

1 A linear inverse method to reconstruct paleo-topography

2 Matthew Fox

3 *Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT,
4 United Kingdom*

5 *Author email-address: m.fox@ucl.ac.uk (M. Fox)*

6 **Abstract**

Landscape evolution provides insight into the tectonic and erosional processes that have shaped the topography observed today. However, in many cases, an estimate of an earlier topography is required to make first-order interpretations about volumes of sediment eroded or depths of fluvial incision, or to serve as an initial condition in landscape evolution models. This paper presents a means to reconstruct paleo-topography in two dimensions in areas that have experienced an increase in incision using available topographic remnants, or areas of low erosion rate. The approach is based on an analytical solution to the steady state stream power model in which a single elevation within the drainage network is a function of the integrated channel steepness and the normalized landscape response time, or χ , values. The branching structure of a drainage network provides redundant information that can be exploited to infer spatial variations in channel steepness and a baselevel parameter. A single elevation pixel can be written as a sum of channel steepness multiplied by $\Delta\chi$ values, and a set of elevation pixels can be combined as a system of equations. In order to improve efficiency, channel steepness is parameterized using pixels of constant values. By incorporating smoothness constraints on the channel steepness pixels using a Laplacian opera-

tor, a stable solution to the inverse problem can be obtained to infer the channel steepness values in space, a baselevel parameter and, in turn, paleo-topography. This approach is explored with examples from the Inyo Mountain Range, USA, Grand Canyon, USA and the Karrat Region in Western Greenland.

⁷ *Keywords:* landscape evolution modeling; fluvial incision; Grand Canyon;
⁸ Greenland

⁹ 1. Introduction

¹⁰ The first order response of landscapes to changes in tectonics and climate has
¹¹ been studied since the work of Davis (1899) and formalized by Penck et al. (1972).
¹² In the context of fluvial systems, river channels respond to an increase in the rate
¹³ of rock uplift by steepening. The transient response to this steepening results
¹⁴ in a perched relict landscape above steepened reaches separated by knickpoints,
¹⁵ which migrate upstream into the relict landscape. In some cases, this relict land-
¹⁶ scape contains information about the paleo-tectonics of the region and the total
¹⁷ amount of incision surrounding the relict landscape provides an indication of the
¹⁸ magnitude of rock uplift (e.g., Schoenbohm et al., 2004; Clark et al., 2005). Sim-
¹⁹ ilarly, the response to changes in climate can be recorded in the topography with
²⁰ most dramatic evidence for the role of climate change on topography being
²¹ deep glacial U-shaped valleys with prominent hanging valleys. An estimate of a
²² relict landscape, prior to the formation of deep valleys, can be estimated by recon-
²³ structing a preglacial topography (Sternai et al., 2012). This landscape can then
²⁴ be used to estimate how deeply glaciers have eroded, with respect to erosion on
²⁵ the low-relief surrounding areas (Steer et al., 2012), and to reconstruct sediment
²⁶ volumes that have been deposited down slope. Furthermore, it can be used to pro-

27 vide more accurate boundary conditions to simulate the growth of early glaciers
28 and interpret glacial moraines, which requires a topography for ice sheets to de-
29 velop on. In both cases, reconstructing relict landscapes is required to interpret
30 data constraining erosion rate and to serve as an initial condition in landscape
31 evolution models (Demoulin et al., 2017; Briant et al., 2018). Furthermore, there
32 is currently no algorithm that is routinely used to generate initial conditions for
33 landscape evolution models and these must be specified by the user.

34 Reconstructing relict landscapes from digital elevation models (DEMs) of the
35 present landscape has been achieved using several different methods. Each with
36 different strengths and weaknesses.

37 In the case of testing landscape evolution models, it is often appropriate to sim-
38 ply scale modern topography by a relief factor. This results in a topography that
39 has the same general form as modern topography but has a lower relief (e.g., Pel-
40 letier, 2010; Glotzbach et al., 2011). The absolute elevation of the topography can
41 be modified so that the highest peaks in the low relief landscape and the current
42 topography are at the same elevations. A potential limitation of this approach is
43 that incised portions of the landscape are incorporated into the paleo-topography
44 but with smaller magnitude, and the relief across any part of the preserved relict
45 landscape is also reduced, even though the true relief is known in these locations.
46 Furthermore, slope-area relationships are distorted in a way that may, or may not,
47 follow the expected power-law relationship (Hack, 1973). A considerable benefit
48 of this approach is that the resolution of the relict topography is the same as the
49 modern topography, both in terms of absolute pixel size and in terms of drainage
50 density.

51 An alternative simple approach requires finding an envelope that follows the

52 highest points in a landscape, without requiring that the relict topography has the
53 same form as the modern topography. In one dimension, along a river or glacial
54 profile, this is equivalent to extrapolating a flat topography above the profile from
55 the highest point of the profile assuming a flat relict landscape. In this case, the
56 original landscape consists of the landscape above the knickpoint and a flat pro-
57 file extrapolated above the modern profile. In two dimensions, a sliding window
58 is often used. In this approach, a search radius is defined around a specific node
59 on the DEM and the highest point within that radius is assigned to that node to
60 generate a relict landscape (Gabet et al., 2004; Steer et al., 2012). This is then
61 applied to each node in the DEM, forming a smooth surface. The search radius
62 controls the degree to which the relict landscape follows the present landscape:
63 a very small radius results in a relict topography that follows the present land-
64 scape; a very large radius results in a flat relict landscape; and, an intermediate
65 radius provides a landscape free from deep and narrow valleys. In some cases,
66 it may be possible to identify remnants of a relict topography, either through an
67 automated selection procedure or by hand. These remnants can then be isolated
68 and a surface interpolated between these remnants (Small and Anderson, 1998;
69 Oskin and Burbank, 2005; Van der Beek and Bourbon, 2007; West et al., 2013;
70 Stokes et al., 2018) using a range of different interpolation schemes with different
71 benefits (Geach et al., 2014; Van Gorp et al., 2015). The result of this approach
72 is a relict landscape that is constrained at these pre-selected locations. As with
73 the case of scaling topography, a potential problem with these approaches is that
74 the relict landscape may not exhibit expected features of the topography. As well
75 as a lack of slope-area scaling, the drainage density will be very different and the
76 drainage patterns may unrealistic with local depressions and large areas with par-

77 allel rivers. This approach does provide a 2D surface that can be readily used in
78 landscape evolution scenarios and models.

79 In order to generate landscapes that are more realistic, the expected relation-
80 ship between channel slope and upstream drainage area can be used to generate
81 paleo-topography. In 1D, along a long profile of a river or glacier, this requires
82 fitting a curve that follows a slope-area relationship (Flint, 1974). This relation-
83 ship can be defined so that the relict topography has the same peak elevation as
84 the modern topography or is constrained based on incision estimates (e.g., Valla
85 et al., 2011). When there is sufficient relict topography preserved in the landscape
86 (which will depend on the scale and resolution of the DEM), topography above
87 knickpoints can be used to construct a slope-area plot, from which a steepness
88 index and concavity index can be extracted (Howard and Kerby, 1983; Tucker
89 and Slingerland, 1994; Whipple and Tucker, 1999). In turn, these parameters
90 can be used to reconstruct slopes, and thus, elevations downstream of knickpoints
91 (e.g., Schoenbohm et al., 2004; Clark et al., 2005; Harkins et al., 2007; Berlin
92 and Anderson, 2007; Kirby and Whipple, 2012; Schildgen et al., 2012; Darling
93 and Whipple, 2015). This same approach can be used in 2D problems, however,
94 reconstructed river tributaries may not agree with reconstructed main channels.
95 These discrepancies can be explained by, and exploited to infer, different stages of
96 incision (Matthes, 1972) or spatial variations in channel steepness (Sternai et al.,
97 2012).

98 In Sternai et al. (2012), the baselevel was assumed to be constant and chan-
99 nel heads were used to define relief on the fluvial network. Channel head eleva-
100 tions were predicted by integrating channel slopes along the river network, where
101 channel slope is defined by an expected relationship between slope and upstream

102 drainage area (Flint, 1974). The local channel steepness values were free param-
103 eters and these were estimated by fitting the reconstructed channel heads to the
104 observed channel heads. In order to find the best-fit channel steepness values, an
105 iterative process was used in which channel steepness values were perturbed with
106 respect to the current model and if the perturbation improved the fit, the current
107 model was updated. Each perturbation to the current model was in the form of 2D
108 Gaussian functions so that several predicted channel heads were perturbed each
109 time. This enabled a stable solution to be found, despite the non-uniqueness of
110 the inverse problem. However, as the perturbations were proposed in a random
111 way, the chance of proposing a beneficial perturbation at a suitable location was
112 relatively low and thus the solution is slow. This chance also decreases as the
113 total number of nodes describing the network increases. Furthermore, there is no
114 guarantee that a global minimum is found and the iterative process could become
115 trapped in a local misfit minimum.

116 This paper presents a method to reconstruct paleo-topography from DEMs.
117 The method is similar to other approaches that utilize the expected relationship
118 between channel slope and upstream drainage area. However, here the analytical
119 solution to the detachment-limited stream power model is used. This means that
120 slopes from DEMs are not required and linear inverse methods can be exploited,
121 providing robust results that are not strongly influenced by noise and greatly in-
122 creasing the speed of the 2D problem.

123 **2. Method**

124 *2.1. The stream power model and preservation of relict topography*

125 The detachment-limited stream power model relates erosion rate to: the change
126 in elevation z along the length of the channel, x , giving local slope dz/dx raised
127 to the power of n ; discharge that is commonly simplified as the upstream drainage
128 area, A , raised to the power of m ; and the erosional efficiency, K , that accounts for
129 bedrock lithology, bedload and climatic conditions. The evolution of the elevation
130 within the fluvial network is expressed as:

$$\frac{\partial z(t, x)}{\partial t} = u(t, x) - KA(x)^m \left(\frac{\partial z(t, x)}{\partial x} \right)^n \quad (1)$$

131 where t is time and $u(t, x)$ is the rate of tectonic rock uplift that can vary as a
132 function of space and time. m and n are positive constants, and the appropriate
133 values are debated (Howard and Kerby, 1983; Seidl and Dietrich, 1993; Tucker
134 and Slingerland, 1994; Whipple and Tucker, 1999; Attal et al., 2008; Whittaker
135 and Boulton, 2012). Here, we assume values of m of 0.3–0.5 which can be in-
136 ferred from the data (Willett et al., 2014) and n of 1 discuss this choice below.

137 The solution for the linear version (i.e., $n = 1$) of the stream power model at
138 a position x from the baselevel at the present day can be written as an integral of
139 the rock uplift rate at different downstream spatial locations between now and the
140 response time of position x (Royden and Perron, 2013; Goren et al., 2014):

$$z(0, x) = \int_{-\tau(x)}^0 u(t', \tau^1(\tau(x) + t')) dt' \quad (2)$$

141 where $\tau(x)$ is the length of time that knickpoints take to travel from the baselevel,
142 at $x = 0$, to a point x upstream (Rosenbloom and Anderson, 1994) given as a

143 function of distance and upstream drainage area:

$$\tau(x) = \int_0^x \frac{dx'}{KA(x')^m}, \quad (3)$$

144 when $n = 1$. $\tau^1(\tau(x) + t')$ provides a mapping between time and the spatial
145 location of the relevant rock uplift rate required for the integration.

146 The response time is a function of the distribution of upstream drainage area
147 within the catchment and the erosional efficiency, K , Eqn. 3. In practical terms,
148 this is very challenging to estimate because K must be determined using inde-
149 pendent erosion rate data (Whipple and Tucker, 1999; Bishop et al., 2005; Berlin
150 and Anderson, 2007; Roberts and White, 2010; Roberts et al., 2012; Fox et al.,
151 2014; Goren et al., 2014) and often this data is unavailable. To negate the need to
152 know K , Royden and Perron (2013) introduced the χ metric, which is a variable
153 transformation for the length of a fluvial profile accounting for the distribution
154 of upstream drainage area. This means that knickpoints that were formed at the
155 baselevel, and will have travelled different distances from the baselevel, will be
156 located at the same χ value. In turn, plots of χ -elevation provide a means to vi-
157 sualize shared characteristics of rivers with different upstream drainage area dis-
158 tributions. The K independent analytical solution relates the present elevation of
159 a location in the drainage network at a distance of x from the baselevel, to rock
160 uplift rate normalized by the erosional efficiency:

$$z(0, x) = \int_{-\chi(x)}^0 u^*(t', \chi^1(\chi(x) + t')dt', \quad (4)$$

161 where,

$$\chi = A_0^m K \tau, \quad (5)$$

162 and A_0 is an scaling area so that χ has units of length (Perron and Royden, 2013),
 163 and u^* is the normalized rock uplift rate. It is important to note that the normalized
 164 rock uplift rate is proportional to the familiar channel steepness index in the stream
 165 power model provided a consistent value of m is used (Royden and Perron, 2013;
 166 Perron and Royden, 2013; Fox et al., 2014; Goren et al., 2014; Mudd et al., 2014).

167 Within this framework, relict topography exists at locations above a specific χ
 168 value and this value will correspond to a specific time in the past determined by the
 169 value of K . If this relict landscape can be identified, we can write an expression
 170 for this topography in terms of local normalized rock uplift rate and catchment
 171 baselevel,

$$z(0, x)_r = B.L. + \int_{-\chi(x)}^0 u^*(t', x) dt', \quad (6)$$

172 where $z(0, x)_r$ corresponds to a position x from the baselevel at the present day
 173 within the relict landscape. For the purposes of reconstructing paleo-topography,
 174 we make the simplification that the paleo-topography was in steady state prior to a
 175 change in incision. We make this simplification because the relict topography that
 176 we analyze may not contain sufficient information on the rock uplift rate history
 177 due to the influence of glacial erosion, transient divide migration and unaccounted
 178 for complexities. Instead we seek a topography that is representative of the paleo-
 179 topography in terms of paleo-relief and drainage geometry, which is probably
 180 adequate, and an improvement, for most applications.

181 With a steady state assumption and for a discrete representation of a drainage

182 network using a series of nodes, for nodes along the main trunk of the river, the
183 expression reduces to:

$$z(i)_r = B.L. + \sum_{j=1}^i (\chi(j) - \chi(j-1))u^*(j), \quad (7)$$

184 so that the normalized rock uplift rate only varies as function of space.

185 *2.2. 1D inverse solution*

186 The one-dimensional inverse problem is equivalent to fitting a river profile
187 through the relict topography and propagating this profile above the incised land-
188 scape to determine the baselevel. To further simplify this problem and to account
189 for the limited constraints on the relict topography, we make the assumption that
190 the normalized rock uplift rate is constant in space and that the relict topography
191 was in equilibrium with an earlier normalized rock uplift rate. Therefore we can
192 write,

$$z(x)_r = B.L. + \chi(x)u^*. \quad (8)$$

193 This relationship can easily be visualized and relict portions of a landscape
194 should plot as a straight line on a $\chi - z$ plot with the slope equal to u^* and the
195 intercept providing the baselevel, assuming that uplift is spatially invariant. The
196 paleo-topography can then be generated by using the best-fit parameters (the slope
197 and the intercept, corresponding to u^* and $B.L.$) for all portions of the landscape.

198 Formally, we can write Eqn. 8 for all n relict nodes in the 1D profile as :

$$\begin{bmatrix} \chi(1) & 1 \\ \chi(2) & 1 \\ \dots & \dots \\ \chi(n) & 1 \end{bmatrix} \begin{bmatrix} u^* \\ B.L. \end{bmatrix} = \begin{bmatrix} z(1)_r \\ z(2)_r \\ \dots \\ z(n)_r \end{bmatrix}, \quad (9)$$

¹⁹⁹ or in matrix form as

$$\mathbf{G}\mathbf{r} = \mathbf{z}, \quad (10)$$

²⁰⁰ where \mathbf{G} is a $n \times 2$ matrix containing values of χ and ones (as described in Eqn. 9),
²⁰¹ \mathbf{r} is a vector containing the parameters required to calculate the relict topography
²⁰² (normalized rock uplift rate and the baselevel), and \mathbf{z} is a vector of elevations.
²⁰³ Solving this system of equations to gain an estimate of the model parameters, $\hat{\mathbf{r}}$,
²⁰⁴ requires solving:

$$\hat{\mathbf{r}} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{z}. \quad (11)$$

²⁰⁵ *2.3. 2D inverse solution*

²⁰⁶ The two dimensional inverse problem is also equivalent to fitting a river profile
²⁰⁷ through parts of the relict topography and propagating this profile above the in-
²⁰⁸ cised landscape. However, there may be discrepancies between the reconstructed
²⁰⁹ profiles at tributaries. These discrepancies provide constraints on how the nor-
²¹⁰ malized rock uplift rate varies in space. For example, if the trunk river flows
²¹¹ through two different zones of rock uplift rate, a change in steepness would be
²¹² expected along the length of the trunk channel. However, if relict landscape is
²¹³ only preserved in the upper reaches of the trunk river, no indication of the two

214 zones would be preserved in the trunk stream and thus the estimate of the base-
 215 level would be over- or under-estimated. If there are tributaries sampling both
 216 uplift rate zones that preserve relict parts of the landscape in their upper reaches,
 217 these tributaries provide an indication of the regional normalized rock uplift rate.
 218 Ultimately, incorporating tributaries to determine regional normalized rock uplift
 219 rate will improve the estimate of the baselevel and the accuracy of the recovered
 220 topography.

221 Importantly, without the requirement that the normalized rock uplift rate is
 222 uniform in space, there are many more values of the normalized rock uplift rate.
 223 For example, in Eqn. 7, an elevation node in the relict landscape is a function of
 224 the normalized rock uplift rate at every downstream node and there will always
 225 be fewer relict nodes than there are river nodes in the total drainage network. In
 226 this respect, the 2D problem is under-constrained and additional constraints, in the
 227 form of smoothness constraints, can be used to estimate the model parameters.

228 We utilize the same approach as the 1D inversion to estimate the parameters
 229 controlling the relict topography. For a single node in a catchment along the main
 230 trunk of the river, we have:

$$\begin{bmatrix} \chi(1) & \chi(2) & \chi(3) & \dots & \chi(i) & 1 \end{bmatrix} \begin{bmatrix} u^*(1) \\ u^*(2) \\ u^*(3) \\ \dots u^*(i) \\ B.L. \end{bmatrix} = \begin{bmatrix} z(i)_r \end{bmatrix} \quad (12)$$

231 .

232 Tributary nodes will also have similar expressions, however the exact summation
 233 depends on how the drainage network nodes are ordered and the summation will

234 be from the baselevel upstream through the drainage network. For example two
 235 relict landscape nodes $z(5)_r$ and $z(6)_r$ are one node upstream of a confluence at
 236 $z(4)$, which is not part of the relict landscape. The expressions for these nodes
 237 can be written as,

$$\begin{bmatrix} \chi(1) & \chi(2) & \chi(3) & \chi(4) & \chi(5) & 0 & 1 \\ \chi(1) & \chi(2) & \chi(3) & \chi(4) & 0 & \chi(6) & 1 \end{bmatrix} \begin{bmatrix} u^*(1) \\ u^*(2) \\ u^*(3) \\ u^*(4) \\ u^*(5) \\ u^*(6) \\ B.L. \end{bmatrix} = \begin{bmatrix} z(5)_r \\ z(6)_r \end{bmatrix}. \quad (13)$$

238 Here the elevation of both nodes is a function of the normalized uplift rate down-
 239 stream of the confluence, and the baselevel. The elevations of $z(5)_r$ and $z(6)_r$ are
 240 also functions of $u^*(5)$ and $u^*(6)$, respectively. This simple example highlights the
 241 degree of non-uniqueness of this problem as there are many more unknowns than
 242 constraints. To simplify the problem we reduce the number of nodes describing
 243 the river network in between confluences, by removing nodes where the drainage
 244 area does not increase by a user-defined factor. However, even if all nodes that
 245 were not confluences were removed, the problem would still be non-unique be-
 246 cause the baselevel is also a free parameter. Therefore, we introduce additional
 247 smoothness constraints to increase the stability of the solution and to average out
 248 noise creating smooth normalized steepness maps.

249 Smoothness constraints are implemented by further discretizing the problem

250 into pixels of size $\Delta x \times \Delta y$. (Here we refer to pixels to define this grid and nodes
 251 to refer to the discretization of the river network). For this discretization, any
 252 nodes in the drainage network that fall within a given pixel are forced to have the
 253 same normalized uplift rate. For example, in equation 12, if the first two nodes of
 254 the river network fall in the first pixel they will have the same uplift rate, $u_p^*(1)$.
 255 Therefore, we can write a summation expression in terms of this discrete grid:

$$\begin{bmatrix} \chi(1) + \chi(2) & \chi(3) + \chi(4) & \dots & \chi(i) & 1 \end{bmatrix} \begin{bmatrix} u_p^*(1) \\ u_p^*(2) \\ \dots \\ u_p^*(5) \\ B.L. \end{bmatrix} = \begin{bmatrix} z(i)_r \end{bmatrix}. \quad (14)$$

256 Expressions for each node in the relict landscape can be written and combined in
 257 matrix form:

$$\mathbf{A}\mathbf{r}_p = \mathbf{z}, \quad (15)$$

258 where \mathbf{A} is a matrix of size $n \times (n_p + 1)$, n is the total number of relict nodes and n_p
 259 is the number of pixels used for the discretization, the additional column of 1s is to
 260 account for the baselevel parameter. For a given elevation node, the corresponding
 261 row of \mathbf{A} will contain blocks of χ values that sum to the corresponding χ of
 262 the given elevation node. \mathbf{r}_p is a vector of length $n \times (n_p + 1)$ containing the
 263 values used to describe relict landscape, i.e., the normalized uplift rates in the
 264 discretized form and the baselevel parameter. \mathbf{z} is a vector of length n and contains
 265 the elevations of relict nodes.

266 In order to solve the under-constrained inverse problem, smoothness con-
267 straints are directly incorporated into Eqn. 15 and solving this expression pro-
268 vides smooth maps of u^* that is consistent with the data. A discrete Laplacian
269 is used to quantify roughness (Constable et al., 1987). This form of a Tikhonov
270 regularization has been used extensively within the Earth Sciences from 3D seis-
271 mic tomography (e.g., Sambridge, 1990), to heat flow problems (e.g., Gallagher
272 and Sambridge, 1992), and from slip distributions on fault planes during earth-
273 quakes (e.g., Segall and Harris, 1987), inferring uplift rates from river profiles
274 (e.g., Goren et al., 2014) to generating elemental maps of individual crystals (Fox
275 et al., 2017b).

276 A smoothness, or roughness, constraint is incorporated into the analysis by
277 adding additional terms to Eqn. 15 that penalize rough pixel values. A single
278 expression describing roughness around an individual pixel can be written as:

$$\lambda \nabla^2 u^*(l, m) = 4*u^*(l, m) - u^*(l+1, m) - u^*(l-1, m) - u^*(l, m+1) - u^*(l, m-1), \quad (16)$$

279 where λ provides a relative weight that will be discussed below and the indices l
280 and m are the co-ordinates of a given pixel. For example, when the surrounding
281 pixels, $u^*(l+1, m)$, $u^*(l-1, m)$, $u^*(l, m+1)$ and $u^*(l, m-1)$, are similar to the
282 central pixel $u^*(l, m)$, $\lambda \nabla^2 u^*(l, m)$ is small, indicating a low degree of roughness.
283 In order to incorporate these expressions, we combine Eqn. 15 with the smooth-
284 ness constraints given by Eqn. 16 resulting in a modified system of equations:

$$\begin{pmatrix} \mathbf{A} \\ \dots \\ \lambda \nabla^2 \end{pmatrix} \mathbf{r}_p = \begin{pmatrix} \mathbf{z} \\ \dots \\ \mathbf{0} \end{pmatrix}. \quad (17)$$

285 The least squares approach minimizes both the fit to the data and the roughness of
 286 the model and the total misfit can be defined as, ϕ :

$$\phi = \|\mathbf{A}\mathbf{r}_p - \mathbf{z}\|^2 + \lambda^2 \|\nabla^2 \mathbf{r}_p - \mathbf{0}\|^2. \quad (18)$$

287 When λ is small, the righthand side expression, $\lambda^2 \|\nabla^2 \mathbf{r}_p - \mathbf{0}\|^2$ is small and
 288 importance of this term decreases and the spatial roughness in u^* does not control
 289 the value of ϕ . Instead, ϕ will be minimized when the fit to the data $\|\mathbf{A}\mathbf{r}_p - \mathbf{z}\|^2$,
 290 is small. It is important to note, however, that this solution will attempt to fit
 291 geomorphic noise and the results could potentially be unrealistic. When λ is large
 292 a smooth u^* solution will be found in order to minimize $\lambda^2 \|\nabla^2 \mathbf{r}_p - \mathbf{0}\|^2$, which
 293 may not fit the data well. This solution may be useful to reduce the influence of
 294 geomorphic noise. Therefore, this trade-off between fit to the data and smooth
 295 results, must be explored when choosing a value for λ . As there is no way to
 296 assess whether or not a given paleo-topography is correct or not, an optimal value
 297 of λ should be chosen based on obtaining reasonable results.

298 The basic steps in this process are shown in Fig. 1. In this cartoon, the initial
 299 topography is shown as the pre-incision topography. It is important to note that
 300 this initial topography is not an initial condition in the way that landscape evo-
 301 lution models require an initial condition and boundary conditions to solve dif-
 302 ferential equations. Instead, this pre-incision topography represents the unknown
 303 topography that we wish to recover. The forward model is highlighted on the

304 left and this represents a simplified landscape evolution process from the initial
305 topography to the modern topography. The inverse model and the steps required
306 to solve this inverse model are described on the right. The first step is to extract
307 the drainage network using a steepest descent algorithm. Once this network has
308 been determined, χ values can be calculated at nodes along the network. The
309 relict part of the landscape can be determined by inspecting the topography or
310 through parametric criteria. Only the χ values and the elevations of the relict river
311 nodes are used as data but additional nodes at confluences are required to solve
312 the inverse problem, and so the network is filtered. The resulting network and
313 discretized domain are used to build the A matrix, which describes the elevation
314 of specific nodes as a function of the downstream distribution of χ values and an
315 unknown vector of normalized rock uplift rate values and a baselevel parameter.
316 This system of equations can be solved to determine this unknown vector using
317 least squares inversion with spatial smoothness constraints.

318 *2.4. Analysis of Assumptions*

319 In order to infer paleo-topography, assumptions about the erosional properties
320 operating on the paleo-topography have been made. Ultimately, the goal is to pro-
321 duce a paleo-topography that has characteristics of fluvial topography to be used
322 to infer erosion rates for use with thermochronometric data or cosmogenic nuclide
323 concentration data, as an initial condition for landscape evolution models and to
324 produce topography that is suitable for use in ice sheet reconstructions. For these
325 uses, the reconstructed topography should be an improvement over interpolation
326 schemes or sliding window based methods, despite the assumptions listed below.

327 The interpolation scheme is based on the steady state stream power model
328 and the expected relationship between channel slope and upstream drainage area.

329 There are several complexities that are known to control the form of fluvial chan-
330 nels, such as variable channel width as a function of rock uplift rate (Lavé and
331 Avouac, 2001; Finnegan et al., 2005; Turowski et al., 2006; Amos and Burbank,
332 2007; Attal et al., 2008; Yanites et al., 2010; Kirby and Ouimet, 2011), the sed-
333 iment flux dependence on channel slope and incision (Sklar and Dietrich, 1998;
334 Whipple and Tucker, 2002; Wobus et al., 2006; Lamb et al., 2008; Lague, 2010),
335 and the resulting non-linear relationships between river slope and erosion rate
336 (Howard and Kerby, 1983; Tucker and Slingerland, 1997; Lamb et al., 2007; At-
337 tal et al., 2008; Scheingross et al., 2017), and these are not accounted for. These
338 complexities are likely to be important for transient landscapes and for inferring
339 uplift rates from topography but will not influence the ability to reconstruct paleo-
340 topography to the accuracy required for many applications.

341 The methodology is based on the assumption that the shape of the river net-
342 work, and the distribution of upstream drainage area, has remained constant be-
343 tween the time at which the reconstructed paleo-topography represents and today.
344 There are, however, processes that will lead to upstream drainage area exchanging
345 between catchments. Large scale capture of rivers caused by tilting at a large-scale
346 (Clark et al., 2004; Wang et al., 2012; Wickert et al., 2013) or horizontal shear
347 caused by regional tectonics (Ramsey et al., 2007; Castelltort et al., 2012; Goren
348 et al., 2015; Yang et al., 2015; Gray et al., 2017) will have a large effect on the
349 results. In addition, river networks may be continually adjusting and changing,
350 leading to drainage divide migration and reorganization of river networks (Willett
351 et al., 2014). The transfer of drainage area from one catchment to another dur-
352 ing drainage divide migration causes a change in stream power along the length
353 of both channels: the catchment gaining area will have increased stream power

354 and the catchment losing area will have decreased stream power. Over time,
355 rivers will respond to this change in stream power by increasing or decreasing
356 channel slope and the timeframe of adjustment will be dependent on K . There-
357 fore, if divide migration occurred recently with respect to the time represented by
358 the paleo-topography, the drainage network would be unadjusted and regions of
359 anomalously high and low channel normalized rock uplift rate will be identified.
360 If there is migration of a small drainage divide between small catchments within
361 a larger catchment, the pair of anomalously high and low normalized rock uplift
362 rate values may be averaged out by the requirement that maps are smooth. If these
363 features are not averaged out, they can be identified by the pair of anomalously
364 high and low normalized rock uplift rate values in neighboring catchments (Fox
365 et al., 2014).

366 The erosional efficiency, K , is assumed to be uniform in space and time. The
367 effect of erodibility is challenging to quantify because although there is evidence
368 that it is a function of lithology (Sklar and Dietrich, 2001; Duvall et al., 2004)
369 and precipitation rate (Tucker and Slingerland, 1997; Burbank et al., 2003; Moon
370 et al., 2011; Ferrier et al., 2013), there is also conflicting evidence suggesting that
371 lithology (Riebe et al., 2001; Kirby et al., 2003; Ouimet et al., 2009; DiBiase
372 et al., 2010; Kirby and Ouimet, 2011) and precipitation rate (Riebe et al., 2001;
373 Burbank et al., 2003; Dadson et al., 2003; Von Blanckenburg, 2005; Wittmann
374 et al., 2007) play a minor role in determining erodibility. If K is not spatially
375 uniform throughout the study area, changes in the normalized rock uplift rate map
376 may be identified that are the result of spatial variations in K not u . This may
377 help to identify the importance of K on controlling regional channel steepness.
378 If, however, spatial variations in K are expected to be causing apparent spatial

379 variations in u , χ should be recalculated to account for these differences. This
380 would then result in an iterative approach in which variations in K are updated to
381 ensure that any available geological data are predicted by the inferred rock uplift
382 rate values.

383 **3. 1D example: Inyo Mountains, CA, USA**

384 In this section, an example from the Inyo Mountains in the Basin and Range
385 province is used to illustrate the method before presenting the 2D example. The
386 Inyo Mountains are the most-western uplifted range within the Basin and Range
387 province in California and have relief of approximately 3 km, Fig. 2. The Eastern
388 Inyo Fault is a normal fault that bounds the range to the east and has driven 1.5
389 km of exhumation since 2.8 Ma (Lee et al., 2009). Rivers draining the eastern
390 flank of the Inyo Mountains, to the flat Saline Valley, have prominent knickpoints,
391 that are unlikely to be the result of lithological variations (Streitz and Stinson,
392 1974; Ross, 1976). Therefore these rivers have been previously used to infer the
393 rock uplift rate with respect to the sedimentary fill in the Saline Valley (Kirby and
394 Whipple, 2012; Goren et al., 2014; Fox et al., 2015), using the same underlying
395 assumptions adopted here. Results of these analyses show that from 4 to 3 Ma,
396 rates are almost uniform at ~ 0.4 mm/yr, then from 3 Ma to ~ 1 Ma rock uplift
397 rates increase gradually to 0.55 mm/yr. This is followed by a faster increase to a
398 value of ~ 0.68 mm/yr at about 1 Ma. This increase in uplift rate with respect to
399 the Saline Valley results in knickpoints in the rivers draining to the Saline Valley
400 in the Inyo Mountains.

401 The elevation and χ datasets required for the analysis were derived from the
402 30 m National Elevation Dataset (NED) DEM (Gesch, 2007). ArcGIS was used to

403 calculate flow directions and upstream drainage areas for each pixel in the DEM.
404 In order to define the drainage network and exclude hillslopes from the analysis,
405 only pixels in the DEM with an upstream drainage area greater than 1-km² were
406 analyzed.

407 McElvoy Canyon displays the clearest knickpoint, separating a relatively low
408 channel slope profile at high elevations from a steeper segment at lower elevations
409 (Fig. 3A). This trend can be clearly seen when elevation is plotted as a function
410 of χ in Fig. 3B, calculated with $m = 0.3$ and $A_0 = 10$ km², after Goren et al.
411 (2014).

412 Based on the channel profile and $\chi - z$ relationship, an elevation of 750 m was
413 chosen as the lowest point of the relict landscape. It is important to note that if
414 this threshold elevation is underestimated (i.e., too low), parts of the incised land-
415 scape will be used to infer the channel steepness of the relict landscape and the
416 paleo-basevel will be underestimated. This would result in an under-estimation in
417 the amount of incision. If however, this threshold elevation, separating the relict
418 landscape from the incised landscape, is overestimated (i.e., too high), fewer data
419 points will be used in the linear regression resulting in a less well constrained
420 model. Formal methods to pick the location of knickpoints (Mudd et al., 2014;
421 Fox et al., 2015; Neely et al., 2017) could also be exploited, but because of the in-
422 herent uncertainties in the analysis, a trial and error approach to pick this threshold
423 elevation should be sufficient.

424 Solving Eqn. 11 for only the fluvial nodes above the threshold elevation results
425 in a slope of 0.1703 and a predicted baselevel of 335.71 m. This results in a
426 straight profile in the χ -elevation plot (Fig. 3B). Using these parameters we can
427 also predict the channel profile, A.

428 **4. 2D study: Grand Canyon, Az, USA**

429 Incision of Grand Canyon has been a long-standing geomorphic and geodynamic
430 challenge of the last 150 years (e.g., Powell, 1875). The onset of incision
431 has been determined through dating the arrival of detritus from Grand Canyon
432 (Dorsey et al., 2007; Ingersoll et al., 2013; Lucchitta et al., 2013), dating basalt
433 flows that drape topography or were emplaced prior to incision (Lucchitta et al.,
434 2001), dating sediments that were transported across Grand Canyon prior to inci-
435 sion (Young, 1989), and by using landscape evolution models to simulate canyon
436 incision and reproduce these observations (Pelletier, 2010). Thermochronometry
437 has been used to study the direct and in situ incision of Grand Canyon (Flow-
438 ers and Farley, 2012; Fox and Shuster, 2014; Karlstrom et al., 2014; Fox et al.,
439 2017a; Winn et al., 2017). Recent thermochronometric studies provide support for
440 a ‘young’ canyon model in which westernmost Grand Canyon is approximately
441 5-6 Ma old. These studies use cooling history as a proxy for exhumation, however
442 thermal models that account for the advection of heat during exhumation, the ad-
443 vention of heat by fluids or the influence of topography on the thermal field, have
444 not been used to convert cooling to exhumation. Both heat flow models for ther-
445 mochronometric analysis and landscape evolution models require a pre-incision
446 DEM.

447 In order to infer paleo-topography, a river network that can be used to calculate
448 values of χ is required. The global hydrological database (Lehner et al., 2008),
449 which has a resolution of ~ 90 m and provides flow directions for each pixel in the
450 DEM, was used. However, the Colorado River is a very large catchment and that
451 makes calculating upstream drainage area challenging. Thus, a coarse grid, with
452 a resolution of ~ 450 m (Lehner et al., 2008), was used to calculate the upstream

453 drainage area of the main channel of the Colorado River at the upstream limit of
454 our analysis and all major rivers that drain into the study region. Using the fine
455 grid, χ values for all nodes of a DEM with an upstream drainage area $> 1 \text{ km}^2$,
456 using $A_0 = 1 \text{ m}^2$ and a value of $m = 0.5$ (Pelletier, 2010), were calculated as
457 shown in Fig. 4.

458 Once the χ values were calculated using a fine grid, this was filtered to de-
459 crease the number of nodes and greatly decrease the computation time (Fig. 5).
460 River nodes above 1400 m are assumed to be part of the relict topography and
461 these nodes are used in the inversion. River nodes lower were only included in
462 the data set if the upstream drainage area of the node is 5% larger than the node
463 downstream. This preferentially keeps confluences in the dataset. Eqn. 17 was
464 solved for a range of λ values to produce a baselevel values and maps of normal-
465 ized rock uplift rate. Once these parameter values are calculated, they can be used
466 to reconstruct topography on the unfiltered DEM.

467 At small values of λ , the approach attempts to fit each remnant river node per-
468 fectly, and data misfit is low as shown in Eqn. 18. The channel steepness values,
469 however, vary over short wavelengths and this is unexpected across the Colorado
470 Plateau (Fig. 6). As λ is increased, a smoother model is predicted but data mis-
471 fit would increase. A trial and error approach should be used to pick the value
472 of λ and the pixel size, based on obtaining models that are consistent with prior
473 knowledge or field observations. For example, if there is a rapid change in chan-
474 nel steepness that is predicted by the model, but there is no evidence for changes
475 in rock uplift rate or lithology at this location, then the model is likely fitting noise
476 and a larger value of λ should be used. In contrast, if there is evidence for large
477 variations in rock uplift rate in the form of structural geological observations or

478 thermochronometric data, and no variation in channel steepness is predicted by
479 the model, λ may be too large.

480 Estimated incision can be calculated by subtracting the reconstructed topog-
481 raphy from the modern topography. It is important to note that this is not equal
482 to the erosion because the relict relief may have been eroding during the time in-
483 terval between now and the time represented by the reconstructed topography. In
484 this respect, incision is defined as changes in the topographic surface while ero-
485 sion is the change in the rocks exposed at the surface. For example, a steady state
486 landscape may have very rapid rates of erosion but there may be no incision as
487 the relief remains constant in time. Results show that across the relict portions
488 of the landscape the incision is close to zero and the absolute value is sensitive
489 to our choice of λ . In contrast, across Grand Canyon there has been significant
490 incision, as expected (Fig. 7A). This can be clearly visualized by extracting the
491 long profiles of the same river from the modern DEM and the reconstructed to-
492 pography (Fig. 7B). The large steps in the modern profile are due to confluences
493 and artifacts in the DEM, however this part of the topography is not used in the
494 inversion.

495 **5. 2D study: Karrat region, central West Greenland,**

496 The landscape of the Karrat region, central West Greenland, is heavily glaciated
497 and includes elevated relatively low-relief topography that is approximately 2
498 km above sea level. This topography is believed to have formed through either
499 widespread differential erosion and isostatic uplift (Medvedev et al., 2013; Jess
500 et al., 2018) or late Cenozoic episodic uplift (Japsen et al., 2006; Bonow et al.,
501 2014). For the illustrative example presented here, the mechanism of formation of

502 the elevated topography is not required. Instead we seek a pre-incision topogra-
503 phy that may have existed at some point in the past: a time before glacial erosion
504 or before fluvial incision driven by an earlier phase of rock uplift. Recent analysis
505 of cosmogenic nuclide concentrations across a range of elevations support the hy-
506 pothesis of selective linear erosion (Sugden, 1974) in which glacial erosion rates
507 can vary by orders of magnitude as a function of elevation (Strunk et al., 2017).
508 Strunk et al. (2017) showed that the low-relief plateaus would effectively be pre-
509 served by low erosion rates (2 m/Myr) over glacial cycles due to cold-based ice
510 which is frozen to the bedrock with low erosive potential, while the troughs were
511 incised by thick, sliding ice resulting in higher erosion rates (50 m/Myr). There-
512 fore, it can be assumed that these high-elevation features of the topography can be
513 used to reconstruct a pre-incision topography.

514 We use the Greenland bed map DEM produced by Morlighem et al. (2017)
515 to calculate flow directions, χ values and extract high elevation surfaces to build
516 the paleo-topography. Before calculating the drainage network, it is important
517 to remove the load of the Greenland icesheet and calculate the isostatically ad-
518 justed topography using an effective elastic thickness of 20 km (Medvedev et al.,
519 2013). The elastic response to this unloading has been previously explored by
520 Medvedev et al. (2013) and results in 100s of meters of topographic change in the
521 Karrat region. We use the ice thickness estimates from Morlighem et al. (2017),
522 and a 20 km effective elastic thickness to calculate this elastic response in the fre-
523 quency domain using GMT (Wessel et al., 2013). The resulting topography shows
524 large overdeepenings (Fig. 8A) and the relatively low-relief areas can be seen in
525 the corresponding slope map (Fig. 8B). The drainage network was extracted us-
526 ing GRASS and the TerraFlow package (Arge et al., 2003; Neteler et al., 2012).

527 Once the drainage network was extracted and a depressionless DEM produced,
528 noise was added to this depressionless DEM (± 0.01 m) and flow directions were
529 re-calculated in an effort to reduce the artifacts caused by flat sections of topog-
530 raphy. The extracted drainage network upstream of the Karrat region was filtered
531 to reduce the dataset by 80% and is shown as a function of elevation and χ val-
532 ues, which were calculated with $m = 0.45$ and $A_0 = 1$ m² for all pixels with an
533 upstream drainage area greater than 1 km² (Fig. 9A). The relict part of the topog-
534 raphy was specified for elevations above 850 m for topographic slopes less than
535 0.6 m/m, (Fig. 9B), and these are used to infer the model parameters required to
536 calculate the pre-incision landscape (Fig. 9D).

537 The inversion was carried out with a pixel size of 2.5 km and $\alpha = 2.5$ as
538 this provided a reasonable balance between data fit and model smoothness. The
539 results highlight a region of large normalized rock uplift rate values in the centre of
540 the model domain, as is expected given the associated region of high topography
541 (Fig. 10A). A reconstructed river profile from the relict part of the landscape
542 and through this area of high channel steepness towards the coast, shows gradual
543 changes in channel slope that reflect these variations in inferred normalized rock
544 uplift rate and the monotonic increase in upstream drainage area (Fig. 10B).

545 This example also highlights an additional complexity when working with
546 DEMs that may not be hydrologically robust (Boulton and Stokes, 2018). In this
547 case, the DEM has local sinks due to glacial overdeepenings. This results in a
548 noisy along-channel topographic profile, as shown in Fig. 10B. Another feature
549 caused by local sinks is seen in the central part of the inferred topography (Fig.
550 9A) where drainage directions have been inferred across a filled, and therefore
551 flat, depression. This has resulted in several parallel ‘rivers’ that quickly lose

552 upstream drainage area. When these artifacts are used to build the topography,
553 they result in short steep rivers that are clearly not representative of a pre-incision
554 topography. Fortunately, these are isolated features that could be removed if the
555 DEM is required for further analyses.

556 **6. Discussion**

557 Landscape evolution modeling is crucial to interpret data constraining geo-
558 morphic processes and rates. For example, this data may constrain short-term
559 processes such as dated strath terraces or cosmogenic nuclide concentration mea-
560 surements or longer term processes in the form of thermochronometric data and
561 sediment flux measurements. In these examples, an initial condition is required
562 to run landscape evolution models forward in time to produce results that can be
563 compared to observations. We have presented a means to generate an initial con-
564 dition that maintains slope-area scaling, but allows for spatial variations in rock
565 uplift rate. Some datasets may be insensitive to the initial condition, however, in
566 places where a limited amount of data is available or where the degree of total
567 incision is expected to be low, the initial condition becomes important. This is es-
568 pecially true for studying rates of landscape evolution on planetary surfaces, such
569 as on Mars (e.g., Howard et al., 2005; Palucis et al., 2014).

570 The approach presented here assumes that a landscape prior to incision was
571 close to steady state. It is possible to recreate multiple stages of landscape evo-
572 lution if separate phases of landscape evolution can be identified independently.
573 Alternatively, a complete uplift rate history could be extracted from river networks
574 using inverse methods (Roberts et al., 2012; Fox et al., 2014; Goren et al., 2014;
575 Rudge et al., 2015), and landscapes could be generated at specific time intervals.

576 However, for the problem of interpolating between relict portions of topography,
577 a simpler analysis is justified.

578 As others have previously noted (e.g., Schoenbohm et al., 2004; Harkins et al.,
579 2007), the amount of erosion between the present and the time represented by the
580 reconstructed landscape at any point in a landscape does not equal the difference
581 between the reconstructed topography and the modern topography. This is be-
582 cause the channel segment above the knickpoint is eroding at a rate given by the
583 steepness, upstream drainage area and the erodibility index. For example, a land-
584 scape may be in steady state with the regional rock uplift rate prior to a sudden
585 increase in rock uplift rate. The landscape above knickpoints will continue to
586 erode at the old regional rock uplift rate while below knickpoints, the erosion rate
587 will be adjusted to the new rock uplift rate. The landscape below the knickpoints
588 will be in steady state with the new rock uplift rate, but above the knickpoints
589 surface uplift will occur. The incision rate into the relict landscape will thus be
590 the difference between the new rock uplift rate and the old rock uplift rate.

591 Geomorphic noise in the dataset will result in short wavelength variations in
592 normalized rock uplift rates and may occur due to several factors. Here, geomor-
593 phic noise is considered to be aspects of the topography that do not help constrain
594 normalized rock uplift rates, and these aspects may be real or artifacts in the DEM
595 (Boulton and Stokes, 2018). These artifacts may be due to an inability of the
596 DEM to accurately record the deepest parts of canyons due to the canyon being
597 narrower than the resolution of the DEM or from parts of the base of canyon being
598 obscured by steep sides of the canyon. The artifacts may also be from flow routing
599 algorithms that attempt to fill depressions, resulting in flat sections of topography
600 and artificial steps and sills.

601 Other physical aspects of topography that do not constrain normalized rock
602 uplift rates include local variations in channel steepness due to regional varia-
603 tions in lithology, landslides and drainage divide migration. Local landslides can
604 increase and decrease local channel steepness values by blocking rivers and sub-
605 sequently being incised into. Landslides can also deliver material to rivers dramat-
606 ically changing the bedload and therefore, the local slope of the river (Sklar and
607 Dietrich, 2004; Ouimet et al., 2007). This is potentially problematic as landslide
608 activity is expected to also correlate with changes in incision rate to some degree
609 (e.g., Bennett et al., 2016).

610 Drainage divide migration and river capture is also treated as geomorphic
611 noise. However, this is also potentially problematic as it may be possible that
612 high elevation and low relief surfaces that are assumed to be remnants of relict
613 landscape are actually formed by the processes of channel capture (Yang et al.,
614 2015). For example, a steady state river channel will have channel slopes that
615 increase with decreasing drainage area (Hack, 1973). This channel is expected to
616 be eroding at a uniform and constant rate equal to the regional rock uplift rate. If
617 however, the upper reaches of the channel are captured by a neighboring catch-
618 ment, the upstream drainage area is dramatically reduced and the erosion rates
619 also reduce. If the rock uplift rate remains constant, this low slope river segment
620 will be advected upwards, ultimately becoming a low relief high elevation seg-
621 ment. Importantly, tests can be applied to discriminate between remnants of relict
622 low relief landscapes and surfaces that have been formed through drainage divide
623 migration and capture (Whipple et al., 2017).

624 By analyzing large datasets with multiple tributaries the influence of geomor-
625 phic noise can be reduced. This influence can also be reduced by finding a solution

626 to the inverse problem that is very simple, either through large pixel sizes or large
627 λ values, so that more data are used to resolve a specific model parameter. It is
628 important to note, however, that by attempting to reduce the influence of noise by
629 incorporating more data the computational time and memory required to solve the
630 inverse problem increases and the exact rate of increase depends on the topology
631 of the drainage network. Furthermore, by finding a simple solution to the inverse
632 problem, the ability to extract information from the topography is decreased, and
633 this trade-off between sensitivity to noise and model resolution should be explored
634 on a case-by-case basis.

635 The ability to infer the model parameters using the data and the forward model
636 come from multiple sources. In the case of a 1D profile, the normalized rock uplift
637 rate in the relict part of the landscape resolves the regional normalized rock uplift
638 rate and the baselevel parameter. In this scenario, the relict topography is simply
639 projected out across the incised part of the landscape, and multiple channel nodes
640 within the relict landscape are required to determine the model parameters. In the
641 case of a 2D drainage network, however, model resolution comes from this same
642 process, but also from the fact that the normalized rock uplift rate at a specific
643 point in the trunk channel influences the elevations of all points upstream of this
644 point. Therefore, only a single node is needed within each area of relict landscape
645 to infer a map of normalized rock uplift rates, however the model resolution will
646 depend on how smoothly this map varies, how large the pixels are and the topology
647 of the drainage network.

648 Both of the 2D examples presented here highlight an important advantage of
649 using an appropriate forward model to generate a pre-incision topography over
650 other interpolation methods. In the case of Grand Canyon, the Colorado River

651 flows through the elevated topography of the Kaibab uplift. If a pre-incision to-
652 pography was determined by fitting a surface through the low-relief topography
653 above the rim of Grand Canyon, the drainage network that would be inferred
654 would be very different: the Colorado River would be inferred to flow around
655 the Kaibab uplift. If this topography was then used to test landscape evolution
656 scenarios, it would be challenging to get the Colorado River to cut through this
657 dome. Instead, the forward model forces the Colorado River to flow along the
658 ‘correct’ path, which makes testing landscape evolution scenarios easier. This is
659 also the case for the Karrat region in West Greenland, where the glaciers have
660 incised through a region of high topography. A potential limitation of forcing
661 the pre-incision topography to have the same drainage network as the modern to-
662 pography is that there are likely to be scenarios where the drainage network has
663 evolved, and this may be the focus of the research. In these scenarios, fitting a
664 surface through remnant topography is required.

665 7. Conclusion

666 This paper has developed a new approach to reconstruct relict relief of fluvial
667 networks. The approach is based on the analytical solution to the steady state
668 stream power model in which the elevation of a specific channel node is the along
669 channel integral of normalized rock uplift multiplied by χ from baselevel to the
670 specific node. The modern channel network is used to calculate values of χ at the
671 resolution of the DEM. However, only channel nodes that are chosen to be part
672 of the relict landscape are used to reconstruct the full relict landscape, which is
673 a function of the baselevel and normalized rock uplift rate that is free to vary in
674 space. The preservation of the relict landscape determines how many data points

675 are used in the analysis to infer normalized rock uplift rate. In turn, there will be
676 no data points to constrain normalized rock uplift rates in area where the remnants
677 of the relict landscape are not preserved. In this respect, the problem is under-
678 determined and smoothness constraints are required. In order to improve the time
679 required to calculate values for normalized rock uplift rate as a function of space
680 and a baselevel parameter, we discretize the problem using a grid and within a
681 single grid pixel, the normalized rock uplift rate is constant. Each value of the
682 normalized rock uplift rate grid is constrained by a combination of the channel
683 pixels that are upstream of the grid pixel and by the requirement that normalized
684 rock uplift rates vary smoothly in space. This smoothness constraint is imposed
685 using a negative Laplacian operator.

686 A trade-off exists between the degree of smoothness and the fit to the channel
687 nodes that are part of the relict landscape. Smooth solutions will define long
688 wavelength variations in normalized rock uplift rate and be robust with respect
689 to geomorphic noise, but may not fit the data well. Whereas, models that overfit
690 the data, will be sensitive to geomorphic noise and long wavelength variations
691 in normalized rock uplift rate may be obscured by short wavelength noise and
692 artifacts. This is a common phenomenon when dealing with any interpolation
693 routine and requires that users explore multiple solutions with a range of damping
694 parameters before choosing a final solution.

695 **Acknowledgements**

696 I would like to thank L. Goren, M. Brandon, D. Shuster and K. Cuffey for
697 stimulating discussions and B. Briant for providing information about initial con-
698 ditions used in landscape evolution models. I also thank M. Stokes for a construc-

699 tive formal review. Research was funded by NERC (NE/N015479/1). Figures
700 were prepared using the Generic Mapping Tools (Wessel et al., 2013).

701 **References**

702 Amos, C. B., Burbank, D. W., 2007. Channel width response to differen-
703 tial uplift. *Journal of Geophysical Research: Earth Surface* 112 (F2), doi:
704 10.1029/2006JF000672.

705 Arge, L., Chase, J. S., Halpin, P., Toma, L., Vitter, J. S., Urban, D., Wick-
706 remesinghe, R., 2003. Efficient flow computation on massive grid terrain
707 datasets. *GeoInformatica* 7 (4), 283–313, doi:10.1023/A:102552642.

708 Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., Roberts, G. P., 2008.
709 Modeling fluvial incision and transient landscape evolution: Influence of dy-
710 namic channel adjustment. *Journal of Geophysical Research: Earth Surface*
711 113 (F3), doi:10.1029/2007JF000893.

712 Bennett, G. L., Miller, S. R., Roering, J. J., Schmidt, D. A., 2016. Landslides,
713 threshold slopes, and the survival of relict terrain in the wake of the Mendocino
714 Triple Junction. *Geology* 44 (5), 363–366, doi:10.1130/G37530.1.

715 Berlin, M. M., Anderson, R. S., 2007. Modeling of knickpoint retreat on the Roan
716 Plateau, western Colorado. *Journal of Geophysical Research: Earth Surface*
717 112 (F3), doi:10.1029/2006JF000553.

718 Bishop, P., Hoey, T. B., Jansen, J. D., Artza, I. L., 2005. Knickpoint recession
719 rate and catchment area: The case of uplifted rivers in eastern Scotland. *Earth
720 Surface Processes and Landforms* 30 (6), 767–778, doi:10.1002/esp.1191.

721 Bonow, J. M., Japsen, P., Nielsen, T. F., 2014. High-level landscapes along the
722 margin of southern East Greenland—A record of tectonic uplift and incision

723 after breakup in the NE Atlantic. *Global and Planetary Change* 116, 10–29,
724 doi:10.1016/j.gloplacha.2014.01.010.

725 Boulton, S. J., Stokes, M., 2018. Which DEM is best for analyzing fluvial land-
726 scape development in mountainous terrains? *Geomorphology* 310, 168–187,
727 doi:10.1016/j.geomorph.2018.03.002.

728 Briant, R. M., Cohen, K. M., Cordier, S., Demoulin, A. J., Macklin, M. G.,
729 Mather, A. E., Rixhon, G., Veldkamp, T., Wainwright, J., Whittaker, A.,
730 et al., 2018. Applying Pattern Oriented Sampling in current fieldwork prac-
731 tice to enable more effective model evaluation in fluvial landscape evolution
732 research. *Earth surface processes and landforms* 43 (14), 2964–2980, doi:
733 10.1002/esp.4458.

734 Burbank, D., Blythe, A., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M.,
735 Barros, A., Ojha, T., 2003. Decoupling of erosion and precipitation in the Hi-
736 malayas. *Nature* 426 (6967), 652–655, doi:10.1038/nature02187.

737 Castelltort, S., Goren, L., Willett, S. D., Champagnac, J.-D., Herman, F., Braun,
738 J., 2012. River drainage patterns in the New Zealand Alps primarily controlled
739 by plate tectonic strain. *Nature Geoscience* 5, 744–748, doi:10.1038/ngeo1582.

740 Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel,
741 B. C., Zhang, X., Tang, W., Wang, E., Chen, L., 2004. Surface uplift, tecton-
742 ics, and erosion of eastern Tibet from large-scale drainage patterns. *Tectonics*
743 23 (1), doi:10.1029/2002TC001402.

744 Clark, M. K., Maheo, G., Saleeby, J., Farley, K. A., 2005. The non-equilibrium
745 landscape of the southern Sierra Nevada, California. *GSA Today* 15 (9), 4–10.

746 Constable, S. C., Parker, R. L., Constable, C. G., 1987. Occam's inversion: A
747 practical algorithm for generating smooth models from electromagnetic sound-
748 ing data. *Geophysics* 52 (3), 289–300, doi:10.1190/1.1442303.

749 Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu,
750 J. C., Horng, M. J., Chen, M. C., Stark, C. P., et al., 2003. Links between ero-
751 sion, runoff variability and seismicity in the Taiwan orogen. *Nature* 426 (6967),
752 648–651, doi:10.1038/nature02150.

753 Darling, A., Whipple, K., 2015. Geomorphic constraints on the age of the western
754 Grand Canyon. *Geosphere* 11 (4), 958–976, doi:10.1130/GES01131.1.

755 Davis, W. M., 1899. The geographical cycle. *The Geographical Journal* 14 (5),
756 481–504, doi:10.2307/1774538.

757 Demoulin, A., Mather, A., Whittaker, A., 2017. Fluvial archives, a valuable record
758 of vertical crustal deformation. *Quaternary Science Reviews* 166, 10–37, doi:
759 10.1016/j.quascirev.2016.11.011.

760 DiBiase, R. A., Whipple, K. X., Heimsath, A. M., Ouimet, W. B., 2010.
761 Landscape form and millennial erosion rates in the San Gabriel Moun-
762 tains, CA. *Earth and Planetary Science Letters* 289 (1), 134–144, doi:
763 10.1016/j.epsl.2009.10.036.

764 Dorsey, R. J., Fluette, A., McDougall, K., Housen, B. A., Janecke, S. U., Axen,
765 G. J., Shirvell, C. R., 2007. Chronology of Miocene–Pliocene deposits at Split
766 Mountain Gorge, southern California: A record of regional tectonics and Col-
767 orado River evolution. *Geology* 35 (1), 57–60, doi:10.1130/G23139A.1.

768 Duvall, A., Kirby, E., Burbank, D., 2004. Tectonic and lithologic controls on
769 bedrock channel profiles and processes in coastal California. *Journal of Geo-*
770 *physical Research: Earth Surface* 109 (F3), doi:10.1029/2003JF000086.

771 Ferrier, K. L., Huppert, K. L., Perron, J. T., 2013. Climatic control of bedrock
772 river incision. *Nature* 496 (7444), 206–209, doi:10.1038/nature11982.

773 Finnegan, N. J., Roe, G., Montgomery, D. R., Hallet, B., 2005. Controls on the
774 channel width of rivers: Implications for modeling fluvial incision of bedrock.
775 *Geology* 33 (3), 229–232, doi:10.1130/G21171.1.

776 Flint, J. J., 1974. Stream gradient as a function of order, magnitude, and discharge.
777 *Water Resources Research* 10 (5), 969–973, doi:10.1029/WR010i005p00969.

778 Flowers, R., Farley, K., 2012. Apatite $4\text{He}/3\text{He}$ and (U-Th)/He evidence
779 for an ancient Grand Canyon. *Science* 338 (6114), 1616–1619, doi:
780 10.1126/science.1229390.

781 Fox, M., Shuster, D. L., 2014. The influence of burial heating on the (U-Th)/He
782 system in apatite: Grand Canyon case study. *Earth and Planetary Science Let-*
783 *ters* 397, 174–183, doi:10.1016/j.epsl.2014.04.041.

784 Fox, M., Goren, L., May, D. A., Willett, S. D., 2014. Inversion of fluvial channels
785 for paleorock uplift rates in Taiwan. *Journal of Geophysical Research: Earth*
786 *Surfacedoi:10.1002/2014JF003196.*

787 Fox, M., Bodin, T., Shuster, D. L., 2015. Abrupt changes in the
788 rate of Andean Plateau uplift from reversible jump Markov Chain
789 Monte Carlo inversion of river profiles. *Geomorphology* 238, 1–14, doi:
790 10.1016/j.geomorph.2015.02.022.

791 Fox, M., Tripathy-Lang, A., Shuster, D., Winn, C., Karlstrom, K., Kel-
792 ley, S., 2017a. Westernmost Grand Canyon incision: Testing thermochrono-
793 metric resolution. *Earth and Planetary Science Letters* 474, 248–256, doi:
794 10.1016/j.epsl.2017.06.049.

795 Fox, M., Tripathy-Lang, A., Shuster, D. L., 2017b. Improved spatial resolution of
796 elemental maps through inversion of LA-ICP-MS data. *Chemical Geology* doi:
797 <http://dx.doi.org/10.1016/j.chemgeo.2017.07.001>.

798 Gabet, E., Pratt-Sitaula, B., Burbank, W., 2004. Climatic controls on hillslope
799 angle and relief in the Himalayas. *Geol* 32, 629–632, doi:10.1130/G20641.1.

800 Gallagher, K., Sambridge, M., 1992. The resolution of past heat flow in sedimen-
801 tary basins from non-linear inversion of geochemical data: the smoothest model
802 approach, with synthetic examples. *Geophysical Journal International* 109 (1),
803 78–95, doi:10.1111/j.1365-246X.1992.tb00080.x.

804 Geach, M., Stokes, M., Telfer, M., Mather, A., Fyfe, R., Lewin, S.,
805 2014. The application of geospatial interpolation methods in the reconstruc-
806 tion of Quaternary landform records. *Geomorphology* 216, 234–246, doi:
807 10.1016/j.geomorph.2014.03.036.

808 Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steck, M., Tyler, D., 2002. The
809 national elevation dataset. *PE & RS- Photogrammetric Engineering & Remote*
810 *Sensing* 68 (1), 5–11.

811 Gesch, D., 2007. The National Elevation Dataset. In: Maune, D. F. (Ed.), *Digital*
812 *elevation model technologies and applications: The DEM users manual*. Asprs
813 *Pubns.*

814 Glotzbach, C., Van Der Beek, P. A., Spiegel, C., 2011. Episodic exhumation and
815 relief growth in the Mont Blanc massif, Western Alps from numerical modelling
816 of thermochronology data. *Earth and Planetary Science Letters* 304 (3), 417–
817 430, doi:10.1016/j.epsl.2011.02.020.

818 Goren, L., Fox, M., Willett, S. D., 2014. Tectonics from fluvial topography using
819 formal linear inversion: Theory and applications to the Inyo Mountains, Cal-
820 ifornia. *Journal of Geophysical Research: Earth Surface* 119 (8), 1651–1681,
821 doi:10.1002/2014JF003079.

822 Goren, L., Castelltort, S., Klinger, Y., 2015. Modes and rates of horizontal defor-
823 mation from rotated river basins: Application to the Dead Sea fault system in
824 Lebanon. *Geology* 43 (9), 843–846, doi:10.1130/G36841.1.

825 Gray, H. J., Shobe, C. M., Hobley, D. E., Tucker, G. E., Duvall, A. R., Har-
826 bert, S. A., Owen, L. A., 2017. Off-fault deformation rate along the southern
827 San Andreas fault at Mecca Hills, southern California, inferred from landscape
828 modeling of curved drainages. *Geology* 46 (1), 59–62, doi:10.1130/G39820.1.

829 Hack, J. T., 1973. Stream-profile analysis and stream-gradient index. *Journal of*
830 *Research of the US Geological Survey* 1 (4), 421–429.

831 Harkins, N., Kirby, E., Heimsath, A., Robinson, R., Reiser, U., 2007. Tran-
832 sient fluvial incision in the headwaters of the Yellow River, northeastern Ti-
833 bet, China. *Journal of Geophysical Research: Earth Surface* 112 (F3), doi:
834 10.1029/2006JF000570.

835 Howard, A. D., Kerby, G., 1983. Channel changes in badlands. *Bulletin*

836 of the Geological Society of America 94 (6), 739–752, doi:10.1130/0016-
837 7606(1983)94<739:CCIB>2.0.CO;2.

838 Howard, A. D., Moore, J. M., Irwin, R. P., 2005. An intense terminal epoch of
839 widespread fluvial activity on early Mars: 1. Valley network incision and asso-
840 ciated deposits. *Journal of Geophysical Research: Planets* 110 (E12), (?).

841 Ingersoll, R. V., Grove, M., Jacobson, C. E., Kimbrough, D. L., Hoyt, J. F., 2013.
842 Detrital zircons indicate no drainage link between southern California rivers and
843 the Colorado Plateau from mid-Cretaceous through Pliocene. *Geology* 41 (3),
844 311–314, doi:10.1130/G33807.1.

845 Japsen, P., Bonow, J. M., Green, P. F., Chalmers, J. A., Lidmar-Bergström, K.,
846 2006. Elevated, passive continental margins: Long-term highs or Neogene up-
847 lifts? New evidence from West Greenland. *Earth and Planetary Science Letters*
848 248 (1-2), 330–339, doi:10.1016/j.epsl.2006.05.036.

849 Jess, S., Stephenson, R., Brown, R., 2018. Evolution of the central West Green-
850 land margin and the Nuussuaq Basin: Localised basin uplift along a stable
851 continental margin proposed from thermochronological data. *Basin Research*
852 30 (6), 1230–1246, doi:10.1111/bre.12301.

853 Karlstrom, K. E., Lee, J. P., Kelley, S. A., Crow, R. S., Crossey, L. J., Young,
854 R. A., Lazear, G., Beard, L. S., Ricketts, J. W., Fox, M., et al., 2014. Forma-
855 tion of the Grand Canyon 5 to 6 million years ago through integration of older
856 palaeocanyons. *Nature Geoscience* 7 (3), 239–244, doi:10.1038/ngeo2065.

857 Kirby, E., Ouimet, W., 2011. Tectonic geomorphology along the eastern margin of
858 Tibet: Insights into the pattern and processes of active deformation adjacent to

859 the Sichuan Basin. Geological Society, London, Special Publications 353 (1),
860 165–188, doi:10.1144/SP353.9.

861 Kirby, E., Whipple, K. X., 2012. Expression of active tectonics in
862 erosional landscapes. *Journal of Structural Geology* 44, 54–75, doi:
863 10.1016/j.jsg.2012.07.009.

864 Kirby, E., Whipple, K. X., Tang, W., Chen, Z., 2003. Distribution of active rock
865 uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock
866 channel longitudinal profiles. *Journal of Geophysical Research: Solid Earth*
867 108 (B4), doi:10.1029/2001JB000861.

868 Lague, D., 2010. Reduction of long-term bedrock incision efficiency by short-term
869 alluvial cover intermittency. *Journal of Geophysical Research: Earth Surface*
870 115 (F2), doi:10.1029/2008JF001210.

871 Lamb, M. P., Howard, A. D., Dietrich, W. E., Perron, J. T., 2007. Formation
872 of amphitheater-headed valleys by waterfall erosion after large-scale slumping
873 on Hawaii. *Geological Society of America Bulletin* 119 (7-8), 805–822, doi:
874 10.1130/B25986.1.

875 Lamb, M. P., Dietrich, W. E., Sklar, L. S., 2008. A model for fluvial bedrock
876 incision by impacting suspended and bed load sediment. *Journal of Geophysical*
877 *Research: Earth Surface* 113 (F3), doi:10.1029/2007JF000915.

878 Lavé, J., Avouac, J. P., 2001. Fluvial incision and tectonic uplift across the Hi-
879 malayas of central Nepal. *Journal of Geophysical Research* 106 (B11), 26561–
880 26, doi:10.1029/2001JB000359.

881 Lee, J., Stockli, D. F., Owen, L. A., Finkel, R. C., Kislitsyn, R., 2009. Exhumation
882 of the Inyo Mountains, California: Implications for the timing of extension
883 along the western boundary of the Basin and Range Province and distribution
884 of dextral fault slip rates across the eastern California shear zone. *Tectonics*
885 28 (1), doi:10.1029/2008TC002295.

886 Lehner, B., Verdin, K., Jarvis, A., 2008. New global hydrography derived from
887 spaceborne elevation data. *EOS, Transactions American Geophysical Union*
888 89 (10), 93–94, doi:10.1029/2008EO100001.

889 Lucchitta, I., Jeanne, R. A., Young, R., Spamer, E., 2001. Geomorphic features
890 and processes of the Shivwits Plateau, Arizona, and their constraints on the
891 age of western Grand Canyon. *Colorado River Origin and Evolution: Grand*
892 *Canyon, Arizona, Grand Canyon Association, Monograph 12*, 65–70.

893 Lucchitta, I., Holm, R. F., Lucchitta, B. K., 2013. Implications of the Miocene
894 (?) Crooked Ridge River of northern Arizona for the evolution of the
895 Colorado River and Grand Canyon. *Geosphere* 9 (6), 1417–1433, doi:
896 10.1130/GES00861.1.

897 Matthes, F. E., 1972. Geologic history of the Yosemite Valley. In: *Glaciers and*
898 *Glacial Erosion*. Springer, pp. 92–118.

899 Medvedev, S., Souche, A., Hartz, E., 2013. Influence of ice sheet and glacial
900 erosion on passive margins of Greenland. *Geomorphology* 193, 36–46, doi:
901 10.1016/j.geomorph.2013.03.029.

902 Moon, S., Chamberlain, C. P., Blisniuk, K., Levine, N., Rood, D. H., Hilley, G. E.,

903 2011. Climatic control of denudation in the deglaciated landscape of the Wash-
904 ington Cascades. *Nature Geoscience* 4 (7), 469–473, doi:10.1038/ngeo1159.

905 Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L.,
906 Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., et al., 2017. BedMa-
907 chine v3: Complete bed topography and ocean bathymetry mapping of Green-
908 land from multibeam echo sounding combined with mass conservation. *Geo-
909 physical Research Letters* 44 (21), 11–051, doi:10.1002/2017GL074954.

910 Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W. D., Valters, D. A.,
911 2014. A statistical framework to quantify spatial variation in channel gradients
912 using the integral method of channel profile analysis. *Journal of Geophysical
913 Research: Earth Surface* doi:10.1002/2013JF002981.

914 Neely, A. B., Bookhagen, B., Burbank, D. W., 2017. An Automated Knick-
915 zone Selection Algorithm (KZ-Picker) to Analyze Transient Landscapes: Cal-
916 ibration and Validation. *Journal of Geophysical Research: Earth Surface*, doi:
917 10.1002/2017JF004250.

918 Neteler, M., Bowman, M., Landa, M., Metz, M., 2012. GRASS GIS: a multi-
919 purpose Open Source GIS. *Environmental Modelling & Software* 31, 124–130,
920 doi:10.1016/j.envsoft.2011.11.014.

921 Oskin, M., Burbank, D. W., Dec. 2005. Alpine landscape evolution dominated by
922 cirque retreat. *Geology* 33, 933–937, doi:10.1130/G21957.1.

923 Ouimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., Chen, Z., 2007. The
924 influence of large landslides on river incision in a transient landscape: Eastern

margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin 119 (11-12), 1462–1476, doi:10.1130/B26136.1.

Ouimet, W. B., Whipple, K. X., Granger, D. E., 2009. Beyond threshold hill-slopes: Channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37 (7), 579–582, doi:10.1130/G30013A.1.

Palucis, M. C., Dietrich, W. E., Hayes, A. G., Williams, R. M., Gupta, S., Mangold, N., Newsom, H., Hardgrove, C., Calef, F., Sumner, D. Y., 2014. The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars. Journal of Geophysical Research: Planets 119 (4), 705–728, doi:0.1002/2013JE004583.

Pelletier, J. D., 2010. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona. Geological Society of America Bulletin 122 (3-4), 595–608, doi:10.1130/B26403.1.

Penck, W., Czech, H., Boswell, K. C., 1972. Morphological analysis of land forms: a contribution to physical geology. Hafner Publishing Company.

Perron, J. T., Royden, L., 2013. An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms 38, 570–576, doi: 10.1002/esp.3302.

Powell, J. W., 1875. Exploration of the Colorado River of the West and its Tributaries.

Ramsey, L. A., Walker, R. T., Jackson, J., 2007. Geomorphic constraints on the active tectonics of southern Taiwan. Geophysical Journal International 170 (3), 1357–1372, doi:10.1111/j.1365-246X.2007.03444.x.

948 Riebe, C. S., Kirchner, J. W., Granger, D. E., Finkel, R. C., 2001. Minimal climatic
949 control on erosion rates in the Sierra Nevada, California. *Geology* 29 (5), 447–
950 450, doi:10.1130/0091-7613(2001)029;0447:MC COER;2.1.CO;2.

951 Roberts, G. G., White, N., 2010. Estimating uplift rate histories from river profiles
952 using African examples. *Journal of Geophysical Research* 115 (B2), B02406,
953 doi:10.1029/2009JB006692.

954 Roberts, G., White, N., Martin-Brandis, G., Crosby, A., 2012. An uplift history of
955 the Colorado Plateau and its surroundings from inverse modeling of longitudinal
956 river profiles. *Tectonics* 31 (4), doi:10.1029/2012TC003107.

957 Rosenbloom, N. A., Anderson, R. S., 1994. Hillslope and channel evolution in
958 a marine terraced landscape, Santa Cruz, California. *Journal of Geophysical
959 Research* 99 (B7), 14013–14030, doi:10.1029/94JB00048.

960 Ross, D., 1976. Geologic map of the Waucoba Wash quadrangle, Inyo County,
961 California. Geologic quadrangle map gq-612, scale 1:62,500, U.S. Geological
962 Survey.

963 Royden, L., Perron, J. T., 2013. Solutions of the stream power equation and ap-
964 plication to the evolution of river longitudinal profiles. *Journal of Geophysical
965 Research: Earth Surface* 118 (2), 497–518, doi:10.1002/jgrf.20031.

966 Rudge, J. F., Roberts, G. G., White, N. J., Richardson, C. N., 2015. Uplift his-
967 tories of Africa and Australia from linear inverse modeling of drainage inven-
968 tories. *Journal of Geophysical Research: Earth Surface* 120 (5), 894–914, doi:
969 10.1002/2014JF003297.

970 Sambridge, M., 1990. Non-linear arrival time inversion: constraining velocity
971 anomalies by seeking smooth models in 3-D. *Geophysical Journal International*
972 102 (3), 653–677, doi:10.1111/j.1365-246X.1990.tb04588.x.

973 Scheingross, J. S., Lo, D. Y., Lamb, M. P., 2017. Self-formed waterfall plunge
974 pools in homogeneous rock. *Geophysical Research Letters* 44 (1), 200–208,
975 doi:10.1002/2016GL071730.

976 Schildgen, T. F., Cosentino, D., Bookhagen, B., Niedermann, S., Yıldırım, C.,
977 Echtler, H., Wittmann, H., Strecker, M. R., 2012. Multi-phased uplift of the
978 southern margin of the Central Anatolian plateau, Turkey: A record of tectonic
979 and upper mantle processes. *Earth and Planetary Science Letters* 317, 85–95,
980 doi:10.1016/j.epsl.2011.12.003.

981 Schoenbohm, L., Whipple, K., Burchfiel, B., Chen, L., 2004. Geomorphic con-
982 straints on surface uplift, exhumation, and plateau growth in the Red River re-
983 gion, Yunnan Province, China. *Geological Society of America Bulletin* 116 (7-
984 8), 895–909, doi:10.1130/B25364.1.

985 Segall, P., Harris, R., 1987. Earthquake deformation cycle on the San Andreas
986 fault near Parkfield, California. *Journal of Geophysical Research: Solid Earth*
987 92 (B10), 10511–10525.

988 Seidl, M. A., Dietrich, W. E., 1993. The problem of channel erosion into bedrock.
989 *Catena supplement* 23, 101–101.

990 Sklar, L., Dietrich, W. E., 1998. River Longitudinal Profiles and Bedrock Incision
991 Models: Stream Power and the Influence of Sediment Supply. In: Tinkler, K. J.,

992 Wohl, E. E. (Eds.), Rivers Over Rock: Fluvial Processes in Bedrock Channels.
993 American Geophysical Union, pp. 237–260, doi:10.1029/GM107p0237.

994 Sklar, L. S., Dietrich, W. E., 2001. Sediment and rock strength controls on river
995 incision into bedrock. *Geology* 29 (12), 1087–1090.

996 Sklar, L. S., Dietrich, W. E., 2004. A mechanistic model for river incision
997 into bedrock by saltating bed load. *Water Resources Research* 40 (6), doi:
998 10.1029/2003WR002496.

999 Small, E. E., Anderson, R. S., Feb. 1998. Pleistocene relief production in
1000 Laramide mountain ranges, western United States. *Geology* 26, 123–127.

1001 Steer, P., Huismans, R. S., Valla, P. G., Gac, S., Herman, F., 2012. Bimodal Plio-
1002 Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. *Nature
1003 Geoscience* 5 (9), 635–639, doi:10.1038/ngeo1549.

1004 Sternai, P., Herman, F., Champagnac, J.-D., Fox, M., Salcher, B., Willett, S. D.,
1005 2012. Pre-glacial topography of the European Alps. *Geology* 40 (12), 1067–
1006 1070, doi:10.1130/G33540.1.

1007 Stokes, M., Mather, A., Rodés, Á., Kearsey, S., Lewin, S., 2018. Anatomy,
1008 Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic
1009 Cordillera, SE Spain). *Quaternary* 1 (2), 15 doi:10.3390/quat1020015.

1010 Streitz, R., Stinson, M., 1974. Geologic map of California : Death Valley sheet.
1011 scale 1:250,000, California Division of Mines and Geology.

1012 Strunk, A., Knudsen, M. F., Egholm, D. L., Jansen, J. D., Levy, L. B., Ja-
1013 cobsen, B. H., Larsen, N. K., 2017. One million years of glaciation and de-

1014 nudation history in west Greenland. *Nature communications* 8, 14199, doi:
1015 10.1038/ncomms14199.

1016 Sugden, D. E., 1974. Landscapes of glacial erosion in Greenland and their rela-
1017 tionship to ice, topographic and bedrock conditions. *Inst. Br. Geogr. Spec. Publ.*
1018 7, 177195.

1019 Tucker, G. E., Slingerland, R. L., 1994. Erosional dynamics, flexural isostasy, and
1020 long-lived escarpments: A numerical modeling study. *Journal of Geophysical*
1021 *Research: Solid Earth* 99 (B6), 12, doi:10.1029/94JB00320.

1022 Tucker, G. E., Slingerland, R., 1997. Drainage basin responses to climate change.
1023 *Water Resources Research* 33 (8), 2031–2047, doi:10.1029/97WR00409.

1024 Turowski, J. M., Lague, D., Crave, A., Hovius, N., 2006. Experimental channel
1025 response to tectonic uplift. *Journal of Geophysical Research: Earth Surface*
1026 111 (F3), 2156–2202, doi:10.1029/2005JF000306.

1027 Valla, P. G., Shuster, D. L., Van Der Beek, P. A., 2011. Significant increase in relief
1028 of the European Alps during mid-Pleistocene glaciations. *Nature geoscience*
1029 4 (10), 688, doi:10.1038/ngeo1242.

1030 Van der Beek, P., Bourbon, P., 2007. A quantification of the glacial im-
1031 print on relief development in the French western Alps. *Geomorphology* doi:
1032 doi:10.1016/j.geomorph.2007.02.038.

1033 Van Gorp, W., Temme, A., Veldkamp, A., Schoorl, J., 2015. Modelling long-term
1034 (300 ka) upland catchment response to multiple lava damming events. *Earth*
1035 *surface processes and landforms* 40 (7), 888–900, doi:10.1002/esp.3689.

1036 Von Blanckenburg, F., 2005. The control mechanisms of erosion and weathering
1037 at basin scale from cosmogenic nuclides in river sediment. *Earth and Planetary
1038 Science Letters* 237 (3), 462–479, doi:10.1016/j.epsl.2005.06.030.

1039 Wang, P., Zheng, H., Liu, S., 2012. Geomorphic constraints on Middle Yangtze
1040 River reversal in eastern Sichuan Basin, China. *Journal of Asian Earth Sciences
1041* 69, 70–85, doi:10.1016/j.jseaes.2012.09.018.

1042 Wessel, P., Smith, W. H., Scharroo, R., Luis, J., Wobbe, F., 2013. Generic map-
1043 ping tools: improved version released. *Eos, Transactions American Geophys-
1044 ical Union* 94 (45), 409–410, doi:10.1002/2013EO450001.

1045 West, A. J., Fox, M., Walker, R. T., Carter, A., Harris, T., Watts, A. B., Gantulga,
1046 B., 2013. Links between climate, erosion, uplift, and topography during intra-
1047 continental mountain building of the Hangay Dome, Mongolia. *Geochemistry,
1048 Geophysics, Geosystems* 14 (12), 5171–5193, doi:10.1002/2013GC004859.

1049 Whipple, K. X., Tucker, G. E., 1999. Dynamics of the stream-power river incision
1050 model: Implications for height limits of mountain ranges, landscape response
1051 timescales, and research needs. *Journal of Geophysical Research: Solid Earth
1052* 104 (B8), doi:10.1029/1999JB900120.

1053 Whipple, K. X., Tucker, G. E., 2002. Implications of sediment-flux-dependent
1054 river incision models for landscape evolution. *Journal of Geophysical Research:
1055 Solid Earth* 107 (B2), 2039, doi:10.1029/2000JB000044.

1056 Whipple, K. X., DiBiase, R. A., Ouimet, W. B., Forte, A. M., 2017. Preserva-
1057 tion or piracy: Diagnosing low-relief, high-elevation surface formation mecha-
1058 nisms. *Geology* 45 (1), 91–94, doi:10.1130/G38490.1.

1059 Whittaker, A. C., Boulton, S. J., 2012. Tectonic and climatic controls on knick-
1060 point retreat rates and landscape response times. *Journal of Geophysical Re-*
1061 *search: Earth Surface* 117 (F2), doi:10.1029/2011JF002157.

1062 Wickert, A. D., Mitrovica, J. X., Williams, C., Anderson, R. S., 2013. Gradual
1063 demise of a thin southern Laurentide ice sheet recorded by Mississippi drainage.
1064 *Nature* 502 (7473), 668–671, doi:10.1038/nature12609.

1065 Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., Chen, C.-Y.,
1066 2014. Dynamic Reorganization of River Basins. *Science* 343 (6175), doi:
1067 10.1126/science.1248765.

1068 Winn, C., Karlstrom, K. E., Shuster, D. L., Kelley, S., Fox, M., 2017. 6 Ma age
1069 of carving Westernmost Grand Canyon: Reconciling geologic data with com-
1070 bined AFT,(U-Th)/He, and ^{4}He / ^{3}He thermochronologic data. *Earth and Plane-*
1071 *tary Science Letters* 474, 257–271, doi:10.1016/j.epsl.2017.06.051.

1072 Wittmann, H., von Blanckenburg, F., Kruesmann, T., Norton, K. P., Kubik, P. W.,
1073 2007. Relation between rock uplift and denudation from cosmogenic nuclides
1074 in river sediment in the Central Alps of Switzerland. *Journal of Geophysical*
1075 *Research: Earth Surface* 112 (F4), F04010, doi:10.1029/2006JF000729.

1076 Wobus, C. W., Crosby, B. T., Whipple, K. X., 2006. Hanging valleys in fluvial sys-
1077 tems: Controls on occurrence and implications for landscape evolution. *Journal*
1078 *of Geophysical Research: Earth Surface* 111 (F2), doi:10.1029/2005JF000406.

1079 Yang, R., Willett, S. D., Goren, L., 2015. In situ low-relief landscape forma-
1080 tion as a result of river network disruption. *Nature* 520 (7548), 526–530, doi:
1081 10.1038/nature14354.

1082 Yanites, B. J., Tucker, G. E., Mueller, K. J., Chen, Y.-G., Wilcox, T., Huang, S.-
1083 Y., Shi, K.-W., 2010. Incision and channel morphology across active structures
1084 along the Peikang River, central Taiwan: Implications for the importance of
1085 channel width. *Geological Society of America Bulletin* 122 (7–8), 1192–1208,
1086 doi:10.1130/B30035.1.

1087 Young, R. A., 1989. Paleogene-Neogene deposits of western Grand Canyon,
1088 Arizona. *Geology of Grand Canyon, Northern Arizona (with Colorado*
1089 *River Guides): Lee Ferry to Pierce Ferry, Arizona, 166–174, doi:*
1090 *10.1029/FT115p0166.*

Pre-incision landscape

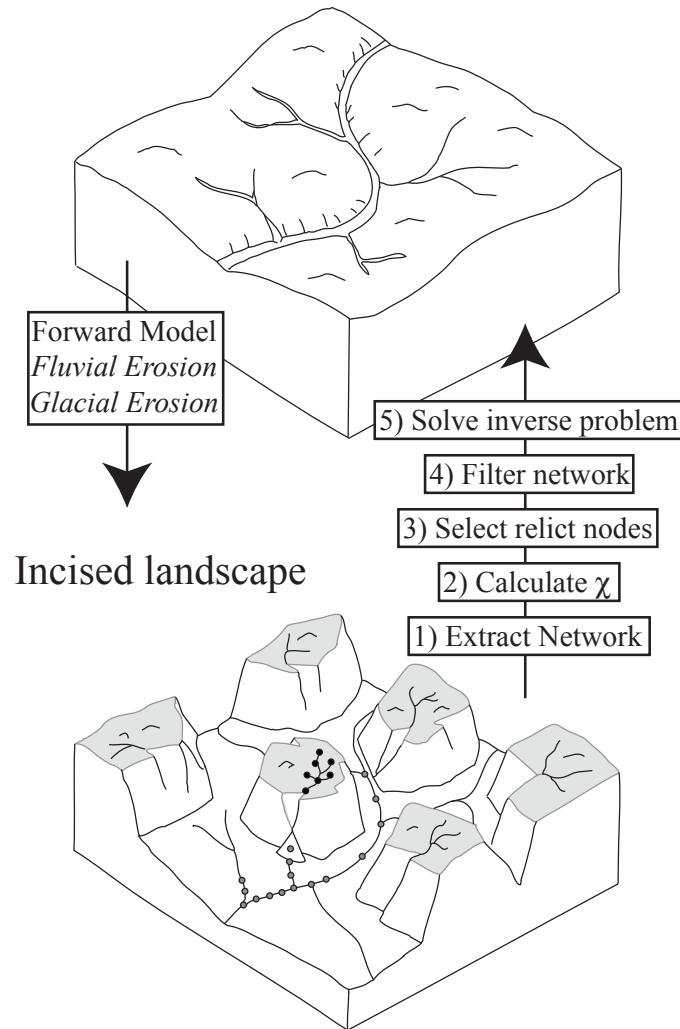


Figure 1: In some settings, low relief landscapes may be incised resulting in modern topography with high-elevation low-relief remnant surfaces. In order to understand erosional processes driving the incision (the forward model), an initial topography is often required for landscape evolution models or to obtain estimates of incision, sediment volume or exhumation. The steps required to solve the corresponding inverse problem (to build an initial topography from remnant surfaces and the modern drainage network), are described on the right of the figure. A representative part of the discrete filtered river network is shown for the remnant surface and the rest of the network as black and gray circles, respectively.

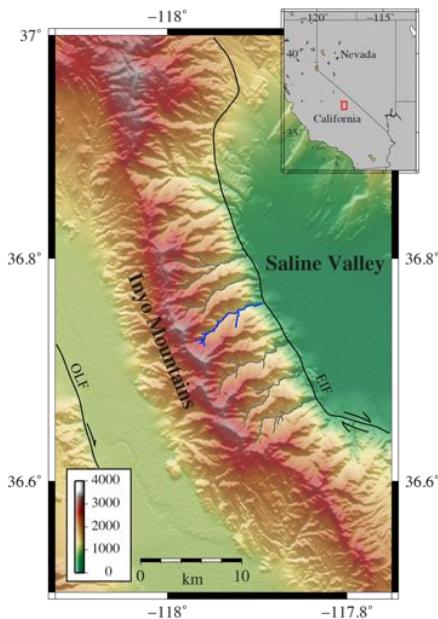


Figure 2: The topography of the Inyo Mountains with the rivers shown in gray draining to the Saline Valley. The McElvoy Canyon is shown in blue. Inset shows the location of the Inyo Mountains with respect to California and Nevada. The black lines are the approximate locations of the Eastern Inyo Fault (EIF) and the Owens Lake Fault (OLF) after Lee et al. (2009). Data source: The National Elevation Dataset (NED) digital elevation model (DEM) (Gesch et al., 2002; Gesch, 2007).

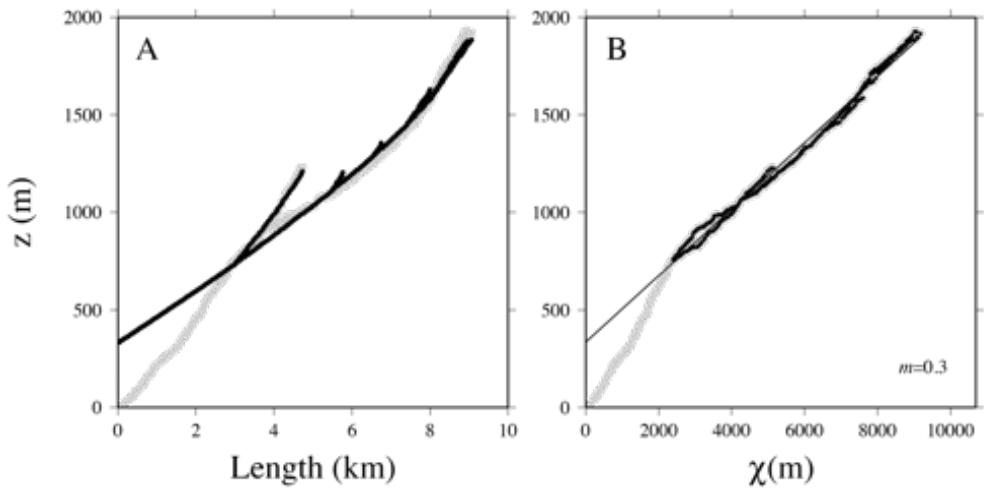


Figure 3: (A) Long-profile of the McElvoy Canyon and its tributaries for river nodes with an upstream drainage area greater than 10 km^2 , gray curve. The data were extracted from National Elevation Dataset (NED) digital elevation model (DEM) (Gesch et al., 2002; Gesch, 2007). The black points show the reconstructed steady state landscape using the recovered channel steepness and baselevel value. (B) χ -elevation relationship for the McElvoy Canyon and its tributaries, with $m = 0.3$ and $A_0 = 1 \text{ km}^2$. The black points are the nodes used to constrain the channel steepness and the baselevel parameter, and the black line is the fit to these points.

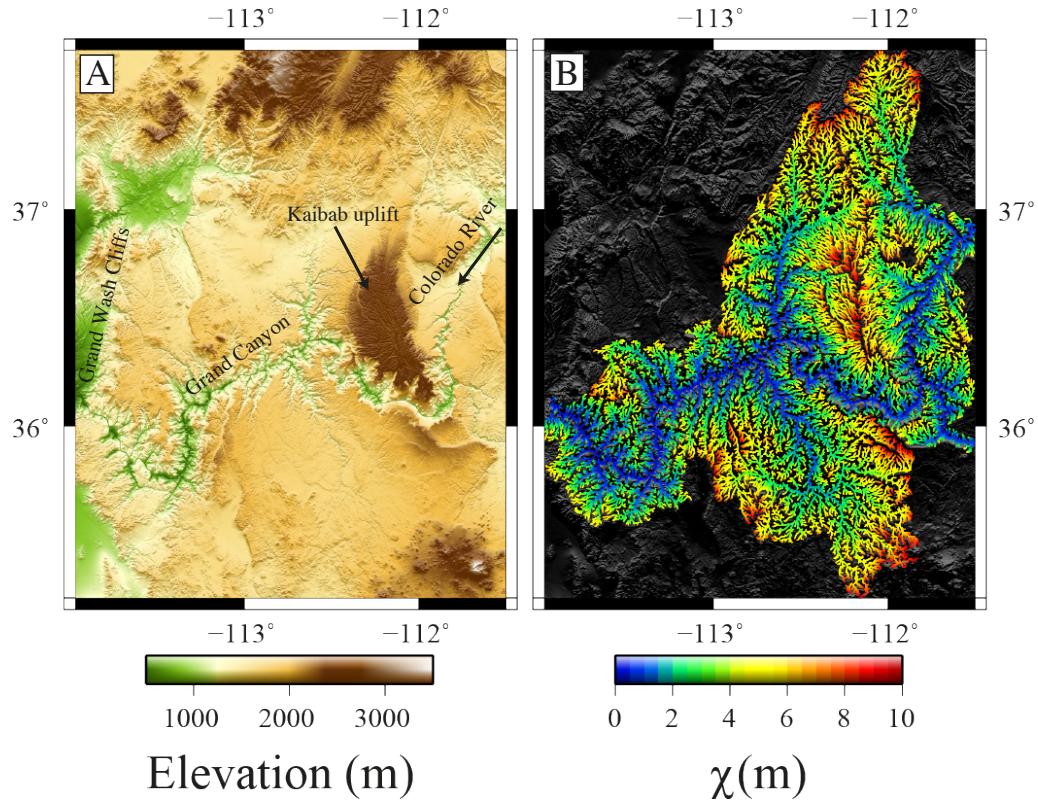


Figure 4: (A) Topography of Grand Canyon showing the deeply incised canyon and surrounding low relief surfaces. However, there is still significant topography across the region, in particular the Kaibab uplift is almost 1 km higher than the surrounding plains. The upstream course of the Colorado River is shown by the arrow from the east. (B) χ map of all rivers with an upstream drainage area greater than 1 km^2 based on data from (Lehner et al., 2008) that join the main Colorado River between the longitude shown in the figure. The baselevel is defined at the Grand Wash Cliffs and a value of $m = 0.5$ and $A_0 = 1 \text{ m}^2$ was used to calculate χ . Importantly, the entire upstream drainage area of the Colorado river was used to calculate χ along the Colorado River.

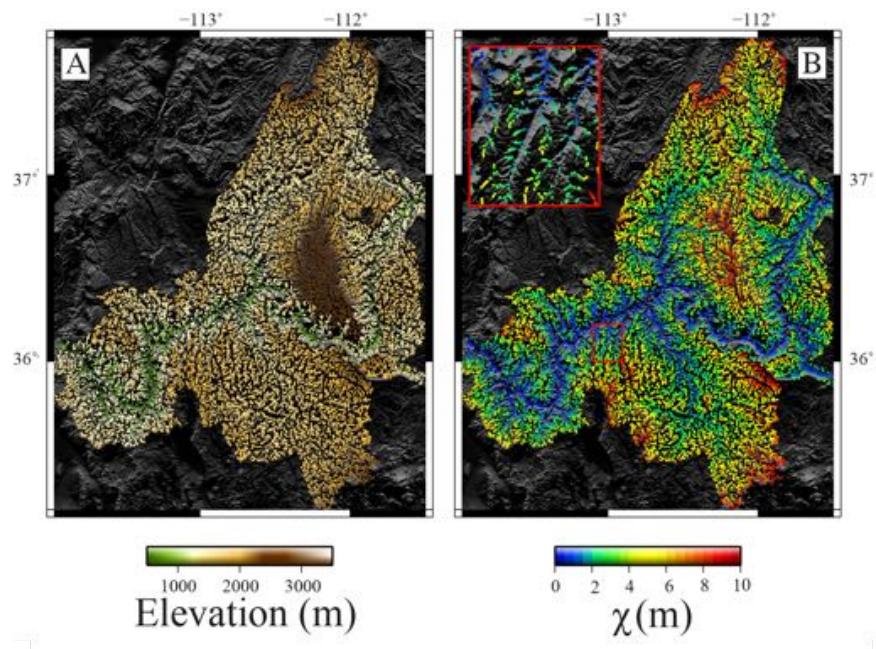


Figure 5: (A) Sampled topography and (B) χ values used for the inversion. Only nodes that had a 5% greater upstream drainage area than the node upstream were selected. This reduces the number of nodes used in the analysis by a factor of ~ 7 (from 246,907 to 36,458). It is important to note that the complete dataset was used to calculate χ .

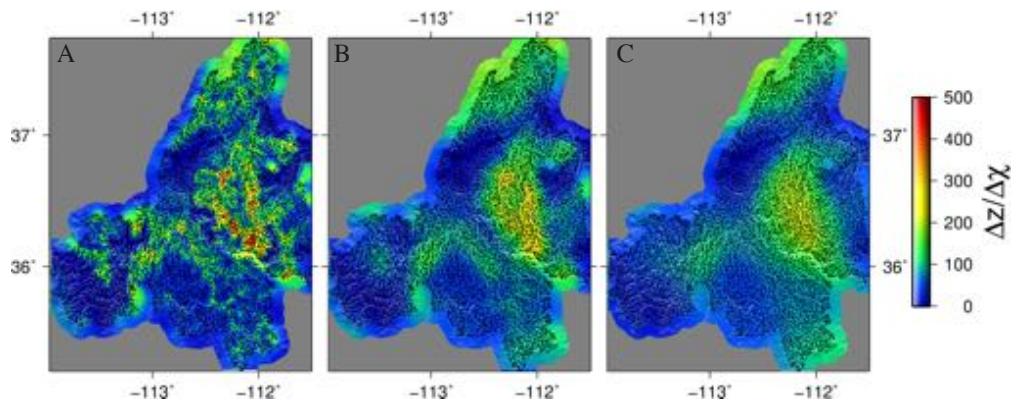


Figure 6: Model dependence on the smoothness parameter. (A) $\lambda=0.1$, (B) $\lambda=2$, and (C) $\lambda=10$. The $\Delta z/\Delta \chi$ is the normalized rock uplift rate. The inferred baselevel values for these results are 1491, 1500 and 1457 for $\lambda=0.1$, $\lambda=2$, and $\lambda=10$ respectively.

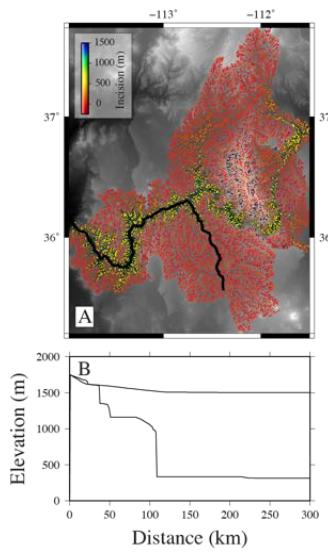


Figure 7: Example result for $\lambda=2$. We show the calculated difference between the reconstructed topography at the sampled node locations (A) and an example of a river long profile (B). Differences between the reconstructed topography and the modeled topography are associated with either changes in the baselevel or data misfit, i.e., the inability to fit the modern river nodes given the smoothness constraints and discretization scheme. Differences associated with changes in the baselevel are clearest within Grand Canyon. Data misfit is most pronounced within the Kaibab Uplift close to the Grand Canyon.

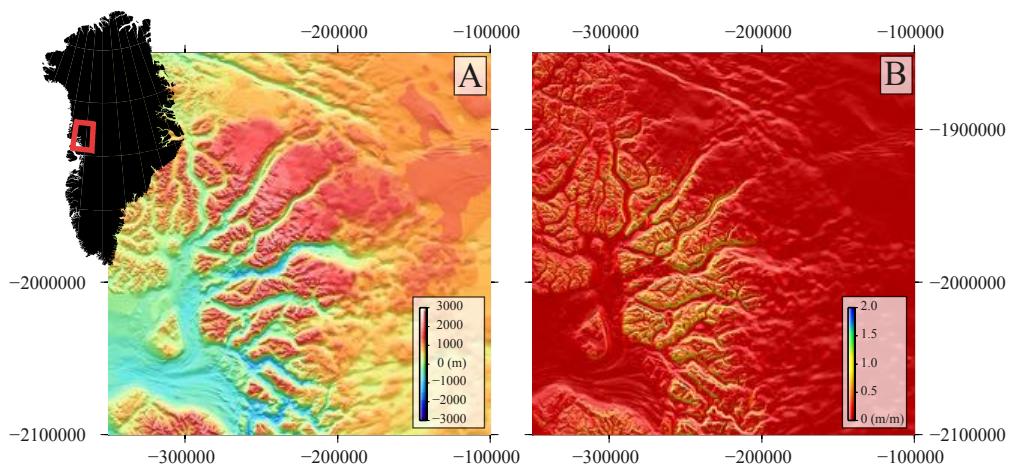


Figure 8: (A) The topography of the Karrat region showing deep glacial valleys and high remnant parts of the landscape. The projection for this map is the Polar Stereographic North projection, with a central meridian of 45°W and standard parallel of 70°N , and the x and y axes have units of meters in this projection. (B) The slope map for the Karrat region highlighting the steepened walls of the glacial troughs and the relatively low slope of the high elevation portion of the landscape.

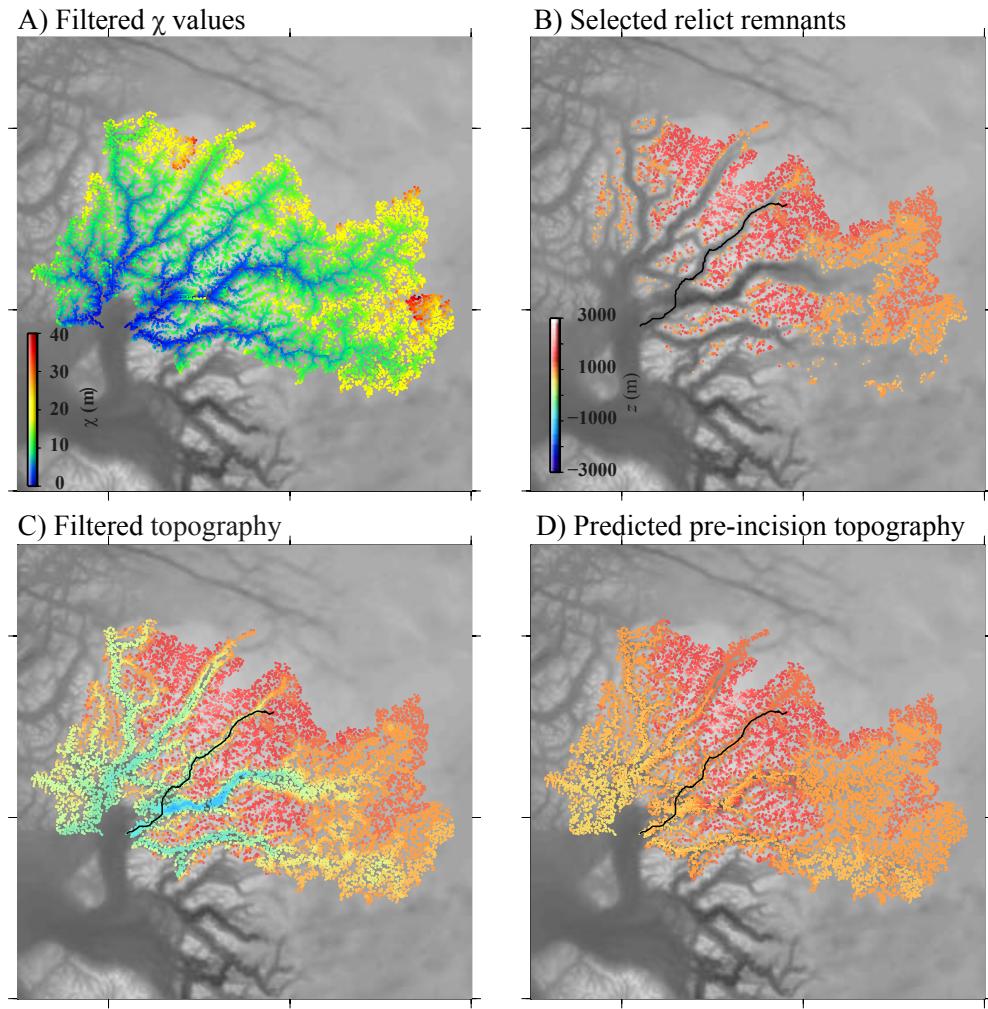


Figure 9: (A) The χ values for the Karrat region. The total dataset was filtered after the full dataset was used to calculate χ , so that only 20% of the nodes were chosen at random. (B) The locations of high remnant parts of the topography used in the inversion. These were selected at elevations greater than 850 m and for slopes less than 0.6 m/m. The criteria for selecting these remnants would strongly influence the results and this should be explored for further applications. (C) The elevations of the filtered nodes and these are shown to help comparison with the recovered pre-incision topography. Only the elevations shown in (B) are used in the inversion. (D) The predicted pre-incision topography showing that the glacial troughs have been filled in with a river valley, determined by the normalized rock uplift rate and the baselevel parameter, which is 579.8 m.

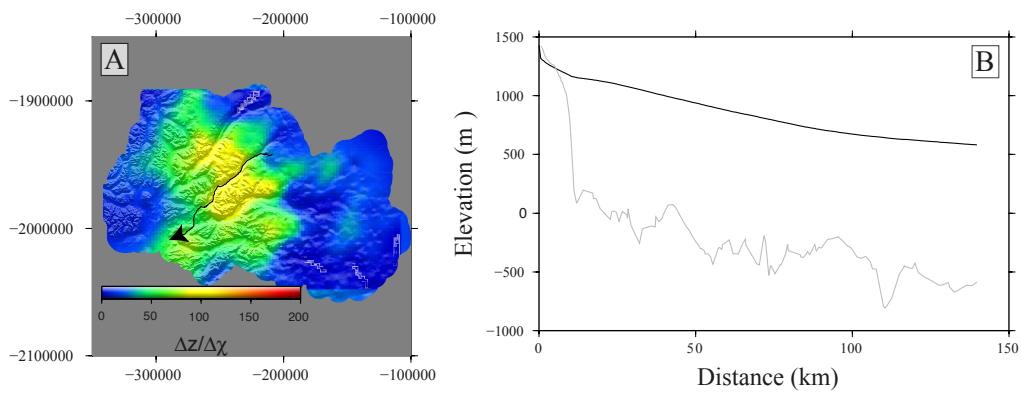


Figure 10: (A) The inversion results highlight an area of high normalized rock uplift rate across the centre of the analyzed area. (B) A river cutting through this area is inferred to have high along-channel slopes at high elevations where drainage area is small. As the river flows into the area of high normalized rock uplift rate, the slopes decrease before increasing downstream of the area. The slopes decrease again due to the increasing upstream drainage area and slightly lower normalized rock uplift rate.