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Abstract
How pain emerges in the human brain remains an unresolved question. Neuroimaging studies have suggested that several brain
areas subserve pain perception because their activation correlates with perceived pain intensity. However, painful stimuli are
often intense and highly salient; therefore, using both intensity- and saliency-matched control stimuli is crucial to isolate pain-
selective brain responses. Here, we used these intensity/saliency-matched painful and non-painful stimuli to test whether pain-
selective information can be isolated in the functional magnetic resonance imaging responses elicited by painful stimuli. Using
two independent datasets, multivariate pattern analysis was able to isolate features distinguishing the responses triggered by (1)
intensity/saliency-matched painful versus non-painful stimuli, and (2) high versus low-intensity/saliency stimuli regardless of
whether they elicit pain. This indicates that neural activity in the so-called “pain matrix” is functionally heterogeneous, and part
of it carries information related to both painfulness and intensity/saliency. The response features distinguishing these aspects are
spatially distributed and cannot be ascribed to specific brain structures.
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Introduction
In the last two decades, hundreds of studies using functional
magnetic resonance imaging (fMRI) have shown that transient
noxious stimuli eliciting painful percepts generate consistent
responses within an array of brain structures that have often
been referred to as the “pain matrix” (Tracey and Mantyh 2007;
Iannetti and Mouraux 2010, 2015; Garcia-Larrea and Peyron
2013). This array typically includes the thalamus, the primary
and secondary somatosensory cortices, the insula and the
anterior/mid cingulate cortex (Apkarian et al. 2005; Tracey and
Mantyh 2007; Duerden and Albanese 2013; Iannetti et al. 2013).

The functional significance of these brain responses has trig-
gered heated debates in pain neuroscience (Legrain et al. 2011;
Iannetti et al. 2013; Eisenberger 2015; Iannetti and Mouraux
2015; Hu and Iannetti 2016; Wager et al. 2016; Mouraux and
Iannetti 2018). A number of researchers have concluded that
these responses, or at least a subset of them, reflect pain-
specific neural activity (e.g., Treede et al. 1999, Tracey and
Mantyh 2007, Goksan et al. 2015, Lieberman and Eisenberger
2015), on the basis that (1) they are consistently observed dur-
ing pain, and (2) their magnitude is often graded with the
intensity of perceived pain. These arguments, largely based on
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reverse inference (for a review see Iannetti et al., 2013;
Mouraux and Iannetti 2018), have prompted researchers to
draw strong conclusions based on the observation of activation
of this “pain matrix,” like inferring that patients in minimally
conscious state are able to experience pain (Boly et al. 2008), or
that social pain shares neural mechanisms with physical pain
(Eisenberger et al. 2003; Macdonald and Leary 2005; Kross et al.
2011; Eisenberger 2015; Goksan et al. 2015). However, the notion
that these responses represent a signature for pain has been
questioned given that these brain areas also respond to nox-
ious stimuli in pain free patients (Salomons et al. 2016), or to
salient but non-painful tactile, auditory and visual stimuli in
healthy subjects (Downar et al. 2002, 2003; Mouraux and
Iannetti 2009; Mouraux et al. 2011), and that the correlation
between the magnitude of activation and perceived pain inten-
sity can be easily disrupted by manipulating the saliency of the
eliciting stimulus (Treede et al. 2003; Clark et al. 2008; Iannetti
et al. 2008). This has led to an alternative hypothesis—that
these responses are largely unspecific for pain and, instead,
predominantly reflect the activation of a supramodal cortical
network, possibly related to detecting, orienting attention
towards and reacting to the occurrence of significant events,
regardless of the sensory modality through which these events
are conveyed (Downar et al. 2000, 2001, 2002; Iannetti and
Mouraux 2010, 2015; Legrain et al. 2011). This alternative
hypothesis is also supported by evidence that the cingulate cor-
tex and the anterior insula show fMRI responses in a wide num-
ber of tasks that do not entail nociceptive stimulation, like
saliency processing (Menon and Uddin 2010), awareness (Craig
2009), negative affect, cognitive control (Isnard et al. 2011;
Shackman et al. 2011; Lieberman and Eisenberger 2015; Corradi-
Dell’Acqua et al. 2016), executive processing (Vogt et al. 1992),
and conflict monitoring (Botvinick et al. 2004), although some
recent studies suggested that more sophisticated analyses may
reveal specific pain processing in some parts of cingulate cortex
(Liang et al. 2013; Kragel et al. 2018) and anterior insula (Fazeli
and Buchel 2018; Sharvit et al. 2018). Regardless of the actual
function(s) of this network, these observations emphasize the
necessity to control for both stimulus saliency and stimulus
intensity when aiming to identify “pain-specific” neural activity.
Here, we refer to stimulus saliency as the ability of the stimulus
to transiently capture attention (Downar et al. 2002; Legrain
et al. 2011). For example, a loud sound such as a sudden bang of
a door closed by the wind can be as salient as or even more
salient than a short-lasting and localized painful stimulus.

Given that the existence of neural activity specifically
determining painful percepts is out of question, the problem
is really about whether this activity is reflected and can be iso-
lated from the fMRI signal (Mouraux and Iannetti 2018). In
most fMRI studies, the brain responses elicited by painful sti-
muli have been identified using mass-univariate analyses that
measure average regional activity. Exploiting the rapid
advancement of multivariate pattern analysis (MVPA) of fMRI
data, which offers the unprecedented ability to detect small
differences in the spatial patterns of brain activation across
experimental conditions, a few recent studies have attempted
to identify responses reflecting brain activities that are unique
for pain (Liang et al. 2013; Wager et al. 2013; Krishnan et al.
2016). For example, although the anterior cingulate cortex
(ACC) and the anterior insula were found to be active in many
painful and non-painful conditions (Shackman et al. 2011;
Wager et al. 2016), the spatial patterns of neural activities
within these regions were able to track somatic but not vicari-
ous pain intensity (Krishnan et al. 2016); and the spatial

patterns of neural activities within any primary sensory corti-
ces were distinguishable between painful and non-painful
conditions (Liang et al. 2013). Particularly, Wager et al. (2013)
showed that the fMRI responses elicited by nociceptive stimuli
could be used to predict successfully the intensity of pain
across individuals. Based on this successful prediction, as well
as on the observation that the same classifier was unable to
predict social pain, they affirmed to have identified a “neuro-
logical pain signature” (NPS). Moreover, the NPS was found to
be able to distinguish thermal pain from non-painful warmth,
anticipated pain, pain recall (Wager et al. 2013), social rejec-
tion (Woo et al. 2014), aversive images (Chang et al. 2015), and
observed pain (Krishnan et al. 2016), and it could be general-
ized to mechanical and electrical pain (Krishnan et al. 2016).
However, in all these studies, the saliency and aversiveness of
non-painful conditions was either not explicitly matched with
the painful condition (e.g., warmth vs. pain), or the non-painful
conditions were not in the somatic domain (e.g., social rejection
or aversive images vs. pain). Therefore, as reasoned above, it
remains unclear whether the pattern of fMRI activity allowing
the prediction was specifically related to the painful quality of
the percept elicited by the nociceptive stimuli, or whether the
same pattern could be elicited by equally-salient, non-painful
sensory stimuli (Hu and Iannetti 2016; Mouraux and Iannetti
2018).

Here, we asked whether the brain responses elicited by
painful stimulation and measured using fMRI (often referred to
as the “pain matrix”), contain information selective to pain
after the crucial factors of stimulus intensity and saliency are
controlled for. To this end, we performed MVPA on two inde-
pendent datasets collected using different MRI scanners to test
the presence of reproducible response patterns that can pre-
dict, across different participants, whether the fMRI responses
are elicited (1) by a transient nociceptive stimulus perceived as
painful versus a transient intensity- and saliency-matched
(from hereinafter, “intensity/saliency-matched”) non-painful
auditory, visual or tactile stimulus, as well as (2) by salient ver-
sus non-salient (or equally, high- vs. low-intensity) stimuli,
regardless of whether they are perceived as painful. Note that
here we did not intend to disentangle the effects of stimulus
saliency and intensity: although saliency and intensity can
be experimentally dissociated using specific paradigms (e.g.,
Iannetti et al. 2008), in most experimental paradigms, including
those used to collect Datasets 1 and 2, they are tightly coupled
(Supplementary Fig. S6a). The availability of datasets collected
from different individuals in different scanners allowed us to
test the reproducibility and generalizability of the identified
response patterns. Here, reproducibility is referred to replicat-
ing results in two different datasets separately, and generaliz-
ability is referred to testing the pattern identified from one
dataset on another dataset.

Materials and Methods
Two independent datasets were used in the present study. To
test whether pain-specific responses can be identified within
the so-called fMRI “pain matrix,” we performed both univari-
ate analyses and MVPA within-datasets and across-datasets,
comparing the fMRI responses elicited by intensity/saliency-
matched painful and non-painful stimuli. To additionally test
whether fMRI responses related to stimulus intensity/saliency
can be also identified within the so-called “pain matrix,”
we further compared, using MVPA, both within- and across-
datasets, the responses elicited by high-saliency vs. low-
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saliency stimuli (Dataset 1) and by high-intensity versus
low-intensity stimuli (Dataset 2) regardless of their sensory
modality. An overview of the analyses performed is provided
in Supplementary Fig. S1.

Participants, Sensory Stimuli, Experimental Design and
Data Acquisition

Dataset 1
This dataset was collected at the University of Oxford, UK.
Fourteen right-handed healthy participants (6 females, aged 20–36
years) took part in the study after providing written informed con-
sent. The local Ethics Committee approved the experimental pro-
cedures. Supplementary Fig. S2a illustrates the experimental
design. In brief, participants received stimuli of four sensory
modalities: pain (infrared laser pulses delivered to the foot dor-
sum), touch (transcutaneous electrical stimulation of the superfi-
cial peroneal nerve at the level of the ankle), vision (a bright white
disk presented above the right foot) and audition (right-lateralised
800Hz tones delivered through pneumatic earphones). The inten-
sity of each of the four types of stimuli was adjusted individually
for each participant to achieve similar stimulus saliency across
the four sensory modalities (Renier et al. 2009; Spence 2009).
Importantly, only laser stimuli were perceived as painful.

3 T fMRI data were acquired in a single session divided into
four runs (41 contiguous 3.5-mm-thick axial slices; 3 × 3mm in-
plane resolution; repetition time of 3 s). Each run consisted of a
stimulation period of 32 stimuli (8 stimuli/modality) pseudo-
randomly delivered (inter-stimulus interval 10–19 s, <3 conse-
cutive stimuli of the same modality), followed by a rating
period of ~2min during which participants rated the saliency of
each stimulus type using a visual scale. At the end of the exper-
iment, a T1-weighted structural image (1-mm-thick axial slices;
1 × 1mm in-plane resolution) was acquired for spatial registra-
tion. This dataset has been analysed previously, and detailed
information about experimental design and data acquisition
can be found in (Mouraux et al. 2011; Liang et al. 2013).

Dataset 2
This dataset was collected at Tianjin Medical University, China.
Fifty-one right-handed healthy participants (34 females, aged
18–29 years) took part in the study after providing written
informed consent. The local Ethics Committee approved the
experimental procedures. Supplementary Fig. S2b illustrates
the experimental design. Participants received stimuli of two
sensory modalities: pain (infrared laser pulses delivered to the
foot dorsum) and touch (transcutaneous electrical stimulation
of the superficial peroneal nerve at the level of the ankle). The
stimulation devices were identical in Datasets 1 and 2. For each
modality, two stimulus intensity levels (low and high) were
used. The actual intensity of each level for each modality was
adjusted individually for each participant before the fMRI
experiment: the participant rated 3 and 6 (on a 0–10 scale) for
the low and high intensities, respectively, for each modality.

3T fMRI data were acquired using a simultaneous multi-slices,
gradient echo, echo-planar imaging sequence with the following
parameters: echo time (TE) = 30ms, repetition time (TR) = 800ms,
field of view (FOV) = 222 × 222mm, matrix = 74 × 74, in-plane res-
olution = 3 × 3mm, flip angle (FA) = 54°, slice thickness = 3mm,
no gap between slices, number of slices = 48, slice orientation =
transversal, bandwidth = 1 690Hz/Pixel, PAT (Parallel Acquisition
Technique) mode, slice acceleration factor = 4, phase encoding

acceleration factor = 2. The fMRI experiment included two ses-
sions for each participant. Each session consisted of 3 “pain”
blocks (in which only painful stimuli were delivered) and 3
“touch” blocks (in which only tactile stimuli were delivered). Each
block consisted of four trials of the same modality. In each trial, a
fixation cross was presented at the center of a screen during the
first 15 s, and a single stimulus was delivered at a random onset
between 2 s and 12 s. After a variable interval (3–13 s) following
the stimulus, participants were instructed to rate the perceived
intensity using a visual analog scale (0–10) presented on the
screen for 10 s, by moving one of the two buttons with their right
index or middle finger, resulting in a total duration of 25 s for
each trial. Therefore, each session lasted 10min during which 12
painful stimuli and 12 tactile stimuli were delivered. A T1-
weighted structural image (two inversion contrast magnetization
prepared rapid gradient echo sequence, MP2RAGE) was acquired
using the following parameters: TR = 4 000ms, TE = 3.41ms,
inversion times (TI1/TI2) = 700ms/2110ms, FA1 = 4°, FA2 = 5°,
matrix = 256 × 240, FOV = 256 × 240mm, number of slices = 192,
in-plane resolution = 1 × 1mm, slice thickness = 1mm, slice ori-
entation = sagittal.

Regions of Interest Selection

Regions of interest (ROIs) defining the “pain matrix” were gener-
ated by merging three different masks. Mask 1, labeled
“Neurosynth pain,” was created using exactly the same proce-
dure described by Wager et al. (2013). Briefly, a mask composed
of brain areas commonly activated by painful stimulation was
created a priori using the automated meta-analysis toolbox
Neurosynth (www.neurosynth.org) (Yarkoni et al. 2011). This
mask was based on regions showing consistent results across
224 published studies frequently using the word “pain” (out of
4 393 total studies in the database) in a “reverse inference” anal-
ysis, which was an analysis of the 2 × 2 contingency table of
counts of [activated vs. non-activated] × [pain vs. non-pain] vox-
els. Studies were counted as involving “pain” if they mentioned
“pain” more than 1 time per 1 000 words in the study (the
default value in neurosynth) and thresholded at q < 0.05 (cor-
rected for False Discovery Rate; P < 0.0072). The mask included
30 432 voxels (2 × 2 × 2mm) showing a positive blood-oxygen-
level-dependent (BOLD) response to painful stimuli (these vox-
els were 8.64% of the total number of voxels composing the
standard SPM8 brain mask [brainmask.nii]). Voxels showing a
negative BOLD response to painful stimuli were not included in
the mask. Importantly, this mask did not cover the S1 area cor-
responding to the representations of the leg and foot, as most stud-
ies included in the meta-analysis did not deliver somatosensory
stimuli to the leg or foot. Given that stimuli used in the present
study were delivered to the foot, two additional masks were gener-
ated. Mask 2, labeled “Neurosynth foot,” was created using the
same procedure as in Mask 1, except that the keyword for themeta-
analysis was “foot” instead of “pain.” The resulting mask included
not only the S1 foot area, but also other areas in the brain.
Therefore, Mask 3, labeled “Individual S1 foot,” was created based
on each individual structural MRI using the following two steps.
First, a region of interest circumscribing S1 was defined in the
Montreal Neurological Institute (MNI) space using the Jülich probabi-
listic histological atlas (Eickhoff et al. 2005). Second, this ROI was
transformed back to each individual space where it was trimmed to
include only the mesial hemispheric wall (i.e., the putative foot
representation area of S1), and then transformed again to standard
MNI space (Penfield and Boldrey 1937), as described in a previous
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study (Mouraux et al. 2011). Finally, a group-level ROI was defined
by taking the union of all normalized individual S1 foot ROIs. By tak-
ing the overlap between Mask 2 (“Neurosynth foot”) and Mask 3
(“Individual S1 foot”), we created a specific ROI defining the foot area
of S1. A final “pain matrix” ROI was created by taking the union of
Mask 1 and this S1 foot ROI, including 30 789 voxels in total (Fig. 1).

To test whether pain-specific information is present outside the
“pain matrix,” we created two masks (“non-pain matrix” masks)
using voxels not included in the “pain matrix” ROI. The first “non-
pain matrix” mask, containing 208580 voxels, was created by taking
all voxels in the brain which were not included in the “pain matrix”
mask (Supplementary Fig. S3a). As the number of voxels may
affect the MVPA classification accuracy (Friston et al. 2003;
Lorenz et al. 2003; Protzner and McIntosh 2006), we created the
second “non-pain matrix” mask, containing the same number
of voxels with the “pain matrix” mask (30 789 voxels), using the
following steps: first, the initial “non-pain-matrix” mask was
eroded by four layers using the software package FSL (www.
fmrib.ox.ac.uk/fsl), resulting in a mask containing 41 329 voxels;
second, as this mask is still considerably larger than the “pain
matrix” mask, we randomly selected 30 789 voxels from the
41 329 voxels included in the eroded mask (Supplementary
Fig. S4a).

These ROIs were resampled to 3 × 3 × 3mm and used for
the classification analyses conducted on Dataset 2, as well as
for the across-datasets classifications. After resampling, the

numbers of voxels in these masks were: 9 188 (“pain matrix”
mask), 61 682 (the first “non-pain matrix” masks), and 9 064
(the second “non-pain matrix” mask).

Saliency or Intensity Matching

Dataset 1
To rule out the possible confound of differences in stimulus
saliency when comparing brain responses to painful and non-
painful stimuli, we selected a sub-group of subjects to optimally
match saliency differences across sensory modalities. For example,
for the comparison of “pain vs. touch,” five subjects rated the
saliency for pain lower than touch and nine subjects rated the
saliency for pain higher than touch. Out of these nine subjects, we
selected five subjects with a saliency difference matching the
saliency difference of the five subjects who rated the saliency
for pain lower than touch, to completely counter-balance the
saliency difference between pain and touch across subjects
(Table 1). Using the same procedure, we selected 10 subjects for the
“pain vs. audition” and 8 subjects for the “pain vs. vision” compari-
son (Table 1). The same sub-groups of subjects were also used in
the subsequent ROI-wise univariate analysis and MVPA. Using this
approach, the subjective ratings of stimulus saliency were virtually
identical between sensory modalities, in each of the three two-way
classifications, confirmed by a two-tailed paired t-test as well as a
model selection method based on Bayes Factor (Rouder et al. 2009;

Figure 1. The “pain matrix” areas used in the mass-univariate GLM analyses and in the MVPA. L: left; R: right; S1: primary somatosensory cortex; S2: secondary

somatosensory cortex; Ins: insula; ACC: anterior cingulate cortex; Th: thalamus.

Table 1 Differences in stimulus saliency and in head motion between two sensory modalities in each classification task of Dataset 1

Pain vs. Touch Pain vs. Audition Pain vs. Vision

Saliency ratings
Mean ± SD Pain: 5.50 ± 2.30 Pain: 5.48 ± 2.24 Pain: 4.96 ± 2.13

Touch: 5.53 ± 2.10 Audition: 5.41 ± 3.37 Vision: 4.91 ± 1.89
t/P-value t(9) =−0.09, P = 0.93 t(9) = 0.05, P = 0.96 t(7) = 0.04, P = 0.97
Bayes factor BF01 = 4.29 BF01 = 4.30 BF01 = 3.91

Head motion (mm)
Mean ± SD Pain: 0.07 ± 0.07mm Pain: 0.06 ± 0.07mm Pain: 0.04 ± 0.01mm

Touch: 0.06 ± 0.04mm Audition: 0.08 ± 0.10mm Vision: 0.04 ± 0.02mm
t/P-value t(9) = 0.88, P = 0.40 t(9) =−1.49, P = 0.17 t(7) = 0.004, P = 0.99
Bayes factor BF01 = 3.02 BF01 = 1.68 BF01 = 3.92

2214 | Cerebral Cortex, 2019, Vol. 29, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/29/5/2211/5371085 by U

C
L, London user on 03 June 2019

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


Morey et al. 2016; Dienes et al. 2018) (statistical values are detailed
in Table 1).

Dataset 2
As participants were asked to rate the intensity of each stimulus in
Experiment 2, a subset of stimuli was selected in each participant
to match the perceived intensity of painful and tactile stimuli
(pain: mean ± SD = 4.33 ± 1.04; touch: mean ± SD = 4.34 ± 1.03;
paired T-test: T = −1.46, P = 0.15; Bayes factor BF01 = 3.27).
The detailed procedure for matching stimulus intensity
between modalities is as follows: for a laser stimulus with per-
ceived intensity rating of r, all electrical stimuli with perceived
intensity within the range of [r−0.5, r + 0.5] were identified, and
the electrical stimulus with the closest rating was selected to
pair with this particular laser stimulus. If no electrical stimulus
was identified within this range, this laser stimulus was dis-
carded from further analyses. In this way, the selected pairs of
laser and electrical stimuli that were matched on a trial-by-trial
level in terms of their perceived intensity (Supplementary
Fig. S5). As stimulus saliency is closely related to stimulus
intensity in this experimental setting, matching intensity
between pain and touch was considered as similar to matching
saliency in the present study.

Relationship between Intensity, Saliency and Valence
As we collected saliency ratings in Dataset 1 and intensity ratings
in Dataset 2, we performed a third psychophysical experiment
where we collected three types of ratings: stimulus intensity,
stimulus saliency and stimulus valence. We were therefore able
to test whether stimulus saliency or valence were similar for
intensity-matched painful and tactile stimuli (details about
experimental design and data analysis are provided in
Supplementary Methods and Results). We found that both
saliency and valence ratings were highly correlated with inten-
sity ratings (Supplementary Fig. S6a&c): there was strong evi-
dence for a positive correlation between saliency and intensity
ratings (R = 0.86, P = 6.92 × 10−14), and for a negative correlation
between valence and intensity ratings (R = −0.49, P = 7.66 × 10−4).
Moreover, when comparing intensity-matched painful and tac-
tile stimuli, both saliency and valence ratings were similar
(Supplementary Fig. S6b&d): for saliency ratings, T = −0.0055, P =
0.9956 and the Bayes Factor (BF01) = 4.49; for valence ratings, T =
−0.77, P = 0.44 and BF01 = 3.44.

Mass-Univariate General Linear Modeling

To test whether differences in neural activity elicited by painful
and non-painful stimuli can be detected using standard fMRI
analysis, we performed a mass-univariate general linear
modeling (GLM) analysis (Friston et al. 1995) for all voxels
within the pre-defined “pain matrix” ROI.

Dataset 1
FMRI data were analysed using FSL (www.fmrib.ox.ac.uk/fsl).
For each individual dataset, the first four volumes were dis-
carded to allow for signal equilibration, and the remaining 736
volumes were motion corrected. The data was further spatially
smoothed with a Gaussian kernel with a full-width at half-maxi-
mum (FWHM) of 8mm and temporally high-pass filtered (1/
100Hz cutoff). For each participant, first-level statistical
parametric maps were obtained using a GLM with regressors
modeling the occurrence of each of the four types of stimuli
(pain, touch, audition and vision), their corresponding temporal

derivatives and additional regressors corresponding to the head
motion parameters. Three contrast analyses were performed to
identify voxels showing significant differences in the fMRI
responses to painful and non-painful stimuli (i.e., “pain vs.
touch,” “pain vs. audition” and “pain vs. vision”). The resulting
contrast maps were further normalized to standard MNI space
and re sampled to 2 × 2 × 2mm voxel size. A second-level analy-
sis (one-sample two-tailed t-test) was then performed using the
first-level single-subject contrast maps to obtain the group-level
statistical parametric maps for each comparison. Voxels show-
ing significant differences between pain and other modalities
were identified using a false discovery rate (FDR) of q < 0.05.

Dataset 2
Data were analysed similarly to Dataset 1 but using SPM (www.
fil.ion.ucl.ac.uk/spm). fMRI volumes were spatially realigned for
motion correction, normalized to standard MNI space, re sam-
pled to 3 × 3 × 3mm voxel size, and then spatially smoothed
(FWHM = 5mm) and temporally high-pass filtered (1/128 Hz
cutoff). For each participant, first-level statistical parametric
maps were obtained using a GLM with regressors modeling the
occurrence of each of the five conditions (pain trials matched
with touch, touch trials matched with pain, unmatched pain
trials, unmatched touch trials, rating period), their correspond-
ing temporal derivatives, and additional regressors correspond-
ing to the head motion parameters. A contrast analysis was
performed in each participant to identify voxels showing signif-
icant differences in the fMRI responses to painful and tactile
stimuli. A second-level analysis (one-sample two-tailed t-test)
was then performed to obtain group-level statistical parametric
maps. Voxels showing significant differences between pain and
touch were identified using a cluster-level (cluster-defining
threshold of P < 0.001) family-wise-error (FWE) corrected
threshold of P < 0.05.

As Datasets 1 and 2 were collected and analysed for differ-
ent purposes, the processing pipelines described above were
not identical. Therefore, to test whether the GLM results
depended on the actual processing pipeline, we also performed
a second univariate GLM analysis of both datasets processed
using the same pipeline and software (see Supplementary
Information for detailed methods and results).

Univariate ROI-wise Analysis

Very stringent statistical thresholds were unavoidable in the
above mass-univariate GLM analysis due to the large number
of voxels in the pre-selected “pain matrix” mask. To reduce the
multiple comparison problem so as to increase the statistical
power of detecting differences in fMRI responses elicited by dif-
ferent stimuli, we also tested whether differences in the aver-
age BOLD signals in the “pain matrix” related brain areas could
be detected using ROI-based univariate analysis. An important
advantage of such ROI-based analyses is that, in contrast with
the GLM, it does not make any assumption about the shape of
the hemodynamic response function (HRF). Ten ROIs were
selected for this analysis (ROI locations are shown in Fig. 1): the
left and right S1, the left and right S2, the left and right insula,
the left and right anterior/mid cingulate cortex, and the left
and right thalamus. The “S1 foot” ROI used during the selection
of the “pain matrix” mask was split into two halves according
to the x-axis coordinates: the voxels with x ≤ 0 as the left S1
ROI and the voxels with x > 0 as the right S1 ROI. The other
eight ROIs were defined by the overlap between the “pain
matrix” mask and the corresponding brain areas defined in the
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AAL template (Tzourio-Mazoyer et al. 2002): the left and right
Rolandic operculum (corresponding to S2), the left and
right insula, the left and right anterior/mid cingulate, and the
left and right thalamus.

Dataset 1
After the 10 ROIs were defined, the preprocessed data used in
the subsequent MVPA were used to calculate the average BOLD
signal across all voxels for each ROI and for each of the 56 sam-
ples (see details for the preprocessing steps for MVPA on
Dataset 1 in the following subsection “multivariate pattern
analysis: nociceptive vs. non-nociceptive stimuli”) to provide a
direct comparison with the subsequent MVPA results. For each
of the 10 ROIs and each of the three comparisons (“pain vs.
touch,” “pain vs. audition” and “pain vs. vision”), a paired t-test
was performed to test whether the average BOLD signals were
significantly different between different eliciting stimuli in the
sub-group of subjects selected for matching the stimulus
saliency for the given comparison. To address the problem of
multiple comparisons, a non-parametric permutation test (n =
5 000) was performed to determine the statistical significance.
To further examine how stimulus-evoked BOLD responses
unfolded over time in each ROI, we extracted the time courses
of the BOLD responses averaged across trials, separately for the
pain and touch conditions, using a time window of 18 s (i.e.,
from −1 TR to +5 TR with respect to stimulus onsets).

Dataset 2
The same ROI-wise analyses were performed on the prepro-
cessed data used in the subsequent MVPA of Dataset 2. Details
of the preprocessing for the MVPA “pain vs. touch” on Dataset 2
are in the following section (“Multivariate pattern analysis:
nociceptive vs. non-nociceptive stimuli”). To further examine
how stimulus-evoked BOLD responses unfolded over time in
each ROI, we extracted the time courses of the BOLD responses
averaged across trials, separately for the pain and touch condi-
tions, using a time window of 12.8 s (i.e., from −1 TR to +15 TR
with respect to stimulus onset).

Multivariate Pattern Analysis: Nociceptive vs. Non-
nociceptive Stimuli

MVPA is a machine learning technique that uses a pattern clas-
sifier (Mur et al. 2009; Pereira et al. 2009) to identify the repre-
sentational content of the neural responses elicited by different
stimuli. In contrast with the univariate analyses which detect
regional averaged activations and consider a single-voxel or a
single ROI at a time, MVPA analyses the spatial pattern of fMRI
signals across all voxels within a pre-defined area. That is,
MVPA detects condition-specific patterns of activity across many
voxels at once. Whereas GLM directly compares differences
in signal amplitude on a voxel-by-voxel basis, MVPA projects
samples composed by multiple voxels from each condition of
interest into a high dimensional space, and searches for the
boundary between the samples from two or more conditions
(Mur et al. 2009). MVPA is usually more sensitive than conven-
tional univariate analysis (i.e., GLM) in disclosing differences in
brain activities between experimental conditions not only
because it offers a powerful solution to the problem of multiple
comparisons, but also because it performs a joint analysis of
patterns of activity distributed across multiple voxels. In the
present study, MVPA was performed using the PyMVPA software
package (Hanke et al. 2009), in combination with LibSVM’s

implementation of the linear support vector machine (SVM;
www.csie.ntu.edu.tw/~cjlin/libsvm).

Dataset 1
Before MVPA, fMRI data were preprocessed using FSL (www.
fmrib.ox.ac.uk/fsl) and Matlab (Mathworks; www.mathworks.
co.uk). After the same motion correction performed for the
mass-univariate GLM analysis, fMRI data were neither spatially
smoothed nor temporally filtered, but further corrected for head
motion by regressing out the six motion parameters estimated
during the spatial alignment from the time series of each voxel.
The head motion was summarized as an average displacement
during the stimulation of each modality calculated from the six
motion parameters (Jones et al. 2008; Birn et al. 2014), and then
compared between the two sensory modalities in each classifi-
cation using paired t-tests. The results confirmed that the head
motion parameters were not significantly different across sen-
sory modalities (Table 1). For each run, the time series of each
voxel were linearly detrended and converted to Z-scores by sub-
tracting the mean and dividing by the standard deviation across
all time points of the time series. Given that the second volume
after each stimulus onset (i.e., the volume acquired 4–6 s after
stimulus onset) corresponded approximately to the peak of the
BOLD signal elicited by each stimulus and was thus the most
likely to contain stimulus-related information (Liang et al. 2013)
and the peak latencies were very similar across modalities
(Mouraux et al. 2011), these volumes were averaged across all
trials, separately for each sensory modality, run and subject.
This resulted in four volumes, one for each modality, in each
run and subject. The volumes were then normalized to standard
MNI space and re sampled to 2 × 2 × 2mm voxel size. Finally,
the volumes belonging to the same modality were further aver-
aged across runs for each subject, resulting in four average
volumes (one for each sensory modality) in each subject.

To test whether successful classifications were contributed by
possible differences in the mean signal amplitude of the ROI
between different stimuli (including differences due to their peak
latencies), the following classification analyses were also per-
formed after signal normalization, obtained by subtracting from
the signal of each voxel the mean signal across all voxels of the
“pain matrix” ROI and then dividing the result by the standard
deviation of the signal from all voxels of the ROI (Hu and Iannetti
2016). Consequently, for each volume, all voxels within the ROI
had a mean of 0 and a standard deviation of 1.

We performed three between-subject classifications to distin-
guish fMRI responses elicited by painful stimuli from those eli-
cited by non-painful stimuli (i.e., “pain vs. touch,” “pain vs.
audition” and “pain vs. vision”). The same sub-group of subjects
selected for each univariate comparison was used in each classifi-
cation (i.e., N = 10 for “pain vs. touch,” N = 10 for “pain vs. audi-
tion,” and N = 8 for “pain vs. vision”). A “leave-one-subject-out”
cross-validation approach was employed to train and test the
classifier algorithm. For an N-fold cross-validation, in each cross-
validation step, the classifier was trained on N − 1 subjects and
tested on the Nth subject. This procedure was repeated N times,
using each time a different subject as test dataset. In each cross-
validation step, the classifier performance was calculated as clas-
sification accuracy, i.e., the number of correct guesses divided by
the number of test samples. The overall performance in each
classification was derived by averaging the classification accura-
cies obtained from all cross-validation steps.

We also generated sensitivity maps for each two-way classi-
fication. In these maps, the value of any given voxel represents
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its linear SVM weight. A high weight implies that the voxel
gave a strong contribution to the classifier’s accuracy in pre-
dicting whether the eliciting stimulus was painful or not. The
sign of the SVM weight indicates the preference for pain or the
other non-painful modality being compared in each two-way
classification. That is, when considering the classification “pain
vs. X,” where X is one of the three non-painful modalities, a
positive weight implies that the voxel exhibits a higher BOLD
signal during pain compared to X, whereas a negative weight
implies that the voxel exhibits a higher BOLD signal during X
compared with pain.

To test whether the classification accuracy was higher than
chance level (i.e., 0.5 in our case), we built the null distributions
of the classification accuracies under the scenario in which
each average volume was labeled randomly and thus did not
contain any information about the modality of the stimulus eli-
citing the recorded fMRI response when training the classifier.
Such permutation testing (n = 5 000) was performed for each
classification and for the training dataset only. The non-
parametric P-value was then derived for each classification by
comparing the actual classification accuracy obtained from the
correctly labeled data and the null distribution, that is, the pro-
portion of the null distribution that is equal to or higher than
the actual classification accuracy.

The same MVPA analyses were also performed using the
signals from the two “non-pain matrix” masks to test whether
the voxels outside the selected “pain matrix” also contain pain-
specific information that allows successful discrimination
between pain and the other three sensory modalities.

Dataset 2
As only painful and tactile stimuli were delivered in Dataset 2,
we performed the classification “pain vs. touch.” fMRI data
were preprocessed as for the GLM analysis, except that the data
were not spatially smoothed or temporally filtered. Data were
corrected for head motion by regressing out the six motion
parameters estimated during the spatial alignment from the
time series of each voxel and linearly detrended for each ses-
sion. For this MVPA, we used the subset of trials that were
selected in each participant to match the perceived intensity of
painful and tactile stimuli as described in the GLM analysis of
Dataset 2. Given that the eighth volume after each stimulus onset
was acquired approximately 6 s after stimulus onset, i.e., at the
expected peak of the stimulus-evoked BOLD response, these
volumes were averaged across all selected trials, separately for
each sensory modality and participant. This resulted in two
average volumes for each participant, one for each modality.

The same “leave-one-subject-out” cross-validation approach
was used for the classification performed in Dataset 2. The
same permutation test (n = 5 000) was used for determining the
significance of the classification accuracy. Sensitivity maps
were also generated.

Cross-datasets Classification
To test the generalizability of the patterns underlying the two
within-dataset classifications, we performed two across-datasets
classifications: (1) testing on Dataset 1 using the model trained on
Dataset 2, and (2) testing on Dataset 2 using the model trained on
Dataset 1. Separate classification accuracies and sensitivity maps
were obtained for these two classifications. This across-datasets
classification is more challenging than within-dataset classifica-
tion as the two datasets were collected using different acquisition
parameters from two different scanners, and therefore the

properties of their fMRI signal (e.g., their amplitude at baseline)
and noise were likely to be different. For this reason, only normal-
ized signals were used for the across-datasets classification.
Furthermore, differences in experimental design (e.g., event-
related design for Dataset 1 and blocked design for Dataset 2; see
Methods and Supplementary Fig. S2) could have determined dif-
ferences in the response to the same stimuli. This represents
another challenge for the across-datasets classification.

Classifications Within Sub-regions of “Pain Matrix”
All classifications described above exploited information from
the entire “pain matrix,” i.e., both the spatial patterns of the
fMRI signals “within” each “pain matrix” sub-region and the
spatial patterns across different “pain matrix” sub-regions. To
test whether within-region classifications were also possible,
we performed the same within-dataset and across-datasets
classification analyses using only the signals within each of the
10 sub-regions defined in the “univariate ROI-wise analysis.”

Classifications using GLM Beta Maps
All classification analyses described above exploited the BOLD
signals sampled at the “peak” of the BOLD response (i.e., they
used the fMRI volumes capturing the response peaks) averaged
across trials. One advantage of this approach is that it avoids
the assumption about the shape of the HRF. However, BOLD
responses may have different peak latency for different stimu-
lus types and in different brain regions. To rule out the possibil-
ity that MVPA results were affected by possible differences in
the latency of the BOLD responses to pain and touch, we
repeated the within-dataset and across-datasets classification
analyses using the beta maps obtained in the mass-univariate
GLM analysis.

Multivariate Pattern Analysis: High- vs. Low-Intensity/
Saliency Stimuli

Dataset 1
To test whether the BOLD signals sampled from the same set of
voxels (i.e., the “pain matrix” mask) contain information about
the stimulus saliency regardless of stimulus modality, a similar
MVPA analysis was performed using the “pain matrix” mask to
distinguish the BOLD signals elicited by high-saliency stimuli
and those elicited by low-saliency stimuli using the same pro-
cedure described above except the following differences: the 56
preprocessed samples (4 modalities × 14 subjects) were sorted
by their saliency regardless of sensory modality, and re-
assigned to one of the two classes (“high-saliency” and “low-
saliency”) by median split. This resulted in 10 pain samples, six
touch samples, seven audition samples and five vision samples
in the “high-saliency” class and four pain samples, eight touch
samples, seven audition samples and nine vision samples in
the “low-saliency” class. To remove any difference in the num-
ber of samples of each sensory modality between the two clas-
ses, the number of samples was balanced across the two
classes for any given sensory modality by removing six pain
samples with relatively low-saliency from the “high-saliency”
class and removing two touch samples and four vision samples
with relatively high-saliency from the “low-saliency” class,
resulting in 44 samples in total (22 samples in each class
including 4 pain samples, 6 touch samples, 7 audition samples,
and 5 vision samples) for the MVPA analysis. The same MVPA
procedure described in the pain-related classifications was
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performed to obtain the classification accuracy and the corre-
sponding sensitivity map.

Dataset 2
All trials from both sensory modalities and all participants were
pooled and sorted from low to high according to the perceived
stimulus intensity, regardless of stimulus modality, and then
median split into two classes (high and low-intensity). The trials
from one participant were discarded as they were all assigned
to the “high” group. All remaining trials were averaged for each
sensory modality, participant and group, resulting in 100 sam-
ples in each group (one sample for each of the two sensory
modalities and each of the 50 participants). Thus, the number of
samples were matched between groups (high, low) for sensory
modality and participant. The same procedure described for the
classification of Dataset 1 was performed to obtain the classifi-
cation accuracy and the corresponding sensitivity map.

Across-Datasets Classification
We performed the same across-datasets classification described
previously, but for distinguishing high versus low-intensity/
saliency stimuli. Classification accuracies and sensitivity maps
were obtained separately for the classifier trained using Dataset
2 and tested using Dataset 1, and vice versa.

Results
Univariate Analyses Require Large Sample Sizes to
Detect Pain-Selective Neural Activity Across Individuals

Mass-Univariate GLM Analysis of Dataset 1
In a preliminary control analysis, we used standard mass-
univariate GLM analysis to directly compare the fMRI responses
elicited by transient painful stimuli with those elicited by
equally-salient but non-nociceptive and non-painful tactile,
auditory and visual stimuli with carefully matched stimulus
saliency. This comparison was performed for the voxels within
the “pain matrix” ROI (Fig. 1). We found that GLM results
depended considerably on the type of data processing pipeline:
there were no difference between pain and non-pain conditions
when using the FSL software, even with the liberal FDR correc-
tion, or when using SPM8 with voxel-based FWE correction.
However, when using SPM8 with cluster-based FWE correction,
several clusters in the bilateral thalamus and insula revealed
higher activation for pain than for touch, and one cluster in the
left posterior insula revealed higher activation for pain than for
vision (see Supplementary Fig. S7). This result indicates that
the identified differences between pain and non-pain condi-
tions do not seem very reliable with a sample size of n ≤ 14.

Mass-Univariate GLM Analysis of Dataset 2
The results of Dataset 2, which entailed a much larger sample
size (n = 51 in Dataset 2 vs. n = 14 in Dataset 1), looked more
stable with respect to the type of processing pipeline used.
After a smoothing of 5mm Gaussian kernel and cluster-based
FWE correction, some voxels in the bilateral insula and the
right S2 showed significantly stronger responses to pain than
to touch (Fig. 2). When increasing the smoothing kernel to
8mm, stronger responses to pain than to touch were still
detected in the right S2 for both cluster-based and voxel-based
FWE correction, and in two small clusters in the left anterior
insula and S2, but only for voxel-based FWE correction (see
Supplementary Fig. S7).

ROI-wise Univariate Analysis of Dataset 1
For each of the 10 pre-defined ROIs (Fig. 1), we compared the
response amplitude (after having matched stimulus saliency) in
the following two-way comparisons: “pain vs. touch,” “pain vs.
audition” and “pain vs. vision.”No ROI displayed significantly dif-
ferent responses in the “pain vs. touch” and “pain vs. audition”
comparisons (Fig. 3a&b). Two ROIs showed significantly different
BOLD response magnitudes in the “pain vs. vision” comparison:
nociceptive stimuli elicited stronger responses than visual stimu-
li in the left insula (P = 0.025) and the left thalamus (P = 0.017)
(Fig. 3c). The time courses of BOLD signals in each ROI and condi-
tion are shown in Supplementary Fig. S8a.

ROI-wise Univariate Analysis of Dataset 2
The same ROI-wise analyses were repeated to compare the
response amplitude between pain and touch, after perceived
stimulus intensity was carefully matched across the two
modalities. The results show that eight out of ten ROIs showed
significantly stronger responses to pain than to touch (P < 0.05;
Fig. 2b). Only the bilateral ACC did not show significant differ-
ence in response amplitude between pain and touch (P > 0.1;
Fig. 2b). This result is in contrast with the results obtained
from Dataset 1, suggesting that a large sample size is needed
for univariate analysis to detect robust differences in fMRI
responses between pain and touch. The time courses of BOLD
signals in each ROI and condition are shown in Supplementary
Fig. S8b.

MVPA can Detect Pain-related Patterns of Brain Activity
Across Individuals

Dataset 1
Three two-way classifications to compare fMRI responses eli-
cited by saliency-matched painful and non-painful stimuli
(“pain vs. touch,” “pain vs. audition” and “pain vs. vision”) were
performed. All classifications showed that the information con-
tained in the spatial distribution of the fMRI signals sampled
from the “pain matrix” ROI allowed distinguishing painful noci-
ceptive stimuli from equally-salient, but non-painful tactile,
auditory and visual stimuli. The obtained accuracies of the
three classifications are shown in Fig. 4a-c (for normalized
data) and Supplementary Fig. S9a-c (for non-normalized data),
along with the corresponding null distributions. These findings
indicate that the classification accuracies were not solely con-
tributed by differences in the mean signal amplitude of the ROI
between different stimuli and, instead, that the spatial distribu-
tions of the fMRI responses were sufficiently dissimilar to cor-
rectly distinguish brain activity elicited by painful stimuli from
that elicited by equally-salient, non-painful, stimuli. Because
stimuli were matched in terms of subjective saliency, the clas-
sifications were unlikely to have been driven by differences in
stimulus saliency (Iannetti et al. 2008).

The sensitivity maps showing the spatial distribution of the
voxels contributing to the classifications are displayed in
Supplementary Fig. S10. These maps reveal that the voxels con-
tributing to each classification were clustered rather than scat-
tered. This indicates that the mesoscopic pattern of activity
within and across the brain regions composing the so-called
“pain matrix” allowed the classifier to predict correctly the
modality of the eliciting stimulus.

We also identified voxels consistently showing a response
preference for pain (i.e., voxels with positive weights) in all
three classification tasks. These “pain-preferring” voxels were
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located in the brainstem, thalamus, insula, anterior and mid
cingulate cortex, and supplementary motor area (Fig. 5).

To test whether voxels outside the “pain matrix” ROI also con-
tain information that allows successful discrimination between
saliency-matched painful and non-painful stimuli, we repeated
the same MVPA classifications (“pain vs. touch,” “pain vs.
audition” and “pain vs. vision”) on a “non-pain-matrix” mask
(Supplementary Fig. S3a) containing all voxels not included in the
“pain matrix” ROI. These results showed that the classification
accuracies of “pain vs. audition” (correct rate = 0.90, P = 0.0002)

and “pain vs. vision” (correct rate = 1, P < 0.0002) were significantly
higher than chancel level (Supplementary Fig. S3c&d). This obser-
vation was expected, as both auditory and visual cortices were
included in this mask (although the correct classification could
have been also contributed by neural activity outside auditory and
visual cortices). In contrast, the classification accuracy of “pain vs.
touch” was around chance level (correct rate = 0.55, P = 0.408;
Supplementary Fig. S3a). Using the second “non-pain-matrix”
mask having the same number of voxels as the “pain matrix”
mask (Supplementary Fig. S4a), we observed similar results

Figure 2. Results of univariate GLM analysis (a) and ROI-wise analysis (b) obtained from Dataset 2. Panel a: five clusters in the bilateral insula (including both anterior

and posterior part) and the right operculum (S2) were detected by GLM analysis to have stronger responses to painful stimuli than to tactile stimuli, and no voxel was

detected to have higher responses to tactile stimuli than to painful stimuli. Panel b: BOLD signals and corresponding P-values of “pain vs. touch” comparison (paired

t-test) for all explored brain regions. All regions except the bilateral ACC showed significantly higher responses to painful stimuli than to tactile stimuli. The BOLD sig-

nal amplitudes are shown as the average and standard deviation across participants. P-values < 0.05 are indicated by asterisks. L: left; R: right; aInsula: anterior insula;

pInsula: posterior insula.
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(Supplementary Fig. S4b–d): correct rate = 0.45 (P = 0.79) for “pain
vs. touch,” correct rate = 0.75 (P = 0.012) for “pain vs. audition,” cor-
rect rate = 0.9375 (P = 0.0006) for “pain vs. vision”.

Dataset 2
The “pain vs. touch” classification performed using Dataset 1
was repeated using Dataset 2 (which only included painful and
tactile stimuli), and similar results were obtained (Fig. 4d and

Supplementary Fig. S9d). The fMRI signal within the “pain
matrix” ROI again correctly predicted painful versus tactile sti-
muli (P < 0.0002 for both non-normalized and normalized sig-
nals; 5 000 permutations; see Fig. 4d and Supplementary
Fig. S9d). The corresponding sensitivity map obtained from the
normalized data is shown in Supplementary Fig. S11a.

However, and in contrast with the result obtained in Dataset
1, the classification accuracies obtained from Dataset 2 using
the two “non-pain matrix” masks were significantly higher

Figure 3. BOLD signal amplitude in all explored brain regions, along with their corresponding P-values for the three comparisons between the modalities of the elicit-

ing stimuli: pain vs. touch (a), pain vs. audition (b) and pain vs. vision (c). The BOLD signal amplitude are shown as the average and the standard deviation across par-

ticipants. P-values < 0.05 are indicated by asterisks. L: left; R: right.
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than chance level (Supplementary Figs S3e and S4e). The sensi-
tivity map corresponding to the “non-pain matrix” Mask 1
showed that several brain areas outside the “pain matrix” con-
tributed more than others to the successful classification

(Supplementary Fig. S11b): for example, a cluster located in
bilateral paracentral lobule/supplementary motor areas (i.e.,
the foot area of the primary sensorimotor cortex) had higher
signal during painful stimulation versus tactile stimulation;

Figure 4. Within-dataset (a–d) and across-datasets (e, f) classification accuracies of “pain vs. non-pain” classifications obtained from normalized data, along with the

corresponding null distributions. Panels a–c: results obtained from Dataset 1 for the three classifications, respectively. Panel d: result obtained from Dataset 2 for the

“pain vs. touch” classification. Panel e: result obtained using Dataset 2 as training dataset and Dataset 1 as test dataset. Panel f: result obtained using Dataset 1 as

training dataset and Dataset 2 as test dataset. Classification accuracies (correct rate, CR) are indicated by black vertical lines and corresponding null distributions

(obtained from 5 000 permutations) are indicated by black bell shapes centered around chance level accuracy of 0.5. P-values were calculated as the proportion of

how many (out of 5 000) permutations generated accuracy greater than or equal to the actual classification accuracy. If none out of 5 000 permutations reached the

actual accuracy, the P-value is labeled as P < 0.0002 (i.e., <1/5 000).

Figure 5. Voxels consistently showing higher BOLD signal during pain across all three classifications (“pain vs. touch,” “pain vs. audition” and “pain vs. vision”) in

Dataset 1. Colors code the average weight across the three classifications.

Brain Activity Selective for Pain and Intensity Liang et al. | 2221
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/article-abstract/29/5/2211/5371085 by U
C

L, London user on 03 June 2019



and a cluster in the left lateral postcentral gyrus (i.e., contralat-
eral to the stimulated foot) had higher signal during tactile
stimulation versus painful stimulation.

Classification Across-Datasets
Despite more challenging (see details in Methods), the across-
datasets classification still showed a good accuracy (Fig. 4e–f): cor-
rect rate = 0.80 (P = 0.0054) when the classifier was trained using
Dataset 2 and tested on Dataset 1; and correct rate = 0.69 (P =
0.0034) when the classifier was trained using Dataset 1 and tested
on Dataset 2. These results indicate that the patterns identified in
each dataset were generalizable to another independent dataset.

The sensitivity maps were also generated from the two across-
datasets classifications (Fig. 6a&b), and the voxels with consistent
weight sign across the two sensitivity maps are shown in Fig. 6c.

We also tested the classification across-datasets using
the two “non-pain-matrix” masks. The resulting four classifi-
cations were not successful (Supplementary Figs S3f–g and
S4f–g).

Classifications within Individual “Pain Matrix” Sub-regions
The within-dataset and across-datasets classifications obtained
using the fMRI signal from individual “pain matrix” sub-regions
are showed in Supplementary Figs S12 and S13, respectively.
Although within-dataset classifications within a few individual

Figure 6. Sensitivity maps obtained from the “pain vs. touch” classification across-datasets. Panel a: sensitivity map obtained when the classifier was trained using

Dataset 2 and tested on Dataset 1. Panel b: sensitivity map obtained when the classifier was trained using Dataset 1 and tested on Dataset 2. Panel c: overlap (i.e., the

voxels of which the weights have consistent sign) between the two sensitivity maps (a) and (b).
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sub-regions (e.g., the thalamus, the S2 and the insula) were suc-
cessful using one dataset, they were not successful using the
other dataset (Supplementary Fig. S12). None of these individ-
ual sub-regions showed successful classifications in the across-
datasets classification (Supplementary Fig. S13).

Classifications using GLM Beta Maps
Pain and touch conditions could be distinguished within Dataset
1, within Dataset 2, and across datasets, when using beta maps
of the entire “pain matrix” derived from univariate GLM analyses
(see Supplementary Fig. S14). The within-region classification
results also remained the same when beta maps were used
(Supplementary Figs S15 and S16). These results, together with
the successful classifications using BOLD signals, indicate that
the distinguishable “pain vs. touch” activity patterns within the
“pain matrix” were not simply due to this latency difference.

MVPA can Detect Intensity/Saliency-related Patterns of
Brain Activity Across Individuals

Dataset 1
When classifying between “high-saliency” stimuli and “low-
saliency” stimuli regardless of their sensory modality, the
resulting classification accuracy was significantly higher than
chance level (see Fig. 7 for normalized data and Supplementary
Fig. S17 for non-normalized data).

Dataset 2
We obtained similar results when the same high versus low-
intensity classification was performed using Dataset 2: classification
accuracies obtained using both normalized and non-normalized
signals were significantly higher than chance level (Fig. 7 and
Supplementary Fig. S17).

Classification Across-Datasets
The spatial patterns of fMRI signal allowing the distinction
between high- and low-intensity/saliency obtained separately
from the two datasets were less generalizable than those allow-
ing the distinction between pain and non-painful sensations:
when the classifier was trained using Dataset 2 and tested on
Dataset 1, the classification accuracy was 0.7, with a signifi-
cance level of only P = 0.0912; when the classifier was trained
using Dataset 1 and tested on Dataset 2, the classification accu-
racy was 0.58, with a significance level of P = 0.0496 (Fig. 7).

Sensitivity maps of the within-dataset and across-datasets
classifications are shown in Supplementary Fig. S18.

Discussion
Is there pain-selective information within the fMRI responses
elicited by painful stimuli after controlling for stimulus inten-
sity/saliency? Here, we addressed this question by performing

Figure 7. Within-datasets (a, b) and across-datasets (c, d) classification accuracies of “high vs. low-intensity/saliency” classification obtained from normalized data,

along with the corresponding null distributions. Panels a and b: results obtained from Dataset 1 and Dataset 2, respectively. Panel c: result obtained using Dataset 2

as training dataset and Dataset 1 as test dataset. Panel d: result obtained using Dataset 1 as training dataset and Dataset 2 as test dataset. Classification accuracies

(correct rate, CR) are indicated by black vertical lines and corresponding null distributions (obtained from 5 000 permutations) are indicated by black bell shapes cen-

tered around chance level accuracy of 0.5. P-values were calculated as the proportion of how many (out of 5 000) permutations generated accuracy greater than or

equal to the actual classification accuracy. If none out of 5 000 permutations reached the actual accuracy, the P-value is labeled as P < 0.0002 (i.e., <1/5 000).
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between-subject MVPA of the fMRI responses elicited by a range
of “equally-intense” and “equally-salient” nociceptive, tactile,
auditory, and visual stimuli in two independent datasets col-
lected from different MRI scanners. We were thus able to per-
form both within-dataset classifications and across-datasets
classifications.

In both datasets, we observed that spatial patterns of fMRI sig-
nal allowed distinguishing the responses elicited by a transient
painful nociceptive stimulus from those elicited by “equally-
intense” and “equally-salient” non-painful stimuli. Such spatial
patterns were consistent across-datasets collected in different
MRI scanners. We also found that spatial patterns of fMRI signals
were able to distinguish the responses to high- vs. low-intensity/
saliency stimuli, regardless of their sensory modality.

Brain Responses Distinguishing the Modality of
Intensity/Saliency-Matched Stimuli

We first performed a GLM analysis to test whether it was possi-
ble to identify clusters of voxels showing significantly different
levels of activation during nociceptive stimulation eliciting pain
compared with other stimulations not eliciting pain. To ascer-
tain the robustness of the results, fMRI data were processed
using different pipelines and software (see Supplementary
Methods for details). In Dataset 1 (n = 14), results were not very
robust, as differences in activation between pain and non-pain
conditions were detected using one processing pipeline,
whereas no difference was detected using the other two proces-
sing pipelines (Supplementary Fig. S7). Furthermore, in the ROI-
based raw-signal analyses, none of the 10 “pain matrix” ROIs
showed clear differences in the overall average BOLD signals for
all three comparisons between painful and non-painful stimuli
(Fig. 3). In Dataset 2 (n = 51), where the statistical power is
increased because of the much larger sample size, results were
more robust, and differences in activation between pain and
touch were detected using all three processing pipelines: the
right S2 always showed stronger responses to painful stimuli
than to tactile stimuli (Figs 2a and Supplementary Fig. S7). All 10
“pain matrix” ROIs, with the notable exception of the bilateral
ACC, had stronger responses to painful stimuli than to tactile
stimuli (Fig. 2b). These results suggest that univariate GLM
results depends considerably on the processing pipeline, espe-
cially when the sample size is small, such as in Dataset 1.

Note that differences in the spatial patterns of fMRI
responses detected by MVPA across individuals necessarily
implies the existence of some univariate differences in signal
amplitude. Our results indicate that such univariate differences
are subtle, and require a large sample to be detected by standard
univariate analysis while controlling for false positive rate at a
reasonable level (Figs 2 and 3 and Supplementary Fig. S7). This
result provides important additional information to our previous
report that salient stimuli of four sensory modalities activated
the same set of voxels, but without explicitly testing whether
the intensity of activation within these voxels was different
between pain and other modalities after matching stimulus
intensity/saliency across participants (Mouraux et al. 2011).
Several previous studies have suggested pain specificity of the
dorsal posterior insula and the operculum, using a variety of
neuroimaging techniques such as PET, fMRI, ERPs, intracerebral
recordings (Peyron et al. 2002), arterial spin labeling (Segerdahl
et al. 2015), as well as electrical stimulation of the operculoinsu-
lar cortex (Ostrowsky et al. 2002; Afif et al. 2010; Isnard et al.
2011). However, most of these previous studies suffer from the

same problem of lacking an adequate control stimulus matched
in term of saliency or intensity (Mouraux and Iannetti 2018).

By performing MVPA on both Datasets 1 and 2, we observed
that the spatial patterns of the fMRI responses elicited by pain-
ful stimuli within the so-called “pain matrix” were distinguish-
able from those elicited by non-painful, but equally-intense and
equally-salient, tactile, auditory and visual stimuli (Fig. 4a–d
and Supplementary Fig. S9). This result was further corroborated
by the observation that these patterns are stable across different
datasets collected using different parameters and scanners
(Fig. 4e–f). Notably, this classification was successful only when
using the signals from the “pain matrix” but not when using the
signals from individual sub-regions of the “pain matrix”
(Supplementary Figs S12, S13, S15 and S16). These findings,
together with our previous results (Mouraux et al. 2011), indi-
cates that even if (1) the voxels activated by transient painful
and non-painful sensory stimuli are virtually the same
(Mouraux et al. 2011), and (2) the univariate differences in signal
intensity are not strong enough to be reliably detected by con-
ventional GLM analysis, the spatial patterns of fMRI signal
across voxels widely distributed within the “pain matrix” (but
not within a local sub-region), are consistently different
between painful stimuli and non-painful stimuli, across partici-
pants. Our result agrees with the view that pain, as any other
subjective experience, is likely to emerge from a specific pattern
of neural activity, which has been postulated as a “neuromatrix”
(Melzack 1989, 2001; Iannetti and Mouraux 2010) and, more
recently, as a “pain connectome” (Kucyi and Davis 2015). In this
view, the experience of pain would not be a result of the mere
activation of certain brain areas or neurons. Instead, pain would
be an “emergent property” arising from the synchronized or
coordinated activity of multiple brain areas which, if considered
in isolation, are not specific for pain.

All results reported here were obtained by performing a
“between-subject” MVPA. The rationale for this choice was
that, within the context of Dataset 1, only between-subject
MVPA permitted for a good matching of subjective saliency in
each of the three pairs of comparisons, thus allowing proper
inferences about response selectivity (Hu and Iannetti 2016).
Unlike “within-subject” MVPA, which examines whether differ-
ent stimulus categories have reliably distinct cortical represen-
tations at the level of single subjects, between-subject MVPA
requires the spatially distinct representations to be consistent
across subjects. Therefore, the observed successful classifica-
tions implies that specific patterns, although likely to be
shaped by individual experiences, are at least partly innate and
preserved across individuals.

That the identified patterns of neural activities can be general-
ized to different subjects implies that they are rather coarse in
their spatial scale. Indeed, fine-grained differences are unlikely to
be detectable using between-subject MVPA, given (1) the func-
tional and anatomical differences between individuals, and (2)
that the anatomical coregistration of brains from different indivi-
duals does not allow spatial matching at voxel level. Therefore,
classification using between-subject MVPA can only rely on spa-
tial patterns occurring at a spatial scale between single-voxel pat-
terns and regional brain activity. For this reason, the voxels that
contributed most to the classification of painful versus non-
painful stimuli formed clear clusters, located in the insula, the
anterior and mid cingulate cortex, the supplementary motor area,
the brainstem and the thalamus (Fig. 5).

Our results confirmed that MVPA is more sensitive than con-
ventional univariate methods in detecting between-condition dif-
ferences in the fMRI signals. This highlights that the debate on
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whether the brain responses to transient nociceptive stimuli
causing pain detected using fMRI reflect pain-specific neural
activity pertains more to the technological than to the physiologi-
cal domain. Even if the fMRI responses elicited by transient pain
should be indistinguishable from the fMRI responses elicited by
equally-salient stimuli of other sensory modalities (i.e., stimuli
not causing pain), this by no means implies the lack of cortical
activities responsible for the painful quality of the percept elicited
by the stimulus. Accordingly, classic neurophysiological studies
have described nociceptive-specific responses in the supraspinal
targets of the spinothalamic pathway. For example, nociceptive-
specific neurons have been found in the primary somatosensory
cortex (Chen et al. 2009), the ACC (Hutchison et al. 1999) and the
insula (Zhang et al. 1999) of animals and humans, although the
lack of adequate matching of stimulus saliency between nocicep-
tive and non-nociceptive is also an issue in a number of these
previous studies (for an exclusive discussion on this topic, see
Mouraux and Iannetti 2018).

It is also interesting to compare the classification patterns
identified in the present study with the “Neurologic Pain
Signature” described by Wager et al. 2013. When comparing Fig. 5
of the current study and Fig. 1A in Wager et al. 2013 there are both
similarities and differences. Both studies found that certain brain
regions—dACC/SMA, insula (anterior, mid and posterior), S2 and
the thalamus—contained voxels more active during pain versus
non-painful sensations (in our study) or during high pain versus
low pain (in Wager et al. 2013), again emphasizing the possible
role of these regions in pain processing. However, Wager et al.
2013 also identified some negatively-weighted clusters located in
the precuneus/PCC, ventral medial prefrontal cortex, occipital
gyrus, fusiform and the superior parietal lobule—preferring low
pain versus high pain. In contrast, we found very few voxels with
consistent negative weights across the three “pain vs. non-pain”
classifications. Thus, the contribution of these negatively-
weighted regions to pain processing is less certain, and may be
dependent on the specific datasets and classification strategies.

It should be noted that, although the successful discrimination
of painful versus non-painful stimuli was unlikely consequent to
stimulus intensity, saliency or valence (Supplementary Fig. S6),
whether the observed spatial pattern of BOLD signal distinguish-
ing pain relates to cortical activity specific for the perception of
pain remains an open question. Identifying a specific pattern of
neural activity that underlies pain perception is not trivial. To
conclude that a neural response is specific for a certain sensation
requires comparisons between the neural response elicited by
this given sensation and those elicited by all other possible sensa-
tions. However, only a limited set of sensations were studied in
the present study. In addition, the identified pattern of brain
activity elicited by transient laser heat might not generalize to
other types of painful percepts, particularly ongoing pain (Baliki
et al. 2006). Furthermore, features other than pain perception
could have distinguished the painful heat stimuli from the inten-
sity/saliency-matched non-painful tactile, auditory and visual sti-
muli, and these differences could have contributed to the
discrimination between the BOLD responses elicited by painful
versus non-painful stimuli. For example, the painful heat stimuli
were the only stimuli to have a thermal quality, and were also
the only stimuli that engaged the spinothalamic system.

Brain Responses Distinguishing Stimulus Intensity/
Saliency Independently of Sensory Modality

MVPA also distinguished the spatial patterns of the fMRI responses
elicited by high-versus low-intensity/saliency stimuli, independently

of sensory modality, in both datasets. As aforementioned, stimulus
intensity, saliency and valence were highly correlated in our present
experimental settings (see Supplementary Fig. S6), and thus we
were unable to disentangle the effects caused by these three factors.
We also note two additional aspects: (1) classification accuracies in
distinguishing high-versus low-intensity/saliency stimuli (Fig. 7
and Supplementary Fig. S17) were generally lower than classifi-
cation accuracies in distinguishing pain versus touch (Fig. 4
and Supplementary Fig. S9); (2) spatial patterns distinguishing
high-versus low-intensity/saliency stimuli obtained separately
in different datasets were less generalizable across-datasets
(Fig. 7c&d), compared with spatial patterns distinguishing
pain versus touch (Fig. 4e&f). There might be several practical
reasons that make the classification “high- vs. low-intensity/
saliency” more challenging: (1) participants rated stimulus saliency
(in Dataset 1) or intensity (in Dataset 2) using different strategies,
leading to different ratings in different participants even when the
stimuli were perceived similarly; (2) participants had to remember
and report at the end of each run of Dataset 1 how they perceived
the saliency of 32 stimuli across four modalities, an admittedly sub-
optimal design that may have reduced the rating accuracy; (3) each
stimulus was labeled as “high” or “low” according to median split
separately for each dataset; thus, the two classes (“high” and “low”)
might not perfectly correspond to each other between the two data-
sets—increasing the difficulty of the across-datasets classification;
(4) in Dataset 2, we collected intensity ratings instead of saliency
ratings; although stimulus intensity and saliency were likely to be
highly correlated in the design of Experiment 2 (this was also con-
firmed by the psychophysical experiment, Supplementary Fig. S6),
they might not be exactly the same; (5) the signal amplitude in the
data had to be normalized to make the two different datasets com-
parable, thus canceling overall differences in signal amplitude
between “high” versus “low” trials.

Conclusions
Our results are compatible with the view that pain may emerge
from neural activity occurring within a distributed large-scale
brain network. The finding that information about both stimu-
lus intensity/saliency and pain can be represented by different
spatial patterns of activity within the “pain matrix” also
demonstrates the complexity of these neural activities, which
are likely to subserve multiple functions, some of which may
be selective for nociception or pain.
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Supplementary material is available at Cerebral Cortex online.
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