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ABSTRACT
The Gaia mission is providing precise astrometry for an unprecedented number of white dwarfs
(WDs), encoding information on stellar evolution, Type Ia supernovae progenitor scenarios,
and the star formation and dynamical history of the Milky Way. With such a large data set, it
is possible to infer properties of the WD population using only astrometric and photometric
informations. We demonstrate a framework to accomplish this using a mock data set with
Sloan Digital Sky Survey ugriz photometry and Gaia astrometric information. Our technique
utilizes a Bayesian hierarchical model for inferring properties of a WD population while
also taking into account all observational errors of individual objects, as well as selection
and incompleteness effects. We demonstrate that photometry alone can constrain the WD
population’s distributions of temperature, surface gravity, and atmospheric composition, and
that astrometric information significantly improves determination of the WD surface gravity
distribution. We also discuss the possibility of identifying unresolved binary WDs using only
photometric and astrometric informations.
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1 IN T RO D U C T I O N

White dwarfs (WDs) are the remnants of stars with initial masses �
8–10 M� (Ritossa, Garcia-Berro & Iben 1996; Smartt et al. 2009).
The local WD population carries information about the Galaxy’s
star formation and dynamical history, and constrains models of
stellar evolution (Winget et al. 1987; Garcı́a-Berro & Oswalt 2016;
El-Badry, Rix & Weisz 2018).

The Sloan Digital Sky Survey (SDSS) have observed roughly
35 000 spectroscopically confirmed WDs (Kleinman et al. 2013;
Kepler et al. 2015, 2016). A fundamental difficulty in studying WDs
is that their mass is degenerate with distance. This degeneracy can
be broken with high-quality spectrometry and accurate atmospheric
models. The Gaia mission, which recently published its second
data release (DR2), is expected to increase the number of known
WDs by approximately an order of magnitude (Jordan 2007;
Carrasco et al. 2014); Jiménez-Esteban et al. (2018) and Gentile
Fusillo et al. (2019) have recently published WD catalogues, the
latter containing 260 000 high-confidence WDs. Gaia also provides
astrometric information for local neighborhood WDs (Kilic et al.
2018; Hollands et al. 2018). For comparison, the astrometric mission
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Hipparcos had a limiting apparent magnitude of V ∼ 12.4 (Perryman
et al. 1997), while Gaia will see objects as faint as G ∼ 21
(with this limit, a WD with a mass of 0.6 M� and effective
temperature of 8000 K is seen to ∼400 pc, assuming no dust
extinction).

In a model of the WD population, it is physically meaningful
to divide the total population into WD sub-populations. WDs
exhibit a range of phenomenological types that can be classified
spectroscopically. In terms of photometry, the main classification
is between hydrogen- or helium-dominated atmospheric envelopes
(Tremblay & Bergeron 2008; Bergeron et al. 2011; Koester &
Kepler 2015). Hydrogen- and helium-dominated WDs follow dif-
ferent colour tracks and can be identified with accurate photometry,
as demonstrated by Harris et al. (2006), Kilic et al. (2006), and
Mortlock, Peiris & Ivezic (2009). The halo WD population is
kinematically warmer and older than the disc WD population, such
that inferring and comparing properties of these sub-populations can
yield information on the star formation and kinematic history of our
Galaxy (Isern et al. 1998; Dame et al. 2016). The sub-population
of binary WD systems holds information about stellar evolution
(Postnov & Yungelson 2014; Toonen et al. 2017; Kilic et al. 2018)
and Type Ia supernovae progenitor scenarios (Livio & Mazzali
2018), but unresolved binaries are very difficult to identify even
with high-quality spectroscopy. The formation of WDs in binary
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Table 1. The population parameters of our model, and the object parameters
and data of the respective stars.

� Population parameters

α Slope of temperature distribution
β Relative weight of the surface gravity Gaussians
ḡ{1,2} Means of the surface gravity Gaussians
σ g, {1, 2} Widths of the surface gravity Gaussians
fHe The fraction of helium-dominated type WDs
ψ i=1,...,N Object parameters
T Effective temperature
g Surface gravity
t Atmospheric type (hydrogen or helium)
x Spatial position
di=1,...,N Data
m̂b Observed photometric magnitude
σ b Magnitude uncertainty
�̂ Observed parallax
σ�̂ Parallax uncertainty
l Observed Galactic longitude
b Observed Galactic latitude

systems also gives rise to a multicomponent WD mass distribution;
merging WD binaries can produce heavy WDs, while stable Roche
lobe overflow or common envelope evolution of close binaries can
give rise to very low-mass WDs (Kleinman et al. 2013; Althaus,
Miller Bertolami & Córsico 2013; Istrate et al. 2016; Li et al. 2018).

With the enormous size of the Gaia data set, there is great
potential for inferring properties of the WD population using
photometry and astrometry, rather than the smaller data set of
spectroscopically observed WDs. In this work, we demonstrate how
to infer properties of the WD population in the solar neighborhood,
using SDSS ugriz photometry and Gaia astrometry. We generate a
mock data sample of WDs from a population model of temperature,
surface gravity, and spatial number density distribution, of hydrogen
and helium atmospheric types. All sample objects have photometry
and parallax information with observational errors expected from
SDSS and Gaia, and sample construction selection effects are taken
into account. We also discuss the possibility of identifying binary
WD systems and demonstrate how to do so using photometric and
astrometric information alone.

This paper is organized as follows. We outline our model for
the WD population and the observational data that we consider, in
Sections 2 and 3, respectively. We present out method of statistical
inference in Section 4, followed by Section 5, where we generate a
mock data catalogue and infer the model parameters from that data.
We discuss possible extensions to the WD model in Section 6, such
as differentiating between disc and halo sub-populations, as well as
the possibility of identifying unresolved double-degenerate binary
WD systems. Finally, in Section 7, we present our conclusions.

2 MO D EL

We model the Milky Way’s population of WDs by a spatial
distribution, and distributions in intrinsic WD properties. A WD
is parametrized by effective temperature (T), surface gravity (g),1

phenomenological type (t), and spatial position (x). These are listed
in Table 1, along with the population parameters and data.

1In this article, we write the surface gravity as g for shorthand, meaning
log[g/(cm s−2)].

There are five population parameters in our model, encapsulated
in a vector �: the population parameter α, which parametrizing
the distribution of temperatures; β, ḡ, σ g which parametrize the
distribution of surface gravities; and fHe which is the fraction of
helium-dominated WDs.

The distribution of effective temperature is parametrized as

Pr(T |�) ∝ �(T − Tmin) �(Tmax − T ) exp(−αT ), (1)

where � is the Heaviside step function, and Tmin = 5000 K and
Tmax = 120 000 K the lower and upper bounds on the effective tem-
perature. The upper and lower bounds to the effective temperature
are not seen due to selection effects, as we shall see in Section 5.1.
Thus, our model is not sensitive to the exact values of these bounds.

The distribution of surface gravity is parametrized by a sum of
two Gaussians, according to

Pr(g|�) ∝ βN(g|ḡ1, σg,1) + (1 − β)N(g|ḡ2, σg,2), (2)

where β correspond to the relative weights of the Gaussians, ḡ{1,2}
are the means, and σ g, {1, 2} are the widths. This can account for
possible multimodality in the surface gravity distribution (although
in this case only two separate modes).

The type of the object constitutes a third parameter of the intrinsic
WD properties, called t. This is a label, denoting for example if
the WD is of hydrogen or helium atmospheric classification. The
probabilities are written in terms of the fraction of helium WDs, as

Pr(t = H|�) = (1 − fHe),

Pr(t = He|�) = fHe.
(3)

Given the intrinsic properties of a WD, the absolute magnitude
in different photometric bands can be calculated using a stellar
model. In this paper, we use the Bergeron atmospheric models for
WDs (Bergeron, Wesemael & Beauchamp 1995; Finley, Koester &
Basri 1997; Bergeron, Leggett & Ruiz 2001; Fontaine, Brassard &
Bergeron 2001).

Also included in our model is a WD number density function,
based on a Galactic model by Jurić et al. (2008), expressed in terms
of cylindrical coordinates R, Z, and �:

n(x) ∝
{

exp

(
− R

Lthin

)
exp

(
− |Z|

Hthin

)

+fthick exp

(
− R

Lthick

)
exp

(
− |Z|

Hthick

)

+fhalo

[
(R2 + Z2/q2

halo + R2
core)1/2

Lhalo

]−ηhalo}
, (4)

where fthick = 0.06, fhalo = 6 × 10−5, Lthin = Lthick = 3.5 kpc,
Lhalo = 8.5 kpc, Rcore = 1 kpc, Hthin = 0.26 kpc, Hthick =
1 kpc, qhalo = 0.64, and ηhalo = 2. Assuming a solar position
of R� = 8 kpc (where the height of the Sun above the plane
is neglected), the Galactic coordinates are given by cylindrical
heliocentric coordinates through

R(d, l, b) = (d2 cos2 b − 2R�d cos2 b cos2 +R2
�)1/2,

Z(d, l, b) = d sin b.
(5)

The azimuthal angle can be neglected, as the Galaxy is assumed to
be axisymmetric in this model.

3 DATA

The data for a given WD are apparent magnitude measurements
in photometric bands (m̂b), a parallax measurement (�̂ ), angular
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Inferring properties of the white dwarf population 181

Figure 1. Median magnitude uncertainties for photometric bands b = {u,
g, r, i, z} in SDSS DR9, as a function of observed apparent magnitude. This
is described in greater detail in Section 3.

positions (l and b), including the error models of these observables.2

The data characterizing a WD with index i, called d i, is listed in
Table 1.

The contribution to the likelihood from the data in the each
photometric band is calculated in flux instead of magnitudes, which
is important for objects with a low signal-to-noise ratio where a
first-order error propagation from flux to magnitude is inaccurate.
The likelihood associated with a WD is

Pr(d i|ψ i) = N(� (ψ i)|�̂ , σ�̂ )
∏

b

N(Fb(ψ i)|F̂b, σF,b), (6)

where N(x|μ, σ ) is the normal distribution of mean μ and standard
deviation σ , Fb(ψ i) is the true flux as given by the object parameters,
and F̂b is the observed flux with uncertainty σ F, b. The conversions
between fluxes and magnitudes are as given in appendix 2A in
Mortlock et al. (2012). The factor containing parallax information
is dropped when no parallax information is present.

In this work, we use SDSS photometry in ugriz colour bands, and
a Bergeron atmospheric stellar model, as discussed in Section 2. In
order to assign realistic uncertainties to the mock data that we
generate, we use median uncertainties of the SDSS DR9 catalogue
(Ahn et al., 2012), in bins of observed apparent magnitude of width
0.5 mag. These median uncertainties are shown in Fig. 1. We limit
the minimum ugriz magnitude uncertainty to 0.01 mag, in order
to account for possible systematic uncertainties in the Bergeron
atmospheric model. In principle, the photometry of Gaia or other
surveys could also be used in this framework. However, the Gaia
DR2 colours are more uncertain than SDSS and potentially more
prone to systematics (Evans et al. 2018); therefore we only use
SDSS photometry in this work.

We use parallax information with the precision of Gaia DR2,
which has a limiting magnitude of mG � 21. As listed in Lindegren
et al. (2018), the parallax uncertainties of Gaia DR2 are about 0.04
mas for sources with mG < 15, about 0.1 mas for sources with
mG = 17, and about 0.7 mas at mG = 20. In order to account for
this magnitude dependence, we interpolate these points as shown in
Fig. 2. The errors in the Gaia photometric G band are interpolated
in the same manner as for the parallax, with errors of 0.3 mmag

2A hatted quantity (e.g. �̂ ) refers to an observed value, while a non-hatted
quantity (e.g. � ) refers to an observable’s true value. The angles l and b are
written without hats, as their measurement uncertainties are so small that
they can be neglected.

Figure 2. Parallax uncertainties as a function of Gaia G-band apparent
magnitude mG. The dots correspond to magnitudes mG = {15, 17, 20}. For
mG ≤ 15, the parallax uncertainty is 0.04 mas and constant. At higher mG,
the dots are interpolated using a second-order polynomial spline.

Figure 3. A DAG of our statistical model. Quantities inscribed in circles
(squares) represent parameters (constants); solid (dotted) arrows represent
probabilistic (deterministic) dependence; a rectangle with rounded corners
represents a set of objects, in this case, the set of WD included in our sample,
carrying an index i; � is the set of population parameters, S is the selection
function of our sample construction, N̄ is the normalization to the WD
distribution function, ψ is the set of object parameters, d is the object data,
and i is the object index.

for mG = 13, 2 mmag for mG = 17, and 10 mmag for mG =
20. This distribution can be compared to the parallax uncertainty
distribution presented in the appendix of Luri et al. (2018), which is
an expected end-of-mission precision. These two distributions have
minor differences at a level which would lead to a negligible effect
on our results.

4 STATI STI CAL MODEL

A directed acyclical graph (DAG) of our statistical model is shown
in Fig. 3. In the DAG, the constants and parameters of the model are
inscribed in squares and circles; the arrows indicate the generative
relationship between these quantities.

By Bayes’ Theorem, the full posterior on both population
parameters and object parameters is written

Pr(�, ψ |d) = Pr(�)
∏

i

S(d i)Pr(d i|ψ i)Pr(ψ i|�)

N̄ (S, �)
, (7)
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182 A. Widmark, D. J. Mortlock and H. V. Peiris

where Pr(�) is a prior on the population parameters; S(d i) is
the probability of being selected given the data of that object;
Pr(d i|ψ i) is the likelihood of the data of an object given its object
parameters; Pr(ψ i|�) is the probability of object parameters given
the population parameters; finally, N̄ (S,�) is the normalization
of Pr(ψ i|�), and depends on the selection function and the pop-
ulation parameters. When writing the data or object parameters
without an index i, we refer to the complete set of objects,
ψ ≡ {ψ1, ψ2, . . . , ψN }.

4.1 Object parameters

Each WD has a set of object parameters encapsulated in ψ i, as listed
in Table 1. Because the angular position errors can be neglected,
the spatial position only varies in terms of the object’s distance.
Conceptually, the most straightforward parametrization would be
to have the distance d as an object parameter. However, this creates
some sampling difficulties arising from the fact that g and d are
highly degenerate, especially when there is no parallax information
available. In this work, we sample the object parameter posteriors
using a Metropolis–Hastings Markov Chain Monte Carlo (MCMC)
algorithm (Metropolis et al. 1953; Brooks et al. 2011), which is
more efficient when the posterior closer to a multivariate Gaussian
in shape. This can be accomplished by a coordinate transformation,
as is illustrated in Fig. 4. In the lower panel, the distance is
parametrized in terms of 
, which is the relative change to the ideal
distance given T and g. Let d̃(T , g) be the distance that maximizes
the colour factor of the magnitude likelihood, which is

d̃ = h−1

{∑
b σ−2

b [m̂c − Mc(T , g)]∑
b σ−2

b

}
. (8)

The function h−1 is the inverse of h(d) = 5[log10(d/pc) − 1], the
difference between apparent and absolute magnitude. In principle,
this distance could instead be given by the maximum of the
flux likelihood, but this is accurate enough since the high-quality
photometric bands dominate. The distance parametrized by the
object parameters is d = 
d̃(T , g). It is crucial to account for the
Jacobian factor that arises with this parametrization, in which the
differentials are replaced according to

dT dg dd → dT dg d
 J (T , g), (9)

where the Jacobian is

J (T , g) = d̃(T , g), (10)

which has no dependence on 
.

4.2 Object posterior

The posterior on a specific object also includes the term Pr(ψ i|�),
normalized by the quantity N̄ (S, �). It is given by the population
parametrized by

Pr(ψ i|�) dT dg dd

∝ d2n(l, b, � ) Pr(T , g, t |�) dT dg dd

= 
2 d̃3(T , g, t)n(l, b, � ) Pr(T , g, t |�) dT dg d
, (11)

where n is the number density of WDs as a function of spatial
position. It is implicit in this expression that the true parallax � is
a function of the object parameters ψ i.

The normalization factor is given by an integral (or sum, in
the case of a discrete variable) over the possible properties of a

Figure 4. A posterior density of an object with true parameters T =
14000 K, g = 8.0, t = DA, and d = 50 pc, with photometric errors of
σ c = 0.01 in all ugriz colour bands. The population parameters are set to
α = 3.5, β = 0.6, ḡ1 = 8.0, ḡ2 = 8.4, σ g, 1 = 0.1, σ g, 2 = 0.15, and fHe =
0. Because there is no parallax information, the constraint on the surface
gravity is largely due to the prior set by the population model. The two
panels show the same posterior density, sharing the surface gravity g on
the horizontal axis. The top panel shows the distance d on the vertical axis,
while the bottom panel shows an alternative parametrization of the distance

, described in Section 4.1. The true object parameter values are marked
with dashed lines and a white square. The correct value for 
 varies with T,
which is marginalized over in this figure; hence, there is no true value for 
,
although it should lie close to unity. While the highly degenerate posterior
distribution of the top panel can lead to sampling difficulties, the alternative
parametrization of the bottom panel avoids such issues.

hypothetical WD drawn from the population model, multiplied by
the probability of being selected, as

N̄ (S, �)=
∑

t

∫
dT dg d3x Pr(T , g, t |�) n(x) S(T , g, t, x). (12)

The selection function, S(T , g, t, x), is the probability of being
included in the sample, given by an object’s intrinsic properties and
the sample construction cuts on observables.

5 MO C K DATA A N D A NA LY S I S

To test the algorithm, mock data are generated from the population
model. While the exact values of the population parameters are of
lesser importance (the main focus being the statistical method), we
chose values with the following motivations.

(i) For the temperature distribution, we chose α = 3.5. To first
order, WDs cool at a rate of Ṫ = T −3.5, according to Mestel (1952),
although numerical models differ from this cooling rate especially
for cooler WDs.

(ii) For the distribution of surface gravity, we chose β = 0.6,
ḡ{1,2} = {8, 8.4}, and σ g{1, 2} = {0.10.15}. This distribution is thus
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Inferring properties of the white dwarf population 183

made up of two separate modes, corresponding to WDs that have
evolved as singles and WDs that are the products of merged binaries,
motivated by the results of (Kilic et al. 2018). The Gaussian mixture
model can be extended to also include light WDs, inflating the
number of population parameters. For this demonstration of the
method, we use a simpler model.

(iii) For the fraction of helium-dominated WDs, we chose fHe =
0.1. The fraction of DB WDs is observed to vary with temperature,
but is roughly in the range of 10–20 per cent (Bergeron et al. 2011).

We compare the case of having no astrometric information, versus
having parallax measurements with the precision of Gaia DR2.

5.1 Sample selection

We define a sample by making cuts on observable properties, in
our case on mock data of a generated catalogue. Depending on
the errors of these observables, these cuts correspond more or less
well to cuts in the objects’ intrinsic properties. We do not make a
volume-limited sample by making cuts on parallax – we wish to
compare with the case where astrometry is not available, hence we
need to construct the sample without such information. We make
cuts in observed apparent magnitude and observed colour. The cuts
in colour correspond to upper and lower limits on the temperature
of WDs included in our sample. The limit in apparent magnitude
sets a maximum distance for a WD, as a function of temperature,
surface gravity and type.

There are several reasons for not allowing very high temperatures
in our samples (although the exact limit is rather arbitrary). Very
hot objects are rare in terms of spatial density, but because they
are seen to much greater distances they can still be numerous in
a sample that is not volume-limited. How many are seen depends
on the properties of the population, but this is degenerate with the
assumed spatial distribution and the distribution of Galactic dust.
Furthermore, with sufficiently high temperature, the peak of an
object’s spectrum is of shorter wavelength than the u band, in which
case the inference on an object’s temperature becomes very weak.
When working with actual data, it is also necessary to identify what
objects are WDs and what objects are not. With very hot, far away
objects this is difficult, especially since the distance will be poorly
constrained. These issues can be circumvented with good paral-
lax measurements, enabling the construction of a volume-limited
sample.

We make the following cut in colour, demanding that

− 0.6195 < δ̂ugr < 0.4369, (13)

where

δ̂ugr ≡ −0.4925m̂u − 0.5075m̂g + m̂r. (14)

Without measurement errors, this cut corresponds to limiting the
temperature of a hydrogen-dominated WD to T ∈ (7000, 30000) K;
for a helium-dominated WD, the upper limit in temperature is less
restrictive, as can be seen in Fig. 5.

We also make a cut in brightness, by demanding that the Gaia
G-band apparent magnitude fulfills m̂G < 20. In principle, this
criterion could equally well have been formulated in terms of some
combination of the ugriz apparent magnitudes.

Given these cuts on observables, the selection function is

S(T , g, t, x) =
∫

dm̂G�
(
20 − m̂G

)
N

(
m̂G|mG, σG

)
×

∫
dδ̂ugr �

(
δ̂ugr−0.6195

)
�

(
0.4369−δ̂ugr

)
N

(
δ̂ugr|δugr, σδ

)
, (15)

Figure 5. Colours of a hydrogen- and helium-dominated WD, in contours
of constant T or g. The surface gravity takes values g = {7, 7.5, 8, 8.5, 9}.
The dashed lines corresponds to the colour cuts in δ̂ugr, where only objects
that fall in the region between these lines are included. Because this is a
cut in observed colour, observational errors can scatter objects across the
sample boundary.

where mG and δugr are true observables with an implicit dependence
on the object parameters. The error on δ̂ugr is given by

σ 2
δ = (0.4925σu)2 + (0.5075σg)2 + σ 2

r , (16)

assuming that the different magnitude errors are uncorrelated.
For the photometric bands that are relevant for selection (u, g, r),

the uncertainties are small. When computing the normalization N̄ ,
see equation (12), doing so in flux or magnitude space will give
the same result. The former is more expensive, which is why the
selection function is written in terms of magnitudes.

5.2 Generating a mock sample

The mock sample of WDs is generated by rejection sampling.
An object is drawn randomly from the true population model:
the object parameters T, g, and t are distributed as described in
equations (2) and (3) and can be randomized analytically; the
position is distributed according to n(x) and is randomized by
rejection sampling, knowing that there is a maximal distance a WD
can have in order to be included in our sample (observational errors
included). A randomly drawn object is then assigned observable
quantities, with errors as described in Section 3. If the object
observables fulfille the selection cuts, the object is included in the
sample; if not, it is rejected.

We construct a sample with 104 WDs. The distribution of true
object parameter values is shown in Fig. 6, where selection effects
are manifest. The maximum distance is clearly seen as a function
of temperature, where hotter objects are seen further away. Due to
the colour cut, the high temperature tail is more pronounced for
the helium-dominated sub-population. It is also clear that low-mass
WDs are more likely to be included as they are more luminous and
seen to greater distances, an effect that quenches the second surface
gravity mode at g = 8.4.

5.3 Sampling

We infer the population parameters of a Bayesian hierarchical
model, as described in Section 2, for our mock data sample,
using an MCMC to trace the posterior distribution. Computing
the posterior value for a set of population parameters, with all
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184 A. Widmark, D. J. Mortlock and H. V. Peiris

Figure 6. The distributions of true intrinsic properties of our mock data sample, represented as 1D and 2D histograms. The axis are shared between the
panels, except for the vertical axis of the 1D histograms. Hydrogen- and helium-dominated WDs are plotted separately in the 1D histograms, but not in the 2D
histograms.

object parameters marginalized, can be very expensive compu-
tationally due to the high number of objects. In order to be
more computationally efficient, we use a special purpose sampling
algorithm, where the population parameters are sampled using a
standard Metropolis–Hastings MCMC (Gelman et al. 2013), but
the Bayesian evidence (or marginal likelihood) of each respective
WD is calculated by importance sampling. The Bayesian evidence
of an object i is proportional to the integral over the object
parameters,∫

Pr(d i|ψ i)Pr(ψ i|�). (17)

This integral is expensive to compute, which is why it is cal-
culated by importance sampling, which works in the following
way. For each separate WD, a thinned MCMC gives a number
of independently drawn points from the function in equation (17),
given some background population model set by fixed population
parameters. The Bayesian evidence under this background model
can be computed by taking the sum of the posterior values of that
chain, weighted by the volume that each point occupies; this volume
weight is proportional to the nearest-neighbour distance cubed, as
described in Heavens et al. (2017). The Bayesian evidence for a

WD under a different set of population parameters � is calculated
in the same way, although the weight of each point also includes
the ratio

Pr(ψ i|�)

Pr(ψ i|�bg)
, (18)

where �bg is the population parameters of the background model.
This is significantly cheaper computationally, as the likelihood of
the data, Pr(d i|ψ i), does not need to be computed with every new
step of the population parameter MCMC. The Bayesian evidence of
the two WD types, hydrogen and helium dominated, are computed
separately and then added together, for each respective WD.

The background model has the following population parameter
values: α = 3.5, β = 1, ḡ1 = 8.2, σ g, 1 = 0.3, and fHe = 0.5, thus with
a surface gravity distribution consisting of only one Gaussian. It is
important that the background model surface gravity distribution
is similar to but wider than the inferred distribution, as it can
otherwise impose artificial constraints or biases to the posterior
density.

The population parameter prior, Pr(�), is taken to be uniform
and wide in all parameters around the true parameter values.
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Inferring properties of the white dwarf population 185

Figure 7. Posterior density of the population parameters, for a mock data set with no astrometric information. The highest posterior density (HPD) credible
intervals, presented in terms of the HPD value plus/minus bounds that cover 68 per cent of the posterior density, are indicated on the panels showing 1D
histograms. The true population parameter values are marked with dotted black lines, and a white square in the 2D histograms.

5.4 Results

The inferred posterior distributions are shown in Figs 7 and 8, where
the former has no parallax information. In each of these chains, the
Metropolis-within-Gibbs MCMC has run for 104 iterations.

In both cases, with and without parallax information, the cor-
rect population parameter values are recovered by the posterior
distribution. When inferring the population parameters of other
mock data samples (generated in the same manner), no significant
biases were found. The inference on quantities α (parametrizing
the distribution of effective temperature) and fHe (the fraction of
helium-dominated WDs) is not significantly affected by also adding
parallax information. For the remaining parameters, parametrizing
the distribution of surface gravity, the inference is strongly affected
when including parallax information.

6 W HI TE DWARF SUB-POPULATI ONS

The population of WDs in the Milky Way is richer and more
complicated than the model described in Section 2. While we do
consider WD sub-populations in the sense of accounting for the
difference between hydrogen- and helium-dominated WDs and a
simple multimodality of the surface gravity distribution, there are
other meaningful ways to construct the population model. While
we assume that the distribution of temperatures and surface grav-
ities is the same between hydrogen- and helium-dominated WDs,
derived from the same population parameters, it could be mean-
ingful to have separate sets of population parameters for the two
types.

In the same vein, one would expect the disc and halo WD pop-
ulation to have different properties. Furthermore, there is expected
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Figure 8. Posterior density of the population parameters, for a mock data set with parallax information. The HPD credible intervals, presented in terms of the
HPD value plus/minus bounds that cover 68 per cent of the posterior density, are indicated on the panels showing 1D histograms. The true population parameter
values are marked with dotted black lines, and a white square in the 2D histograms. The axis range of all panels are the same as in Fig. 7.

to be a sub-population of binary WD systems. We discuss how to
model these two cases below.

6.1 Disc and halo populations

It would be interesting to see qualitative differences be-
tween disc and halo WDs. For example, the kinematically
warmer halo population has older stars. The population of very
old WDs is scientifically interesting, as it holds information
about the star formation and dynamical history of the Milky
Way.

In this population model, each sub-population would have its
own set of population parameters: � = {�disc, �halo}. They would
each have their respective spatial number density distributions:
ndisc(x) and nhalo(x). It would be necessary to have a population

parameter that describes the relative number density fraction of
the two sub-populations at some reference point (e.g. the Sun’s
position), such that they can be normalized. The posterior, analogous
to equation (7), would read

Pr(�, ψ |d)

= Pr(�)
∏

i

S(d i)Pr(d i|ψ i)
[
Pr(ψ i|�disc)+Pr(ψ i|�halo)

]
N̄(S, �disc, �halo)

. (19)

The total number count is simply the sum over the two sub-
populations, like

N̄ (S, �disc,�halo) = N̄disc(S,�disc) + N̄halo(S, �halo). (20)
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Figure 9. An ROC curve of binary WD identification. This shows the rate
of falsely identified versus correctly identified binary WD systems, for the
cases of having and not having parallax information. An object is labelled
binary if the Bayes factor for being a binary system is above some threshold
value, where this threshold value is monotonically decreasing along the
graphs, from the bottom left to the top right corner of the figure. The dashed
line shows the linear relationship.

6.2 Binary population

Unresolved binary WD systems can be identified using only
photometry and astrometry, in a similar way to the method presented
in Widmark, Leistedt & Hogg (2018). For a binary system, the
likelihood is the same as in equation (6), the difference being that
the ugriz apparent magnitudes of the two component stars are added
together, according to

mb,sum = −5

2
log10

(
10− 2

5 mb,A + 10− 2
5 mb,B

)
, (21)

where mb, A and mb, B are the b-band apparent magnitudes of the
two component stars.

The posterior density of a binary system will be written in terms
of seven parameters instead of four, as we have temperature, surface
gravity, and type of the two component stars, and the distance of
the binary system.

We construct a population of mock binaries by random pairing of
the singles population and the same selection criteria, although
we also add a constraint in terms of cooling time of the two
component stars. In addition to the effective temperature and surface
gravity distributions of the two component stars, as described by
equation (2), the probability of pairing also has a factor

exp

{
− [tcool(TA, gA, tA) − tcool(TB, gB, tB)]2

2 × (500 Myr)2

}
, (22)

where tcool(TA, gA, tA) is the cooling time of the A component
WD (and equivalently for component B), as given by the Bergeron
atmospheric model. The chosen time difference of ∼500 Myr
prohibits the pairing of extremely cool and faint WDs with hotter
ones. This is a reasonable assumption, as binary stars are typically
born in the same system and with similar properties. Without this
constraint, one component star would almost always be extremely
faint, making binary identification almost impossible. For reference,
the cooling time of a WD with T = 104 K and g = 7.9 is roughly
500 Myr.

Fig. 9 shows a receiver operating characteristic (ROC) curve for
identification of binaries, for the cases of having and not having
parallax information. The binaries are inferred with knowledge of
the underlying population model, in the sense that the population

parameters are known. The Bayesian evidence for being single
and binary is computed in the same way as is described in
the beginning of Section 5.4. The integral is computed for all
possible hydrogen/helium combinations separately, with a TA >

TB multiplicity constraint for binary WDs, circumventing issues of
multimodal posterior densities. This is done for 104 mock data single
WDs and 104 mock data binary WD systems. It is clear from Fig. 9
that binary identification is significantly improved with parallax
information, for which some binaries can be strongly identified even
with a very low contamination rate (20 per cent binary identification
with less than 0.1 per cent contamination).

This identification is made on mock data when the underlying
population model is known. Working with real data brings many
complications, not least coming from the fact that the population
model is unknown and inferred. Even so, this test shows that it
should be possible to identify a WD binary population. An important
aspect that is not accounted for here is that some WD binaries are
not drawn from the same distribution of masses as the population of
single WDs. A tight binary system goes through phases of mass
transfer and shared envelopes; thus there will be binaries with
component WD with low mass and surface gravity. Such a binary
system would actually be even easier to detect using this method,
as they would be brighter due to multiplicity, and brighter still from
being low mass and larger in size.

7 D ISCUSSION

In this paper, we demonstrate how to infer properties of the local WD
population using only astrometric and photometric information, in
the framework of a Bayesian hierarchical model.

In our mock sample, we have limited ourselves to a total number
of 104 WDs and a simple population model, in order to demonstrate
the statistical method. The number of high-confidence WDs in Gaia
DR2 is already significantly higher (roughly 260 000 in Gentile
Fusillo et al. 2019), although only about a tenth of them are cross-
matched with SDSS. Using only Gaia photometry or cross-matches
with other surveys for such objects, we should be able to fit a
significantly more complicated model. The model could be extended
with more complex distributions of effective temperature, surface
gravity, and type, and by including sub-populations as discussed
in Section 6. With a kinematic model, proper motion information
would be very informative, especially in terms of differentiating
between disc and halo WDs.

When working with real data, there are complications that are
not included here but would be straightforward to implement within
this framework. Most WD seen by Gaia and SDSS are very close
to the Sun and almost unaffected by dust. However, hotter and
more luminous WDs are seen to further distance and subject to dust
reddening and extinction. With a good dust map, selection effects
and photometric reddening for such objects can be accounted for.
Also not included in this work are incompleteness effects, which
are severe for WDs in Gaia DR2. This will improve significantly
with future DRs, but will still be crucial to account for.

Gaia parallax measurements provide robust identification of
WDs, enabling the construction of volume-limited samples, and
breaks the degeneracy between distance and size. It is possible
to differentiate sub-populations of WDs using this method, such
as a population of binary WD systems. Our statistical model
fully and correctly accounts for selection effects and observational
uncertainties, permitting the construction of a large data sample,
without the need to exclude objects with low signal-to-noise ratio
or missing parallax information.
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