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Abstract 

Motivation: The underlying genomic variation of a large number of pathogenic viruses can 

give rise to drug resistant mutations resulting in treatment failure. Next generation 

sequencing (NGS) enables the identification of viral quasi-species and the quantification of 

minority variants in clinical samples; therefore, it can be of direct benefit by detecting drug 

resistant mutations and devising optimal treatment strategies for individual patients. 

Results: The ICONIC (Infection response through virus genomics) project has developed an 

automated, portable and customisable high-throughput computational pipeline to assemble 

de novo whole viral genomes, either segmented or non-segmented, and quantify sequence 

variants using residual diagnostic samples. The pipeline has been benchmarked on a 

dedicated High-Performance Computing cluster using paired-end reads from 39 RSV, 420 

HIV and 341 Influenza clinical samples. The median coverage of the generated genomes was 

96% for the RSV samples, 82% for the HIV dataset and 100% for each Influenza segment. 

The samples were analysed in parallel, with an average duration of 3 hours per sample. The 

pipeline can be easily ported to a dedicated server or cluster through either an installation 

script or a docker image. As it enables the subtyping of viral samples and the detection of 

relevant drug resistance mutations within three days of sample collection, our pipeline 



 

could operate within existing clinical reporting time frames and potentially be used as a 

decision support tool towards more effective personalised patient treatments. 

Availability: The software and its documentation are available from 

https://github.com/ICONIC-UCL/pipeline 

Contact: t.cassarino@ucl.ac.uk 

Supplementary information: Supplementary data are available online. 
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1 Introduction 

Viruses are intracellular parasites and most are characterised by a high replication rate 

within their host. During replication the polymerase proteins are prone to transcription 

errors or mutations, with RNA viruses having the highest mutation rates. New genomes 

containing mutations are continuously generated and selected on the basis of their fitness 

to infect and to replicate within the host’s cells[1]. Average mutation rates of RNA viruses 

are about 10−4 – 10−5 errors per nucleotide copied or, based on average genomic sizes, 

about one mutation per genome copied[2]. Moreover, recombination of genomic parts 

increases the evolution dynamics and the genomic divergence within viral populations. One 

such example is the Human Immunodeficiency Virus (HIV), where the recombination is 



 

considered faster than the mutation rate[3]. These and other features suggest that a viral 

population is actually made of an ensemble of related mutants that can be described as a 

quasi-species and on which the selective pressure influences all the viruses as a single unit. 

Such high genomic variability allows the viral populations to survive challenges mounted by 

the host’s immune system and by antiviral agents, hindering the effective treatment of 

patients and making it difficult to eradicate infections[4]. Next-Generation Sequencing 

(NGS) coupled with bioinformatics analyses enables the high-throughput detection of 

genomic variants and the classification of known and novel viral species overcoming the 

need for expensive culturing and/or labour-intensive Sanger sequencing techniques[5]. 

Within the context of a clinical setting, NGS data can be applied on sequenced diagnostic 

samples to identify pathogens by assembling whole genomes and quantifying low-level drug 

resistance mutations below the 15-20% frequency sensitivity limit of the traditional Sanger 

sequencing technique[6].  

In order to impact patient treatment pathways, it is necessary for a computational pipeline 

to be capable of combining a number of features at the same time. These are the ability to 

be pathogen agnostic, to assemble de novo whole genomes, to report genome variants, to 

be scalable for high-throughput analyses, customisable and portable to different software 

environments. 

To this end a computational pipeline for analysing NGS data was developed that meets all of 

these above requirements. The input data are unprocessed paired-end reads from residual 

clinical diagnostic samples obtained under appropriate ethics permissions, while the output 

reports the consensus genome and all minority variants present in the viral quasi-species. 

The pipeline is part of the ICONIC project, which uses viral genomic data to provide decision 



 

support towards the personalised treatment of patients; to guide hospital infection control 

responses; and to inform the surveillance and epidemiological responses to viral community 

outbreaks. 

 

2 Methods 

2.1 Software Installation 

The pipeline has been written in Python and developed for analysing batches of paired-end 

reads on a High Performance Computing (HPC) cluster or on a server running the Son of Grid 

Engine scheduler (which must be installed separately). The software can be built either by 

the provided installation script or from a Dockerfile [https://www.docker.com/]. Both of 

these alternatives automatically: (1) download the pipeline dependencies, (2) configure the 

pipeline and (3) install it on the local appliance. Finally, the pipeline can be loaded as a 

bundle of Environment Modules[7] which can be used immediately.  

2.2 Reads Analysis 

The pipeline takes as input a set of short paired-end reads, returning the consensus 

genome, the list of identified variants and a set of statistics and QC metrics for each 

analysed sample, as well as for the whole dataset. The software consists of a number of 

well-defined functional stages, which allow the pipeline to be run from a particular starting 

point or on a specific analysis step. After parsing the input arguments, the pipeline initialises 

and sends an array job to the HPC cluster, which runs the analysis of each sample’s reads in 

parallel to facilitate rapid analysis. Each analysis job is composed of seven distinct stages, as 

shown in Figure 1. 



 

Figure1 

 

Figure 1. The workflow of the computational pipeline showing the major steps during the 

analysis of the sample reads. Stage 1: Trimming step to keep only reads with high quality 

base scores; stage 2: filtering step to discard reads unmapped or mapping to the host; stage 

3: de novo assembly of the remaining reads into contigs; stage 4: alignment step to find the 

most likely reference genome for the sample; stage 5: filling gaps between contigs using the 

reference and creating the consensus genome by replacing contigs and reference bases with 

those that were most frequently found in the reads; stage 6: quantification of the genomic 



 

variants; stage 7: generation of statistics and quality control measures for the sample 

consensus genome. 

 

The first stage takes as input the short paired-end reads in either flat or compressed FASTQ 

format and passes them to Trimmomatic[8] (version 0.33), which removes or trims low 

quality read pairs (used with default settings, except for a sliding window Phred score cut-

off of 30) . In the second stage, the remaining read pairs are mapped with SMALT (version 

0.7.6, http://www.sanger.ac.uk/science/tools/smalt-0) against a user-defined decoy 

genome (which must be created by the user), containing the host genome and a set of 

genomes corresponding to the virus present in the sample set. Then, reads that map 

preferentially to the host or that are unmapped are discarded. FastQC (version 0.11.3,  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) can be optionally run before 

the trimming stage and after this filtering step to perform a quality control analysis and to 

manually spot potential any sequencing bias. 

The third stage generates contigs by performing a de novo assembly of the filtered paired-

end reads. In the current implementation, contigs are generated by the IVA de novo 

assembler[9] (version 1.0.0). 

In the fourth stage, contigs are aligned with LASTZ[10] (1.07.73) against an user-made local 

set of genomic sequences of the  sequenced virus, in order to identify the match with the 

highest alignment score. For segmented genomes (e.g. Influenza) this step identifies the 

best hit for each segment, thus allowing to utilise references with different subtypes. 

BLAST+[11] (version 2.2.30) is used to efficiently retrieve the reference sequence, which are 

written to a file.  

http://www.sanger.ac.uk/science/tools/smalt-0


 

The fifth stage creates the sample consensus genome. It produces a first draft sequence by 

aligning, with LASTZ, the contigs to the (previously found) reference genome and by filling 

the gaps between them using the reference bases. Since there is not a required minimum 

contig coverage, a draft genome can be built with less contig bases than those present in 

the reference.Whenever aligned contigs overlap, the contig with the highest read depth of 

coverage is used in the draft genome. Afterwards, an iterative approach is used to generate 

the final consensus genome. Firstly, filtered reads are mapped to the draft genome from 

which a pileup file is generated with Samtools[12] (version 1.2). The pileup file is then 

parsed  to count the read bases (or gaps) in each alignment position and the base (or gap) 

with the highest count overwrites the corresponding aligned draft sequence base. The 

mapping and pileup steps are repeated until the genome converges to a stable sequence, 

i.e. when there are no more substitutions, insertions or deletions to be made. A maximum 

of 10 cycles are performed to avoid potentially infinite iterations.  

In the sixth stage, the reads are mapped for the last time to the consensus genome and the 

variants – i. e., the differences (substitutions, insertions and deletions) of the read bases 

with respect to the consensus genome – at each genomic position are quantified using 

Samtools mpileup and saved to a file. To reduce the number of false positive variants, the 

pipeline allows user-defined cut-offs of variant read depth, variant frequency and consensus 

base frequency. The variants are also reported at variant frequency thresholds of 20% and 

2%, in accordance with current Public Health England reporting practices and two additional 

bins of 10% and 5%.  



 

In the seventh and last stage, summary statistics and plots are generated for the consensus 

genome; these metrics include genome length, read depth of coverage distribution, number 

of variants and strand biases.  

When all the samples have been analysed, the pipeline collects the genome metrics of each 

sample and aggregates them to provide a set of statistics for the whole batch. Each stage 

saves to disk its results, and optionally, it is possible to keep all intermediate files created 

during the analysis; however, this requires considerably more disk space. The pipeline 

records all the steps performed during the analysis, saves the final status of each sample 

analysis and the cause of any premature halt (e.g. when de novo assembly fails due to an 

insufficient number of reads), thus assisting in identifying problematic samples.  

The analysis stages can be either modified through the configuration file, which stores all 

the parameters used during the analysis, or substituted with user-made plugins. New 

reference datasets and decoy genomes can be added to the pipeline just by including their 

paths to the configuration file, thus allowing the pipeline to analyse NGS data of any virus. 

Additional details regarding input options, configuration parameters, supporting data and 

result descriptions can be found in the software documentation . 

 

2.3 Ethics permissions 

The ICONIC study has REC approval (13/LO/1303) received on 20th August 2013, IRAS 

project ID 131373. The favourable opinion applies to all NHS sites taking part in the study, 

while additional permissions have been obtained from the NHS/HSC R&D offices of all 

partner sites prior to the start of the study. 



 

 

3 Results 

The capability of the pipeline to build de novo genomes was assessed using publicly 

available read datasets and, as an example, the results on a set of 39 Human Respiratory 

Syncytial Virus (RSV) samples are shown. The pipeline performances were also tested on 

two bigger clinical sample datasets sequenced as 300 basepair paired-end reads at the 

Wellcome Trust Sanger Institute on an Illumina MiSeq machine. The first set comprises 420 

ICONIC samples of HIV, whereas the second set consists of 341 ICONIC samples of the 

outbreaks-responsible Influenza virus. 

 

3.1 Comparison with publicly available RSV genomes 

A test set of 39 RSV publicly available sequences, A and B subtypes, with deposited reads 

was selected from Agoti et al[13] and downloaded from the Sequence Read Archive (SRA). 

We created a local BLAST database of reference sequences from full RSV genomes available 

in GenBank (as of 2015-10-01) and a decoy genome made of the human genome and the 

RSV reference sequences. The average duration of a sample analysis was around 3 hours. 

With respect to the test set, the genomes built with the pipeline were longer in 19 samples 

(49%), of comparable length in 13 samples (33%), and shorter only in 7 (18%) due to the 

small number of reads remaining after the quality filtering stage (Details can be found in the 

Table_S1 of the supplementary material). The median coverage of the built genomes was 

96% of the corresponding reference. Therefore, our pipeline can build consistently full-size 



 

genomes and also contribute to the deposited public sequences by improving their genomic 

coverage. 

 

3.2 Analysis of HIV clinical samples 

 The pipeline analysed 420 HIV ICONIC samples using a  local BLAST database of complete 

genomes for all HIV-1 subtypes taken from the Los Alamos HIV Sequence Database 

(http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html, October 2015), and a 

decoy genome made of the human genome (version hg38) and the HIV sequences of the 

BLAST database. The pipeline assembled de novo 377 genomes out of 420 samples (~90%), 

three quarters of which covered at least 94% of the respective reference sequence. In the 

remaining 43 samples only a few hundreds reads were left after the human contaminant 

ones were discarded, causing the assembly to fail. The consensus genomes were aligned 

against the HXB2 reference sequence (Gen-Bank accession: K03455) with LASTZ to identify 

the regions where the pipeline was most successful in assembling the consensus sequence. 

Figure 2 shows that all the assembled genomes cover every gene of HXB2, confirming that 

the pipeline could assemble full-length, clinically relevant genomes, for every sample for 

which the sequencing was successful. However the genome depth of coverage decreases 

towards the end of the sequence with two regions with lower depth than the surrounding 

sequence. 

Figure2 

http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html


 

 

Figure 2.  Genome depth of coverage from the analysis of the HIV batch. The blue line 

represents the number of genomes aligned at each position of the HXB2 sequence, showing 

that all the genomes cover each gene of HXB2. The depth decreases towards the end of the 

sequence, from around 350 genomes to about 200, and that it is much lower between 

about 2000 and 4000, and after around 8000, than the surrounding depth. 

 

The variants identified in the last step of the pipeline above the 1% frequency cutoff, are 

aggregated from all the sample results and reported as a distribution of points against the 

genome positions, allowing to qualitatively assess the degree of variability along the viral 

genome through the samples in the batch. As displayed in Figure 3, mutations are spread all 

over the HIV genome and are more frequent in the Gag and Env regions, confirming their 

known high variability. 

Figure3 



 

 

Figure 3.  Variants within the HIV sample dataset. Each dot represents the absolute number 

of variants above the 1% frequency cutoff, at each position of the consensus genome across 

all the samples. The regions with the highest variation correspond to the Gag and Env genes. 

 

For each sample, the pipeline generated plots to visualise several measures on the reads 

mapped to the consensus genome, for example the reads depth of coverage as shown in 

Figure S1 (Supplementary Material). These plots can be useful to check the possible causes 

for which the pipeline does not build the consensus genome even if a sample has been 

sequenced successfully. 

 

3.3 Analysis of Influenza clinical samples 

The database used as reference set for the analysis of the 341 ICONIC Influenza samples was 

created using the Human Influenza full genomes belonging to any serotype downloaded 

from the NCBI's Influenza Virus Resource (October 2015). As for the HIV analysis, the decoy 

genome was made of the human genome (version hg38) and the Influenza reference 



 

sequences. The pipeline reported 169 genomes on a total of 341 (~50%) samples, while the 

rest did not contain enough viral reads to be de novo assembled into contigs. To overall 

assess the degree to which the consensus genomes covered the Influenza segments, these 

were aligned against a H1N1 sequence (strain: A/California/07/2009). Although the 

Influenza segments are relatively short (around 2000 bases for the longest one), the pipeline 

was able to create either partial or full-length segments (an example is shown by the 

genome depth in Figures S2 and S3 for segment 1 and 4 respectively). The length of each 

assembled segment depends on the number of filtered reads available for that particular 

region, which can be assessed from the distribution of the median read depth (Figure S4 in 

the Supplementary Material). The segment coverage across the entire dataset is plotted in 

Figure S5 (Supplementary Material) as the distribution of the consensus genome coverage 

against its reference (Ns in the consensus genome are ignored); the median coverage was 

100% for all segments and at least 50% for the first three segments in half of the dataset 

samples. The sequence variants identified in the last step of the pipeline are aggregated 

from all the sample results and reported for each segment as well. In each sample, the plot 

of reads depth along the consensus genome qualitatively identified regions where the 

sequencing have been successful; Figure 4 illustrates an example in one Influenza sample, 

showing that the number of aligned reads is higher at the ends of the segment than in the 

central region. Moreover, the number of soft-clipped reads highlights regions with many 

mismatches, in which the alignment to the consensus genome is more difficult than in the 

central region. 

Figure4 



 

 

Figure 4.  Read depth of coverage along the consensus sequence of segment 4 built for an 

Influenza sample. The blue line shows the number of aligned reads, the green dashed line 

shows the properly-mapped (according to the mapper) reads and the red dash-dotted line 

represents the number of soft-clipped reads. In regions with higher read depth, variants are 

called more reliably; a high number of soft-clipped reads represents mismatches and can 

indicate positions with high base variability. 

 

For each consensus genome it was possible to inspect the variants in a table through: (1) 

their type (substitution, insertion or deletion), (2) the variant frequency and (3) the ratio 

between the amount of forward and reverse reads. By plotting the distribution of each 

single mutation against the consensus sequence, it was possible to identify genomic regions 

with high variability. The Influenza virus is characterized by a relatively low mutation rate; 

therefore, the number of variants at each position is far less with respect to high mutation 

rate viral genomes as HIV (as displayed for segment 1 in Figure S6 in the Supplementary 

Material). 

 



 

 

3.4. Performances 

The analysis was performed using University College London's HPC cluster "Legion" on 124 

dedicated Dell C6220 nodes, where each node can work as a 16 core Symmetric Multi-

Processing device with 64 GB of RAM. Legion runs an operating system based on Red Hat 

Enterprise Linux 7 with the Son of Grid Engine batch scheduler. 

The pipeline processed each HIV sample in about 2 hours, while it analysed each Influenza 

sample in less than 5 hours, on average. The stages with the longest duration were the 

filtering step, in which the reads are aligned to the decoy genome and the assembly stage, 

where the reads are de novo assembled. All the software, except the scripts that build the 

consensus genome and manage the flow of the data through the workflow, was run in 

multi-threading mode using all the cores available to decrease the computational time of 

the analysis. The memory used through the analysis of each sample had an initial peak 

around 10 GB during the filtering stage (because the mapping software needs to load into 

memory the index of the decoy genome and the reads), whereas it reached 2 GB during the 

de novo assembly step; otherwise, the average memory load is about 500 MB. 

Finally, Docker images have a negligible impact on the performances[14] and this holds true 

especially for our pipeline, since it is contained in a single Docker image. 

A detailed analysis of the performances of the ICONIC pipeline on a dedicated server can be 

found in the Intel white paper “Performance Considerations of the ICONIC Next-Generation 

Viral Sequencing Pipeline”. 

 



 

3.5 Portability 

The pipeline can be installed either from a Dockerfile or by an installation script on a 

GNU/Linux system, or it can be ran directly as a docker image. The former installation 

method can be used on a dedicated server, while the latter is better suited for 

environments shared among multiple users, hence addressing different set up needs. Often 

Docker cannot be installed on academic clusters for security reasons, as the ability of 

running docker images is equivalent to having access to root privileges [Docker Security: 

https://docs.docker.com/engine/articles/security/]. In these cases Environmental Modules 

are used to make sure all software dependencies are loaded with the correct version. This 

option was necessary to address the between-institutions portability. 

 

4 Discussion 

Motivated by the increasing potential to apply NGS on clinical viral samples as a method to 

improve the treatment of patients affected by viral diseases, a high-throughput 

computational pipeline was developed as part of the ICONIC project to assemble viral 

consensus genomes de novo and to detect minority variants in viral residual clinical samples. 

As the pipeline accepts raw reads, it is possible to analyse sequencing data as soon as they 

are produced without the need of any pre-processing step. Moreover, the pipeline can 

analyse reads from any viral genome, segmented or not, for which at least one sequence, 

even partial, already exists. The consensus genome and the associated variants can be used 

to identify the dominant viral subtype and to quantify the variants occurring at specific 

positions and identifying the presence of drug resistance mutations. Furthermore, the 

possibility to run the pipeline in high-throughput mode is essential to facilitate analyses of 



 

potentially large numbers of patient samples during a seasonal outbreak of conditions of 

viral origin. Given the variety of information technologies employed within different clinical 

environments, the pipeline was designed to be easily ported to any cluster or server running 

a GNU/Linux system. 

A set of publicly available RSV sample sequences were compared to the genomes generated 

by the pipeline presented here, starting from the deposited reads. Full genomes were 

generated in most of the samples, with half giving longer alignments to reference than 

those that are currently publicly available. Therefore, the pipeline can successfully and 

efficiently assemble de novo viral genomes and could potentially be used to replace and 

update the data deposited on public archives. The subsequent analyses of the ICONIC HIV 

and Influenza reads on an HPC cluster, sequenced from clinical residual samples, confirmed 

the above results. However, the ability of the pipeline to assemble a sample genome 

depends on the read depth and coverage, which is affected by the efficiency of the 

amplification primers. In the case of HIV, multiple primers were required to fully cover the 

viral genome, so the portion of the DNA covered by multiple amplicons had higher genome 

depth of coverage compared to the surrounding sequences. Instead, viral genomes that 

require only one primer, like the individual segments of Influenza, can either be assembled 

or not depending on the degree of amplification. In particular, most of the genomes built for 

the HIV samples fully cover all the genes, thus enabling the quantification of variants along 

the whole sequence and allowing the identification of potential drug resistance mutations 

within the genes usually neglected during targeted sequencing of Gag-Pol. Indeed, the 

highest sequence variability is found in the Env gene, which can be a suitable target for new 

drug treatments. Fewer genomes cover the extremities than the central part of the 

reference, mostly caused by a higher nucleotide variability than the rest of the sequence, 



 

which results in a more complex assembly step. The reason for some missing sample 

genomes was due to the very low amount of viral reads (few hundreds) that were left after 

the trimming and filtering stages. Such outcomes can either indicate a failed PCR 

amplification, or a contaminated/degraded sample, and can help to identify errors in the 

library preparation. 

The analysis lasted only a few hours and required an operationally reasonable amount of 

memory for each sample, thus capable of processing batches of hundreds samples overnight 

on a typical HPC cluster. The higher execution time for the Influenza samples, compared to 

HIV, is due to the repetition of the commands needed to build each genomic segment. The 

memory required depends on the size of the decoy genome index, so it can be reduced in 

case of a limited amount of available memory on the user’s server. Such a timeframe and 

reasonable resources, coupled with the easy portability, allows the pipeline to be suitable to 

high pressure situations, such as clinical settings, where reporting turnaround times are 

compressed, especially in the case of diseases of viral aetiology. For these reasons, the 

pipeline is utilised regularly to analyse samples from different hospitals in London (The 

Royal London Hospital, Guy’s and St Thomas’s Hospital, University College London Hospital) 

and from collaborations with international partners: the BaliMEI project [15], Fraunhofer 

Institute, University of Athens, Brussels’ hospitals. It is not difficult to imagine that using 

current capability, a diagnostic report could be provided to a clinician within an actionable 

time window, as in our experience the end-to-end process from patient sampling to genome 

assembly and clustering reporting takes approximately five days. One of the main strengths 

of the pipeline is that it can be utilised on sequencing data of any known virus, to generate 

de novo full length viral genomes, in which the sample quality is very variable and the virus 

subtype is unknown. These features empower our software to be eventually deployed in 



 

clinical settings as a decision support tool towards a personalised patient treatment and the 

improved information management of hospital infections. 
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Key points 

- The ICONIC high-throughput computational pipeline de novo assembles viral 

genomes and quantifies minority variants. 

- It uses Illumina paired-end reads sequenced from residual diagnostic samples. 



 

- It could operate within existing clinical reporting time frames and potentially be used 

as a decision support tool towards more effective personalised patient treatments. 
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Supplementary material 

sample Iconic-pipeline genomes (length) Public genomes (length) 

ERR303259 14995 9899 

ERR303260 14941 14720 

ERR303261 14995 14715 

ERR303262 14941 4685 

ERR303264 14958 14719 

ERR303265 14995 14934 

ERR303266 14994 14934 

ERR303267 14998 14720 

ERR303269 15003 14953 

ERR303303 12495 14953 

ERR303311 14994 14953 

ERR303312 14212 14934 

ERR303313 14998 11417 

ERR303316 12640 14731 

ERR303322 14914 14953 

ERR323212 14420 6817 

ERR323213 4789 9211 

ERR323214 10173 14953 

ERR331021 15254 14953 

ERR376407 6703 14231 

ERR376408 10578 14934 

ERR376409 8016 8759 

ERR376413 8023 5409 

ERR376414 7991 14953 

ERR376415 10601 12028 

ERR376416 12369 5409 

ERR376417 9838 14934 

ERR376442 14941 14953 

ERR381723 14642 14933 

ERR381725 14642 14735 

ERR381726 14641 12143 

ERR438864 14674 14719 

ERR438865 14645 14952 

ERR438867 429 9778 

ERR438868 14642 9899 

ERR438904 14642 7091 

ERR438905 14642 14953 

ERR438910 14665 14735 

ERR438932 14642 9783 

 
Table S1. Sample identifiers from the Sequence Read Archive with the length of the associated 

deposited RSV genomes and of the consensus sequences built by the ICONIC pipeline. 

 



 

 

Figure S1. Read depth of coverage along the consensus sequence of a HIV sample. The blue line 

shows the number of aligned reads, the green dashed line shows the properly-mapped (according to 

the mapper) reads and the red dash-dotted line represents the number of soft-clipped reads. The 

higher the read depth, the higher the reliability of the base at that position, while a high number of 

soft-clipped reads represent mismatches and can indicate positions with high base variability. 

 

 

Figure S2. Genome depth of coverage of the segment 1 within the Influenza batch. The blue line 

shows the number of genomes aligned at each position of the reference sequence. 



 

 

 

Figure S3. Genome depth of coverage of the segment 4 within the Influenza batch. The blue line 

shows the number of genomes aligned at each position of the reference sequence. 

 

 

Figure S4. Median read depth of coverage for each segment across the Influenza batch. Median is 

shown as red line, 25 and 75 QRT as box, 95 QRT as whiskers and outliers as plus signs. 

 



 

 

Figure S5. Segment coverage from all the sample in the Influenza batch. All segments have median 

equal to 100%, segments 4 and 5 have only the 95 QRT below 100%, while segments 7 and 8 have all 

coverages at 100%. Median is shown as red line, 25 and 75 QRT as box, 95 QRT as whiskers and 

outliers as plus signs. 

 

 

Figure S6. Number of variants within the Influenza sample dataset. Each dot represents the absolute 

number of variants, above 1% frequency cutoff, at each position of the consensus genome across all 

the samples. 

 


