Gm, γ )−n cancel
from the Metropolis ratio. We now introduce some additional
notation:

G = {G1, . . . ,Gn} and G∗ = {
G∗,1, . . . ,G∗,n

}
.

When applied to the SN/SN model, the Metropolis ratio for the
scheme proposed by Møller et al. (2006) takes the form:

H(Gm,(t+1),γ (t+1)|Gm,(t),γ (t)) (12)

= f ( G∗
(t+1) | Gm,(t+1), α̃)

f ( G∗
(t) | Gm,(t), α̃)

× p(Gm,(t+1) | G0, γ0)

p(Gm,(t) | G0, γ0)

×p( G | Gm,(t+1), γ (t+1))

p( G | Gm,(t), γ (t))
× p( G∗

(t) | Gm,(t), γ (t))

p( G∗
(t+1) | Gm,(t+1), γ (t+1))

×q(Gm,(t), γ (t) | Gm,(t+1), γ (t+1))

q(Gm,(t+1), γ (t+1) | Gm,(t), γ (t))
,

where the terms of the form:

1. p( G | Gm,(·), γ (·)) correspond to the product of kernel of the
Boltzmann distribution evaluated at the data G, that is,

p( G | Gm,(·), γ (·)) = exp

{
−γ (·)

n∑
i=1

φ
[

d(Gi,Gm,(·))
]}

.

The notation (Gm,(·), γ (·)) signifies that the doublet is speci-
fied by the state of the chain.

2. p( G∗
(·) | Gm,(·), γ (·)) correspond to the kernel of the Boltz-

mann distribution evaluated at the auxiliary variables G∗.
These auxiliary variables are obtained via a Metropolis–
Hastings scheme. This scheme is the same as the one used
for sampling from the prior (Equation (10)).

3. p(Gm,(·), γ (·) | G0, γ0) correspond to the prior for (Gm, γ )

evaluated at the state of the chain.
4. q(Gm,(·), γ (·) | Gm,(·), γ (·)) correspond to the proposal distri-

bution for (Gm, γ ). To update AGm , we use the same hybrid
kernel as the one described in Section 4.1. To update γ , the
parameter that controls the entropy of the distribution, we
use a hybrid kernel formed by a collection of random walks
that reflect at 0.

5. f ( G∗
(·) | Gm,(·), α̃) correspond to the conditional density

of the auxiliary variables. We adopted the probability mass
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Figure 2. Distribution of the distance (summarized as a boxplot) to Gm for the SN
model as a function of γ . Here, N = 19, t = 1, and Gm was specified as the
network displayed in Figure 4. The figure shows that, for γ > 1 increments on that
parameter do not have a perceptible effect on the distribution. This plot serves to
inform the scales that are relevant for defining random walk proposals for γ .

function of the CER model as the conditional density for the
auxiliary variables, which are denoted by (G1∗ , . . . ,Gn∗ ), that is,

f (G1∗ , . . . ,Gn∗ | Gm, α̃)

= α̃
∑n

i=1 dH(Gi,Gm)(1 − α̃)
(N−1)N

2 −∑n
i=1 dH(Gi,Gm),

as in Møller et al. (2006, sec. 2). Here, α̃ is the posterior mean
of the dispersion parameter of a CER/CER model, which can
be estimated as described in Section 4.1. This is the strategy
suggested in Møller et al. (2006, eq. (7)).

Some of these terms involve tuning parameters; for instance,
q(Gm,(·), γ (·) | Gm,(·), γ (·)) requires us to define a mixture of
random walks (indexed by k), to propose a value γ ∗ for γ (i+1).
One way to define such random walks is given by

1. y = γ (i) + ζ (i+1), with ζ ∼ Unif(−υk, υk), if 0 < y;
2. −y, if y < 0;

The mixture is over {υ1, υ2, . . . , υK}. Here υ is a tuning param-
eter. Specifying a prior for γ also presents a challenge, since its
behavior will depend drastically on the metric.

In Figure 2, we display the results of a simulation aimed to
show the relationship between γ and E {φ [d(G,Gm)]} for the
SN model. These figures serve multiple purposes: (i) to provide
information regarding which scales are reasonable for υ, since
they provide intuition of how a local change in γ would impact
a value that is easier to interpret; (ii) to inform where in R

+ the
practitioner should allocate most of the mass of the prior for γ ;
(iii) to make informed decisions of how to specify γ 0; (iv) to
determine if it is more sensible to keep the prior support for γ

as R+, or to constrain it to an interval (0, κ). The same applies
to the random walks to update γ .

5. Simulation Studies

In this section, we explore the behavior of the CER/CER model
and the SN/SN model via simulation studies. We consider that
it should be of interest to practitioners to know: (i) How precise
the inferences become as a function of the number of networks
analyzed (we will refer to this number as the sample size); (ii)

To what extent samples from the posterior predictive resemble
the data used to obtain the posterior; (iii) How sensitive are
the inferences with respect to model misspecification. With
this in mind, we designed the simulation studies to investigate
how the posterior concentrates around the true Fréchet mean
as a function of sample size, how regions of high mass of the
predictive resemble a neighborhood of the data and robustness.

5.1. Concentration of the Posterior as a Function of
Sample Size

In this section, we propose simulation experiments to obtain
better understanding of how the posterior for Gm concentrates
around its true value as a function of sample size. Ideally, we
would like to investigate if the limit

Pr
{

dG(G,Gm) > ε | G1,G2, . . . ,Gn
} → 0, (13)

holds almost surely as n → ∞, given ε > 0, as N is assumed
fixed. This is equivalent to asking about the concentration of
the posterior, as explained in Ghosal and van der Vaart (2017,
sec. 13.4.1). The intuition behind Equation (13) is that, as the
sample size n increases, the probability mass of the posterior
tends to concentrate on a neighborhood of the true value of
the parameter. This statement should be valid for every size
of the neighborhood ε > 0. In Equation (13), Gm is the true
value of the mode and G is a sampled value from the posterior
distribution implied by {G1,G2, . . . ,Gn}. Equation (13) provides
the principle behind the following simulation experiments:

1. Explore how the distance between the point estimate Ĝm

given by the posterior mode and Gm behaves as a function
of sample size.

2. Investigate how the probability

Pr
{

dG(G,Gm) > ε | G1,G2, . . . ,Gn
}

< δ, (14)

behaves as a function of n ∈ N
+, here ε > 0, δ > 0 are in

turn fixed.

The first simulation provides insight about the speed of con-
vergence of a point estimate (see Figure 3), while the second sim-
ulation investigates how the posterior mass becomes contained
in a neighborhood of size ε of Gm as the sample size increases

Figure 3. Average distance of posterior mode to Gm as a function of sample size
for different random graph models as indicated by the legend.
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Table 1. Random graph models and the corresponding parameter specification
used to define the simulation regimes.

Random graph model Specification

ER Probability of inclusion was set to 0.1.
RGG This is a proximity graph defined on the unit square.

The radius of the ball was set to r = 0.175.
SBM We set the number of blocks K = 3, with all

membership probabilities equal to 0.333 the
inclusion probabilities were set as 0.16 and 0.075 for
diagonal and nondiagonal blocks, respectively.

SW We set the degree of the lattice to 2 and the probability
of rewiring to 0.2.

NOTE: The parameters were chose so realizations would have approximately the
same density across different models.

Table 2. Proportion of replications where 1 − δ of the posterior mass for Gm is
within a ball of radius ε of the true value.

n Generative model for Gm δ = 0.05

ε = 1 ε = 2 ε = 3

3 RGG 0.92 1 1
5 RGG 1 1 1
3 ER 0.66 0.97 1
5 ER 0.93 1 1
7 ER 1 1 1
3 SBM 0.63 0.87 0.96
5 SBM 0.83 0.98 1
7 SBM 0.91 1 1
10 SBM 1 1 1
3 SW 0.43 0.61 0.73
5 SW 0.62 0.77 0.89
7 SW 0.74 0.86 0.98
10 SW 0.81 0.96 1

NOTE: We used 100 replications.

(see Table 2). Here, the size of the neighborhood is controlled by
ε, and δ serves as a threshold for the amount of posterior mass
to be allowed outside the neighborhood.

The simulation regimes are given by

1. The type of hierarchical model under study (CER/CER, SN/
SN);

2. The structure imposed on Gm, the centroid of the distri-
bution. These were generated from the Erdös–Rényi model
(ER), the stochastic block model (SBM), the small world
model (SW), or as a random geometric graph (RGG). The
specification of the parameters for these models is displayed
in Table 1.

For both the CER/CER model and the SN/SN model, we used
250 samples after a burn-in of 100,000, and a lag of 50. The size
of the networks we considered was N = 50. The value for γ0 was

specified as 0.01 (for the CER/CER model, we set α0 = 0.01). A
different value of G0 was obtained for each Gm; it was sampled
from p(· | Gm, γ0). This way, we were able to make Gm exhibit
the different types of structure we needed while keeping it as a
perturbation of G0, with concentration given by γ0 (α0).

Results from the first and second simulation for the CER/
CER model are summarized in Figure 3 and Table 2, respec-
tively. These results suggest that, the more homogeneous the
adjacency matrix is in terms of inclusion probabilities, the faster
the posterior concentrates around the true value. (The small
world and the stochastic block models take longer to converge
then the Erdös–Rényi and the random geometric graph do.)
The small world model turned out to be especially challenging
for our approach, as a consequence of the choice for G0, which
favors a lattice structure. Since the small world graph is obtained
from a rewiring on a lattice, it takes a larger sample size to
disambiguate between the outcomes of the rewiring process and
the perturbation induced by the SN model.

We compared the performance of our method to the point
estimate Ĝm we would obtain by computing the majority vote of
the data {G1,G2, . . . ,Gn}. We used the posterior mode implied
by the CER/CER model to illustrate our method. Results are
summarized in Table 3.

5.2. Network Prediction

In this section, we investigate the behavior of our methodology
in terms of prediction. We do this according to the follow-
ing intuition: Given a sample {G1,G2, . . . ,Gn}, the posterior
predictive distribution should satisfy the criterion that regions
with highest posterior density tend to be contained in an open
covering of the original sample. To protect ourselves against
artifacts due to overfitting, we let the sample used to compute the
posterior predictive be distinct from the sample used to compute
the open covering. Both from conceptual and computational
perspectives, the use of an open covering is valid in this context,
since we are working on a metric space of graphs.

We now use this intuition to propose a simulation study. We
first generate a sample{

G1,G2, . . . ,Gn,Gn+1, . . . ,Gnt

}
for (Gm, γ ) specified, and then we partition this sample into a
training set {Gi}i≤n and a test set {Gi}n<i≤nt . Here, nt −n may be
considered a tuning parameter for the simulation, specified by
the statistician. Here, the training set will be used to obtain the
posterior predictive distribution, while the test set will be used

Table 3. Proportion of replications where 1 − δ of the posterior mass for Gm is within a ball of radius ε of the true value.

n Generative model for Gm Majority vote CER

ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

3 RGG 0.91 1 1 0.94 0.99 1
5 RGG 1 1 1 1 1 1
3 ER 0.99 1 1 0.96 0.99 1
5 ER 1 1 1 1 1 1
3 SBM 0.95 0.99 1 0.95 0.99 1
5 SBM 1 1 1 1 1 1
3 SW 0.97 1 1 0.91 0.99 1
5 SW 1 1 1 0.99 1 1

NOTE: We used 100 replications.
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to compute the envelope. In the context of the models we have
presented, the assumptions regarding similarity are encoded by
the metric dG(·, ·). To make these notions precise, we introduce
the tuning parameters δ ∈ (0, 1) and ψδ > 0. Here, ψδ is the
infimum of {ψ : ψ > 0} for which

Pr

⎧⎨⎩G ∈
nt⋃

k=n+1
B(Gk; ψ) | G1,G2, . . . ,Gn

⎫⎬⎭ ≥ 1 − δ, (15)

holds. In Equation (15), B(Gk; ψ) denotes the ball with center
Gk and radius ψ corresponding to dG(·, ·), and G is a sampled
value from the predictive distribution implied by the model
and {G1,G2, . . . ,Gn}. The larger ψδ is, the less concentrated the
posterior predictive distribution will be around the test set. One
way to interpret the size of ψδ more effectively is by comparing
it to quantities for which our intuitions are better informed.
We propose comparing it to ρδ , the infimum of {ρ : ρ > 0} for
which

Pr
{
G ∈ B(Gm; ρ) | Gm, γ

} ≥ 1 − δ,

holds, that is, ρδ is the size of the contour set that contains 1 − δ

of the probability mass under the specified model.
Implementing this simulation in practice is straightfor-

ward: we first compute the distances between each sample
from the posterior predictive distribution and the element of{
Gn+1,Gn+2, . . . ,Gnt

}
closest to it. The estimate of ψδ is given

by the 1− δ quantile of those distances. Results are summarized
in Table 2 for the CER/CER model and the SN/SN model.

We used the random graph models and parameter speci-
fications listed in Table 1. We used the same settings for the
MCMC (number of samples from the posterior, burn-in, lag)
and choices for the hyperparameters (G0, γ0, and α0) as in
Section 5.1. The size of the networks was set to N = 50.

Results are summarized in Table 4. Here, larger values of
ψδ indicate that a larger open covering of a sample is needed
to mimic regions of the posterior predictive distribution with

Table 4. Average value ψδ for size of neighborhood needed so m samples from
the predictive implied by n data points encloses 1 − δ of the predictive distribution
associated with the true value of Gm and α.

Generative model CER/CER SN/SN
n for Gm ψδ/ρδ ψδ/ρδ

3 ER 1.4447 1.0551
5 ER 1.3847 1.0253
7 ER 1.3676 1.0072

10 ER 1.3612 0.9590
3 RGG 1.4006 1.0516
5 RGG 1.3988 1.0247
7 RGG 1.3953 0.9958

10 RGG 1.3635 0.9366
3 SBM 1.4141 1.0573
5 SBM 1.3824 1.0410
7 SBM 1.3800 0.9898

10 SBM 1.3741 0.9516
3 SW 1.4788 1.0697
5 SW 1.4494 1.0419
7 SW 1.3953 0.9937

10 SW 1.3682 0.9545

NOTE: Here, we assume a CER/CER model (third column, left to right) and a SN/SN
model (fourth column, left to right). For the CER/CER model ρδ = 17, while for
the SN/SN model, ρδ = 3642.1. The size of the network is 50 and α = 0.01.
We set δ = 0.1 and m = 20 for all regimes. The average is computed over 100
replications.

high probability mass. To be able to compare across regimes, we
use the quotient of ψδ over ρδ , where ρδ serves as a quantile.
The results in Table 4 suggest that the size of the neighborhood
needed to contain the mass of the predictive decays very slowly
with respect to the sample size. We also observed that the results
were not very sensitive with respect to the generative model for
Gm. Recall that ρδ is model dependent.

5.3. Robustness

In this section, we evaluate the proposed methodology in terms
of robustness regarding model misspecification. This is impor-
tant, since we are making heavily parametric assumptions about
the distribution of the deviations with respect to the Frechét
mean. We approach this task in two different ways: (i) by using
visual diagnostics based on posterior predictive checks (Gel-
man, Meng, and Stern 1996), and (ii) by investigating the behav-
ior of the Bayesian χ2 (Johnson 2004) under different scenarios.
These methods are further discussed in online Appendix B.

The types of misspecification we consider in this simulation
study are

1. Fitting the model when the data was generated by a model
based on a different metric on the space of labeled graphs.

2. Fitting the model when the data was generated by a dynamic
network model.

For the first type of misspecification, we will fit the SN/SN model
assuming the diffusion distance (Hammond, Gur, and Johnson
2013) while the generative model is a CER/CER model, or vice
versa. For the second type of misspecification, we generate data
from the dynamic network model implied by makingGk+1(i, j) |
Gk(i, j) the conditional of a bivariate Bernoulli and then, made
all entries of Gk+1 conditionally independent given Gk, which
induces a Markov structure on {G1, . . . ,Gn}.

To fit the models, we used the same settings for the MCMC
(number of samples from the posterior, burn-in, lag) and
choices for the hyperparameters (G0,γ0 and α0) as in Sections 5.1
and 5.2. The size of the networks was set to N = 50.

Results are summarized in Table 5. In this table, we display
the proportion of times where each diagnostic provided evi-
dence for lack of fit over 100 simulated datasets. Both types
of diagnostic require us to specify a univariate summary of
the of the data. We decided to focus on different quantiles of
the degree distribution. The results we obtained suggest that is
difficult to assess model misspecification in terms of the center
of the degree distribution. It was easier to find evidence of
model misspecification, via posterior predictive checks or the
Bayesian χ2, when the focus was on the upper tail of the degree
distribution.

6. Data Analysis

6.1. Gene Interaction Data

It has become common practice in systems biology to esti-
mate networks that have either genes or proteins as nodes and
where the edges represent, either a potential flow of information
(protein signaling) or other evidence of association. Estimating
the network is often an intermediate step within a series of
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Table 5. Proportion of times where each diagnostic provided evidence for lack of fit over 100 simulated datasets.

n Model used to fit the data Type of misspecification Univariate summary PPC Bayes χ2

3 Spherical network model Dependence 10 quantile of degree 0 0
3 Spherical network model Dependence 50 quantile degree 0 0
3 Spherical network model Dependence 90 quantile degree 0.08 0

10 Spherical network model Dependence 10 quantile of degree 0.02 0.02
10 Spherical network model Dependence 50 quantile degree 0 0.01
10 Spherical network model Dependence 90 quantile degree 0.09 0.11
50 Spherical network model Dependence 10 quantile of degree 0.07 0.05
50 Spherical network model Dependence 50 quantile degree 0.02 0.03
50 Spherical network model Dependence 90 quantile degree 0.76 0.93

3 Spherical network model Metric 10 quantile of degree 0.09 0
3 Spherical network model Metric 50 quantile degree 0 0
3 Spherical network model Metric 90 quantile degree 0.11 0

10 Spherical network model Metric 10 quantile of degree 0.03 0.07
10 Spherical network model Metric 50 quantile degree 0.02 0.03
10 Spherical network model Metric 90 quantile degree 0.05 0.07
50 Spherical network model Metric 10 quantile of degree 0.07 0.22
50 Spherical network model Metric 50 quantile degree 0 0.14
50 Spherical network model Metric 90 quantile degree 0.09 0.97

3 Centered Erdős–Rényi model Dependence 10 quantile of degree 0 0
3 Centered Erdős–Rényi model Dependence 50 quantile degree 0 0
3 Centered Erdős–Rényi model Dependence 90 quantile degree 0.03 0.04

10 Centered Erdős–Rényi model Dependence 10 quantile of degree 0.02 0.01
10 Centered Erdős–Rényi model Dependence 50 quantile degree 0 0.00
10 Centered Erdős–Rényi model Dependence 90 quantile degree 0.07 0.14
50 Centered Erdős–Rényi model Dependence 10 quantile of degree 0.07 0.05
50 Centered Erdős–Rényi model Dependence 50 quantile degree 0.03 0.02
50 Centered Erdős–Rényi model Dependence 90 quantile degree 0.74 0.89

3 Centered Erdős–Rényi model Metric 10 quantile of degree 0.03 0
3 Centered Erdős–Rényi model Metric 50 quantile degree 0 0
3 Centered Erdős–Rényi model Metric 90 quantile degree 0.12 0

10 Centered Erdős–Rényi model Metric 10 quantile of degree 0.06 0.05
10 Centered Erdős–Rényi model Metric 50 quantile degree 0.03 0.01
10 Centered Erdős–Rényi model Metric 90 quantile degree 0.07 0.11
50 Centered Erdős–Rényi model Metric 10 quantile of degree 0.07 0.16
50 Centered Erdős–Rényi model Metric 50 quantile degree 0 0.12
50 Centered Erdős–Rényi model Metric 90 quantile degree 0.11 0.93

NOTE: The regimes are given by the generative model, the type of misspecification and the univariate summary used for the diagnostics.

inferences and/or decisions; this is for example the case for
the research aimed for the development of new treatments and
vaccines. In this context, having an appropriate characterization
of the variability across different estimated networks can prove
key when trying to assess the uncertainty to be associated to
the final inferences/decisions. The variability of the inference of
such networks can be due to: (i) use of different data bases, (ii)
use of different technologies to preprocess the data, (iii) use of
different criteria to decide what constitutes and edge.

An example of a set of networks where the variability is can
be attributed to the use of different data bases and/or tech-
nologies is displayed in Figure 4. Here, the nodes stand for the
19 most frequently mutated human cancer genes (the key is
provided in Table 6). These genes have a higher-than-expected
degree of interconnectivity, this is with respect to sets of genes
of similar size selected at random. We consider four types of
inferred edges: N1, Inferred from expert opinion using curated
databases; N2, Experimentally determined; N3, Obtained via
textmining; and N4, Obtained via co-expression.

These genes have been widely studied in both the systems
biology and cancer research literature. Figure 4 suggests that the
set composed by {N1, N2, N3} reasonably fulfills the assump-
tions of our methodology. The edges of N4 have a different
interpretation, since that graph was obtained via a graphical
model. Still, N4 can be interpreted as a rough approximation
of each element of {N1, N2, N3}. This data is publicly available
from

://string-db.org/cgi/network.pl?taskId
=PjAoqaYLxdta.

Note that nodes 15–19 are isolated. This presents no addi-
tional challenge to our methodology since we make no assump-
tions regarding the connectivity of the observed networks.

We fit the CER/CER model to the networks {N1, N2, N3} and
centered the prior for the centroid at N4. Results are summa-
rized in Table 7 and Figure 5. The edge sets corresponding to
four networks with highest posterior probability are displayed
in Table 7. The posterior mode is displayed in Figure 5(upper
left), along with summaries for α. We observed that these four
networks concentrate more than half of the posterior mass and
that the posterior mode concentrates almost 0.25 of the poste-
rior mass. We also observed that nearly 35% of the posterior
probability was spread between models (centroids) that were
visited by the MCMC only once or twice.

We also fit the SN/SN model to the dataset formed by
{N1, N2, N3} and centered the prior for the centroid at the min-
imum spanning tree obtained from assigning random weights
to the edges of the graph displayed in Figure 5(upper left). We
centered the prior at this graph instead of using N4 because that
graph is too far with respect to the data in terms of the graph dif-
fusion distance (Hammond, Gur, and Johnson 2013), for which
the creation/merging of connected components is expensive. In
Table 8, we display the three networks with highest posterior
probability. We display the posterior mode in Figure 5(upper
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Figure 4. Example of multiple network data in the context of cancer genomics, with each node one of the 19 most frequently mutated human cancer genes (see Section 6).
Far left: Network N1 inferred from curated databases; left middle: network N2 determined by a series of individual experiments; right middle: network N3 inferred via text
mining; far right: network N4] inferred via co-expression. The set of nodes of this network is formed by the 19 most frequently mutated human cancer genes .

Table 6. Key for indices assigned to the 19 genes related to cancer.

Index Gene Index Gene Index Gene

1 BRAF 8 PTEN 15 CIC
2 NRAS 9 CDKN2A 16 DNMT3A
3 ERBB3 10 CTNNB1 17 BFXW7
4 NF1 11 TP53 18 SF3B1
5 PIK3CA 12 SMAD4 19 LPHN2
6 PIK3R1 13 APC
7 FLT3 14 NCOR1

right), along with summaries for γ . We observed that these three
networks concentrate almost all of the posterior mass and that
the posterior mode concentrates more than half of the posterior
mass.

The presence of singletons (nodes 15–19) manifests differ-
ently in the results, depending on the metric: for the Ham-
ming distance, we observed that the singletons merged to the
connected component formed by nodes 1–14 for some of the
posterior samples, producing a set of graphs that were visited
once or twice by the MCMC, in contrast, when we specified the
model in terms the diffusion distance, connected components
do not tend to merge or split, which made the set of singletons
(nodes 15–19) to remain constant across the MCMC samples.

By fitting both models, we learned that the posterior for
the Fréchet mean is sensitive with respect to the metric the
model assumes for

{
G[N]

}
; this becomes evident from compar-

ing Tables 7 and 8 and the two panels at the top of Figure 5.
The choice of the metric penalizes discrepancies between the
posterior mode and the Fréchet mean. One way of looking at
this, is that, by choosing the metric, the statistician is making
decisions regarding which features of the Fréchet mean should
be retrieved when computing the posterior. This is a conse-
quence of Proposition 3.5. For this data, we observed an instance
of a situation where there are clear differences between choosing
dG(·, ·) with input from the practitioner and/or considerations
from the application (SN/SN model), and choosing the metric
based on computational or mathematical convenience (SER /
SER model).

6.2. Connectome Data

Connectome data is an instance of measurements of brain activ-
ity that are collected, among other purposes: to describe brain
structure, to find associations between brain structure and func-
tion and to correlate brain structure to covariate information.
Among the questions that can be posed given the availability of

Table 7. The four networks with highest posterior mass obtained by fitting the CER/
CER model to the dataset {N1, N2, N3}.

Posterior probability Edge set

0.246 1–2, 2–3, 2–4, 2–5, 2–6, 5–6, 5–7,
5–8, 5–9, 5–10, 6–10, 8–11, 9–11,
10–12, 10–13, 12–14

0.168 Emode + (3–5)

0.140 Emode + (11–13)

0.114 Emode + (6–9)

NOTE: Here Emode denotes the edge set for the posterior mode.

Table 8. The three networks with highest posterior mass obtained by fitting the
SN/SN model to the dataset {N1, N2, N3}.

Posterior probability Edge set

0.544 1–2, 2–3, 2–4, 2–5, 2–6, 3–5, 5–6, 5–7,
5–8, 5–9, 5–10, 6–10, 8–11, 9–11, 9–12,
10–12, 10–13, 12–14

0.216 Emode + (3,12) + (4,6) + (6,9) − (9,12)

−(5,10)

0.188 Emode + (3,12) + (4,6) − (5,10)

NOTE: Here, Emode denotes the edge set for the posterior mode.

this type of data, we focus on the following: which is an appropri-
ate representative for either the population or a subpopulation of
individuals? One key aspect of this problem consists on making
decisions regarding what does it mean for connectomes to be
similar. As discussed in Donnat and Holmes (2018), for different
metrics in graph space, different representatives and different
groupings of the data points may seem appropriate.

We analyzed the dataset discussed in Arroyo et al. (2019) and
Zuo et al. (2014). The data consist of 300 instances of connec-
tome data. The connectomes are graphs constructed via diffu-
sion magnetic resonance imaging (dMRI). These measurements
were obtained from 30 healthy individuals; 10 measurements
were obtained during the curse of a month for each individual.
Each of these networks has 200 nodes over the same regions of
the brain. The vertices are registered according to the CC200
atlas (Craddock et al. 2012). The goal of the analysis performed
by Arroyo et al. (2019) was to cluster the graphs according to
their community structure (at node level) to see if they could
find differences between individuals. We approach this dataset
from a different perspective: we assume the metric based on
diffusion and based on that, estimate a representative of the
population. We also explore to what extend there is evidence for
clusters in the data. We also perform these inferences assuming
a Hamming distance.

One of the key assumptions of our methodology is that the
data was generated from a unimodal distribution over the space
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Figure 5. Top left: Posterior mode from the SER/SER model applied to the dataset {N1, N2, N3}; this prior concentrates 0.246 of the posterior mass. The prior for the centroid
was centered at N4. Middle left: Traceplot for 500 posterior samples for α after a burn-in of 150,000 and a lag of 50. Bottom left: Histogram of the posterior samples for
α. The posterior mean (highlighted by the red solid line) is equal to 0.0192. The 95% credible interval for α (delimited by the dotted lines) is (0.0089, 0.0342). Top right:
Posterior mode obtained from fitting the SN/SN model to the dataset {N1, N2, N3}. This graph concentrates 0.544 of the posterior mass. Middle right: Traceplot for 250
posterior samples for γ after a burn-in of 100,000 and a lag of 50. Bottom right: Histogram for log(γ ). The posterior mean is equal to −4.6177. The 95% credible interval
for log(γ ) is (−8.4130, −2.9866).

of labeled graphs defined over the same vertex set. The validity
of such an assumption depends on the metric. In practice, this
assumption can be verified by using a reasoning similar to the
one deployed by Donnat and Holmes (2018) when studying the
different metrics. We applied multidimensional scaling (MDS)
on the data to assess if there is more than one cluster, where
each cluster suggests the existence of a different mode. The two-
dimensional map for the 300 networks implied by the diffusion

distance is displayed in Figure 6. It suggests that modeling the
data as unimodal is a reasonable first approximation.

Fitting the CER/CER model is not a major challenge when
analyzing this dataset; the same MCMC scheme as the one used
in Section 4.1 can be implemented. For this dataset, we used
2,000,000 iterations for burn-in and obtained 5000 samples with
a lag of 1000. In contrast, fitting the SN/SN model for a dataset
is not straightforward. We followed the divide-and-conquer
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Figure 6. The two-dimensional map obtained from applying multidimensional
scaling on the 300 connectomes. The similarity is given by the diffusion distance.

strategy proposed by Wu and Robert (2017). We divided the data
into ten subsets of the same size, where each subset preserves the
pattern suggested in Figure 6 as much as possible. Each subset is
constituted by 30 of the observed networks. We parameterized
the model so the posteriors for γ implied by each subset of the
data can be transformed into a distribution with roughly same
dispersion as the posterior we would obtain by using the whole
dataset. To compute summaries from the posterior, we proceed
as follows:

• For Gm: We let Gm,(i) be the centroid of

(Gm,(i)
1 ,Gm,(i)

2 , . . . ,Gm,(i)
10 )

with respect to d(·, ·). The point estimator for Gm was
obtained by computing the centroid of the posterior modes
associated to each subset (as in Section 6.2).

• For γ : since the model is parameterized so γ is on the same
scale across the ten subsets. We only need to: (i) recenter
the all samples with respect to the sample mean of the cor-
responding subset; (ii) rescale so each posterior has roughly
the same dispersion as the full posterior; (iii) recenter again
using the global sample mean.

For each subset, we ran the MCMC described in Section 4.2. We
used 500,000 iterations for burn-in and obtained 1000 samples
with a lag of 500.

Results for the Hamming distance are summarized in Fig-
ure 7(left). Results for the diffusion distance are summarized
in Figure 7(right). A traceplot of posterior samples for γ cor-
responding to one of the subsets of the data is displayed in Fig-
ure 7. Summaries for γ obtained from combining the samples
from the different datasets are also displayed in Figure 7. As a
complementary summary, we also show the point estimate for
Gm,(i) for one of the subsets of the data in terms of its discrep-
ancies to the point estimate for the whole dataset (Figure 8).

7. Discussion

Network data has caught the imagination of statistical
researchers and data analysis practitioners. Despite this
interest a number of very fundamental questions lie unresolved
in pursuing multiple network data analysis. To be able to
understand not one network but multiple networks collected
simultaneously one has to ask questions like: (a) what is the
“mean” network (rather than how do we estimate the success-
probabilities of an inhomogeneous random graph), and do we
want the “mean” itself to be a network? (b) what is the degree
of variation in realizations away from that “mean,” and how can
we make statistical inference in such scenarios? This requires
a number of modeling choices, that need to be made for us to
make inferences. We in this article have designed a modular
framework that allows us to specify each component, and thus
to model.

This modular framework can be compared to the modeling
framework of others, such as Newman (2018), Le, Levin, and
Levina (2018), Chang, Kolaczyk, and Yao (2018), Durante, Dun-
son, and Vogelstein (2017), and Peixoto (2018a). In comparison
to Durante, Dunson, and Vogelstein (2017), for example, we
adopt a less flexibly nonparametric approach but allow for our
notion of an average or typical network to have complex struc-
ture; relative to the approach of Newman (2018), Le, Levin, and
Levina (2018), Chang, Kolaczyk, and Yao (2018), and Peixoto
(2018a), by contrast, our parameterizations are more complex
while we adopt a similarly simple characterization of perturba-
tions from the typical network.

The use of the Fréchet mean as a parameter that encodes
what the center of the distribution is supposed to be, as well as
the use of the entropy to encode the notion of dispersion, are
insights that we borrow exactly from shape theory (Dryden and
Mardia 1998). Even more, the problem of finding a represen-
tative for a population of shapes and the problem of modeling
the variability of a homogeneous population of shapes are listed
as two of the main challenges in that area in Srivastava and
Klassen (2016, sec. 1.3). We pose these challenges in the context
of network data and offer solutions for the implied inference
problems via Bayesian modeling. Some of our theoretical results
(Propositions 3 and 4) borrow heavily from shape analysis ideas.
From functional data analysis, we adopt the rationale of using a
complicated object (a network without a prespecified structure)
to model the trend, while using a simple model to account for
the error. The trade-off between the complexity of the trend and
the complexity of the error distribution has been widely studied
in the functional data analysis literature; a similar tension will
arise in our context. In this setting the mean function is often left
mainly unspecified (or even just restricted to a form of regularity
such as Besov regularity), but the noise is not permitted much
structure. The noise or perturbation from that network we
chose to be very simple, normally just uncorrelated white noise.
This could be construed as the Goldilocks principle at work,
where things are made complex, but not too complex, rather
just right in their complexity to capture realistic features. This
remains a topic for exploration and/or future developments.
One interesting challenge that arises in the context of network
data is that there is a lot to be learned regarding which metric
in graph space should be adopted for a given problem. This is



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

Figure 7. Upper left: Posterior mode from the SER/SER model applied to the whole connectome dataset and prior for Gm centered at the centroid of one of the subsets of
the data. The posterior mode is presented in terms of its discrepancies with respect to the point estimate from the SN/SN model. Edges only present in the posterior mode
from SER/SER are colored in blue, while edges present in the point estimate from the SN/SN model but not the posterior mode are colored in pink. Center left: Traceplot
for 5000 posterior samples for α after a burn-in of 150,000 and a lag of 50. Lower left: Histogram for α. The posterior mean (highlighted by the red solid line) is equal to
0.0483. The 95% credible interval for α (delimited by the dotted lines) is (0.0481, 0.0485). Upper right: Point estimate obtained from fitting the SN/SN model to the full
dataset. Center right: Traceplot for 250 posterior samples for γ after a burn-in of 100,000 and a lag of 50. Lower right: Histogram for log(γ ). The posterior mean is equal to
−4.6177. The 95% credible interval for log(γ ) is (−8.4130, −2.9866).

an interesting contrast to functional data analysis, since in that
context, practitioners are more familiar with the idea of pairing
a specific metric to a given application (such as the l2 norm for
signal processing).

There are also inevitably limits of resolvability to this prob-
lem, linked to being able to resolve the blocks of the stochastic
block model (Hajek, Wu, and Xu 2017). Here, we see identifiabil-
ity starts to depend on the number of nodes, and the observed
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Figure 8. Right: Point estimate for Gm obtained from computing the centroid of the posterior modes associated to each of the 10 subsets of the data . Each of these
posterior modes was obtained from fitting the SN/SN model. Left: Discrepancies of the posterior mode corresponding to one of the subsets of the data. Edges only present
in the centroid are colored in blue, while edges present in the mode but not the centroid are colored in pink.

number of networks, as well as the level of variability of each
individual network. Our study of small world networks, show
that if the number of observed networks are sufficiently few, then
the regularizing effect of the prior can indeed be too strong.

In Section 1, we mentioned that it would be challenging to
extend the proposed methods to a setting where the vertex set
is allowed to vary in an unconstrained manner. However, if the
vertex set varies so it is always a subset of a maximal finite
collection of vertices, then the methods proposed in this article
are still valid (provided an appropriate metric is provided) and
the theory results will hold. In terms of computation, an MCMC
based on a saturated model approach (as the one proposed in
Brooks, Giudici, and Roberts (2003, sec. 5)) can be used to
obtain samples from the posterior. The key aspect here is that,
for this setting, we still have a finite discrete space endowed with
a metric, which is the core assumption for our method.

In contrast to the methodology proposed by Durante, Dun-
son, and Vogelstein (2017), which focuses on clustering, our
methodology in turn is designed for providing summaries that
are easy to interpret in the context of replication and on prior
elicitation, in addition, our methodology makes explicit what
the estimand for a central network is, instead of just providing an
estimator with no obvious estimand associated to it. The main
advantage of our method with respect to approaches that use the
idea of a Fréchet mean as a center, but derive the uncertainty
around that center via asymptotics (Ginestet et al. 2017) are
(i) that our method enables the statistician to propagate uncer-
tainty to subsequent inferences, since we are able to sample from
a posterior, and (ii) our method is not constrained to use of a
single metric, in contrast to Ginestet et al. (2017), which relies on
a specific metric to derive the asymptotic results they need. In a
broad sense, this last point also applies to the approach proposed
by Durante, Dunson, and Vogelstein (2017), since their MCMC
scheme relies heavily on the metric induced by a random dot
product model to take advantage of conjugacy.

The proposed methodology can help in the development of
informative priors for graphical models. The example discussed
in Section 6.1 suggests how to proceed: (i) obtain the posterior
mode from previous/similar studies; (ii) apply the proposed
methodology with a metric that can be related to a measure of
similarity in distribution space (such as the Kullback–Leibler

divergence); and (iii) use the posterior produced this way as the
prior for the data associated to the graphical model we want to
infer.

Future work includes: (i) to develop methodology that
enables the use of mixture distributions at the level of the
centroid network. There are two possibilities for achieving this:
to specify the number of elements in the mixture (hierarchical
model approach) or to leave the number of elements unspeci-
fied (the Bayesian nonparametric approach); (ii) to extend the
current methodology to allow for missing data and/or partial
observation of the network due to sampling. This would raise
interesting challenges, since in our approach the network is
treated as the observational unit; (iii) to constrain the structure
of the centroid by using a parametric model (such as New-
man 2018; Peixoto 2018b), or to impose specific constrains on
graph features of the centroid. Such an extension demands a
formulation in terms of hierarchical models. By constraining the
possible values for the centroid, we should be able to propose
richer models for the error distribution.

From our perspective, to get a better understanding of the
trade-offs between imposing structure on the centroid versus
imposing structure for the error distribution is a promising area
for future research. It is not straightforward to anticipate which
combinations of assumptions for the centroid and the error
distribution will lead to useful models, since, both, the use of
metrics on a graph space and the use of random graphs as error
models have not been explored from a statistician’s perspective.
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