
You Shall Not Pass!

Measuring, Predicting, and
Detecting Malware Behavior

PhD Thesis

Enrico Mariconti

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Security and Crime Science

University College London

April 25, 2019

2

3

I, Enrico Mariconti confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that

this has been indicated in the thesis.

4

To Valentina,

who started dating me at the beginning of my student path at university,

and married me at the end of it.

Acknowledgments

This is the last section people write on a dissertation, but, actually, many

times we think about it in advance. I always spent a bit of time to focus on it.

Today it will be the same as the acknowledgements aren’t something I have

to write, but a real thank you to the people I have shared a part of this path

with. If you won’t find your name, but you are reading this dissertation not

just because I tweeted about it, most probably it is because it is hard to name

each and every person and I tried not to forget anyone by using the groups

we’ve been part of.

I moved to London on Saturday the 27th of September 2014 with this PC I

am writing from and a lot of question marks on how my future would have been.

The day after, Sampdoria won a derby (1-0 with goal of Manolo Gabbiadini).

Today, Monday 15th of April 2019 I am writing these acknowledgements, the

day after Gregoire Defrel and Fabio Quagliarella secured another derby for

2-0. In the middle a lot of water under the bridges passed (including other 4

derbys won, 3 drew and only 1 lost), a lot of time, a lot of experiences, a lot

of emotions.

Speaking about spent time, I will start from the end: from Steven and

Thorsten, my examiners, who actually spent a considerable amount of hours

reading carefully my work and almost three hours making me questions and

carefully evaluating me.

The person who has invested more time in following me in this PhD is

Gianluca, who, with his calm and objective evaluations, has always been able

to understand how to make me give my best. He is a great supervisor, a model

6

and a mentor, from which I will take inspiration for my academic career. He

managed perfectly all my weird aspects, my most impulsive moments as well

as my ups and downs.

I feel blessed from how many good people I found in my PhD path. I’m

thanking Gordon, my second supervisor, Emiliano, coauthor and mentor who

helped me a lot in my growth as researcher, and all the coauthors I’ve had, I

had the opportunity to learn something from all of you.

Such a path would not be possible without a good environment around

me. All the people part of the Information Security and, more in general, of

Computer Science that have spent valuable time with me, from social hour,

to sports chats with Lucky and Sarah to Jeremiah asking me many times how

did I feel after the Ponte Morandi tragedy. All the people in Crime Science,

from the admins (it has always been good to enter the department and see the

smiles of people like Amy, Andrea, Ellie, and Gavin) to the academic staff and

the students. Some of them have been there since 2014, some others joined

this crazy journey much more recently, but I am thanking all of you!

It has been great to meet people that became more than collaborators

or colleagues: Florian, Patricio, Nadine, Michael, Toby, Andrea, Mirko. From

meeting at a random conference to watching football or rugby together; from

drinks, dinners, and events to coffee breaks with someone trusted, with who

you can talk freely about everything.

One little mention goes to the fencing clubs I’ve been part of and their

members: almost like families in which I tried a new fantastic sport, in which

I had a break from the stress of the work and I focused only on landing that

point on my opponent. Thanks UCL Fencing Club, Haverstock, and SAM.

Another thank you is for all my friends, both in Italy and those met here,

as they have always been the nicest people to me.

What people tend to not mention of a PhD is that it still brings heavy

challenges, stress, and anxiety, in some cases it could be even worse. Whether

you became my family later, or you share a good amount of genes with me,

7

whether you’re on this earth, or looking after us from somewhere else, thank

you for all the priceless support you gave in these years every time it was

needed. I know you all will still be there for me and Valentina, and I hope we

will be able to give back the same support when needed.

Last, but not least, my wife, a wonder to my eyes, the person I will be

next to for our whole lives, thank you for everything, Valentina.

Abstract

Researchers have been fighting malicious behavior on the Internet for several

decades. The arms race is far from being close to an end, but this PhD work

is intended to be another step towards the goal of making the Internet a safer

place. My PhD has focused on measuring, predicting, and detecting malicious

behavior on the Internet; we focused our efforts towards three different paths:

establishing causality relations into malicious actions, predicting the actions

taken by an attacker, and detecting malicious software. This work tried to un-

derstand the causes of malicious behavior in different scenarios (sandboxing,

web browsing), by applying a novel statistical framework and statistical tests

to determine what triggers malware. We also used deep learning algorithms to

predict what actions an attacker would perform, with the goal of anticipating

and countering the attacker’s moves. Moreover, we worked on malware de-

tection for Android, by modeling sequences of API with Markov Chains and

applying machine learning algorithms to classify benign and malicious apps.

The methodology, design, and results of our research are relevant state of the

art in the field; we will go through the different contributions that we worked

on during my PhD to explain the design choices, the statistical methods and

the takeaways characterizing them. We will show how these systems have an

impact on current tools development and future research trends.

Impact of this Work

This dissertation is focusing on three different aspects to tackle malicious be-

havior on the Internet from different angles.

A first technical chapter focused on extracting malicious behavior and

measuring it through causal relationships. This section starts with a rather

theoretical contribution related to how to apply the causality framework in

the field and a first attempt of practical application as part of the second

work. The philosophy behind this part is to change the sandboxing phase of

malware analysis: we often study what malware samples are doing by letting

them run in a safe environment. In these works we show that sandboxing can

induce the malware samples in doing something different, injecting specific

actions to trigger the samples to show their complete behavior. The last paper

related to this chapter, the system called Ex-Ray, is a proper application of

the framework. It is showing how to automatically detect extensions that may

leak the browser history. We used a sandboxing infrastructure and refined the

experimental methodology to apply the causality framework. Academics have

asked more details about the idea that we truly believe can start a different

way of approaching the sandboxing analysis.

The second technical chapter is about Tiresias, a system used to predict

multi-step attacks that can be flagged as security events. With respect to

the previous part, where the impact can be found in the future scenarios of

analyzing malware and on the possible academic directions in the topic, this

system has a straightforward practical development. Tiresias was developed in

collaboration with Symantec researchers that were aiming to find new solutions

12

to be deployed on their security systems. From an academic point of view,

this work is, among others, trying to shift the attention from working only on

detection of malicious activities, to prediction of these events, to ultimately

prevent them from happening or mitigating their effects. This is a new trend

where relevant works are growing and the publication of this paper to such an

important venue as Computer and Communication Systems (CCS) 2018 may

boost the trend. Tiresias has been particularly appreciated by the Information

Security community as it has been one of the finalists for the applied research

of the year in the Cyber Security Awareness Week (CSAW) Europe 2018.

The last technical chapter is related to Android Malware Detection. We

created a system called MaMaDroid, exploring the opportunities of using

Markov Chains to model sequences of API Calls. MaMaDroid is based on

static analysis and has been tested over one of the largest Android malware

datasets used in research, analyzing how samples change over time and the

robustness of the system to the challenges faced by this type of detection

systems. From an academic point of view, the importance of these works is

already noticeable: the first MaMaDroid Camera Ready version went online

the 16/12/2016 on arxiv and, in two years, the paper reached 55 citations.

Moreover, MaMaDroid has been one of the applied research competition

finalists, finishing 2nd in CSAW Europe 2017.

Contents

1 Introduction 27

1.1 The Malware World . 27

1.2 Statistics and Learning Algorithms 29

1.3 The Rationale Behind this Work 30

1.4 Side Projects I Contributed to During my PhD 31

1.5 Contributions Statement . 32

1.6 The Document Outline . 33

2 Background and Related Work 35

2.1 Malware Behavior . 35

2.2 Defense Systems . 37

2.2.1 Intervention Actions and Areas 38

2.2.2 Defensive Tools . 39

2.3 Statistical Methods . 40

2.3.1 Correlation and Causation 40

2.3.1.1 Counterfactual Analysis Causality 41

2.3.2 Machine Learning and Deep Learning Algorithms . . . 41

2.3.2.1 What is Machine Learning? 41

2.3.2.2 Machine Learning Evaluation 43

2.3.2.3 K-Nearest Neighbors Classifier 46

2.3.2.4 Random Forests 47

2.3.2.5 Deep Learning 48

2.4 Causality in Malware Traffic 50

14 Contents

2.5 Browser Abuse . 52

2.6 Prediction of Malicious Activities 55

2.6.1 Security Events Sequences and the Application of Deep

Learning Algorithms 56

2.6.1.1 Security Event Forecast 56

2.6.1.2 Recurrent Neural Network Applications in Se-

curity Research 57

2.7 Android Malware and Static Analysis 59

2.7.1 Static Analysis, Markov Chains and Malware Classifi-

cation . 60

2.7.1.1 Program Analysis 60

2.7.1.2 Android Malware Detection 61

3 Causality Assessment in Malware Activities Using Counter-

factual Analysis 65

3.1 Causality in Malware Traffic 65

3.1.1 Approach Formalization 66

3.1.2 Experimental Environment 66

3.1.3 Sandboxing Background 67

3.1.4 Sandbox Implementation Details 69

3.1.5 Extracting and Labeling Network Conversations 70

3.1.6 Chains of Events . 72

3.1.7 Statistical Analysis . 73

3.2 Causality Framework Application: Malware Network Traffic . 74

3.2.1 Application of the Methodology 74

3.2.1.1 Employed Dataset 75

3.2.1.2 Instantiation of the Experiments 76

3.2.1.3 Extraction and Labeling Network Conversation 77

3.2.1.4 Labeling and Chains Settings 79

3.2.2 Evaluation . 80

3.2.2.1 Labeling Results 81

Contents 15

3.2.2.2 Beta Distributions 82

3.2.2.3 Statistical Evaluation of Causality and Exper-

imental Validity 83

3.2.3 Discussion . 84

3.2.3.1 Labeling Results 85

3.2.3.2 Results and Validity 87

3.2.4 Limitations . 88

3.3 Causality Framework Application: Browser History Leakage . 88

3.3.1 Linear Regression and Causality Background 89

3.3.2 The Environment . 90

3.3.2.1 HTTP URL Honeypot 91

3.3.2.2 Types of Trackers 91

3.3.2.3 Threat Model 92

3.3.3 Ex-Ray Methodology 93

3.3.3.1 Overview . 93

3.3.3.2 Application of Counterfactual Analysis . . . 96

3.3.4 Ex-Ray Counterfactual Analysis Evaluation 98

3.3.4.1 Experimental Setting 98

3.3.4.2 Ex-Ray Counterfactual Analysis Results . . 101

3.3.5 Discussion and Limitations 103

4 Predicting Security Alarms due to Malicious Activities Using

Deep Learning Algorithms 105

4.1 Motivation . 107

4.2 Methodology . 108

4.2.1 Architecture Overview 108

4.2.2 Recurrent Memory Array 111

4.3 Employed Dataset . 113

4.4 Evaluation . 115

4.4.1 Experimental Setup 115

4.4.2 Overall Prediction Results 116

16 Contents

4.4.3 Comparison Study . 118

4.4.4 Influence of Training Period Length 119

4.4.5 Stability Over Time 121

4.4.6 Sequence Length Evaluation 124

4.4.7 Tiresias Runtime Performance 127

4.5 Case Studies . 127

4.5.1 Predicting Events in a Multi-Step Attack 128

4.5.2 Adjusting the Prediction Granularity 131

4.6 Discussion . 133

5 Detecting Malware by Using Markov Chains as Behavioral

Models 137

5.1 MaMaDroid: Using Static Analysis to Detect Malware . . . 138

5.1.1 Overview . 138

5.1.2 Call Graph Extraction 139

5.1.3 Sequence Extraction 140

5.1.3.1 Abstraction to Classes 142

5.1.4 Markov Chain Based Modeling 143

5.1.5 Classification . 145

5.2 Datasets . 146

5.2.1 Employed Dataset . 146

5.3 MaMaDroid Evaluation . 150

5.3.1 Preliminaries . 150

5.3.2 Detection Performance 151

5.3.3 Detection Over Time 154

5.3.4 Case Studies of False Positives and Negatives 156

5.3.5 MaMaDroid vs DroidAPIMiner 158

5.3.6 Runtime Performance 160

5.3.7 Finer-Grained Abstraction 162

5.3.8 Reducing the Size of the Problem 163

5.3.9 Class Mode Results . 163

Contents 17

5.3.10 Detection Over Time 164

5.4 Discussion . 165

5.4.1 Lessons Learned . 165

5.4.2 Evasion . 167

5.4.3 Limitations . 169

6 Discussion 171

7 Ethical Discussion of this Work 177

7.1 Research Analysis and Ethics 177

7.2 Systems Ethics and Implementation in the Wild 180

8 Conclusions and Final Remarks 183

Bibliography 186

List of Figures

2.1 Decision tree example from [1]. 47

2.2 Neural network example from [2]. 49

3.1 Sandbox infrastructure: the host machine simulates a network

of VMs, a webserver managing the malware distribution, a

mailserver to redirect possible spam campaigns from the in-

fected VMs, and a router that allows the connection among the

different internal machines and with the Internet world. 68

3.2 Overview of our approach. 75

3.3 The Beta distributions related to the **Nav tests. The dotted

line is the Beta distribution of InfNav tests, the dashed line rep-

resents the AdNav tests, and the full line represents the OtNav

tests. 82

3.4 The Beta distributions related to the **Log tests. The dotted

line is the Beta distribution of InfLog tests, the dashed one rep-

resents the AdLog tests, and the full one represents the OtLog

tests. 82

3.5 The causality probabilities of **Nav tests varying the used frac-

tion of the dataset. The dotted line is related to the InfNav

tests, the dashed line represents AdNav tests, and the full line

represents OtNav tests. When the dataset is more than 80%

the three lines become stable. 85

20 List of Figures

3.6 The causality probabilities of **Log tests varying the fraction

of used dataset. The dotted line represents the InfLog tests, the

dashed one represents AdLog tests, and the full line is related

to the OtLog tests. In this case the observations maintain the

same values regardless of the used fraction, because the Beta

distributions are extremely different. 85

3.7 The causality probabilities of Tests**Nav varying the number

of observations. The dotted line is related to Tests InfNav, the

dashed line is Tests AdNav, and the full line is Tests OtNav.

When the observations are more than 50, the three lines main-

tain the same values. 86

3.8 The causality probabilities of Tests**Log varying the number

of observations. The dotted line is related to Tests InfLog, the

dashed line is Tests AdLog, and the full line is Tests OtLog.

In this case the observations maintain always the same values

because the beta distributions are extremely different. 86

3.9 Extension execution with unique URLs vs. incoming connec-

tions to those URLs from the public Internet. These connec-

tions confirm that leaked browsing history is used by the re-

ceivers, often immediately upon execution. 91

3.10 Ex-Ray architectural overview. A classification system com-

bines unsupervised and supervised methods. After triaging un-

supervised results, a vetted dataset is used to classify extensions

based on n-grams of API calls. 94

3.11 Comparison in change of traffic between executions leaking his-

tory and benign extensions. Each bar displays the change of

traffic sent relative to executions with increased history. Sent

data projects an ascending slope based on size of history. . . . 95

3.12 Ex-Ray extension execution overview. 99

List of Figures 21

4.1 Three endpoints undergoing a coordinated attack. {e0, ...,e13}

are events involved in the coordinated attack and highlighted

in bold. 107

4.2 Tiresias collects security events from machines that have in-

stalled an intrusion protection product. The sequential events

from these machines are collected, preprocessed and then used

to build and validate Tiresias’ predictive model. The opti-

mal model is then used in operations and its performance is

monitored to ensure steadily high prediction accuracy. 109

4.3 Summary of the security event datasets used in this paper. . 113

4.4 Experimental setup for Tiresias’ prediction evaluation (Sec-

tion 4.4.2) and comparison study with baseline methods (Sec-

tion 4.4.3). The grey bars indicate data derived from machines

used for training while the dotted bars indicate the data used

for testing and coming from different machines with respect to

the training data. 116

4.5 Precision, Recall, and F1-Measure of overall Tiresias’s perfor-

mance. Tiresias is trained using one day of data and evaluated

on both the same day and the following days until 5 November

2017. 117

4.6 Experimental setup for multiple day evaluation of Tiresias

(Section 4.4.4). 120

4.7 Experimental setup for Tiresias reliability evaluation (Sec-

tion 4.4.5). 122

4.8 Quantity of successfully and unsuccessfully guessed events. The

Y axis on the left of each graph is the occurrence of success-

es/failures with at least the probability indicated on the X axis

according to the system. The Y axis on the right is the ratio

between the value on the other Y axis and the total of success-

es/failures. 125

22 List of Figures

4.9 The plots show the percentage of the sequences correctly

guessed (a) or failed to guess (b) with respect to sequences

that share all the events but the last. On the X axis, as for Fig-

ures 4.8a and 4.8b there is the confidence level of the sequences

used by the system. Figures show that sequences of at least 5

events (sl >=5) are quite unique, therefore long term memory

is a crucial factor in the system accuracy. 126

4.10 Step by step visualization of Tiresias prediction process in

two real systems. Tiresias starts with event e10 and e31 re-

spectively as the initial feed and predicts the upcoming secu-

rity event step by step. The predictions are colored by their

probabilistic scores, where green indicates Tiresias returns a

correct prediction with probabilistic score greater than 0.5, or-

ange indicates Tiresias returns a correct event prediction with

probabilistic score less than 0.5 (but remains the largest proba-

bilistic score), and red indicates a wrong prediction (the actual

events are shown in parentheses in this case). 129

5.1 Overview of MaMaDroid operation. In (1), it extracts the

call graph from an Android app, next, it builds the sequences

of (abstracted) API calls from the call graph (2). In (3), the

sequences of calls are used to build a Markov chain and a feature

vector for that app. Finally, classification is performed in (4),

labeling the app as benign or malicious. 139

5.2 Code snippet from a malicious app (com.g.o.speed.memboost)

executing commands as root. 141

5.3 Call graph of the API calls in the try/catch block of Figure 5.2.

(Return types and parameters are omitted to ease presentation). 142

5.4 Sequence of API calls extracted from the call graphs in Fig-

ure 5.3, with the corresponding package/family abstraction in

square brackets. 143

List of Figures 23

5.5 Markov chains originating from the call sequence example in

Section 5.1.3 when using packages (a) or families (b). 144

5.6 CDF of the number of API calls in different apps in each dataset.148

5.7 CDFs of the percentage of android and google family calls in

different apps in each dataset. 148

5.8 Positions of benign vs malware samples in the feature space of

the first two components of the PCA (family mode). 149

5.9 F-measure of MaMaDroid classification with datasets from

the same year (family mode). 151

5.10 F-measure of MaMaDroid classification with datasets from

the same year (package mode). 153

5.11 F-measure values in the different test settings. 155

5.12 F-measure values in the different test settings. 156

5.13 F-measure values in the different test settings. 164

List of Tables

2.1 Table explaining the possible actions and tools depending on

the attacking phase in [3] . 38

3.1 Encoding of the labels. Domains contacted during tests are la-

beled following this table. Running VMs without any malware

infecting them allows to find the conversations labeled as “Trig-

ger”, while running an infected VM in idle is how we assign to

the conversations the label“Pre-Trigger”. When the label to be

assigned is “Triggered”, it can be assigned only if that domain

is not already in previous ones. 71

3.2 Summary of our test cases. 77

3.3 Number of repetitions per test. 79

3.4 Labels encoding per each test. 79

3.5 Labels for the tests in which the VM is navigating to amazon.com. 81

3.6 Percentages of the different labels for the tests with Log VMs. 81

3.7 Top five extensions connecting to our honeypot with highest

installation numbers which are still available in the Chrome

Web Store. 101

4.1 Prediction precision comparison study: Tiresias vs. baseline

approaches. 118

4.2 Evaluation of Tiresias’ prediction precision between 8th

November and 17th November. 122

26 List of Tables

4.3 Evaluation of Tiresias’s prediction precision on every 8th and

23rd of each month. 124

5.1 Overview of the datasets used in our experiments. 146

5.2 F-measure, precision, and recall obtained by MaMaDroid, us-

ing Random Forests, on various dataset combinations with dif-

ferent modes of operation, with and without PCA. 151

5.3 Classification performance of DroidAPIMiner [4] vs Ma-

MaDroid (our work). 157

5.4 MaMaDroid’s Precision, Recall, and F-measure when trained

and tested on dataset from the same year in class and package

modes. 163

Chapter 1

Introduction

The aim of this dissertation is to explore the application of statistics to the mal-

ware world. While the use of statistical techniques, such as Machine Learning,

is not novel, we accurately adapted these techniques to approach new prob-

lems. Moreover, we applied statistical tests for preliminary detailed analysis

that have never before been used in this field. Nevertheless, we do not limit

the use of statistics to detecting malicious samples, we also apply them to es-

tablish causality relationships and predict what can be the following malicious

action.

1.1 The Malware World
History. Internet has its roots back in the 1960s, when the ARPA and

ARPANET projects were financed by the United States Department of De-

fense [5]. It started with the idea of communicating easily among different

networks of research institutions, military corps, and companies. Its goal was

to be a facilitator and catalyst of ideas and documents exchanges, but security

was not a requirement in its creation. Antivirus software and other security

systems, as well as the current encryption algorithms have been created to

satisfy this requirement. The first malicious software (malware) was a virus,

created in 1982 [6]. The name has its origins in biology, where a virus is in-

fecting a body and self replicating into its cells. In informatics, a virus is a

file able to self replicate into other files when triggered into a computer. This

28 Chapter 1. Introduction

name and definition have been officially used for the first time by Fred Co-

hen in 1985 [7]. From this first sample, the development of malware families

increased dramatically and the aims and threats of different samples became

extremely varied.

Sir Tim Berners-Lee invented the World Wide Web (commonly known

as WWW) in October 1990 and the first website1 [8] went online on the 6th

August 1991. This moment has been the turning point in the history of the

Internet that quickly became as we know it now. These dramatic changes

affected everything around the Internet as from a tool for a chosen elite, it

became a resource for everyone. The economic value of the Internet increased

exponentially when new services, such as e-commerce, were created, sensitive

information started to be stored in online servers, and the entire communi-

cation and telecommunication world was revolutionized. This new scenario

changed the malware world as well: until the 1990s hackers who wanted to

show off their skills or operated for their personal interests created malware

samples. Since this revolution happened, even the malware ecosystem became

a delivered service. People started to pay hackers to write malicious code for

them or to deliver their own contents through the infected networks controlled

by these cybercriminals. This escalation brought to the creation of more than

57 million new malware samples in the third quarter of 2017 [9], complex

and dangerous attacks targeting specific victims, and proper cyberwars among

countries as, for instance, the events during the US elections show [10].

Current Days. Nowadays the information security community is facing sev-

eral challenges. The threats are different and malicious software is only one of

the fronts the community has to face. The efforts to contrast attacks related

to malicious software led to the creation of many defense layers as explained in

Section 2.2, but the spectrum of the possible attacks has been enlarged by the

opportunities that clever minds have found to perpetrate these attacks. Nowa-

days, for instance, there are botnets [11], droppers [12], ransomware [13], and

1http://info.cern.ch/hypertext/WWW/TheProject.html

http://info.cern.ch/hypertext/WWW/TheProject.html

1.2. Statistics and Learning Algorithms 29

information stealers [14]. Botnets are networks of infected computers wait-

ing for instructions for possible attacks, droppers are malware samples that

are asking to a Command and Control (C&C) Server for another malicious

sample. Ransomware samples encrypt the hard disk of the infected PC and

ask for a ransom to (maybe) decrypt it. Information stealers are particular

pieces of code that are storing sensitive information (credit cards data, login

credentials, etc etc) from the infected PC and sending it to a remote server.

In the last years a new kind of attacks emerged: targeted attacks, exploit-

ing specific vulnerabilities that the attackers know are present in a certain

system of a specific victim. The Stuxnet [15] case is one of the most famous

destructive examples where a malicious software infected Iranian nuclear plants

to destroy their centrifuges. Another clear example of how powerful and dan-

gerous malware samples are nowadays is the series of ransomware campaigns

carried out in the last two years. The most famous examples are WannaCry

and NotPetya; the first one infected 200,000 PCs in over 150 countries, gener-

ating revenues for hundreds of thousands of dollars to the hackers and losses

to infected companies for more than 4 billions [16]. NotPetya is a ransomware

that targeted mainly Ukrainian computers in what has been declared by CIA

to be an attack from the Russian secret services [17]. In this scenario of sev-

eral and varied threats the arms race between defenders and cybercriminals is

continuously evolving.

1.2 Statistics and Learning Algorithms

According to the Oxford dictionary of statistical terms, “statistics is the study

of the collection, analysis, interpretation, presentation, and organization of

data.” From this broad definition, in the information security field, the inter-

pretation and presentation topics have been taken for defensive and offensive

actions as I will explain in Section 2. Statistical methods allow to analyze

if the collected data is biased or to get some insights on the dataset. It can

happen through the dataset representation or through some specific tests such

30 Chapter 1. Introduction

as Chi Square test, ANOVA, or Cramer Von Mises Test. These tests are used

to extract some information on the experimental datasets we collect, allowing

some preliminary considerations.

An important part of the statistical methods (and extremely relevant to

this thesis) used in the information security field is the set of Machine Learning

algorithms, including the Deep Learning ones, a peculiar subset of the Machine

Learning algorithms. These methods operate the classification of samples into

defined labels, giving a numerical evaluation of the results, such as Accuracy,

Precision, and Recall. In our case the classified samples could be pieces of

code that we want to recognize, while the label we want to assign as a result

of the classification could be “malware” or “benign.” This procedure can be

done in two ways: (a) by using known samples to elaborate decision rules and,

according to these rules, to label the unknown sample (supervised machine

learning classification), or (b) by detecting anomalies from an initial samples

population and raising alarms when anomalies are identified (anomaly detec-

tion systems). Current defensive systems implement their security procedures

based on these approaches.

1.3 The Rationale Behind this Work

As just mentioned, statistical methods are broadly used in security systems

(e.g., anomaly detection systems); however, this application is not as wide and

efficient as it could be. For instance, most people receive at least one spam

e-mail a day, containing a malicious URL or attached file and, most of the

time, these malicious components are not detected and blocked. The efforts

of private companies and the research community are continuous, but the

adversaries are leading in this arms race: they find a new way to perpetrate an

attack and, only after, the community finds a countermeasure for the specific

problem. For instance, when the first ransomware samples were created, there

was no existent defense able to identify their activities as our community was

not able to identify possible new threats in the future.

1.4. Side Projects I Contributed to During my PhD 31

This research work has the aim of elaborating systems that are (a) re-

silient to time evolution or other factors that affect their implementation in

the wild (to reasonable extents), and that (b) identify interesting relationships

in malware operations or the detection of advanced threats communications.

These goals are not the only focus of work: the accurate use of descriptive

statistics and, in some cases, tests that have been used in fields different from

information security, are important factors of novelty of this work. We decided

to

1.4 Side Projects I Contributed to During my

PhD
During my PhD I did not work only on the technical contributions explained

in this thesis. While working on the core ideas of my PhD I have had the

opportunity to work on other projects and collaborate with other researchers.

The first project I will talk about is related to the use of the same prin-

ciples we designed and used in MaMaDroid, but using dynamic analysis to

extract the sequences. The system is a sister of MaMaDroid and for this

reason it is called AuntieDroid [18]. AuntieDroid is using different apps

stimulators: humans (through CHIMP [19]) and monkeys (automated inputs

for dynamic analysis). The project analyzed the advantages of using an hy-

brid system that brings together the decisions made by MaMaDroid and

AuntieDroid.

The sandboxing infrastructure was shared with part of Jeremiah Onao-

lapo’s PhD work. He used it for [20, 21] where I also helped with statistical

testing.

Finally, my research work covered some topics related to the social net-

works world. I am part of the iDrama Lab2, studying fringe communities

behavior as part of the ENCASE H2020 European project. I participated to

one of the projects (available on arxiv and currently under submission [22]);

2https://idrama.science/

https://idrama.science/

32 Chapter 1. Introduction

we studied a way to identify which videos could be object of coordinated hate

attacks from these fringe communities. Another wonderful team work was the

study of the profile name reuse phenomenon on Twitter where we studied how

it is possible to misuse the handles that have been abandoned by other Twitter

users [23, 24].

1.5 Contributions Statement
This thesis is composed by works in which I collaborated with other PhD

students. I, therefore, state my contributions that will be explained and shown

in this document.

Causality in Malware Activities Chapter. Chapter 3 is constituted by

the works on causality in malicious activity. The methodology [25] and the

work applied to network activity [26] are coauthored with Jeremiah Onaolapo.

Jeremiah and I worked together on the sandboxing infrastructure with which

I started working on the causality topic. The same infrastructure that have

been used for Jeremiah’s works on gmail honeyaccounts [20, 21] and, in its basic

structure, the sandbox have been used for [27]. While the sandbox is a shared

work between me and Jeremiah, the causality methodology and its application

to the network traces themselves are contributions of mine, supervised by Dr

Stringhini for the experimental parts and the writing and supervised by Dr

Ross on the statistical framework implementation.

Chapter 3 includes another work as application of this methodology: Ex-

ray [28]. The sandboxing system was created by the first author, Michael

Weissbacher. In [28] we applied linear regression to the data to be able to

apply the causality framework already used in the previously cited works;

the application of linear regression and the causality framework have been

my contributions. Dr Stringhini, Dr Suarez-Tangil, Dr Robertson, and Prof

Kirda helped in the writing phase while supervising and periodically checking

the experimental phase, giving suggestions on potential changes in the design

choices.

1.6. The Document Outline 33

Prediction of Security Alarms. Chapter 4 presents our work on predic-

tion of security alarms. It is describing the work on TIRESIAS, the system

created in collaboration with researchers from Symantec Research Labs. Yun

Shen, first author and Symantec researcher, owned the database and the neural

network architecture. Designing the test and the benchmarks and analyzing

thoroughly the results and TIRESIAS characteristics has been my main con-

tribution to the work. It results in producing the crucial sections of the work

and the evaluation of its impact and practicable employment. Pierre-Antoine

Vervier analyzed the case studies while Dr Stringhini closely supervised the

work and contributed to the paper writing.

Android Malware Detection. Chapter 5 presents the works over the detec-

tion of Android Malware using static analysis and Markov Chain models. Its

first work is the MaMaDroid NDSS article [29] where the architecture and its

detection performances based on static analysis are presented; an evolution of

this work is presented in [30]. Lucky Onwuzurike is the PhD student I collabo-

rated with on these works. He developed all the parts related to static analysis

and the extraction of the sequences of API calls. My contribution has been

the idea, design, coding, and implementation of the Markov Chain models on

the sequences of API calls, the design of the classifiers using Machine Learn-

ing algorithms and the evaluation framework for [29]. Lucky used the scripts

from [29] in [30], while eliminating a bug on the code abstraction. He selected

the datasets for the evaluation while I helped with the results interpretation

and the writing. The literature review of these papers has been the contri-

bution of Dr Andriotis. Dr Ross supervised me when designing the Markov

Chains, while Dr Stringhini and Dr De Cristofaro supervised the experimental

phases and helped writing.

1.6 The Document Outline

This document is divided as follows. Section 2 is a detailed literature review of

the explained topics and used tools of the following sections; Section 3 is about

34 Chapter 1. Introduction

the works on causality models in malware activities. Section 4 is describing

the work on predicting security alarms using deep learning models. Section 5

is related to the Android malware detection systems applying Markov Chains

to model the behavior of the examined apps. These technical chapters are

followed by a global discussion on the work of this thesis (Section 6). There

is a specific section dedicated to the ethical issues of my research (Section 7).

The conclusions and final remarks (Section 8) completes this document.

Chapter 2

Background and Related Work

In this chapter we are going to explain the several papers that are foundation or

in relation with the ones that compose this dissertation. We will first analyze

the malware environment and how it evolved. This will be followed by the

system of defenses implemented by the security community. As the statistical

methods are a crucial part of the works we published, there will be a section

related to the theories and algorithms applied before going through the works

that are related to the specific fields covered by the dissertation work.

2.1 Malware Behavior
In Chapter 1 we briefly drew a history of Internet and malware. We established

that one of the reasons why the arms race between cybercriminals and the

security community is so complicated is the fact that security has never been

a primary requirement since computers and the Internet were invented. We

have also given a hint on how much profit can be done by cybercriminals,

mainly due to the fact that we continuously store valuable information on the

Internet, control expensive machinery and goods through remote machines,

without having enough defenses to prevent systems breaches.

Breaches can have different characteristics and can consist in (a) hackers

manually entering a system unauthorized as well as (b) large scale infections

through malicious software. While the first case was the most common in the

early days, it became less used now: hacking a system may not be profitable as

36 Chapter 2. Background and Related Work

it is not always possible to reach valuable information or assets; moreover, it

is not an approach scalable to operations involving a high number of systems.

Malware infections have caused more relevant issues in the recent period.

They can be extremely diverse and can be used for very different purposes;

moreover, in some cases malware usage does not require particular skills. For

instance, it is now possible to rent botnets portions as-a-service and different

botnets collaborate in the same attacking campaigns, as shown in [31]. The

attacker renting the botnet does not need technical instructions as they do not

manage the botnet. On the other hand, there are very skilled attackers able to

create very complex pieces of code to penetrate specific systems and operate

stealthy multi-step attacks effectively. Cybercriminals are a variegate set of

people: there are still the enthusiast hackers trying to show off their skills like

in the 80s and the 90s, but there are also hackers that are using these skills to

pursue organizations goals, from cyberactivists like Anonymous (some of these

associations are even defined cyberterrorists in some cases) to organized crime

groups and state actors.

The variety of possible attacks, targets, and skills require systems able to

evaluate a large variety of threats and not focusing on single issues. Moreover,

as mentioned in the introduction, there are several malware families, sharing

only partially their goals and, in some cases, pieces of code. We mentioned

some of the most important families nowadays, but we did not talk about what

the behavior of malware is. This word is used in many different context, from

what code is used, which functions and which language, to which communi-

cations are operated. On a higher level, behavior is sometimes defined by the

actions logged by the infected machines or by the network security systems.

The behavior definition does not depend only on the malware sample, but on

where and in which way we desire to describe the behavior.

In this dissertation we talk about behavior on different levels, in Section

3 we approach the behavior description through the network traffic, looking at

whether the malicious sample is going to react differently to the stimulation

2.2. Defense Systems 37

received by the environment. Section 4 describes the behavior, the malicious

actions, through the events logged by the Intrusion Prevention Systems, while

in Section 5 we define behavior as the sequences of API calls that are charac-

terizing each sample actions.

2.2 Defense Systems
This Section will go through the defense systems by using two white papers

from Hutchins et al. [32, 3]. The first one presents the Cyber Kill Chain and the

second one its applications. The papers go through how attacks work, their

different phases and how they can be countered, depending on the defense

systems involved.

According to these works, the attacks involve 7 phases:

1. Reconaissance: crawling and scanning on the Internet, looking for pos-

sible targets

2. Weaponization: preparation of the payload to use

3. Delivery: transmission of the weapon to the target (email attachments,

websites etc etc)

4. Exploitation: exploiting the useful vulnerabilities on the target

5. Installation: installation of elements in the victim system allowing the

attacker to enter the system in any moment

6. Command and Control: establishing a system of communications includ-

ing a C&C server and its communication protocol

7. Actions on Objectives: the intruders can now act against their final

targets, whether the target is the victim system itself or another machine

in or outside the network

As we will explain, these attacks can be countered in different ways and

using different tools. [3] considers 5 of the 6 actions suggested in [32] because

“Destroy” does not have any defensive tool in any of the attack phases.

38 Chapter 2. Background and Related Work

Phase Detect Deny Disrupt Degrade Deceive
Reconnaissance Web Analytics Firewall

ACL
Weaponization NIDS NIPS
Delivery Vigilant User Proxy Filter In-line AV Queueing
Exploitation HIDS Patch DEP
Installation HIDS “chroot” jail AV
C&C NIDS Firewall NIPS Tarpit DNS redirect

ACL
Actions on Audit log Quality of Honeypot
Objectives Service

Table 2.1: Table explaining the possible actions and tools depending on the at-
tacking phase in [3]

2.2.1 Intervention Actions and Areas

The attacking phases can be countered in different ways, depending on the

defence and the position of this tool. The works from Hutchins et al. [32] iden-

tified 5 different counter actions (Table 2.1): Detect, Deny, Disrupt, Degrade,

and Deceive.

“Detect” consists into discovering what is happening, proactively (before

it happens), online (when it happens), offline (after it happened).

“Deny” is not allowing the action the attacker has to do as part of the

specific phase of the chain.

“Disrupt” is interrupting the operation as, while it is happening, it looks

suspicious and is blocked by the defensive tool.

“Degrade” consists in those actions that slow down and, as consequence,

make less effective the attack operation.

“Deceive” consists in making the attacker or its tools believe they are

reaching their goal while the environment they are interacting with is a fake

one, controlled by the cybersecurity experts and//or their tools.

The table shows several possible defense tools. However, some of these

tools can act against more than one attacker phase and, depending on the

phase, they may operate more than one counter action. This is due to the fact

that the defensive tools control many aspects of our Internet communications,

2.2. Defense Systems 39

they are positioned in different intervention areas and some of these areas are

involved in more than one attacking phase.

Company networks are often divided in many subnetworks, according to

the kind of machines that are contained in the networks, the administrators

implement different levels of defenses. Defenses can be placed at a network level

(both on the perimeter and inside the network) as well as on host machines.

Each defense can identify several types of attacks and does not prevent from

the utilization of other defenses on the same area.

Domestic networks are much smaller and present less defensive tools.

They often have a firewall implemented on the network router and, hopefully,

host based antivirus software (in some cases it includes a host based firewall).

In recent years, the beginning of the smartphone era made mobiles much

more similar to computers. However, the software distribution has a com-

pletely different mechanism: instead of going to the vendor website, there are

markets managing and selling the apps. It opened a new area of interven-

tion: the markets often have resources to do security checks and preventing

malicious apps from being available to the public. However, some markets are

much less effective than others in preventing the malicious apps distribution

(in several cases even the main ones failed in this task). Computer software is

moving in the same direction as people start relying on online stores to find

software for their machines. This situation opens a new area of intervention

where powerful resources can do complicated checks over, but at the same time

it opens a new vector for the delivery attacking phase.

2.2.2 Defensive Tools

In Table 2.1 many defensive tools are mentioned as possible countermeasures

to the attacking phases. Some of them operate on the connections done, like

firewalls, IDS, and IPS (whether network or host based), the different types of

AV analyze the files code and operations, while other parts monitor and log

the events that are happening to recognize suspicious events and apply rules

that would limit the attack efficiency.

40 Chapter 2. Background and Related Work

Honeypots (in some applications they are called sandboxes, but they share

the same kind of structure) are a completely different defense from the previous

ones: they do not act on the actual traffic a part from a specific kind of attacks.

It’s a trap, where attackers can find what they believe is the aim of their

attacks and be observed by the security administrators or, in some cases, the

law enforcement.

2.3 Statistical Methods
In this section we go trough the different theories and methods used in the

works presented in the dissertation. The first section explains all the theo-

ries, definitions, methodologies, and algorithms used in the causality works.

The second section details the different algorithms used among when applying

machine learning or deep learning to solve classification challenges.

2.3.1 Correlation and Causation

Correlation is the association of variables through statistical tests that can

measure quantitatively the relationship among variables [33]. With respect

to correlation, causation takes into account the nature of the relationship be-

tween variables. Causation is established by a priori knowledge or experimen-

tal ground that can assess direct cause of a certain factor (variable) over the

variation in others [33].

There is an old saying, widely accepted, stating that “correlation does

not imply causation.” One of the empirical reasons supporting the concept are

spurious correlations: correlations that are not due to any relationship between

the two variables. One of the clearest examples of spurious correlations is

probably the one between the number of people who drowned by falling into a

pool in a year and the movies Nicolas Cage appeared in [34]. Correlation does

not imply causation because, as defined earlier, the mere numbers do not take

into account context. For instance, two variables may be correlated because

their variations have a common cause, rather than one variable’s variations are

causing the other one to change [35].

2.3. Statistical Methods 41

2.3.1.1 Counterfactual Analysis Causality

The first time the concept of causality has been explored was in 1748, when

David Hume defined the concept of causation and a first definition using a

counterfactual example [36]. In Hume’s work this concept is evaluated on

the philosophical point of view, from this work many different definitions have

been formulated, with minimal variations depending on the field of application,

including statistical formalizations like the one we will use in this work from

Lewis [37] who gave a statistical definition of causality through “counterfactual

analysis”. The idea is to make a minimal modification to the variables set and

observe if the outcome changes or not; if it happens, it is possible to determine

whether there is a dependency relation between the changing variable and the

outcome.

Other causality models can be found in the literature. The most known is

probably Pearl’s causality model [38]; Pearl assesses causality by using graphs

and Bayesian networks. Notwithstanding the importance of Pearl’s work, we

decided to rely on a simpler model, as the system did not require formalizations

as complicated as Pearl’s model.

2.3.2 Machine Learning and Deep Learning Algorithms

This Section explains the different algorithms used in the works that are part

of this thesis. To introduce Machine Learning, its concepts and to explain K-

Nearest Neighbors we will refer to “Pattern Recognition” from Duda et al. [1].

As the first version of this book has been written in 1973, we will use different

sources for Random Forests ([39] and [2]) and Tiresias’ deep learning core

engine ([40]).

2.3.2.1 What is Machine Learning?

Machine Learning (ML) is a family of mechanisms and algorithms that is used

to classify data samples based on patterns. Such a broad definition allows to

think to ML applications on several fields; many of those are not even barely

related to Information Security as this is a fairly recent field and machine

42 Chapter 2. Background and Related Work

learning algorithms have been invented and applied many years before the

application to Information Security.

ML algorithms are divided in two main families: supervised and unsuper-

vised. Even though the phases of ML procedures are applied to both families,

the remaining part of this section will be dedicated to supervised algorithms

as there is not unsupervised algorithms implementation in the work that is

part of this thesis. The difference between the two families is that, while the

supervised algorithms use a set of known samples (training set) to elaborate

the decision model and a set of unknown samples (test set) to evaluate it,

unsupervised learning operates clustering operations on the dataset without a

priori knowledge of the dataset used to elaborate any model. It is then possible

to check whether the decision taken by the algorithm on the test samples is

correct or not.

ML is not only about algorithms applied to classify samples, but consists

in several phases: sensing, segmentation, feature extraction, classification, and

post-processing.

Sensing is the data collection phase: given a problem, we collect data that

can be used to find out a solution to the problem.

Segmentation is related to processing data, evaluating if there are, even-

tually, incomplete records, and prepare the raw data to the features extraction.

Feature extraction is the crucial phase yielding “a representation that

makes the job of the classifier trivial.” [1] In other words the feature extractor

is a system able to take data and transform it into a new representation, keep-

ing, evaluating, measuring, andor transforming the (combination of) variables

needed by the classifier. When the feature extraction phase is efficient, the

classification phase is much easier; a classifier would have a much more com-

plicated work if a set of features that is not good in representing the differences

between samples of two different classes is used.

Classification is the phase where ML algorithms are applied. In this phase

the set of features representing the samples of the dataset are used to take

2.3. Statistical Methods 43

decisions. The classification phase is evaluating whether a data sample could

be part of a class or another one.

In the post processing phase it is possible to evaluate several aspects of

the classification such as error rate or decisions confidence values. According to

the constraints a system may have, while preserving validity characteristics, it

is possible to modify parameters that affect the model decision making process

and tune it to reach the efficiency system requirements.

The classification and post processing phases are intertwined by this op-

portunity of tuning the parameters. This operation is particularly delicate as it

is important to not add any bias or incur into overfitting. To avoid any mistake

of this kind, ML practitioners often use validation methods. Common valida-

tion methods that will be used in the following sections of the dissertation are

m-fold Cross Validation and the use of a validation set.

M-fold cross validation consists in the division of the samples into m

different groups. M-1 folds are used for the training set and the remaining one

is used as test set. The folds are then rotated m times in order to have each

fold as test set once. If post processing is used to tune parameters with this

validation method, it is necessary to use two different groups of data, the first

one for tuning and the second one for evaluating.

The validation set use is more straightforward in these phases’ division:

we first use the trained model to classify the validation set and we tune the

model until we reach the efficiency results needed. Once the parameters set is

defined, we classify the test set to evaluate the model.

2.3.2.2 Machine Learning Evaluation

Until this moment we decided to use the word efficiency while Accuracy may

sound more sensible; however, Accuracy being one of the main evaluation

parameters, it can be source of confusion. When evaluating an ML algorithm

it is necessary to take into consideration its classification performances as well

as other important characteristics that may clash with the requirements. The

main ones can be considered to be (a) the RAM and CPU usage and (b) the

44 Chapter 2. Background and Related Work

training and test time. ML systems often require high RAM and CPU usage,

this may limit the usage of such systems into lightweight devices. We often

use features selection algorithms to limit this issue; however, the usage of such

algorithms may require more time. Time is another important constraint that

may affect both training time and test time. Models’ training often happens

offline, in specialized powerful machines that are designed for such workload;

however, some applications may have restrictions on training offline. Usually,

the crucial time requirement is the classification time on testing samples: when

deployed in real world we need the system to take the decision as fast as

possible. ML algorithms often have a quick classification part (less than a

second), however it is important to evaluate if it is quick enough: a system used

for billions of analysis a day may not be fast enough if every single evaluation

lasts a second. All these characteristics have to be taken into account for

the evaluation as we cannot violate certain constraints while maintaining high

classification performances.

Classification performances are evaluated through several parameters and

are built on whether the evaluated test sample has been labeled correctly or not

by the algorithm. When the decision is taken between two possible outcomes

(classes), we often talk about a positive and a negative class, while when the

decision is taken among different classes, we often talk about the relevant class

(versus all the other ones). For instance, if we evaluate a malware versus benign

classification system, we will use malware as the positive class and benign as

negative class; when doing malware families classification, we will have each

family as a separate class and calculate the classifier performances by taking

each family separate from all the other ones recreating the dichotomy of the

two classes case. When a classifier decision is wrong we use the word “False”,

while when the decision is correct we use the word “True”. Summarized, there

are four possible classifier outcomes:

• True Negative (TN): the classifier correctly decides for the negative class.

• False Negative (FN): the classifier wrongly decides for the negative class.

2.3. Statistical Methods 45

• True Positive (TP): the classifier correctly decides for the positive class.

• False Positive (FP): the classifier wrongly decides for the positive class.

According to these outcomes it is possible to calculate the evaluation

metrics. The main ones used are Accuracy, Precision, Recall, and F1-Measure.

Real-world implementations rely on constraints on these metrics (including the

percentage of FP and FN) to understand whether the system is reliable or not.

Accuracy is defined as:

Acc =
T P+T N

T P+FP+T N +FN

Precision is defined as:

Prec =
T P

T P+FP

Recall is defined as:

Rec =
T P

T P+FN

F1-Measure is the harmonic mean of Precision and Recall:

Acc =
2 ·Prec ·Rec
Prec+Rec

Accuracy and F1-Measure are overall metrics: the resulting number sum-

marizes all the aspects of the classification; TP, TN, FP, FN, Precision, and

Recall are metrics that are taking into account only certain aspects of the clas-

sifier decisions. It is often necessary to use an overall metric and information

retrieved from the non overall metrics at the same time to thoroughly evaluate

the classifier performances.

The Receiver Operating Characteristics (ROC) curve is another interest-

ing metric of evaluation. Although we decided to not use them in this work,

ROC curves are giving important insights on how a binary classifier works.

The curve is plotted by evaluating the True Positive Rate (TPR) and the

46 Chapter 2. Background and Related Work

False Positive Rate (FPR) on different settings. This metric is extremely use-

ful to evaluate the operational point of systems that should be deployed in

the wild. For instance, a company may want to deploy an anti-spam system

and requires an FPR less than 0.01%. At the same time the TPR cannot fall

below 95%. With a ROC curve it is possible to see which settings of a system

respect such conditions and, therefore, whether that system could be chosen

to be deployed.

2.3.2.3 K-Nearest Neighbors Classifier

The Nearest Neighbors (NN) classifier evaluates which k training samples are

the closest to the evaluated test sample in the features space to assign the label

to the test sample. For instance, imagine that you have a satellite picture of a

field and you know the position of some sunflowers and some roses. You decide

that you will assign the label “sunflower” or the label “rose” to the unknown

flower according to a majority vote among the three closest known flowers. If

among the three closest flowers there are at least two sunflowers, the unknown

flower will be considered a sunflower, otherwise it will be considered a rose.

This is an example of a 3-NN classifier.

More formally, we define as our training set Dn = x1, ...,xn a set of n labeled

samples and x′ ∈ Dn the closest labeled sample to a test point x. Then, the

nearest neighbor rule to classify x is to assign it the label associated with x′.

k-NN may not necessarily apply Euclidean distance or majority vote to

classify samples, however, it is the setting often used as default in its imple-

mentations.The k is a crucial parameter: lower levels of k result in a higher

level of granularity in the decision, however they may be more subject to noise

if there are outliers in the training set. Moreover it is best practice to always

use odd numbers as k: if we implement in the previous example a 2-NN and I

have a sunflower and a rose as the two closest flowers in the field, the classifier

may take a random decision. In case we had a third kind (or more) of flower

labeled in that field, it is still best practice to use an odd k as most of the

areas in the field will still be populated by only two species.

2.3. Statistical Methods 47

Figure 2.1: Decision tree example from [1].

2.3.2.4 Random Forests
Random Forests is a classifier using trees to take classification decisions. It is

one of the newest ML techniques and it is proven to be particularly effective,

without overfitting nor introducing biases. Breiman [39] is considered the

author of this algorithm even though the final version is using previous work

not only from this author [41, 42, 43, 44].

Decision Trees. Decision trees are the classifiers on which Random

Forests is based. A tree (Figure 2.1) is a set of nodes corresponding to questions

which answers are mutually exclusive but include all possible answers. The

answers lead to new nodes with questions on different features until a label is

assigned. Once the model is developed, the label assignment for an unknown

sample is extremely fast: it consists only in a series of comparisons between the

features values of the sample and those used to decide which path to follow.

CART. CART stands for “Classification And Regression Trees” [45] and

is one of the most common methodologies to create a decision tree. As de-

scribed in [1], CART poses 6 questions to build the tree:

1. Should the properties be restricted to binary-valued or allowed to be

multivalued? That is, how many decision outcomes or splits will there

be at a node?

2. Which property should be tested at a node?

48 Chapter 2. Background and Related Work

3. When should a node be declared a leaf?

4. If the tree becomes “too large,” how can it be made smaller and simpler,

that is, pruned?

5. If a leaf node is impure, how should the category label be assigned?

6. How should missing data be handled?

When implementing Random Forests using off-the-shelf libraries like the

Python Scikit-learn one1, these are parameters that we can set and modify

depending on the system requirements.

Random Forests takes a number of decision trees set by the user and trains

them to take decisions according to the training samples. Moreover, each tree

will be assigned a limited number of features to build its model. To increase its

efficiency, Random Forests models add noise to estimate which features are the

most important ones and find out the model that best separates the classes.

Breiman [39] shows that, because of the Law of Large Numbers, Random

Forests cannot overfit and the randomness mechanism allows high regression

and classification accuracy.

2.3.2.5 Deep Learning
Deep learning algorithms are a specific family of algorithms able to extract the

model from sequences of data, thus basically, avoiding the features extraction

phase and the human decisions related to its design. They are based on Neural

Networks as well as some ML algorithms. The name is due to the fact that

Artificial Neural Networks are an interconnected set of nodes, like neurons in

the brain. Neural networks are organized in layers (Figure 2.2 from [2]) that

are fully connected: each node of a layer is connected to all the nodes of the

following layer.

The first layer is the input layer and takes as input the sequences of data.

The last layer is called output layer and the quantity of nodes depends strictly
1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

2.3. Statistical Methods 49

Figure 2.2: Neural network example from [2].

on the amount of possible outcomes. If the outcome is a decision between being

a benign or a malicious sample in malware classification, only one neuron node

is needed. Depending on whether its output is less or more than 0.5, we will

assign a label rather than the other to the tested sample.

In the middle, between the input and the output layer, there are the

hidden layers (two in Figure 2.2). The hidden layers are designed by deciding

the number of layers and the number of nodes per layer, depending on the

user’s decisions.

All the layers apply different decision rules. During the training phase,

the decisions made by each node are then compared with a target vector to

understand which weights to attribute to different nodes.

In Tiresias, we relied on a specific type of Neural Networks: the Recurrent

Neural Networks. The RNNs are using a feedback mechanism that adapts the

weights while classifying. This mechanism has been found particularly useful

when predicting series of events as it tunes the weights depending on the

predicted events.

Among them, we used the implementation with Long Short Term Memory

(LSTM) array of cells [40]. An LSTM cell has an input gate, a forget gate,

and an output gate. The input gate is used to add new information in the cell

(such as a new event in time series prediction), the forget gate is used to take

out of the cell input data that is not useful to the cell prediction engine, and

the output gate is used to send out a specific prediction. The activation of

50 Chapter 2. Background and Related Work

the gates at the beginning of the classification phase depends on the values of

the weights, decided by the algorithm during the training phase. However, the

recurrent neural networks modify the weights in their cells while classifying, by

using the back propagation mechanism. For instance, if the back propagation

feedback is saying that the cells rely too much on short memory (the forget

gate is often active, discarding the older inputs), the system might modify the

weights to activate the forget gate less frequently. As consequence, the input

sequences considered for the output decision will be longer.

2.4 Causality in Malware Traffic
Causality is a complicated phenomenon to assess. As explained in Section

2.3.1, it involves being able to assess a direction (which variable influences the

other ones) to the relation between two elements. The first work we focused on

has been establishing causal relationships between user actions and malicious

activities by malware infecting the machines. To assess these relationships we

analyzed the network traffic.

We assessed causality in these relationships by using counterfactual anal-

ysis as explained in [37]. The outcome is the presence of new connections

operated by the malware and the only thing that is changed is the trigger. If,

among the used triggers, there is one trigger that makes the malware generate

new connections, then in that test, there is a condition of causality between

the trigger and the malware network operations. As we will see later (Section

3.1.5), being in an experimental environment, there are issues related to the

sensitivity of the system and to the noise due to unexpected network connec-

tions. These issues will be addressed through the use of Beta distributions for

the Thompson sampling used in the Bayesian Inference tests.

Although we can use tests to infer correlation, we cannot infer causality

because it does not only establishes the presence of a relation between two

variables, but its direction. But what does this refers to, when talking about

computer science or, more specific, malware research? According to Behi and

2.4. Causality in Malware Traffic 51

Nolan [46] “In circumstances where extraneous variables have been controlled,

an experiment is said to have internal validity, and the causal relationship

is proven.” As the tests and the environment (Section 3.2.1.2) are fully con-

trolled, we can assess causality where the statistical tests are giving evidence of

correlation between our incoming variable (the operated test) and the outcome

(the presence of triggered conversations).

Correlation and causality topics are widely explored in some fields of com-

puter actions and network communications like services dependency, the most

relevant system papers on this topic are Orion [47] and Rippler [48].

However, the topic we tackle is not the causality between services but

between events and malware activity. Another important point the previous

work analyzed is the malware samples similarity. The number of malware

samples is dramatically increasing every day, but new samples are often using

part of the code of previous ones and, as consequence, the behavior is similar

too. Chakradeo et al. [49] analyzed the phenomenon on mobile malware while

Bitshred [50] speeds up malware identification by taking advantage of malware

triaging. Malware triaging is important with respect to our work because of

the similarities between samples’ network behavior (shown in Sigmal [51]);

moreover, some samples need a trigger event to do certain operations, a prob-

lem tackled by Brumley et al. [52] by automatically analyzing the binaries,

while we are looking to the network level of the phenomenon. This research

analyzed the binaries similarities, but not the network operations caused by

network events.

King et al. assessed causality aspects in malware behavior in an old paper

[53] by studying causality in the attacks of the worm Slapper. With regard to

this work, the differences are in the approach (i.e. we only look for network

communications) and how causality is assessed (i.e. we apply statistical tests).

A more recent work, Zhang et al. [54], is more similar to ours because

it looks to malware communications, but limiting itself to HTTP and DNS

events to detect malicious triggered events; they assessed causality because

52 Chapter 2. Background and Related Work

of the detection of the malicious events, but without any test as evidence.

Moreover the mentioned work used its own proof-of-concept malicious samples

that were written by the researchers to act in a predefined way while a real

sample may act differently every time depending on many factors that can

affect its reactions to trigger events. The application of statistics as we did, by

applying the Bayesian inference, allows a much more precise definition of the

correlation between a trigger event and malware operations on the network.

Causality can be assessed because the environment is fully controlled during

the tests.

As explained previously, we applied the Bayesian inference [55] of the

relations between each different test and a certain sequence of labels; there-

after, in order to assess the relation between a test and the sequence, random

sampling [56] over the distributions has been used to see if one of them was

characterizing more the output sequence. This approach is used in other fields

with the same purpose because the randomized sampling applied to a posterior

distribution includes in the evaluation the uncertainty due to the noise that

may affect the experiments [57]. An example of the use of these methods

is Chapelle and Li [58], where the authors used a procedure similar to ours

to evaluate the efficiency of Thompson Sampling mechanism with respect to

more modern algorithms.

2.5 Browser Abuse
This part of the thesis focuses on establishing whether extensions installed in

the browser are leaking or not its history. We used the causal relationships be-

tween the amount of history to leak and the dimensions of payloads exchanged

between the virtual machine and suspicious IPs. To assess these relationships

we analyzed the network traffic and used linear regression.

Like any other web application, browser extensions are third-party code.

However, this software operates with elevated privileges and have access to

APIs that allow access to all content within the browser. Extensions develop-

2.5. Browser Abuse 53

ers have been proven to request more permissions than the needed ones, effec-

tively de-sensitivizing users. Heule et al. [59] considered the top 500 Chrome

extensions and noticed that 71% use permissions that, if misused, can leak

private information. They proposed, as solution, an extension design based on

mandatory access control to protect user privacy.

Previous work has found that browser extensions are a relevant issue be-

cause of privacy-violations. It was shown that the quality checks made by

official extension stores do not identify the malicious extensions. Researchers

have manually analyzed extensions and reported the findings in a blog [60] and

Starov et al. studied leaks basing their methodology on keyword search [61].

In contrast, Ex-Ray does not look for particular strings and is not affected

by the extensions protocols.

IBEX [62] is a research framework that verifies access control and data flow

policies of browser extensions through statistical tests. Developers have to au-

thor their extensions in high-level type safe languages; .NET and a JavaScript

subset are supported. Policies are allowing for finer-grained control than con-

temporary permission systems; they are specified in Datalog.

Egele et al. [63] operated a dynamic taint analysis approach using the

QEMU system emulator in order to detect spyware; they focused on Internet

Explorer Browser Helper Objects (BHO). BHOs are relevant as they are clas-

sified as malicious whenever they leak sensitive information in their processes.

The first large-scale dynamic analysis of Chrome browser extensions have

been done by using a system called Hulk [64]. The authors used what they

defined as Honeypages. This technique creates web pages tailored to specific

extensions to trigger malicious behaviors.

Authors that may want to monetize through their extensions. To do so,

they may inject their own advertisements in the browser. Thomas et al. [65]

found that 249 extensions on the Chrome Web Store were substituting the

original ads with their own. The authors identified two drops in their mea-

54 Chapter 2. Background and Related Work

surement of ad injection. They correlate to Chrome blocking side loading of

extensions, and introduction of the single purpose rule to the Chrome store.

Websites use several third-party services enabling developers to quickly

add functionalities. The downside is that user privacy is often threatened,

because when websites are including remote source content, the user trust

into a website is delegated. Nickiforakis et al. [66] studied this phenomenon

and highlighted that the behavior is dramatically widespreaded. For instance,

according to this study, Google Analytics was included in 68% of the top 10,000

websites.

There is a vast literature on third-party trackers on websites. Browsing

on seemingly unrelated sites can be observed by third-party trackers and com-

bined into a comprehensive browsing history. Mayer et al. [67] introduced a

measurement platform called FourthParty, analyzing the privacy implications,

technology, and policy perspectives involved by third-party tracking. Roesner

et al. [68] developed defenses based on the client-side to identify malicious

extensions and prevent third-party tracking. Recent work (e.g. [69]) has ana-

lyzed web tracking during the years by using the Internet Archive’s Wayback

Machine. In this work, the authors found that the tracking phenomenon has

steadily increased since 1996 indicating that tracking on the web has never

been as common and aggressive as it is now.

Even though we mainly focused on browsers, they are not the only plat-

forms exploited to leak private data. In PiOS [70], Egele et al. measured

applications from iOS app stores. The applications leaking private user data

were not a large number, however, more than half of the analyzed apps leaked

unique phone identifiers. This information is extremely sensitive and can be

used by third parties to profile users. Similarly, AndroidLeaks [71] evaluates

Android applications by using data-flow analysis to understand whether the

apps leak private information; their dataset consisted in 2,342 applications.

Lever et al. [72] highlight in their malware study how the analysis of network

traffic is a key factor for early detection.

2.6. Prediction of Malicious Activities 55

2.6 Prediction of Malicious Activities

This section illustrates the background and previous work related to [73]. In

this project, we focused on the opportunity of predicting events in real world

situations. Specifically, we designed Tiresias, a system able to predict the

following event given the previous ones. We tested our system on real world

data from Intrusion Prevention Systems (IPSs) which task was to monitor the

different machines in their network.

To illustrate the complexity of keeping track of events across different ma-

chines, consider the real-world example in Figure 4.1. We show three endpoints

undergoing a coordinated attack to Apache Web servers (see Section 4.1 for

the detailed case study), where {e0, ...,e13} are events involved in this attack

and are highlighted in bold. This coordinated attack consists of three parts:

(i) run reconnaissance tasks if port 80/tcp (HTTP) is open (e.g., e4 is de-

fault credential login, e5 is Web server directory traversal), (ii) trigger a list of

exploits against the Web application framework Struts (e.g., e8 is an exploit

relating to Apache Struts CVE-2017-12611, e11 is an attempt to use Apache

Struts CVE-2017-5638, e13 tries to exploit Apache Struts CVE-2017-9805, etc.)

and (iii) execute a list of exploits against other possible applications running

on the system (e.g., e2 exploits Wordpress arbitrary file download, e9 targets

Joomla local file inclusion vulnerability, etc).

To solve such challenge it is necessary to develop a system that is able

to extrapolate the useful events by analyzing the entire sequences of events.

We based Tiresias on Recurrent Neural Networks as explained in Section

2.6.1 and tested the system over real world data as explained in the following

paragraphs (Section 4.3).

56 Chapter 2. Background and Related Work

2.6.1 Security Events Sequences and the Application of

Deep Learning Algorithms

In this section, we broadly reviewed previous literature in both forecasting se-

curity events and deep learning, especially recurrent neural networks (RNNs),

applications in security analytics.

2.6.1.1 Security Event Forecast

System-level security event forecast. Soska et al. [74] proposed a general

approach to predict with high certainty if a given website will become malicious

in the future. The core idea of this study is building a list of features that

best characterize a website, including traffic statistics, filesystem structure,

webpage structure & contents and statistics heuristic of dynamic features (e.g.,

contents). These features are later used to train an ensemble of C4.5 classifiers.

This model is able to achieve operate with 66% true positives and 17% false

positives given one-year data. Bilge et al. [75] proposed a system that analyzes

binary appearance logs of machines to predict which machines are at risk

of infection. The study extracts 89 features from individual machine’s file

appearance logs to produce machine profile, then leverages both supervised

and semi-supervised methods to predict which machines are at risk. In terms

of machine wise infection prediction, RiskTeller can predict 95% of the to-

be-infected machines with only 5% false positives; regarding enterprise-wise

infection prediction, Riskteller can, on average, achieve 61% TPR with 5%

FPR.

Organization-level security event forecast. Liu et al. [76] explored the ef-

fectiveness of forecasting security incidents. This study collected 258 externally

measurable features about an organization’s network covering two main cat-

egories: mismanagement symptoms (e.g., misconfigured DNS) and malicious

activities (e.g., spam, scanning activities originated from this organization’s

network). Based on the data, the study trained and tested a Random Forest

classifier on these features, and are able to achieve with 90% True Positive

2.6. Prediction of Malicious Activities 57

(TP) rate, 10% False Positive (FP) rate and an overall accuracy of 90% in

forecasting security incidents. Liu et al. [77] carried out a follow-up study on

externally observed malicious activities associated with network entities (e.g.,

spam, phishing, malicious attacks). It further proved that when viewed collec-

tively, these malicious activities are stable indicators of the general cleanness of

a network and can be leveraged to build predictive models (e.g., using SVM).

The study extracts three features: intensity, duration, and frequency, from this

activity data. It later trained a SVM model using these features and achieved

reasonably good prediction performance over a forecasting window of a few

months achieving 62% true positive rate with 20% false positive rate.

Cyber-level security event forecast. Sabottke et al. [78] conducted a quan-

titative and qualitative exploration of the vulnerability-related information

disseminated on Twitter. Based on the analytical results, the study designed a

Twitter-based exploit detector, building on top 4 categories of features (Twit-

ter Text, Twitter Statistics, CVSS Information and Database Information),

for early detection of real-world exploits. This classifier achieves precision and

recall higher than 80% for predicting the existence of private proof-of-concept

exploits when only the vulnerabilities disclosed in Microsoft products and by

using Microsoft’s Exploitability Index are considered.

2.6.1.2 Recurrent Neural Network Applications in Security Re-

search
Binary Analysis. Shin et al. [79] leveraged recurrent neural networks (RNN)

to identify functions (e.g., function boundaries, and general function identi-

fication) in binaries. For each training epoch, the RNN model is trained on

N examples (an example refers to a fixed-length sequence of bytes). The au-

thors used one-hot encoding to convert each byte in a given example into a

256-vector, and associated a function start/end indicator with each byte (i.e.,

a 256-vector). Once the model is trained, it effectively serves as a binary clas-

sifier and outputs a decision for that byte as to whether it begins a function or

not. The authors consequently combine the predictions from each model using

58 Chapter 2. Background and Related Work

simple heuristic rules to achieve aforementioned function identification tasks.

It is claimed that this system is capable of halving the error rate on six out of

eight benchmarks, and performs comparably on the remaining two. Chua et

al. [80] presents eklavya, a RNN-based engine to recover function types (e.g.,

identifying the number and primitive types of the arguments of a function)

from x86/x64 machine code of a given function without prior knowledge of

the compiler or the instruction set. On the condition that the boundaries of

given functions are known, eklavya developed two primary modules - instruc-

tion embedding module and argument recovery module - to recover argument

counts and types from binaries. The instruction embedding module takes a

stream of functions as input and outputs a 256-vector representation of each

instructions. After the instructions are represented as vectors, argument re-

covery module uses these sequences of vectors as training data and trains four

RNNs for four tasks relating to function types recovery. The authors reported

accuracy of around 84% and 81% for function argument count and type recov-

ery tasks respectively.

Anomaly Detection. Du et al. [81] proposed DeepLog, a deep neural network

model utilizing Long Short-Term Memory (LSTM), to learn a system’s log

patterns (e.g., log key patterns and corresponding parameter value patterns)

from normal execution. At its detection stage, DeepLog uses both the log

key and parameter value anomaly detection models to identify abnormal log

entries. Its workflow model provides semantic information for users to diagnose

a detect anomaly. The author reported that DeepLog outperformed other

existing log-based anomaly detection methods achieving a F-measure of 96%

in HDFS data and a F-measure of 98% in OpenStack data.

Password Attack. Melicher et al. [82] used artificial neural networks to

model text passwords’ resistance to guessing attacks and explore how different

architectures and training methods impact neural networks’ guessing effective-

ness. The authors demonstrated that neural networks guessed 70% of 4class8

(2,997 passwords that must contain all four character classes and be at least

2.7. Android Malware and Static Analysis 59

eight characters) passwords by 1015 guesses, while the next best performing

guessing method (Markov models) guesses 57%.

Malware Classification. Pascanu et al. [83] model malware API calls as

a sequence and use a recurrent model trained to predict next API call, and

use the hidden state of the model (that encodes the history of past events)

as the fixed-length feature vector that is given to a separate classifier (logistic

regression or MLP) to classify malware.

The closest work to this paper is DeepLog [81]. However, DeepLog focused

on anomaly detection in regulated environment such as Hadoop and OpenStack

with limited variety of events (e.g., 29 events in Hadoop environment and 40

events in OpenStack). In such a very specific log environment, DeepLog was

able to use a small fraction of normal log entries to train and achieve good

detection results. Our work aims at understanding multi-steps coordinated

attacks in a noisy environment with a wide variety of events (i.e., 4,495 unique

events in our dataset) and prediction in this setup is a far harder problem

comparing to DeepLog. Additionally DeepLog considered an event abnormal

if such event is not with top-g probabilities to appear next. Our work does not

employ this relaxed prediction criteria and focuses on the accurate prediction

of the upcoming security event (out of 4,495 possible events) for a given system.

2.7 Android Malware and Static Analysis
This section of the chapter focuses specifically on the exiting work on Android

malware and static analysis as background that introduces the topics of Section

5.

Mobile Malware is a relatively new phenomenon. In fact, while new com-

puter malware has been created since the 80s as explained earlier, mobile

malware is associated to the rise of smartphones. The smartphones allowed

users to do many different actions through their phones, storing and using sen-

sitive information that attracted cybercriminals. We can date the first mobile

malware samples in 2004, grouping the first mobile malware families in 2009,

60 Chapter 2. Background and Related Work

as Maslennikov [84] shows. However, mobile malware samples were not more

than about a thousand samples at the end of 2010 [84]. In the following re-

port [85], Maslennikov shows how the number of samples sky-rocketed in 2011.

In fact, “the total number of threats over just one year increased 6.4 times.

In December 2011 alone we uncovered more new malicious programs targeting

mobile devices than over the entire period between 2004 and 2010.” This trend

has reached even higher numbers. According to the McAfee 2018 Q1 report

on mobile threats [86], in the third quarter of 2017, for the first time in his-

tory, more than 2.5 million new mobile malware samples have been created by

cybercriminals. At the end of the quarter the total of mobile malware samples

was over 20 millions while one year and a half earlier was still less than 10

millions.

2.7.1 Static Analysis, Markov Chains and Malware

Classification

Over the past few years, Android security has attracted a wealth of work by the

research community. In this section, we review (i) program analysis techniques

focusing on general security properties of Android apps, and then (ii) systems

that specifically target malware on Android, with a particular focus on the

ones applying Markov models.

2.7.1.1 Program Analysis

Previous work on program analysis applied to Android security has used both

static and dynamic analysis. With the former, the program’s code is decom-

piled in order to extract features without actually running the program, usually

employing tools such as Dare [87] to obtain Java bytecode. The latter involves

real-time execution of the program, typically in an emulated or protected en-

vironment.

Static analysis techniques include work by Felt et al. [88], who analyze

API calls to identify over-privileged apps, while Kirin [89] is a system that

examines permissions requested by apps to perform a lightweight certifica-

2.7. Android Malware and Static Analysis 61

tion, using a set of security rules that indicate whether or not the security

configuration bundled with the app is safe. RiskRanker [90] aims to identify

zero-day Android malware by assessing potential security risks caused by un-

trusted apps. It sifts through a large number of apps from Android markets

and examines them to detect certain behaviors, such as encryption and dy-

namic code loading, which form malicious patterns and can be used to detect

stealthy malware. Other methods, such as CHEX [91], use data flow analy-

sis to automatically vet Android apps for vulnerabilities. Static analysis has

also been applied to the detection of data leaks and malicious data flows from

Android apps [92, 93, 94, 95].

DroidScope [96] and TaintDroid [97] monitor run-time app behavior in

a protected environment to perform dynamic taint analysis. DroidScope per-

forms dynamic taint analysis at the machine code level, while TaintDroid mon-

itors how third-party apps access or manipulate users’ personal data, aiming

to detect sensitive data leaving the system. However, as it is unrealistic to

deploy dynamic analysis techniques directly on users’ devices, due to the over-

head they introduce, these are typically used offline [98, 99, 100]. ParanoidAn-

droid [101] employs a virtual clone of the smartphone, running in parallel in

the cloud and replaying activities of the device – however, even if minimal

execution traces are actually sent to the cloud, this still takes a non-negligible

toll on battery life.

Recently, hybrid systems like IntelliDroid [102] have also been proposed

that use input generators, producing inputs specific to dynamic analysis tools.

Other work combining static and dynamic analysis include [103, 104, 105, 106].

2.7.1.2 Android Malware Detection

A number of techniques have used signatures for Android malware detection.

NetworkProfiler [107] generates network profiles for Android apps and extracts

fingerprints based on such traces, while work by Canfora et al. [108] obtains

resource-based metrics (CPU, memory, storage, network) to distinguish mal-

ware activity from benign one. Chen et al. [109] extract statistical features,

62 Chapter 2. Background and Related Work

such as permissions and API calls, and extend their vectors to add dynamic

behavior-based features. While their experiments show that their solution

outperforms, in terms of accuracy, other antivirus systems, Chen et al. [109]

indicate that the quality of their detection model critically depends on the

availability of representative benign and malicious apps for training. Simi-

larly, ScanMe Mobile [110] uses the Google Cloud Messaging Service (GCM)

to perform static and dynamic analysis on apks found on the device’s SD card.

The sequences of system calls have also been used to detect malware in

both desktop and Android environments. Hofmeyr et al. [111] demonstrate

that short sequences of system calls can be used as a signature to discrim-

inate between normal and abnormal behavior of common UNIX programs.

Signature-based methods, however, can be evaded using polymorphism and

obfuscation, as well as by call re-ordering attacks [112], even though quantita-

tive measures, such as similarity analysis, can be used to address some of these

attacks [113]. MaMaDroid inherits the spirit of these approaches, proposing

a statistical method to model app behavior that is more robust against evasion

attempts.

In the Android context, Canfora et al. [114] use the sequences of three sys-

tem calls (extracted from the execution traces of apps under analysis) to detect

malware. This approach models specific malware families, aiming to identify

additional samples belonging to such families. In contrast, MaMaDroid’s

goal is to detect previously-unseen malware, and we also show that our system

can detect new malware families that even appear years after the system has

been trained. In addition, using strict sequences of system or API calls can

be easily evaded by malware authors who could add unnecessary calls to effec-

tively evade detection. Conversely, MaMaDroid builds a behavioral model

of an Android app, which makes it robust to this type of evasion.

Dynamic analysis has also been applied to detect Android malware by

using predefined scripts of common inputs that will be performed when the

device is running. However, this might be inadequate due to the low probabil-

2.7. Android Malware and Static Analysis 63

ity of triggering malicious behavior, and can be side-stepped by knowledgeable

adversaries, as suggested by Wong and Lie [102]. Other approaches include

random fuzzing [115, 116] and concolic testing [117, 118]. Dynamic analysis

can only detect malicious activities if the code exhibiting malicious behavior

is actually running during the analysis. Moreover, according to Vidas and

Christin [119], mobile malware authors often employ emulation or virtualiza-

tion detection strategies to change malware behavior and eventually evade

detection.

Aiming to complement static and dynamic analysis tools, machine learn-

ing techniques have also been applied to assist Android malware detec-

tion [120]. Droidmat [121] uses API call tracing and manifest files to learn

features for malware detection, while Gascon et al. [122] rely on embedded

call graphs. DroidMiner [123] studies the program logic of sensitive Android/-

Java framework API functions and resources, and detects malicious behavior

patterns. MAST [49] statically analyzes apps using features such as permis-

sions, presence of native code, and intent filters and measures the correlation

between multiple qualitative data. Crowdroid [124] relies on crowdsourcing

to distinguish between malicious and benign apps by monitoring system calls.

AppContext [125] models security-sensitive behavior, such as activation events

or environmental attributes, and uses SVM to classify these behaviors, while

RevealDroid [126] employs supervised learning and obfuscation-resilient meth-

ods targeting API usage and intent actions to identify their families.

Drebin [127] automatically deduces detection patterns and identifies ma-

licious software directly on the device, performing a broad static analysis. This

is achieved by gathering numerous features from the manifest file as well as

the app’s source code (API calls, network addresses, permissions). Malevolent

behavior is reflected in patterns and combinations of extracted features from

the static analysis: for instance, the existence of both SEND_SMS permission

and the android.hardware.telephony component in an app might indicate an

64 Chapter 2. Background and Related Work

attempt to send premium SMS messages, and this combination can eventually

constitute a detection pattern.

In Section 5.3.5, we will introduce, and compare MaMaDroid against,

DroidAPIMiner [4]. This system relies on the top-169 API calls that are

used more frequently in the malware than in the benign set, along with data

flow analysis on calls that are frequent in both benign and malicious apps,

but occur up to 6% more in the latter. As shown in our evaluation, using the

most common calls observed during training requires constant retraining, due

to the evolution of both malware and the Android API. On the contrary, Ma-

MaDroid can effectively model both benign and malicious Android apps, and

perform an efficient classification on them. Compared to DroidAPIMiner,

our approach is more resilient to changes in the Android framework than

DroidAPIMiner, resulting in a less frequent need to re-train the classifier.

Overall, compared to state-of-the-art systems like Drebin [127] and

DroidAPIMiner [4], MaMaDroid is more generic and robust as its statis-

tical modeling does not depend on specific app characteristics, but can actually

be run on any app created for any Android API level.

Finally, also related to MaMaDroid are Markov-chain based models for

Android malware detection. Chen et al. [128] dynamically analyze system-

and developer-defined actions from intent messages (used by app components

to communicate with each other at runtime), and probabilistically estimate

whether an app is performing benign or malicious actions at run time, but

obtain low accuracy overall. Canfora et al. [129] use a Hidden Markov model

(HMM) to identify malware samples belonging to previously observed malware

families, whereas, MaMaDroid can detect previously unseen malware, not

relying on specific malware families.

Chapter 3

Causality Assessment in

Malware Activities Using

Counterfactual Analysis

This is the first technical section of the dissertation, as mentioned, it refers

to the works having causality as topic [25, 26, 28]. In this part we analyze

behavior through the reactions of malicious samples to triggers: we simulate

the human actions to determine which actions may trigger which malicious

samples.

3.1 Causality in Malware Traffic
To determine the causal relationship we use counterfactual analysis from Lewis,

as explained in Section 2.3.1. While Mariconti et al. [25] explained the method-

ology behind using counterfactual analysis, in Mariconti et al. [26] there is a

first attempt of reproducing this methodology into a real application: studying

whether it is possible to identify causality relationships between user triggers

and malware actions by looking only at the network connections operated from

the Virtual Machines to other machines. This section takes from the first of

these papers to explain the methodology.

We want to infer the type of a malware sample by learning causality

relations between user actions and the activity performed by the malware

66 Chapter 3. Causality in Malware Activities

sample. For this reason, we observe the network packets generated by infected

Virtual Machines (VMs) and apply statistical tests to assess causality. In this

section, we describe our approach in detail.

Each test regarding a trigger and a malware sample follows this proce-

dure: we record the test’s network activity and extract the conversations from

the dump file to label them depending on what generated them. From the

conversation labels we create a chain of labels every time; we repeat the test

to apply Bayesian inference on the chains frequencies of labels assessing if there

are relations between labels and tests.

3.1.1 Approach Formalization

In this section we explain and formalize our approach to the problem. In a

nutshell, our approach takes into account a set of malicious samples and a set

of triggers, and studies if the samples react to the user triggers. Assessing

causality needs a complete procedure in which all the details are taken into

account, therefore we formalized the approach to the experiments and the

different tests. The formalization has to be general and scalable to allow

reproducibility and different levels of analysis such as experiments with an

arbitrary number of malware families and triggers. More formally, we define

a set of malware samples M1, ...,Mi, ...,MK and a set of possible trigger events

N1, ...,N j, ...NL. An experiment consists in running one of the samples Mi in

the presence of each trigger N j, one trigger at a time. This formalization is

extremely scalable, in fact, the approach is valid when changing how many

malware families or possible triggers we use. Moreover, this formalization can

be applied to different malware analysis as the concepts of triggers and malware

families are not context dependent.

3.1.2 Experimental Environment

In this Section we explain the principles on which we have built our envi-

ronment, starting from the sandbox and arriving to all the other phases of

3.1. Causality in Malware Traffic 67

the methodological framework, showing the challenges and how we practically

solved them.

3.1.3 Sandboxing Background

We set up a virtual environment in which different VMs are configured to run.

The structure is similar to the one created by John et al. [130].

Figure 3.1 shows the configuration of the sandboxing environment that

we needed to implement. The webserver manages the download of malware

by the VMs and the additional content needed for the experiments (e.g. cre-

dentials for the gmail login). Our mailserver is a sinkhole that receives all

the SMTP packets the VMs generate, the router redirects those packets. This

design avoids our VMs from sending spam to the Internet. To allow the con-

nectivity of the virtual network, a router implements rules of network address

translation, redirection of SMTP packets, and bandwidth restrictions, that

will mitigate denial of service attacks performed against public servers from

the VMs. These are only some of the security measures that we applied by

following the guidelines from Rossow et al. [131]. To avoid the detection of

the virtual environment by the malware samples, we followed the suggestions

of the Pafish tool[132]. Pafish is a tool that operates the same kind of checks

malware samples run to understand whether they are in a simulated environ-

ment or not. By following the suggestions given by Pafish it is more likely that

the malicious sample would not understand that it is a sandbox and not a real

environment.

The sandbox has to be secure and efficient: the research environment

must not be a threat to the Internet (security) and it should be able to run as

many samples as possible without being identified and evaded by the malicious

code (efficiency). Most of the suggestions about these two big issues have been

taken by Rossow et al. [131] where the authors tried to explain good practices

to set up secure experimental environments. Some of them have been already

mentioned: the mail redirection (anti spam), the bandwidth restriction (DOS

mitigation), and the use of an account without any real information for the

68 Chapter 3. Causality in Malware Activities

Figure 3.1: Sandbox infrastructure: the host machine simulates a network of VMs,
a webserver managing the malware distribution, a mailserver to redi-
rect possible spam campaigns from the infected VMs, and a router
that allows the connection among the different internal machines and
with the Internet world.

log in. Another important limitation has been in lifetime: the VMs are alive

only for 30 minutes in order to avoid any complicate and long attack from the

malware samples to their targets. Due to the sensitivity of this research and

of the experimental environment, we applied and successfully obtained ethics

approval from our institution, under project 6521/001.

The efficiency of the research environment is important as well: malware

tries to understand if it is running in a virtual environment designed to analyze

it, therefore it is important to deceive it. To this end, we set up the VMs to

look as believable as possible, following, among the others, the instructions

given by Pafish, a software designed to identify virtual machines from inside

the virtualized environment. Similarly, to simulate user activity, we set up a

script to open a Firefox browser window, and install a script that periodically

moves the mouse cursor. With these instructions it has been possible to deceive

a large quantity of the samples. Only a few of the Spambot samples have been

able to detect the virtual environment and did not perform any activity. In

3.1. Causality in Malware Traffic 69

the discussion section we will reason on how it would be possible to improve

the number of malware samples that run in our environment even further.

3.1.4 Sandbox Implementation Details

In Section 3.1.3 we explained the techniques related to the sandboxing ap-

proach.

We prepared three different virtual machines, one for each type of trigger

under scrutiny: one that performs no actions, one that connects to a certain

website (https://amazon.com in our case), and one that is connecting to Gmail

and logging into a fake account. Figure 3.1 shows the configuration used for

the VM that is not performing any user activity. Because of the elementary

configuration of the webserver it was possible to run more than a machine at a

time, with a maximum of 50. The other two kind of VMs and their webservers

have a more complicated structure that does not allow more than one machine

at the same time at the moment.

The VMs are started by scripts in the server, when the virtual environment

is ready, it starts some short scripts to change some important characteristics:

VirtualBox has specific registry keys and values that are detected by malware

samples to evade the sandboxes analysis. After having deleted such values,

for the same reasons, the server general script changes the MAC address. In

fact, also the MAC address is predefined by VirtualBox; the MAC address

is changed to an undetectable one through an algorithm that uses sequential

numbers to track which machine receives which samples and instructions.

Ones the VM is set up, it contacts the webserver to download the instruc-

tions and the malicious sample. According to the instructions, the VM will

execute the malware sample, simulate the human trigger and wait until the

VM is shut off and deleted by the main server script. The main server script

will be managing the creation of the VMs and, in parallel, the deletion of the

ones that reached the maximum lifetime. All the network packets exchanged

by the VMs are recorded by a tcpdump instance and, thanks to the modified

70 Chapter 3. Causality in Malware Activities

MAC address, filtered to divide into different pcap files the packets exchanged

by each VM.

3.1.5 Extracting and Labeling Network Conversations
The network dump files collected during our experiments recorded information

on the tests. Packets that have in common the tuple (sourceip, sourceport,

destinationip, destinationport) are a conversation. The conversations is the key

for labeling: we do not need to analyze each packet to identify the malware

actions but we still have all the needed details.

For each test, we extract the conversations and then we label them: we

determine the protocol and which domain is contacted by the VM for each

conversation. Table 3.1 shows the label assigned to the contacted IP addresses

depending on the test we are taking into account. For example, domains that

are always contacted by the VM that runs trigger event 1, regardless of the

specific malware sample that is being tested, are labeled as “event1 Trigger”.

These conversations are independent from malware traffic and we will filter

them out when we will be looking for traffic generated by malware as a possible

response to a user trigger.

We define four possible conversations:

1. Common: those are the conversations the VM performs independently

from malware samples or user trigger actions.

2. Pre-Trigger: those communications are performed by a malware sam-

ple independently from the user trigger action performed by the VM.

The word pre indicates the independence from events happening after a

specific user trigger is issued.

3. Trigger: those conversations are part of a user trigger activity, for exam-

ple the connections generated by visiting a website.

4. Triggered: those conversations that did not appear in any of the pre-

vious labels. In this case, we consider the malware sample operating a

connection as a consequence to a user trigger event.

3.1. Causality in Malware Traffic 71

We first have to learn which connections belong to the “Common” label:

this is done by test Idle, no malware and no trigger. Those conversations are

the ones the operative system has to operate to establish the communications

and monitor which machine is in the same network as the one of the records.

Those contacted domains and IP addresses will always be contacted in every

test and will not be important for the analysis; for this reason the label is used

only as a filter.

The “Trigger” ones are the labels assigned to the domains contacted by the

VMs when no malware is infecting them: the domains that are not excluded

by the “Common” label are those related to the trigger event. Using the same

logic for “Pre-Trigger”, we can label the domains contacted by the malware

samples when the VM does not operate any particular action.

The “Triggered” label is given to the domains that are contacted during

tests where there are a trigger operation and a malware: this label is given to

the domains that are not already in the previous labels. The label “Triggered”

will be given to those domains (if there is any) that are not already in “Trigger”

and in “Pre-Trigger” labels.

Doing
nothing Trigger 1 ... Trigger L

Not infected Common Trigger ... Trigger
Malware type 1 Pre-Trigger Triggered ... Triggered
...
Other Pre-Trigger Triggered ... Triggered

Table 3.1: Encoding of the labels. Domains contacted during tests are labeled fol-
lowing this table. Running VMs without any malware infecting them
allows to find the conversations labeled as “Trigger”, while running
an infected VM in idle is how we assign to the conversations the la-
bel“Pre-Trigger”. When the label to be assigned is “Triggered”, it can
be assigned only if that domain is not already in previous ones.

The labeling phase is the most delicate of this work: we continuously

performed an accurate tuning of the translation of the IP addresses to the

contacted domains because stealthy malware may be unobserved if they were

using the same domains as legitimate traffic or too many “Triggered” labels

72 Chapter 3. Causality in Malware Activities

were assigned to contacted domains when the identification of the network is

too precise. This is due to the presence of large IP spaces and the use of

Content Delivery Networks.

3.1.6 Chains of Events

In Figure 3.1 we explained which test was assigning which label to a certain

contacted domain. Apart from the test Idle, the tests without infection were

giving a different trigger label to their contacted domains, while the domains

contacted from tests without trigger are labeled with a pre-trigger label indi-

cating that the samples contact those domains independently from the machine

actions.

The tests where a malware sample runs in a VM that operates a trigger

event label the domains that are not part of pre-trigger and trigger lists as

triggered. This means that each of these tests may have different labels every

time they are repeated, depending also on which samples and the current

settings of the websites that are visited. The main concept of the work is in

this point: every repetition of the test will create a chain of labels given the

events (i.e. the connections) that the host machine will record. Each repetition

will have a correspondent labels chain, therefore every test will have a number

of times where a certain chain is the result while another one related to another

chain.

Every test where there is an infection and an action by the VM can have

two possible outcomes: “PreTrigger-Trigger-Triggered” in case of some new

actions generated by the malware sample and “PreTrigger-Trigger” in case of

a sample that does not react to the trigger. In the next section we explain how

to study the correlation between the test type and the resulting sequences and

why, in case of correlation, we can assess causality.

3.1. Causality in Malware Traffic 73

3.1.7 Statistical Analysis

We use statistical analysis to assess whether there is a connection between what

happens in the VM and what is observed on the network and, as consequence,

if there is a connection between the VM actions and the malware ones.

After the above labeling procedure has been carried out, the results consist

of the frequencies at which the chains of labels have occurred in the tests. For

each chain, our goal is to estimate the proportion of times it occurs during the

test. This is essentially the task of estimating the proportion parameter θ of

a Binomial(θ) distribution based on a sequence of binary observations where

the observations are 1 if the sequence occurred, and 0 if it did not occur.

We estimate the proportion parameter using Bayesian inference to allow

all uncertainty about its value to be captured. When performing Bayesian in-

ference for the Binomial distribution, it is usual to use the conjugate Beta(α,β)

distribution as it models the distribution of a binary outcome (in our case, a

specific sequence of events versus all other ones). The α and β parameters in

the prior distribution are chosen to take prior information into account, and

we use the non-informative setting α = β = 0.5. In this case, the posterior

distribution is Beta(α +N,β +M) where N denotes the number of times the

analyzed sequence occurs during the test, and M denotes the number of other

sequences that occurred during repetitions of the test [133].

Once the posterior distribution has been obtained, it is possible to detect

increases in the proportion parameter θ . This can be done by integrating

the joint posterior distribution over the relevant region of space. We use an

approach based on Thompson sampling [56] for this purpose. We sample a

random value from each of the Beta distributions and note which distribution

produced the highest observed value. We repeat this procedure many times and

divide the counts of the highest values by the number of repetitions. After the

normalization we have a probability of correlation of each test for the sequence

analyzed and, as said in [134], because our environment is fully controlled and

managed, it is possible to assess causality between the test with the highest

74 Chapter 3. Causality in Malware Activities

probability and the sequence. In case of this strong relation it is possible to

affirm that the malware samples that are part of a certain family are triggered

by a certain action in the real world and operate different actions on the

network because of the trigger.

3.2 Causality Framework Application: Mal-

ware Network Traffic
The goal of our approach is to infer the typology of a malware sample by

learning causality relations between user actions (e.g., logging into a website)

and the activity performed by the malware sample. To this end, we observe

the network activity generated by infected Virtual Machines (VMs) and we

apply statistical tests to assess causality.

3.2.1 Application of the Methodology

An overview of our approach is displayed in Figure 3.2. As already mentioned,

we run a malware sample in a VM in which we execute a simulated user ac-

tivity, called trigger. We then record network traffic generated by the VM and

separate it between traffic that is relative to the user trigger (e.g., the traffic

related to shopping websites), traffic that is generated by the malware sam-

ple before the trigger happens, and traffic that is generated by the malware

sample after the trigger happens. We then extract the occurrences frequency

of a certain activity related to a specific trigger, and perform Bayesian in-

ference to determine correlation between this activity and the corresponding

trigger. As explained, our Bayesian inference process involves extracting Beta

distributions from the data and performing Thompson sampling to assess the

causation probabilities. Note that to reach the confidence required to reli-

ably establish these values we typically repeat each test multiple times. Each

single test regarding a malware sample and a triggering action follows a cer-

tain procedure; first it is recorded using a tcpdump instruction to register the

whole network activity. We extract the conversations from the dump file and

3.2. Causality Framework Application: Malware Network Traffic 75

label them depending on what generated the conversation (malware sample

or trigger event) and why (if malware traffic independent from the trigger,

the trigger, and malware traffic triggered by the VM). By using the labels

attributed to the conversations we create a chain of labels per each repetition

of the test and we apply Bayesian inference on the frequencies of the chains of

labels to assess the relation between them and the tests. The decision of using

a more complicated method such as Bayesian inference instead of a simpler

chi-square test is because chi square only takes into account the proportion

between quantities while Bayesian inference also considers the uncertainty in

the measurements by using randomic sampling [135, 136].

…

𝐴2

𝐴1

𝐴𝑁

Network
monitor

Network
monitor

Network
monitor

Labeling

Labeling

Labeling

Labeling of
experiment

Thompson
sampling

Causality
relations

Host and
malware
activity

Network
traffic

Labeled
network
conversations

Beta
distributions

Correlation
probabilities

Figure 3.2: Overview of our approach.

3.2.1.1 Employed Dataset
The methodology we explain in Section 3.1.1 can be applied to assess relations

between any user trigger and malware type or operation. We also present an

effective case study based on malware network activity.

More precisely, we ran 20 Zeus samples [137] as Info-stealers, 10 Shopper-

pro and 3 CloudGuard samples as Adware [138], and 20 samples of other

families. The use of a limited quantity of samples is due to different reasons, the

76 Chapter 3. Causality in Malware Activities

most important being that we need active communication between the C&C

server and the malware sample for our experiments. To collect the malware

samples we periodically downloaded the most recent samples from VirusTotal.

Info stealers. These samples typically try to contact a certain number of

C&C Servers to receive instructions about what to do in case of relevant data

to steal (i.e., where to upload the stolen data). When relevant data is stolen,

the malware communicates with different C&C Servers to upload the stolen

information.

Adware. This type of malware operates a few connections to C&C servers

to receive instructions about the hosts to contact when a website containing

advertisements is visualized by the user. When the user navigates to a web-

site containing advertisements, these are substituted by malicious ones. The

sample’s goal is immediately reached: the visualization of the malicious ads

generates money to the malware operator.

Other. This group of malware samples were mainly Spambot samples. The

Spambot samples are operating several different actions: they are contacting

different C&C servers by using HTTP, HTTPS, and proprietary protocols;

after these communication they start sending emails to victims by using the

SMTP protocol. As we mentioned, our mailserver worked as a sinkhole for

these emails.

3.2.1.2 Instantiation of the Experiments

We set up our experiment to take into account malware samples from three

different types and study their relation to two user trigger events. The mal-

ware families that we study are information stealer malware (identified as Inf

in the rest of the paper), adware (Ad), and other malware (Ot), where “other”

includes malware samples that we typically do not expect to be triggered by

user activity (e.g., spambots that send emails regardless of what the owner of

the infected computer does). The trigger events that we used are the naviga-

tion to popular shopping websites (Nav) and the log in event into the Gmail

webmail provider (Log). To correctly label network conversations at the next

3.2. Causality Framework Application: Malware Network Traffic 77

step, we also need to run an infected VM in which no user trigger is executed.

We also identify network traffic generated by the operating system regardless

of user activity and the malware sample infecting the machine; to this end, we

run a not infected VM. We call this test Idle. The combinations of malware

types Mi and user triggers A j used in this paper are summarized in Table 3.2.

Doing
nothing Navigation Logging in

Not infected Idle Nav Log
Info Stealer Inf InfNav InfLog
Adware Ad AdNav AdLog
Other Ot OtNav OtLog

Table 3.2: Summary of our test cases.

3.2.1.3 Extraction and Labeling Network Conversation
The network dump files collected during our experiments contain information

on the IP addresses contacted by the VMs during each of the tests. We define a

conversation as the exchange of packets that have in common the tuple formed

as source IP address, source port (TCP or UDP), destination IP address, and

destination port. Conversations are then used for labeling. This way can be

agnostic to the network payloads themselves.

This phase aims at assigning a “label” to the network conversations ob-

served by a certain experiment. The goal is to identify the conversations that

compose the user trigger first, and we can then label accordingly the malware

activity that happens before and after the trigger.

For each test, we extract the list of network conversations, resolve the

DNS domain associated with the destination IP address, and proceed with

labeling them. More specifically, we assign four different labels to network

conversations:

Common: operating systems such as Linux and Windows perform network

traffic as part of their behavior, regardless of any user activity or program

running on the machine. Examples of this include automated software updates

and synchronization with network shares. To avoid considering this traffic as

78 Chapter 3. Causality in Malware Activities

part of other labels, we run our VM without any malware sample or user

trigger (“Idle” test in Table 3.2) and label any observed traffic as common,

filtering it out when elaborating other labels.

Trigger: these conversations are those generated by the VM as part of a

user trigger activity, for example the set of connections generated by visiting

websites. We label conversations as Trigger if they are observed in the tests

when the VM is not infected (marked as “Nav” and “Log” in Table 3.2) and

were not marked as Common in the test “Idle.”

Untriggered: these conversations are performed by a malware sample inde-

pendently from the user trigger action. We use this label for conversations that

are generated by the malware when no user trigger is present (“Inf,” “Ad,” and

“Ot” tests in Table 3.2)

Triggered: these are the most important conversations for this work, because

they are the ones that have the potential to present a correlation with the

user trigger. We mark as Triggered any conversation that happens in a test in

which a user trigger is happening, and that was not previously marked with

any other label.

We first perform the “Idle” tests, followed by the tests in which only

malware or user triggers are present, followed by the ones that combine a

trigger and a malware sample. As we will explain in the next section, the

variability of the set of IP addresses and domains contacted as part of different

trigger activities and by different malware samples forced us to re-run our tests

multiple times. Table 3.3 reports the number of performed runs.

Table 3.4 shows which test assigned which label to a contacted domain.

Apart from the test Idle, the tests without infection were giving a different

trigger label to their contacted domains, while the domains contacted from

tests without trigger are Untriggered ones, indicating that the samples contact

those domains independently from the machine action.

3.2. Causality Framework Application: Malware Network Traffic 79

Test Runs Test Runs Test Runs
Idle 42 Nav 108 Log 30
Inf 114 InfNav 40 InfLog 60
Ad 87 AdNav 73 AdLog 71
Ot 401 OtNav 159 OtLog 157

Table 3.3: Number of repetitions per test.

Doing Logging
nothing Navigation in

Not Navigation Login
infected Common Trigger Trigger
Info Info Stealer
Stealer Untriggered Triggered Triggered

Adware
Adware Untriggered Triggered Triggered

Other
Other Untriggered Triggered Triggered

Table 3.4: Labels encoding per each test.

3.2.1.4 Labeling and Chains Settings

The labeling phase is the most delicate: we continuously performed an accurate

tuning of the translation of IP addresses to the contacted domains because

stealthy malware may be undetected if it uses the same domains as legitimate

traffic. On the other hand, using all the different subdomains may assign

too many “Triggered” labels because the network identification was too fine

grained.

As mentioned, we map IP addresses to domains when labeling network

conversations. This works in most cases, because domains used by malware

are not the ones used by legitimate applications. However, in some cases a

domain can be used by both malware and legitimate traffic. One example of

this is the use of Content Delivery Networks (CDNs). The biggest issue for

our experiments were Amazon and Akamai servers: those address spaces are

extremely wide and are used by a large variety of clients, from Amazon itself

for advertisements on its website to malware samples hosting content to their

80 Chapter 3. Causality in Malware Activities

domains. It is not possible nor to simply assign amazonaws.com a specific

label, nor to assign one to the exact IP. Therefore we found a good balance in

using the first two octets of the IP addresses and dividing in eight groups the

third one, giving the corresponding label to each of these subnetworks.

Another problem occurred when a malware sample was contacting many

IP addresses on the same network but not all of them: it happened that the

sample contacted different IP addresses in different test runs. A similar issue

is given by advertisements used by Amazon: it asks to several addresses the

required information and every time a different address can be contacted. For

this reason we ran some of the tests more times than others, increasing the

labeling reliability.

Our approach assigns a label to each network conversation, whether it

happens independently of a user trigger (untriggered), it is part of the trigger

itself, or it happens as a consequence of the user trigger (triggered). We run

each experiment as a combination of user trigger and malware sample, however,

it is composed of multiple activities that generate a multitude of network

conversations. To assess whether the malware running inside a certain VM as

part of an experiment was triggered or not by a user action, we must “label”

the whole experiment as triggered or not. For example, if we observe a new

connection after the VM has logged into a website we can mark the experiment

as “triggered.” Otherwise, if no new activity is generated after the user trigger,

we can mark it as “untriggered.”

To label an entire experiment, we look at the labels assigned to the single

conversations as explained in the previous sections. If any of the conversations

is marked as “triggered” then we label the entire experiment as such. Otherwise

we label the experiment as untriggered.

3.2.2 Evaluation

In this section we evaluate our system. We present the labeling results on

how many tests were triggered by which user triggers. We then describe how

3.2. Causality Framework Application: Malware Network Traffic 81

we extracted Beta distributions from the experiments and how we assessed

causality, providing evidence on the validity of our work.

3.2.2.1 Labeling Results

Triggered Untriggered
Test percentage percentage

InfNav 55% 45%
AdNav 64.4% 35.6%
OtNav 22% 78%

Table 3.5: Labels for the tests in which the VM is navi-
gating to amazon.com.

Triggered Untriggered
Test percentage percentage
InfLog 92.6% 7.4%
AdLog 16.9% 83.1%
OtLog 29.2% 70.8%

Table 3.6: Percentages of the different labels for the tests
with Log VMs.

In Tables 3.5 and 3.6 we show what fraction of tests presented the “Trig-

gered” or “Untriggered” label. Table 3.5 shows quite high values of triggered

Adware samples (64.4%) while info stealers present a lower value (55%). These

tests use the VM that navigates to shopping websites, loading the related ad-

vertisements, and runs the malware sample. Because of the adware modus

operandi, we expect many triggered activities from the adware samples, rather

then from the other malware types. Most of the adware samples are triggered

by the navigation user trigger, however, a relevant number of info stealer sam-

ples seems triggered as well; these labeling errors are ruled out by the statistical

tests. In other words, the statistical tests are able to determine that there is no

causal link between a user navigating to a website and activity by information

stealing malware. On the other hand, it is able to assess that adware is likely

triggered by navigation.

Table 3.6 shows the result of the experiments for the tests in which the

user trigger is a login event on the Gmail website. There is a high fraction

82 Chapter 3. Causality in Malware Activities

of triggered Info stealers samples (92%), while only a small quantity of trig-

gered Adware samples are triggered; the Other type reports 29% of its tests

as “Triggered,” but these triggers are ruled out by the statistical tests.

3.2.2.2 Beta Distributions

Figure 3.3: The Beta distributions related to the **Nav tests. The dotted
line is the Beta distribution of InfNav tests, the dashed line
represents the AdNav tests, and the full line represents the
OtNav tests.

Figure 3.4: The Beta distributions related to the **Log tests. The dotted
line is the Beta distribution of InfLog tests, the dashed one
represents the AdLog tests, and the full one represents the
OtLog tests.

3.2. Causality Framework Application: Malware Network Traffic 83

To infer causality through the use of Bayesian inference, the first step is

the creation of the Beta distributions from the results presented in the previous

section. These results are used to draw the a posterior Beta distributions for

each test as (β (NumberO f Triggered+0.5,NumberO f NotTriggered+0.5). The

Beta distributions that we used to model the variables are shown in Figure 3.3

and Figure 3.4. With the Test **Nav (all possible malware types, VM that is

doing navigation) we observe a certain similarity between the curves in shape,

height and position; these similarities are stronger observing only the Test

AdNav and Test OtNav distributions. The distribution for the Test **Log

tests show more differences between distributions; in fact the distributions

are not close and the curve related to the InfLog tests (Info stealer) is much

higher than the others. We can expect that the statistical tests will show a

quite balanced situation between Tests **Nav while Tests **Log will give a

preference in their results.

3.2.2.3 Statistical Evaluation of Causality and Experimental Va-

lidity
We ran Thompson sampling on the Beta distribution 200 times and calculated

the average of the results over 10 repetitions; each result is a value between 0

and 1 that represents the probability of a causal relationship between a test and

its label (“Triggered” or “Untriggered”). This probability takes into account

the uncertainty given by mis-labeling due to the previously-explained issues

therefore a big gap between the highest probability and the second one allows

to assess causality.

In **Nav tests, Test AdNav is dominant. Test InfNav has 0.157 proba-

bility of being the cause of the triggered event among these tests while the

probability of AdNav tests is 0.843. In OtNav tests, the triggered cases are

not relevant. The mis-labeled OtNav tests did not affect the results of the

statistical tests (probability equal to zero). The difference between the highest

probability (the AdNav case) and the second one (InfNav) allows to indicate

that the navigation user trigger caused the Adware network traffic. The statis-

84 Chapter 3. Causality in Malware Activities

tical tests for **Log tests have a very clear outcome: the triggered info stealer

actions are caused by the login to Gmail user trigger because the probability

given by the statistical test is 1, while there is no relation between the login

into gmail and the actions of the other malware types (the probability related

to the other tests is zero).

Validity of the experiments. For this work we empirically decided the

number of samples to use, how many times the tests were repeated and how

many observations with random sampling were necessary. We evaluated if

the number of repetitions operated for each test can be considered sufficient.

We repeated the statistical test using different portions of the operated runs

(Figures 3.5 and 3.6). When the **Nav tests were operated, at least 80% of

the repetitions was needed for results to achieve enough confidence as with

using the full set. On the other hand, **Log tests were derived from beta

distributions extremely different, in fact the tests were giving reliable and

stable results already with a small percentage of the runs.

Similarly to the procedure used for the test repetitions, we empirically val-

idate the number of observations used during the Thompson sampling phase:

starting from two observations, arriving to 200, we observed that more than

50 observations are needed to have stable results on **Nav tests (Figure 3.7),

while Figure 3.8 shows that even a minimum amount of observations is enough

with **Log tests because the Beta distributions in this case are extremely dif-

ferent and indicate that InfLog tests have a clear correlation with the user

trigger.

3.2.3 Discussion

In this section we will discuss the results of our framework in assessing the

causality between a user-trigger and network activities performed by malware

samples. As explained since the beginning, this has been the first attempt to

apply this causality framework to the topic of malware analysis.

3.2. Causality Framework Application: Malware Network Traffic 85

Figure 3.5: The causality probabilities of **Nav tests varying the used fraction of
the dataset. The dotted line is related to the InfNav tests, the dashed
line represents AdNav tests, and the full line represents OtNav tests.
When the dataset is more than 80% the three lines become stable.

Figure 3.6: The causality probabilities of **Log tests varying the fraction of used
dataset. The dotted line represents the InfLog tests, the dashed one
represents AdLog tests, and the full line is related to the OtLog tests.
In this case the observations maintain the same values regardless of the
used fraction, because the Beta distributions are extremely different.

3.2.3.1 Labeling Results

The labeling phase presented many challenges due to the several domains con-

tacted by some malware samples and by the VM navigating to shopping web-

sites. Despite our best attempts, whitelisting websites confirmed to be benign

86 Chapter 3. Causality in Malware Activities

Figure 3.7: The causality probabilities of Tests**Nav varying the number of obser-
vations. The dotted line is related to Tests InfNav, the dashed line is
Tests AdNav, and the full line is Tests OtNav. When the observations
are more than 50, the three lines maintain the same values.

Figure 3.8: The causality probabilities of Tests**Log varying the number of obser-
vations. The dotted line is related to Tests InfLog, the dashed line is
Tests AdLog, and the full line is Tests OtLog. In this case the observa-
tions maintain always the same values because the beta distributions
are extremely different.

and the granularity tuning cannot completely remove mislabeling mistakes

when large server domains (e.g. amazonaws) were contacted. For example,

tests with Spambots are considered triggered because of two advertisements

domains contacted only during OtNav and OtLog tests.

3.2. Causality Framework Application: Malware Network Traffic 87

3.2.3.2 Results and Validity

We ran statistical tests to assess the relation between the user trigger and one

of the tests. We expected a strong relation between Adware triggered traffic

and the navigation trigger (Test AdNav) and between Info Stealer triggered

tests and the login trigger (Test InfLog). Both relations were clearly assessed,

even if some mislabeling affected the navigation case. To better understand if

this noise influenced the experiments we observed that Test OtNav and Test

OtLog do not present different results (Tables 3.5 and 3.6), while the tables

show different behaviors with Test InfNav and Test InfLog or with Test AdNav

and Test AdLog. These differences indicate that the malware samples are

influenced by the user trigger events; in the case of the login, the significance

of the result was not affected by the noise when we applied Bayesian Inference

while the noise has been more effective in the navigation case, although our

statistical analysis was still able to rule out these mislabeling.

The validity paragraphs (Section 3.2.2.3) show that the experiments are

not biased by an incomplete dataset or a non sufficient number of observations.

Because the validity criteria is respected we can argue that both the statistical

tests indicated a causal dependency between the navigation user trigger and

adware as well as between the login trigger and information stealing malware.

This work can be improved into a fully-fledged detection system. Malware

samples could be run against different user triggers and an alarm could be

raised when a type of malware that is considered of particular risk will be

generated (e.g., an information stealing malware sample that has the capability

of damaging to the company).

By adding a detection system, this methodology can be very effective

in practical and real situations where the system should do limited kind of

connections (as in delicate and with high security systems): the detection

of the anomalous conversation would be immediately correlated to a trigger

event and raise the alarm, a few minutes of sandboxing operations would then

confirm it while the network administrator is already operating on the issue.

88 Chapter 3. Causality in Malware Activities

3.2.4 Limitations
The actions that can be detected by the presented system are a large variety

and, because the system is content agnostic, this approach may also detect

attacks through covert channels. The system is limited in detecting those

samples that contact always the same C&C server during different phases of

the attack: an Info Stealer sample that communicates the credentials to the

same C&C server used in the first phase would not result as Triggered and

can be misclassified in a detection system based on this work. At this stage,

we cannot use unknown samples because we cannot infer causality through

unknown samples; with the development of a detection system based on the

causality inference it will be possible to use unknown malware samples.

In its current form, the framework does not take into account information

on when a network flow appears within a test, but only if it appears or not.

Mislabeling could be reduced in the future by using this information.

3.3 Causality Framework Application: Browser

History Leakage
The browser has become the primary interface for interactions with the Inter-

net, from writing emails, to listening to music, to online banking. The shift of

applications from the desktop to the Web has made the browser the de-facto

operating system. To augment this experience browsers offer a powerful in-

terface to access and modify websites. Functionality allows for modification

of HTTP requests and responses, injecting content to websites, or executing

programs as a background activity. This allows for extensions that manage

passwords, remove ads, or store bookmarks in the cloud.

The downside of this powerful interface is that malicious actions at the

extension level can lead to problems across all online activities for a user. Ex-

tensions can be considered as the “most dangerous code in the browser” [59].

Previous research found extensions to inject or replace ads [64, 139, 140], caus-

ing monetary damage to content creators and, in turn, consumers. To detect

3.3. Causality Framework Application: Browser History Leakage 89

privacy-invasive extensions, previous work used dynamic taint analysis to find

spyware in Internet Explorer Browser Helper Objects (BHOs) [63]. With pre-

vious research in mind, browser vendors can work to restrict malicious exten-

sions.

Google Chrome is considered the state of the art in secure browsing.

Chrome extensions can only be installed through a centralized store, and be-

fore being admitted they have to pass a review process. Users are prompted

for permissions that an extension requests, and can use that information to

decide whether they want to install the extension or not. Furthermore, if an

extension is considered malicious after admission to the store, it can be re-

motely removed from clients. With all these security features in mind, privacy

in Chrome extensions is still an issue.

To study the topic, we developed the first unsupervised system to detect

history stealing browser extensions based on network traffic alone that is also

robust against obfuscation. We then quantified the magnitude of user data

leakage and introduce a scoring system that is used to triage extensions. Pri-

oritized extensions are manually vetted and the resulting labeled dataset is

made available to the research community. In this phase we applied coun-

terfactual analysis to determine whether it was possible to establish a causal

relationship between the leakage of browser history from malicious extensions

and the size of packages exchanged by the extensions with the remote servers

they refer to. We created a machine learning approach to classify extensions

that we use on API call traces generated by an instrumented browser. This

approach reaches 96.43% F-Measure value and the Recall value is constantly

over 99%.

3.3.1 Linear Regression and Causality Background

As for the previous background section, we assessed causality in these rela-

tionships by using counterfactual analysis as explained in [37]. The outcome is

whether the payloads of the packets exchanged fit the linear regression when

the amount of history to leak changes.

90 Chapter 3. Causality in Malware Activities

We evaluate every extension by installing it in browsers that have different

amounts of visited websites in their history. We evaluate whether the volume

of packets exchanged with potential C&C IPs follows a linear regression model

dependent on the amount of history in the browser. If the data fits the model,

there is a causality relationship between the amount of history in the browser

and the communications operated by the installed extension. We can therefore

deduce that the extension leaks the browser history.

The methodology fits the concepts explained in 2.3.1.1 about counterfac-

tual analysis and, as we will explain in Section 3.3, it follows the controlled

experiment conditions [134] mentioned earlier.

To evaluate causality relations between the history on the browser and the

network traffic size using counterfactual analysis [37], we apply linear regression

in the first step of Ex-Ray. As described earlier, despite its rather simple

basic idea, counterfactual analysis is a powerful model. In section 3.3 we

will show that the absence of false positives among the extensions that were

not leaking browser history simplified the procedure to determine whether

there is a relation of causality between the amount of bytes exchanged on

the network with specific destinations and being a browser extension leaking

browser history or not. Linear regression [141] is a popular tool to establish

this kind of relationship between two quantifiable variables, for instance, as an

initial step before using machine learning for classification purposes [142], or

as an embedded technique as in SVM [143].

3.3.2 The Environment

In this section we take into account the different factors that have to be consid-

ered when approaching this topic. We start by describing the infrastructure,

we then analyze the types of trackers before finishing by explaining our threat

model.

3.3. Causality Framework Application: Browser History Leakage 91

2016-11 2016-12 2017-01 2017-02 2017-03 2017-04 2017-05 2017-06

0

5

10

15

20

25

30

35

Ch
ro
m
e
ex

te
ns
io
ns

Executed
Contacted

Figure 3.9: Extension execution with unique URLs vs. incoming connections to
those URLs from the public Internet. These connections confirm that
leaked browsing history is used by the receivers, often immediately
upon execution.

3.3.2.1 HTTP URL Honeypot
To gain insight into the environment in which trackers operate, we configured

a honeypot. To test whether leaked URLs are accessed after being received

by trackers, we exercised extensions with domain names into which we encode

their unique extension ID. While executing in our container, extensions only

interact with local Web and DNS servers. However, we operate a web server on

the public Internet to monitor client connections for such URLs. As these do-

mains are used uniquely for our experiments, HTTP connections indicate leaks

linkable to extensions. The connection and execution times are displayed in

Figure 3.9. The confirmation that trackers are acting on leaked data motivated

further steps in this work. After excluding VPN and proxy extensions, we re-

ceived incoming connections from 38 extensions out of all Chrome extensions

with more than 1,000 users.

3.3.2.2 Types of Trackers
Chrome offers a powerful interface to extensions, and while it can be used for

useful tools it can also be misused to violate user privacy. There are multiple

ways to collect and exfiltrate browsing history.

Much like trackers that are added to web pages by their authors, ex-

tensions can leak history by adding trackers to the body of web pages. An

example of third-party tracking is the Facebook “Like” button. These can be

92 Chapter 3. Causality in Malware Activities

blocked by extensions such as Ghostery. A more robust solution is sending col-

lected history data via requests of extension background scripts. Such requests

are not subject to interception by other extensions, and cannot be blocked as

tracker objects. Compared to tracking via inserting trackers into pages, better

coverage can be achieved.

To acquire browsing data, extensions can intercept requests made by

websites via the chrome.webRequest API, or poll tabs for the URL using

chrome.tabs. For past browsing behavior, the chrome.history API can be

used. Diverse options to collect data render finding a unified way to identify

tracking extensions challenging.

3.3.2.3 Threat Model

Based on our honeypot results, we assume the following attacker model. In

our scenario the attacker is the owner of, or someone who controls the content

of, browser extensions. We assume many users will install these extensions

with a cursory reading of the extension’s description. While permissions can

restrict the behavior of browser extensions, capturing and exfiltrating history

can be performed with modest permissions that would not raise suspicion. For

instance, the browsing history permission is categorized as low alert by Google.

The goal of our attacker is to indiscriminately capture URLs of pages

visited by the user while the extension is executed. Furthermore, we assume

the adversary collects data with the purpose of analysis or monetization. As

the value of traffic patterns decreases over time, we assume the attacker to be

inclined to leak sooner rather than later, which seems to be confirmed by our

honeypot experiments. A successful attacker would decrease the user’s privacy

as compared to using a browser without the extension in question.

We exclude from our threat model extensions that openly require the

sharing of browsing history as part of their functionality, such as VPNs or on-

line blacklists. Also, we consider leaks purposeful and supposedly accidental

as equal, as we cannot reason well about developer intent. As detecting and

hiding malicious behavior is an arms race, we prefer to be conservative and as-

3.3. Causality Framework Application: Browser History Leakage 93

sume the attacker could escalate the sophistication of their evasion techniques

in the future.

3.3.3 Ex-Ray Methodology

In this section we describe the design of the approach underlying Ex-Ray.

The counterfactual analysis is an essential part of this methodology. To iden-

tify privacy-violating extensions, we exercise them in multiple stages, varying

the amount of private data supplied to the browser, and in turn to the exten-

sion under test. Based on the type of extension, the traffic usage can change

depending on the number of visited sites. However, the underlying assump-

tion is that benign extension traffic should not be influenced by the size of the

browsing history.

3.3.3.1 Overview

A top level view of Ex-Ray is shown in Figure 3.10. The three main compo-

nents of the system are summarized as follows:

1) Unsupervised learning: We use counterfactual analysis to detect his-

tory stealing extensions based on network traffic. This component is

fully unsupervised and, by definition, prone to misinterpretations.

2) Triage-based analysis: We manually vet the output of our unsuper-

vised system, i.e., we verify which extensions are factually leaking and

which are not. As the manual verification is costly, we rely on a scoring

system that ranks extensions based on how likely they are to be leaking

information to aid the process.

3) Supervised learning: We systematize the identification of suspicious

extensions using supervised learning over the resulting labeled dataset.

This component looks at the behavior of the extension and builds a

model that detects history leaking (i.e., it looks at the API calls made

by the browser extension when executed).

94 Chapter 3. Causality in Malware Activities

UNSUPERVISED

SUPERVISED

Vetted
Dataset

CAUSALITY TRIAGE

Unlabeled
Dataset

LEARNINGDETECTION

{leaking,	
not-leaking}

Figure 3.10: Ex-Ray architectural overview. A classification system combines
unsupervised and supervised methods. After triaging unsupervised
results, a vetted dataset is used to classify extensions based on n-
grams of API calls.

We see different types of tracking used in browser extensions. Some in-

tercept requests and issue additional requests to trackers. Others transfer

aggregated data periodically, while still others insert trackers into every vis-

ited page. An integral part of all trackers is transferring data to an external

server—simply put, this crucial step is what enables trackers to track.

Our work focuses on indiscriminate tracking across all pages. To track, a

history item (hi) generated by the browser will be reported either in isolation or

in aggregate. In either case, the size of history items affects network behavior.

We argue that network data generated by an effective tracker, independently

of protocol and whether plain, encrypted, or otherwise obfuscated has to grow

as a function of history.

We execute extensions in multiple stages with increasing amounts of pri-

vate information. Each hi should contain less information than the following

stage, hi < hi+1. We increase the size of hi in each stage, extending the length

of the testing URLs. For example, example.com/example/index.html in

stage 0, and example.com/example/<500characters>/index.html in stage

10. The expected growth in traffic is h∆. This intuition is confirmed from

Figures 3.11a and 3.11b where the boxplots clearly show that trackers usually

example.com/example/index.html
example.com/example/<500 characters>/index.html

3.3. Causality Framework Application: Browser History Leakage 95

send more data when there is more history to leak while the amount of data

is constant across the different stages for benign extensions.

For deterministic tracking, the traffic deltas of adjacent measurements

should project an ascending slope. However, the browser history may be sent

compressed in order to send as few bytes as possible and avoid the leak being

visible as plain text in the payload. This operation would reduce the number

of bytes sent while retaining the same amount of information (entropy). Per

information theory, message entropy has an upper bound that cannot be ex-

ceeded. As a consequence, the size of compressed messages is lower-bounded

as a function of the message entropy. For our experiments, we used compres-

sion tools (bzip2, 7zip, xz) to establish a practical lower bound of sent data

for each stage as 289 Bytes, 6.9 KB, 14 KB and 30 KB.

Extensions that use trackers establish connections with each execution.

Consequently, any group of hosts that results in less measurements than the

number of executions will not be considered for further analysis. Examples of

hosts that extensions only connect to occasionally are ads.

Two Three Four
1

2

3

4

5

6

7

N
o
rm

a
liz
e
d
 s
e
n
t
b
y
te
s

Two Three Four
0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz
e
d
 r
e
ce
iv
e
d
 b
y
te
s

Network flows generated by trackers in extensions

(a) Tracking extension.

Two Three Four
0.94

0.96

0.98

1.00

1.02

1.04

1.06

N
o
rm

a
liz
e
d
 s
e
n
t
b
y
te
s

Two Three Four
0.9992

0.9994

0.9996

0.9998

1.0000

1.0002

1.0004

1.0006

1.0008

N
o
rm

a
liz
e
d
 r
e
ce
iv
e
d
 b
y
te
s

Network flows generated by benign extensions

(b) Benign extension.

Figure 3.11: Comparison in change of traffic between executions leaking history
and benign extensions. Each bar displays the change of traffic sent
relative to executions with increased history. Sent data projects an
ascending slope based on size of history.

96 Chapter 3. Causality in Malware Activities

For this work purposes, we are going to focus on the unsupervised learning

part, where counterfactual analysis is applied.

3.3.3.2 Application of Counterfactual Analysis
The goal of this phase is to model the way in which modifications to the

browsing history influence observed network traffic. Figure 3.11 presented in

the previous section shows that there is a monotonic increase between suc-

cessive stages of privacy-violating extension tests. Extensions that, on the

contrary, are privacy-respecting show no significant difference. One key find-

ing observed during the analysis of the traffic behavior is that privacy-violating

extensions might exhibit non-leaking behavior when connecting to certain do-

mains. Thus, it is important to consider individual flows when building our

model. Additionally, we also observed that in general variations exhibited in

privacy-violating are well-fit by linear regression.

Thus, we use linear regression on each set of flows to estimate the optimal

set of parameters that support the identification of history-leaking extensions.

We aim to establish a causality relation between two variables: (i) the amount

of raw data sent through the network, and (ii) the amount of history leaked

to a given domain. For this, we rely on the counterfactual analysis model by

Lewis [37], where:

The model establishes that, in a fully controlled environment, if

we have tests in which we change only one input variable, and we

observe a change in the output, then the variable and the output

are linked by a relation of causality.

In our case, the input variable is the amount of history, the output is the

number of bytes sent in the different flows, and the tests are run with both

goodware and malware. Our framework allows to evaluate this relationship

by means of different statistical tests, such as Bayesian inference. This is

ideal for situations were there is no deterministic relationship between the

variables, such as in targeted advertisement tracking. Although our framework

3.3. Causality Framework Application: Browser History Leakage 97

is designed to model these scenarios, in practice, we observed that leaking

extensions behave in a deterministic fashion.

In order to systematically identify the conditions under which the causality

link is established, we run three steps. The first step is performed before

applying linear regression, while the second and third steps are based on the

linear regression parameters.

1. Minimum Intercept. While the extension might communicate to a

domain in all given stages, the content transmitted may not contain a

privacy leak. This step verifies whether the amount of data sent exceeds

a certain threshold. This threshold is set based on the size of the history

compressed as described in Section 3.3.3.1.

2. Minimum Slope. In this work we are primarily interested in extensions

that actively track users. This type of extensions is expected to leak

as much history data as possible from the user. This implies that the

relationship between stages is expected to be linear and have a constant

variance, modulo any sort of attempt at obfuscation. Based on this, we

set a threshold to the slope in order to exclude all those extensions that

do not fully meet these two criteria.

3. Level of Confidence. Depending on the extension, the regression

model fitted might not always follow a strict linear model. We can choose

to apply certain bounds (lower, upper, or both) from a fitted model to

adjust the precision of the output. Choosing bounds that are very close

to the fitted model will give a higher level of confidence in the decision.

On the contrary, a very relaxed model will capture boundary cases at

the cost of introducing false positives.

We define the term flagging policy as the set of parameters used for these

checks. A strict policy is a policy in which parameters select a restricted

area and flag less flows than a relaxed policy which flags many more flows as

suspected of leaking browsing history.

98 Chapter 3. Causality in Malware Activities

The notion of confidence described above and the use of the different

policies is precisely what motivates our triage system described next.

3.3.4 Ex-Ray Counterfactual Analysis Evaluation

In this section, we describe the evaluation of Ex-Ray counterfactual analysis.

To allow comprehension we first describe the whole experimantal environment,

but we will focus only on the results related to the components applying the

causality framework core of this chapter.

3.3.4.1 Experimental Setting

An overview of our experimental setup is depicted in Figure 3.12.

Extension Containers. As part of our test environment, we created websites

that allow scaling the size of a web client’s browsing history without otherwise

changing the behavior of the websites. We used local web and DNS servers so

that the browser could connect to our website without sending information to

the public Internet. For each execution, we started the experiment from an

empty cache in a Docker container using an instrumented Chromium binary.

We exercised each extension four times for five minutes each, capturing all

generated network traffic. Capturing traffic on the container level provides a

full picture of each extension’s network interactions.

To reduce measurement noise, we blocked traffic to Google update services

and CRLsets1 via DNS configuration. We also disabled browser features such

as SafeBrowsing and account synchronization.

Considering the maximum URL length of 2,083 characters, we increased

the length of URLs by 500 characters between stages. Other than changing

the length of URLs used, the pages served to the instrumented browsers did

not change between stages. The maximum length of URLs generated by us

is below 1,600, leaving sufficient space for trackers that submit URLs as GET

arguments to do so. For each execution we open 20 pages; thus, if all URLs

1gvt1.com, redirector.gvt1.com, clients1.google.com, clients4.google.com

3.3. Causality Framework Application: Browser History Leakage 99

Extension Web
Store

Container Processing Cloud

Crawler

Trace Analysis

Local
Extension

Store

Flagged
Samples

PCAP
Local

Webserver
Local DNS

Execution Container

The internet

Figure 3.12: Ex-Ray extension execution overview.

were transmitted uncompressed we would expect an increase of 10 KB per

stage. We stored DNS information to group IP traffic by hostname.

Extension Dataset. This work focuses on tracking data collected from

browsing behavior that is sent to third parties. As opposed to previous work

on history leaking browser extensions [61], the system aims to detect leaks

regardless of how they are transmitted or collected. We target extensions that

are tracking browser history either through background scripts or modifica-

tion to pages. The main difference between these two approaches is that these

trackers are only present on websites in the wild that opt-in to use them. Users

are now familiar with tools that remove these trackers and the availability of

such tools for free makes them popular. Conversely, tracking in extensions can

cover all websites a user visits, and there is no opt-in mechanism. Furthermore,

no tools are readily available that would warn a user of such behavior or block

it.

Transferring the current host or URL is necessary for certain exten-

sions functionalities – for example, to check against an online blacklist like

adult content filters. However, we found that often extensions don’t have

100 Chapter 3. Causality in Malware Activities

the need of transferring URLs, or could be expected by the extension’s de-

scription, exposing all browsing habits of a user and creating a breach of

privacy. Furthermore, developers often hide the specification of such func-

tionality in an extension’s description. Users are concerned about how their

privacy is impacted [144, 145], without being aware of what a privacy policy

is citesmithhal f2014.

We crawled the Chrome Web Store and downloaded extensions with 1,000

or more installations. For our analysis, we only consider extensions that can

be loaded without crashing. Examples of extensions that could not be loaded

are those with manifest files that cannot be parsed or referencing files that are

missing from the extension packages. This left 10,691 extensions for Ex-Ray

to analyze.

We mainly relied on two approaches to discover extensions:

• Heuristic search. We looked for suspicious hostnames, keywords in

network traffic, and applied heuristics to traffic patterns. Through man-

ual verification we confirmed 100 benign extensions and 53 privacy-

violating extensions. The dataset contains different types of samples,

including aggregate data collection and delivery over HTTP(S) and

HTTP2.

• Honeypot probe. We registered extensions interacting with our hon-

eypot. We verified 38 extensions connecting from the public Internet.

Figure 3.9 shows a map of all incoming connections with respect to the

time we exercised the extension with unique URLs in the history. Ta-

ble 3.7 shows the most installed five malicious extensions with domains

connecting to the honeypot. Connections often appear immediately after

running the extension, but we also detected deferred crawls as well.

We excluded VPN and proxy extensions that redirect traffic through a

remote address as these are not part of our threat model. The connecting

clients performed no malicious activities we could identify in our log files. The

3.3. Causality Framework Application: Browser History Leakage 101

Extension Name installations Connecting from
Stylish - Custom themes 1,671,326 *.bb.netbynet.ru,

*.moscow.rt.ru,
*.spb.ertelecom.ru

Pop Up Blocker for Chrome 1,151,178 *.aws.kontera.com,
176.15.177.229,
*.bb.netbynet.ru

Desprotetor de Links 251,016 *.aws.kontera.com,
*.moscow.rt.ru,
*.bb.netbynet.ru

(Open Tabs) 97,204 *.dnepro.net,
109.166.71.185,
*.k-telecom.org

Similar Sites 45,053 *.aws.kontera.com,
*.moscow.rt.ru,
*.netbynet.ru

Table 3.7: Top five extensions connecting to our honeypot with highest installation
numbers which are still available in the Chrome Web Store.

hostnames of clients that connected to us varied widely. The most popular one

was kontera.com with 704 connections, followed by AWS endpoints. Inter-

estingly, we received many requests from home broadband connections, such

as *.netbynet.ru, often connecting only once. However, we connected four

graphs of extensions that were contacted from the same hosts. The biggest

graph connected eight extensions with two hosts. The other graphs connected

five, two, and two extensions.

12 of these extensions were removed from the Chrome Web Store before

our experiments concluded.

3.3.4.2 Ex-Ray Counterfactual Analysis Results

Tuning of the Unsupervised Component. The first step of Ex-Ray

consists of applying linear regression for counterfactual analysis. The linear

regression test flags flows if they respect the three parameters explained in Sec-

tion 3.3.3.2. To find the best configuration of these parameters, it is necessary

to evaluate the results on a labeled dataset. We used F-Measure as a compar-

ison metric. The strictest policy checks for a minimum of 5 URLs leaked, a

102 Chapter 3. Causality in Malware Activities

2% minimum slope, and 90% accuracy. This policy results in an F-Measure of

96.9% and no false positives.

This result is showing that causality in this case is not dependent from

probabilities. In fact, by having no false positives, it is not necessary to applied

statistical methods as in the previous application because there is certainty

that, when the linear regression is flagging an extension, there is leakage of

browser history.

To obtain better results overall, in our final configuration we used two

less strict configurations and flagged as suspicious all flows flagged in both

engines. As the goal of the final configuration is to find as many malicious

extensions as possible, knowing that the following phases of the system will

refine the false positives cases, it is possible to relax the flagging constraints.

This constraints relaxation is only possible because we have already shown the

causal relationship; without that, it would have been necessary to go through

the statistical models first. Both configurations check for a minimum of 2 URLs

leaked and 2% minimum slope. However, there is a difference in the last check:

while one used 90% accuracy in checking only the lower bound, the other one

used 80% accuracy checking both the upper and lower bound. As such, the

first and the last checks are less strict, but the F-Measure did not decrease

even if a larger area of the feature space can be flagged. The system correctly

flagged more flows as with the stricter configuration, but the flows belonged

to the same extensions already flagged by the previous system.

Labeling Performance. Ex-Ray flagged 212 extensions out of 10,691 as

history leaking using the linear regression on the traffic sent by the exten-

sions. By checking manually, we noticed that not all the extensions flagged

were history leaking. Out of 212 samples, 184 were leaking, 2 were goodware,

and 26 were unclear. It has not been possible to determine if among those

26 extensions there were ones leaking or not. Therefore, to provide a conser-

vative evaluation, we consider Ex-Ray to have 28 benign extensions wrongly

identified as history leaking.

3.3. Causality Framework Application: Browser History Leakage 103

As mentioned earlier, detection systems can be prone to false negatives.

To measure this for our system, we spot-checked a representative sample of ex-

tensions reported as benign. To establish baseline false negatives we scanned

our pcap files for leaks and reimplemented another system used for brute-

force searching extension traffic for obfuscated strings with a fixed set of algo-

rithms [61]. This system flagged 367 extensions which we used for our dataset.

The false negative samples we subjected to examination numbered 178. These

results lead to a precision of 87%, a recall value equal to 50.13%, and an F1-

Measure value equal to 63.66%. The overall accuracy value is 98.03%. These

values are reached using only the first step of Ex-Ray that is a completely

unsupervised algorithm. These results are further improved by the next phases

of the system that are building on the results of the phase where counterfactual

analysis is used.

3.3.5 Discussion and Limitations

The paper presenting Ex-Ray is using counterfactual analysis as a first step

towards detection. In fact, inferring causality is used to determine whether the

approach is working and after a first unsupervised flagging operation based

on this technique, the system implements other elements to detect with high

accuracy extensions leaking browser history.

The rationale behind our approach is intuitive: if an extension is leaking

browser history, it has to transmit the leaked information. Following this

intuition we set up the environment and decide to model the leakage as a linear

relationship between the amount of history and size of exchanged packets. The

presence of linear relationship corresponds to the Triggered flag in the previous

application, while the absence corresponds to the Untriggered case. Instead of

having different malicious families, in this case we have leaking and non-leaking

extensions.

The experiments have shown how the system was extremely precise and no

non-leaking extension was flagged. This result shows causal relationship with-

out the use of the whole statistical framework. Achieving this result meant

104 Chapter 3. Causality in Malware Activities

tuning the different factors that were evaluating the linear regression by tak-

ing into consideration the noise due to the experimental setup, the fallacy of

Internet communications, and the possible benign behaviors to avoid misclas-

sifications. For detection purposes, after having determined causality, we have

relaxed the constraints as possible misclassifications could have been ruled out

by the following system steps.

Evasion of Linear Regression. A system based on linear regression is ex-

ploiting a rather simple habit of trying to communicate in the most immediate

and simplest way. We took into evaluation whether the leakage was happening

through encrypted messages as they would have still respected the linear re-

lationship between size of history and size of the exchanged packets, however,

we did not take into evaluation all other possible evasion methods. Breaking

into several packets is not effective as the system looks at the aggregated quan-

tities, but for instance the malicious extension could try to pad the shortest

messages to mix the length of the packages or using non linear compression

that would result in non linear increase of the size of the payloads. These are

effective evasion examples for the causality step, however Ex-Ray is not a

stand alone system, some of these behaviors would immediately be flagged by

other security systems.

Sandboxing. Malware evasion is a well-explored area and is part of the arms

race between attackers and defenders. Examples of this include fingerprinting

analysis environments or creating more stealthy programs. While no ultimate

solutions exist for these problems, Ex-Ray addresses tracking at a fundamen-

tal level.

Another approach would be to lay dormant and only leak at a later point

in time. However, we have seen with our honeypot experiments that if leaks are

utilized, this often happens immediately. Furthermore, there is an economic

incentive on the part of attackers to obtain and monetize leaked history as

quickly as possible before its value begins to degrade.

Chapter 4

Predicting Security Alarms due

to Malicious Activities Using

Deep Learning Algorithms

This chapter is focusing on the opportunity of predicting which malicious event

may happen next. It is based on the CCS 2018 paper describing the system

called Tiresias [73]. My main tasks in the project have been related to the de-

sign of the experimental setup, deciding which tests to apply, the benchmarks,

and thoroughly analyze the results of all the different evaluations done. It has

been important to understand why Tiresias was particularly efficient, which

factors of the infrastructure were contributing and whether the requirements

related to the possible system deployment were respected.

This chapter is analyzing the opportunity to study sequences of events

flagged by security systems through a system we called Tiresias. The main

difference with the other technical contributions is that, in this case, we are

not recognizing the malicious actions, identifying and extrapolating the behav-

iors, but predicting the actions according to the behaviors observed in previous

sequences. This approach differs from the previous ones because of its proac-

tivity. In the previous section we have measured and studied behavior by

running files in a safe environment, in the next one we will look at the code of

malicious apps to detect malicious ones before they could be on the market.

106 Chapter 4. Security Alarms Prediction

Both technical contributions aim to prevent and detect malicious elements,

but in this section we aim to predict what an active malicious actor is going

to do to stop it while perfectly functioning in a real online environment.

Tiresias aims at predicting the actions that are part of attacks to com-

puter systems and networks. The techniques used by adversaries to attack

computer systems and networks have reached an unprecedented sophistica-

tion. Attackers use multiple steps to reach their targets [146, 147] and these

steps are of heterogeneous nature, from sending spearphishing emails contain-

ing malicious attachments [148], to performing drive-by download attacks that

exploit vulnerabilities in Web browsers [149, 150], to privilege escalation ex-

ploits [151]. After the compromise, miscreants can monetize their malware

infections in a number of ways, from remotely controlling the infected com-

puters to stealing sensitive information [152, 153] to encrypting the victim’s

data and holding it hostage [154, 155].

Traditionally, the computer security community has focused on detect-

ing attacks by using a number of statistical techniques [149, 156, 157, 158,

159, 160]. While this is inherently an arms race, detection systems provide

the foundation for network and system defense, and are therefore very im-

portant in the fight against network attacks. More recently, the attention of

the community switched to predicting malicious events. Recent work focused

on predicting whether a data breach would happen [76], whether hosts would

get infected with malware [75], whether a vulnerability would start being ex-

ploited in the wild [78], and whether a website would be compromised in the

future [74]. These approaches learn the attack history from previous events

(e.g., historical compromise data) and use the acquired knowledge to predict

future ones. Being able to predict whether an attack will happen or not can be

useful in a number of ways. This can for example inform law enforcement on

the next target that will be chosen by cybercriminals, enable cyber insurance

underwriters to assess a company’s future security posture, or assist website

administrators to prioritize patching tasks.

4.1. Motivation 107

e14e15 … e10e20e11e8e12e4e5 … e12e11e0 e3e9S1

e4e27e10 e28e11 e7e12 e5 …e4 e12S2

e4e41… e5 e22 e21e7e12S3

e23 e4e9 e3 e4e3e9 e23e3e9 e19 e24 e25 e26 e12 e13

e21 e19 e24e25e30 e31

… e9 e3e9 e3…e6 e12e19 e24e25e30e23

Figure 4.1: Three endpoints undergoing a coordinated attack. {e0, ...,e13} are
events involved in the coordinated attack and highlighted in bold.

4.1 Motivation
We started explaining the motivations for this work in Section 2.6 and contin-

ued explaining it when introducing this chapter; however, we did not describe

in details the challenges related to such problem.

The first challenge that we can immediately notice in Figure 4.1 is that

even though those three endpoints are going through the same type of attack,

there is not an obvious pattern in which a certain event ei would follow or

precede another event e j given ei,e j ∈ {e0, ...,e13}. For example, e12 (Malicious

OGNL Expression Upload) can be followed by e4 (HTTP Apache Tomcat

UTF-8 Dir Traversal) and e13 (Apache Struts CVE-2017-9805) in s1, yet, it is

followed by e7 (Wordpress Arbitrary File Download) and e11 (Apache Struts

CVE-2017-5638) in s2.

The second challenge is that the endpoints may observe other security

events not relating to the coordinated attack. For example, in s3, we can

observe a subsequence {e4,e41, ...,e5,e22,e21,e7} in which e5 is followed by a

number of unrelated events including e41 (WifiCam Authentication Bypass)

before reaching e5. Note that the other noisy events are omitted for the sake

of clarity. Between e5 and e7, there were two other noisy event e22 (Novell

ZENWorks Asset Management) and e21 (ColdFusion Remote Code Exec).

More interestingly, some of these endpoints may potentially observe dif-

ferent attacks from various adversary groups happening at the same time. For

example, we observe {e9,e19,e24,e25,e26,e12} in s1, {e4,e19,e30,e25,e24,e31,e12}

in s2, and {e6,e23,e19,e30,e25,e24,e12} in s3. It is possible that e19 (SMB Vali-

date Provider Callback CVE-2009-3103), e25 (SMB Double Pulsar Ping), and

e24 (Microsoft SMB MS17-010 Disclosure Attempt) could be part of another

108 Chapter 4. Security Alarms Prediction

coordinated attack. Facing these challenges, it is desirable to have a predictive

model that is able to understand noisy events, recognize multiple attacks given

different contexts in a given endpoint, and correctly forecast the upcoming se-

curity event. This is a more complex and difficult task than detecting each

malicious event passively.

Problem Formulation. We formalize our security event prediction problem

as follows. A security event e j ∈ E is a timestamped observation recorded at

timestamp j, where E denotes the set of all unique events and |E| denotes the

size of E. A security event sequence observed in an endpoint si is a sequence of

events ordered by their observation time, si = {e(i)1 ,e(i)2 , ...,e(i)n }. We define the

to-be-predicted event as target event, denoted as etgt . Each target event etgt

is associated with a number of already observed security events, denoted as l.

The problem is to learn a sequence prediction function f : {e1,e2, ...,el}→ etgt

that accepts a variable-length input sequence {e1,e2, ...,el} and predicts the

target event etgt for a given system. Note that our problem definition is a

significant departure from previous approaches that accept only fixed-length

input sequences. We believe that a predictive system should be capable of

understanding and making predictions given variable-length event sequences

as the contexts, hence our problem definition is a better formulation inline

with real world scenarios.

4.2 Methodology
In this section we describe the system architecture and the technical details

behind Tiresias.

4.2.1 Architecture Overview

The architecture and workflow of Tiresias is depicted in Figure 4.2. Its

operation consists of four phases: ¶ data collection and preprocessing, ·

model training & validation, ¸ security event prediction, and ¹ prediction

performance monitoring.

4.2. Methodology 109

e1, e10, …, e7, e100, e3

e12, e500, …, e9, e1, e31

e1000, e4, …, e0, e101, e8

e41, e17, …, e0, e78, e0

e19, e300, …, e7, e1, e14

Data
Collection

&
Preprocessing

Unit

Training

Validation

event1 event2 event3 event4 event5

event2 event3 event4 event5 event6

LSTM Memory
Array Cell

Security eventsAdversaries TIRESIAS

 Prediction
 Performance

 Monitor

Data flow

Prediction Engine

1 4

Monitoring flow

3

2.a

2.b

Figure 4.2: Tiresias collects security events from machines that have installed
an intrusion protection product. The sequential events from these
machines are collected, preprocessed and then used to build and vali-
date Tiresias’ predictive model. The optimal model is then used in
operations and its performance is monitored to ensure steadily high
prediction accuracy.

Data collection and preprocessing (¶). Tiresias takes as input a se-

quence of security events generated by endpoints (e.g., computers that in-

stalled a security program). The goal of the data collection and preprocessing

module is to prepare both the training and validation data to build Tiresias’

predictive model. Tiresias then consumes that raw security event data gen-

erated from millions of machines that send back their activity reports. The

collection and preprocessing module reconstructs the security events observed

on a given machine si as a sequence of events ordered by timestamps, in the

format of si = {e(i)1 ,e(i)2 , ...,e(i)n }. The output of the data collection and prepro-

cessing module is D = {s1,s2, ...,sm} where m denotes the number of machines.

Finally, we build the training data DT and validation data DV from D for the

next stage, where DT ∩DV = /0.

Model training and validation. The core of Tiresias consists of the train-

ing of a recurrent neural network with recurrent memory cells (·.a, see Sec-

tion 4.2.2 for technical details about recurrent memory cells). Essentially,

Tiresias specifies a probability distribution of ew+1 possible events given his-

torical observed events {e1, ...,ew}, where w refers to the rollback window size,

by applying an affine transformation to the hidden layer followed by a so f tmax,

110 Chapter 4. Security Alarms Prediction

Pr(ew+1|e1:w) =
exp(hw · p j +q j)

∑ j′∈E exp(hw · p j′ +q j′)
(4.1)

where p j is the j-th column of output embedding P ∈ Rm×|V | and q j is

a bias term. Given the training data DT , Tiresias’ training objective is

therefore to minimize the negative log-likelihood L of all the event sequences:

L =−
|DT |

∑
t=1

Pr(et |e1:t−1 : θ) (4.2)

We use the validation data DV to verify if the parameters θ identified during

the training phase can achieve reasonable prediction performance (·.b). It

is important to note that DT and DV come from different machines so as to

verify the general prediction capability of Tiresias on the endpoints that are

not part of the training data.

Security event prediction (¸). Once the model is trained, Tiresias takes

the historical events {e0, ..., ei} as the initial input (i.e., a variable-length input

sequence inline with the real-world scenario) and predicts the probability dis-

tribution of ei+1 given E as Pr[ei+1|e0:i] = {e1 : p1, e2 : p2, ..., e|E| : p|E|}. Our

strategy is to sort Pr[ei+1|e0:i] and choose the event with the maximum prob-

abilistic score. Tiresias then verifies with the actual event sequence whether

ei+1 is the correct prediction. In case of a wrong prediction, Tiresias updates

its contextual information accordingly. Section 4.5 provides a detailed case

study of the security event prediction phase in a real-world scenario.

Prediction performance monitoring (¹). Finally, in an effort to main-

tain the prediction accuracy as high as possible, the prediction performance

monitor tracks and reports the evolution of different metrics, such as the Pre-

cision, Recall, and F1 of the current model. It is possible to elaborate such

metrics on Tiresias’ implementation in the wild as it is immediately possible

to see whether Tiresias predicted the right event. If the predictions preci-

sion is dropping below a certain threshold, the system would automatically

understand that is necessary to retrain the model.

4.2. Methodology 111

4.2.2 Recurrent Memory Array

Long short-term memory (LSTM) and variants such as gated recurrent units

(GRU) are the most popular recurrent neural network models for sequential

tasks, such as in character-level language modeling [161]. One common ap-

proach to deal with complex sequential data is using a stacked RNNs architec-

ture. Essentially, stacking RNNs creates a multi-layer feedforward network at

each time-step, i.e., the input to a layer being the output of the previous layer.

In turn, stacking RNNs automatically creates different time scales at differ-

ent levels, and therefore a temporal hierarchy [162]. This approach has been

proven practical and achieving good accuracy in various cases, such as log pre-

diction [81], binary function recognition [79], and function type recovery [80].

Nevertheless, despite the proven success of stacked RNNs, one complication

incurred by such strategy is the lack of generalization to new data, e.g., stack-

ing mechanisms chosen and tuned for current training data require vigorous

evaluation and may not adapt well to the new data at run time [163]. There-

fore, rather than stacking multiple layers of RNNs, it would be ideal to build

more complex memory structures inside a RNN cell to retain temporal mem-

ories while keeping a single layer RNN network to maintain computational

efficiency when training. To achieve both goals, we propose to leverage the

recurrent memory array by Rocki [164]; this is doable by modifying LSTM

architectures, while it is not available on GRU architectures.

Following the notation in Rocki [164], we can formally define the recurrent

memory array as follows in Eq. 4.3.

112 Chapter 4. Security Alarms Prediction

f t
k = σ(Wf kxt +U f kht−1 +b f k)

itk = σ(Wikxt +Uikht−1 +bik)

ot
k = σ(Wokxt +Uokht−1 +bok)

c̃t
k = tanh(Wckxt +Uckht−1 +bck)

ct
k = f t

k � ct−1
k + itk � c̃t

k

ht = ∑
k

ot
k � tanh(ct

k) (4.3)

where f denotes forget gates, i denotes inputs, o denotes outputs, c denotes

cell states, and h denotes the hidden states. Here, � represents element-wise

multiplication. It is straightforward to notice that parameter k directly con-

trols the number of cell memory vectors, which enables the recurrent memory

array to build an array-like structure similar to the structure of the cerebellar

cortex [164].

To deal with noisy sequential input data (Section 4.3) as observed in the

real world, we follow the stochastic design outlined in [164] by treating initial

output gate activations as inputs to a so f tmax output distribution, sampling

from this distribution, and selecting the most likely memory cell to activate

(see Eq. 4.4).

p(i = k) =
eot

k

∑k ot
k

ht = ot
i � tanh(ct

i) (4.4)

Eq. 4.4 identifies the probability of a memory cell i to be activated and

update ht accordingly using this cell while the rest of memory cells are deacti-

vated. Hence, instead of summarizing all cell memory (see Eq. 4.3), only one

output is used in this stochastic design that is resilient to noisy input. We refer

4.3. Employed Dataset 113

D1

01/
11

17/
11

D2

08/
11

2017 2018

23/
11

08/
12

23/
12

01/
01

03/
01

08/
01

23/
01

08/
02

23/
02

Figure 4.3: Summary of the security event datasets used in this paper.

interested readers to the work from rocki [164] for theoretical proofs and em-

pirical comparison studies with the other state-of-the-art RNN architectures.

4.3 Employed Dataset
Tiresias is a generic system that can be used to predict security events on

different protection systems. To evaluate its performance in this paper, we

focus specifically on security event data collected from Symantec’s intrusion

prevention product. Symantec offers end users to explicitly opt in to its data

sharing program to help improving its detection capabilities. To preserve the

anonymity of users, client identifiers are anonymized and it is not possible to

link the collected data back to the users that originated it. Meta-information

associated with a security event is recorded when the product detects network-

level or system-level activity that matches a pre-defined signature. From this

data we extract the following information: anonymized machine ID, times-

tamp, security event ID, event description, system actions, and other informa-

tion (e.g., file SHA2) if any. Note that we use the anonymized machine ID to

reconstruct a series of security events detected in a given machine and discard

it after the reconstruction process is done.

To thoroughly investigate the effectiveness, stability and reusability of

Tiresias, we collected 27 days of data, summarized in Figure 4.3. We compile

114 Chapter 4. Security Alarms Prediction

two separate datasets. The first one, which we call D1, spans a period of 17

days in November 2017 (1 November – 17 November), and is composed of

over 2.2 billion security events. We use the first five days (1 November – 5

November) of D1 to validate our approach and for a comparison study against

three baseline methods (see Section 4.4). We later use the first seven days (1

November – 7 November) of D1 to build models with varied length of training

period, and study the stability of our approach by evaluating the prediction

accuracy for the rest of the 10 days of data (8 November – 17 November)

from D1. We also compile another dataset, which we call D2. This dataset is

composed of 1.2 billion security events collected on the 8th and 23rd day of

each month between November 2017 and February 2018, and the first three

days in January 2018. D2 is used to understand whether the system retains

its accuracy even in a longer term scale: training sets based on D1 are months

older than part of the data in D2. We use the first three days in January 2018

to build new models and compare them to the models built with data from

D1 (1 November - 7 November) and study their prediction performance with

a focus on Tiresias’ reusability (see Section 4.4.5). On average, we collect

131 million security events from 740k machines per day, roughly 176 security

events per machine per day. In total, the monitored machines generated 4,495

unique security events over the 27 day observation period.

Data Limitations. It is important to note that the security event data is

collected passively. That is, these security events are recorded only when cor-

responding signatures are triggered. Any events preemptively blocked by other

security products cannot be observed. Additionally, any events that did not

match the predefined signatures are also not observed. Hence the prediction

model used in this paper can only predict the events observed by Symantec’s

intrusion prevention product. We discuss more details on the limitations un-

derlying the data used by Tiresias in Section 4.6.

4.4. Evaluation 115

4.4 Evaluation
In this section we describe the experiments operated to evaluate Tiresias.

We designed a number of experiments that allow us to answer the following

research questions:

• What is Tiresias performance in identifying the upcoming security

event (Section 4.4.2) and how does its performance compare to the base-

line and state-of-the-art methods (Section 4.4.3)?

• How do variations in the model’s training period affect the performance

(Section 4.4.4)?

• Can we reuse a trained Tiresias model for a given period of time and

when do we need to retrain the model (Section 4.4.5)?

• What is the influence of the long-term memory of Recurrent Neural

Network models to achieve security event prediction (Section 4.4.6)?

4.4.1 Experimental Setup
Implementation. We implemented Tiresias in Python 2.7 and TensorFlow

1.4.1. Experimentally, we set the number of unrolling w to 20, the training

batch size to 128, the number of memory array k (see Section 4.2.2) to 4 and the

number of hidden LSTMMemory Array units to 128. We find these parameters

offering the best prediction performance given our dataset. All experiments

were conducted on a server with 4 TITAN X (Pascal) 12GB 1.5G GPUs with

the CUDA 8.0 toolkit installed. All baseline methods are implemented in

Python 2.7 and experimented on a server with a 2.67GHz Xeon CPU X5650

and 128GB of memory.

Evaluation setup. To form a concrete evaluation setup, for both Tiresias

and other baseline methods experiments, we split the input data and use 80%

for training, 10% for validation, and 10% for test. We strictly require that

training, validation and test data to come from different machines so as to ver-

ify Tiresias’ general prediction capability in the endpoints that are not part

116 Chapter 4. Security Alarms Prediction

D1

01/
11

02/
11

03/
11

04/
11

05/
11

Train Test

Figure 4.4: Experimental setup for Tiresias’ prediction evaluation (Section 4.4.2)
and comparison study with baseline methods (Section 4.4.3). The grey
bars indicate data derived from machines used for training while the
dotted bars indicate the data used for testing and coming from different
machines with respect to the training data.

of the training data. Specifically, we train Tiresias for 100 epochs, validate

model performance after every epoch and select the model that provides the

best performance on validation data.

Evaluation metrics. We use the precision, recall, and F1 metrics to evaluate

prediction results from the models. In our experimental setup, we calculate

these metrics globally by counting the total true positives, false negatives and

false positives. It is important to note that Tiresias accepts variable-length

security event sequences. We specially hold out the last event as the prediction

target etgt for evaluation purposes. Section 4.5 showcases how Tiresias can

be leveraged to accomplish step-by-step prediction with a single event as the

initial input.

4.4.2 Overall Prediction Results

In this section we evaluate the performance of our security event forecast model

in predicting the exact upcoming event. This is a challenging task that a

predictive system for security events aims at resolving due to the fact that there

are 4,495 security events as possible candidates in our dataset (see Section 4.3)

and an exact event should be correctly predicted.

Experiment setup. We use the experimental setup as illustrated in Fig-

ure 4.4 for Tiresias’ performance evaluation. From D1, we train our predic-

tive model using one day of data and evaluate Tiresias on both the same day

4.4. Evaluation 117

01/11 02/11 03/11 04/11 05/11
Test Date

01/11

02/11

03/11

04/11

05/11

Tr
ai

ni
ng

 D
at

e

0.795

0.810

0.825

0.840

0.855

0.870

(a) Precision
01/11 02/11 03/11 04/11 05/11

Test Date

01/11

02/11

03/11

04/11

05/11

Tr
ai

ni
ng

 D
at

e

0.795

0.810

0.825

0.840

0.855

0.870

(b) Recall
01/11 02/11 03/11 04/11 05/11

Test Date

01/11

02/11

03/11

04/11

05/11

Tr
ai

ni
ng

 D
at

e

0.795

0.810

0.825

0.840

0.855

0.870

(c) F1-Measure

Figure 4.5: Precision, Recall, and F1-Measure of overall Tiresias’s performance.
Tiresias is trained using one day of data and evaluated on both the
same day and the following days until 5 November 2017.

and the following days until 5 November 2017. For example, we train Tiresias

using data from 2 November and evaluate its prediction performance from 2

November to 5 November.

Experiment results. Following our general experimental evaluation setup,

we randomly select 14,396 machines from the first days of November that

are not part of the data used in the training set of the initial model. We

focus on predicting the last event occurring on a machine given the sequence

of previously-observed events. As shown in Figure 4.5, Tiresias is able to

achieve over 80% precision, recall, and F1-measure in predicting the exact

upcoming security event when evaluating on the same day test data. Figure 4.5

shows that, when training on one day, and testing on the same day and the

following ones, the values of the Precision, Recall and F1 do not decrease

dramatically. When it does, it decreases, in the worse case, of less than 0.05.

The Figure also shows that Precision (Figure 4.5a) and Recall (Figure 4.5b) are

well balanced and have very similar values and exactly the same scale (from

0.87 to 0.795). This result shows that Tiresias can offer good prediction

results. There is no security event dominating in our dataset, which may lead

to biased but better prediction performance. The top 3 events in our training

data are: (i) Microsoft SMB MS17-010 Disclosure Attempt (19.8%), (ii) SMB

Double Pulsar Ping (16.4%), and (iii) Unimplemented Trans2 Subcommand

(16.1%). The top 3 events in our test data are ranked as follows: (i) Microsoft

SMB MS17-010 Disclosure Attempt (9.85%), (ii) HTTP PE Download (6.3%),

and (iii) DNS Lookup Failures (3.5%). Interestingly, the dominant events in

118 Chapter 4. Security Alarms Prediction

Test Date (Evaluation Metric - Precision)
Method 01/Nov 02/Nov 03/Nov 04/Nov 05/Nov
Spectral 0.05 0.031 0.023 0.013 0.02

Markov Chain 0.62 0.56 0.56 0.53 0.52
3-gram 0.67 0.54 0.61 0.592 0.601

Tiresias 0.83 0.82 0.83 0.82 0.81

Table 4.1: Prediction precision comparison study: Tiresias vs. baseline ap-
proaches.

training and test are different, which makes Tiresias’ prediction results even

stronger.

Over the days, we observe a trend that the prediction performance of

Tiresias drops slightly in terms of all three evaluation metrics. Take the

model trained on 2 November for example, its prediction precision drops by

4% from 0.83 to 0.79. In Section 4.4.4 we study if variations (e.g., a longer

training period) in the model’s training data would offer better performance

and how stable the trained Tiresias performs over consecutive days. Note

that ‘micro’-averaging in a multi-class setting produces equal Precision, Recall

and F1-Measure. For the rest of the evaluation process, we therefore use

precision as the main evaluation metric.

4.4.3 Comparison Study

In this section we aim at studying whether the higher complexity of Recur-

rent Neural Networks is required for the task of predicting security events,

or whether simpler baseline methods would be enough for the task at hand.

For comparison purposes, we implemented first-order Markov Chain [165] and

3-gram model [166] (equivalent to the second order Markov Chain model) in

Python 2.7.1. Note that it is natural to consider a higher order (e.g., n-order

where n > 2) Markov Chain model for security event prediction, however, due

to the exponential states issue associated with high order Markov Chain mod-

els, it is computationally costly to build such a high order model for 4,495

events. Finally we use the sp2learning [167] package to build a spectral learn-

ing model [168] for sequence prediction as the third baseline prediction model.

These three methods are often used to model sequences of elements in several

4.4. Evaluation 119

fields and, being simpler than our RNN models and widely used in sequence

prediction, they are relevantly good baselines to compare Tiresias with.

Experiment setup. The comparison study uses daily data (1 November - 5

November) from D1. To evaluate Tiresias in this case, all training, validation,

and test data come from the same day.

Comparison study results. Table 4.1 shows the precision of Tiresias

compared to simpler systems. Table 4.1 shows that Tiresias outperforms the

baseline methods but also that 3-grams perform better than Markov Chains,

and Markov Chains perform better than the spectral learning method. This

particular order shows the importance of sequence memory as the system that

performs best among the baselines is the 3-grams. However, 3-grams are less

effective than Tiresias. This is due to two of the main characteristics of

neural networks: the capacity of filtering noise and the longer term memory.

As Table 4.1 shows, Tiresias has precision values higher than 0.8 in all the

five days of tests showing a very good level of reliability. In Section 4.4.6 we

show that the long-term memory that is an important feature of RNNs plays

a key role in correctly predicting security events. Note that we didn’t report a

comparison of the computation time among the methods due to the fact that

Tiresias leverages GPUs to train RNN models and the baseline methods rely

on traditional CPUs, and therefore Tiresias is in general much quicker to

run. For example, our 3-gram implementation took over 10 days for training,

yet Tiresias requires only ∼10 minutes per epoch using GPUs.

4.4.4 Influence of Training Period Length

In this section we look at whether training Tiresias on longer periods of time

achieves better prediction performance.

Experiment setup. We use the experimental setup as illustrated in Fig-

ure 4.6 for Tiresias’ performance evaluation. From D1, we train our predictive

model using one day of data and evaluate on the test data from 8 November

to 17 November. For example, we train Tiresias using data from 2 Novem-

ber and evaluate its prediction performance on test data from 8 November

120 Chapter 4. Security Alarms Prediction

D1

01/
11

07/
11

Train Test

08/
11

17/
11

04/
11

…

Figure 4.6: Experimental setup for multiple day evaluation of Tiresias (Sec-
tion 4.4.4).

to 17 November. To evaluate if a longer training period can offer better pre-

diction performance, we also train our predictive model using one week of

data (from 1 November to 7 November) and evaluate its performance in the

aforementioned period.

Experiment results. In this experiment we evaluate the performance of our

security event forecast model in predicting the exact upcoming event several

days after the initial model was trained. The goal is to determine how well

our predictive model ages in the short term and to make sure that it remains

effective in predicting security events without the need to re-tune it after this

period of time.

The question that this experiment is trying to answer is whether there

is a difference in training the models over longer periods of time, such as one

week, rather than one day. Table 4.2 provides some insights into this question.

First, we used the first five days of November on their own to build five

models. Second, we built one single model from the first seven days of the

same month. We then tested the six different models (five based on one day of

data and one based on one week of data) on ten days of data from 8 November

to 17 November. Overall, the training over one week of data produces similar

results as those obtained using training over only one day of data. On average,

Tiresias trained with one week data can achieve a precision score of 0.819,

which is 0.3% higher than that of the models trained with one day data.

These results demonstrate that Tiresias can offer good accuracy with

stable performance over time since the standard deviation of precision scores

4.4. Evaluation 121

over the measurement period of 10 days is small (∼0.02). However, on 8

November and on 16 November the results are slightly different, exhibiting a

higher accuracy for the week-long trained model. While in the first case (8

November) it is probably due to the proximity of the test day to the training

week, the second case (16 November) appears to be an outlier. We further

observe that the time proximity of the training and test data appears to have

a positive impact on the prediction accuracy. Indeed, we can see that the model

trained over one day of data is as efficient as the one trained over one week of

data when tested on alerts generated only a few days later, probably due to

the similarity among attack behaviors observed within a few days. The week-

long trained model appears to be more efficient in the presence of deviating,

or outlying attack behaviors in the test phase. This can easily be explained

by the fact that the more data is used to build a model the more complete

the model is. Hence it can better deal with rare events or deviating attack

behaviors.

One of the reasons why Tiresias’ prediction precision might suddenly

decrease is if the set of alerts significantly changes from a day to another,

for example because a new vulnerability starts being exploited in the wild, a

system patch fixes an existing one, or a major version of a popular software

gets released. For this reason, in our architecture discussed in Section 4.2 we

included a component that monitors the performance of Tiresias and can

trigger a re-training of the system if it is deemed necessary. In the experiment

discussed in Table 4.2, for example, the precision performance on 16 November

drops by 6.9% on average from 8 November. This could indicate to the op-

erator that something significant changed in the monitored systems and that

Tiresias needs to be retrained. As we will show in Section 4.4.7, this can be

done in batch and it takes well less than a day to complete.

4.4.5 Stability Over Time

In this Section we evaluate Tiresias’ prediction accuracy when the training

data is several months older than the test data. Our goal is to evaluate the

122 Chapter 4. Security Alarms Prediction

Test Date (Evaluation Metric: Precision)
Model

Training Date 08/Nov 09/Nov 10/Nov 11/Nov 12/Nov 13/Nov 14/Nov 15/Nov 16/Nov 17/Nov

01/Nov 0.815 0.823 0.822 0.794 0.789 0.814 0.817 0.816 0.746 0.774
02/Nov 0.821 0.827 0.826 0.801 0.792 0.82 0.819 0.82 0.76 0.79
03/Nov 0.822 0.827 0.826 0.80 0.794 0.82 0.82 0.817 0.742 0.769
04/Nov 0.820 0.828 0.827 0.797 0.797 0.822 0.823 0.82 0.75 0.77
05/Nov 0.817 0.825 0.823 0.791 0.791 0.818 0.815 0.815 0.747 0.775

01/Nov - 07/Nov 0.836 0.83 0.823 0.82 0.801 0.815 0.816 0.812 0.783 0.773

Table 4.2: Evaluation of Tiresias’ prediction precision between 8th November and
17th November.

01/
11

07/
11

08/
11
23/

11
08/

12
23/

12
08/

01
23/

01
08/

02
23/

02

08/
01

23/
01

08/
02

23/
02

D1

Train Test

D2

Train Test

01/
01

03/
01

Figure 4.7: Experimental setup for Tiresias reliability evaluation (Section 4.4.5).

reliability of the model in case there is no retraining for several months. As we

discussed, Tiresias is able to detect when it needs to be retrained, however

this operation does not come for free and therefore it is desirable to minimize

it as much as possible.

Experiment setup. The experimental setup is illustrated in Figure 4.7. We

train our predictive model using both one day of data (from 1 November

to 5 November respectively) and one week of data (from 1 November to 7

November) from D1. Additionally for comparison purposes, we train three

more predictive models using one day of data (from 1 January to 3 January

respectively) from D2. The test data consists of two days per month (on the

8th and the 23rd) so as to obtain a representative dataset from November 2017

until February 2018.

4.4. Evaluation 123

Experiment results. Table 4.3 shows the results obtained using the same

training sets as in the previous Section augmented with three days in January,

i.e., one day-long model for each of the first five days of November 2017,

one week-long model for the first seven days of the same month and one day-

long model for each of the first three days of January 2018. The prediction

precision results presented in Table 4.3 show consistency through the different

training sets and a good level of stability, as the performance does not decrease

dramatically over time. Moreover, the week-long training set does not show

increased accuracy compared to the day-long ones. These new results thus

confirm those from Section 4.4.2 and show that (i) the model quickly converges

towards high accuracy with only one or a few days of training data, and (ii)

the model ages very well even months after it was built.

December discontinuity. Table 4.3 shows a particular behavior between 8 De-

cember and 23 December: Tiresias’ precision increases. We would normally

expect the system’s precision to slightly decrease over time, possibly follow-

ing a pattern, while in this case the precision increases. To investigate this

phenomenon, we looked for potential differences in the raw data and noticed

that the test data collected after 8 December exhibits a significant deviation

with respect to one specific security event ID: the presence of one of the top

three recorded alarms decreased by an order of magnitude, having a compara-

ble number of occurrences to alerts occupying the 4th to 10th position. The

alarm is related to DoublePulsar, a vulnerability disclosed in the first half of

2017. Such change may be due to different reasons. The most probable reason,

however, could be the installation of patches: Microsoft releases monthly up-

dates for Windows every 2nd Tuesday of the month (e.g., 12 December 2017)

and many software- and hardware-related companies release patches immedi-

ately following Microsoft’s. Finally, a small change to the IPS signatures or to

the attack modus operandi can heavily impact the hit rate of a given alarm.

Comparison study. To further investigate this December discontinuity phe-

nomenon we decided to assess the impact of the training data on the model

124 Chapter 4. Security Alarms Prediction

Model
Training Date(s)

Test Date (Evaluation Metric: Precision)
2017 2018

08/Nov 23/Nov 08/Dec 23/Dec 08/Jan 23/Jan 08/Feb 23/Feb
01/Nov 0.815 0.785 0.832 0.899 0.899 0.921 0.93 0.921
02/Nov 0.821 0.8 0.835 0.895 0.896 0.921 0.931 0.918
03/Nov 0.822 0.782 0.835 0.898 0.899 0.923 0.93 0.922
04/Nov 0.820 0.793 0.834 0.901 0.898 0.922 0.929 0.921
05/Nov 0.817 0.79 0.833 0.9 0.898 0.921 0.929 0.92

01/Nov-07/Nov 0.836 0.788 0.829 0.895 0.892 0.917 0.925 0.915
01/Jan - - - - 0.905 0.927 0.931 0.926
02/Jan - - - - 0.908 0.926 0.930 0.924
03/Jan - - - - 0.914 0.933 0.935 0.929

Table 4.3: Evaluation of Tiresias’s prediction precision on every 8th and 23rd of
each month.

accuracy. To this end, we considered the training sets from data collected on

the first three days of January and tested on the January and February dates

(bottom part of Table 4.3). We can see that Tiresias trained in January

performs slightly better than when trained in November. These results show

that the results by Tiresias remain reliable even months after the system

was trained. Nevertheless, in the case of a sudden decrease in precision due

to an adverse change in the data (e.g., the emergence of a new attack), Tire-

sias would be able to detect this and prompt a retraining, as discussed in

Section 4.2.

4.4.6 Sequence Length Evaluation

In Section 4.4.3 we showed that Tiresias outperforms simpler systems that

do not take advantage of long-term memory in the same way as the RNN

model used by our approach. In general, understanding how Deep Learning

models work is challenging, and they are often treated as black boxes. To make

matters more complex, RNNs do not only rely on long-term memory, but also

on short-term memory, in particular to filter out noise.

In this section we aim at understanding whether long-term memory is

more influential in making decision than short-term memory or vice versa.

With relying on short-term memory we mean a system that relies on a few

elements of the sequence to make its decision, that is, the ones closest to the

element that the system is trying to guess. With relying on long-term memory

we mean when the system uses the whole sequence or a large part of it to take

4.4. Evaluation 125

its decision on what the next security event could be. Intuitively, if short-term

memory was predominant, we would not expect the performance of Tiresias

to increase with the number of observed events.

As looking into the Neural Network weights may be a complicated way

to understand which type of memory is more important for the model, we

decided to focus on the occurrences of successfully and unsuccessfully guessed

events. Every event guessed by Tiresias has a probability (confidence score)

associated to it. First, we look at the distribution of the confidence scores

among successfully guessed events (Figure 4.8a) and unsuccessfully guessed

ones (Figure 4.8b). As it can be seen, both types of events present a very

skewed distribution in their confidence scores, with a negligible number of

events being predicted with a probability of less than 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
confidence level

0

2000

4000

6000

8000

10000

12000

14000

16000

o
cc

u
rr

e
n
ce

s

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
confidence level

0

200

400

600

800

1000

1200

1400

1600

o
cc

u
rr

e
n
ce

s

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
(b)

Figure 4.8: Quantity of successfully and unsuccessfully guessed events. The Y axis
on the left of each graph is the occurrence of successes/failures with at
least the probability indicated on the X axis according to the system.
The Y axis on the right is the ratio between the value on the other Y
axis and the total of successes/failures.

To better understand if Tiresias’ results are mainly due to the use of

long-term rather than short-term memory, we checked how unique the se-

quences on which Tiresias makes its decisions are. These quantitative re-

sults can hint at which kind of approach is used by the algorithm. We try to

evaluate the occurrences of the sequence in which the system tried to guess

the last event compared to all those that differ from it for the last event (the

one that Tiresias tried to guess). This analysis is carried out for sequences

126 Chapter 4. Security Alarms Prediction

0.5 0.6 0.7 0.8 0.9 1.0
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0

S
e
q
u
e
n
ce

 A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e

Sequence percentage

sl = 2
sl = 3
sl = 4
sl = 5
sl = 6
sl = 7
sl = 8
sl = 9

(a)

0.5 0.6 0.7 0.8 0.9 1.0
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0

S
e
q
u
e
n
ce

 A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e

Sequence percentage

sl = 2
sl = 3
sl = 4
sl = 5
sl = 6
sl = 7
sl = 8
sl = 9

(b)

Figure 4.9: The plots show the percentage of the sequences correctly guessed (a)
or failed to guess (b) with respect to sequences that share all the events
but the last. On the X axis, as for Figures 4.8a and 4.8b there is the
confidence level of the sequences used by the system. Figures show
that sequences of at least 5 events (sl >=5) are quite unique, therefore
long term memory is a crucial factor in the system accuracy.

of length i+1,(i = 2, ...,9) where i represents the number of events before the

last we take into consideration. For all the successful/unsuccessful sequences

we calculate the ratio between the times in which we had those i events and

Tiresias predicted the last event correctly and the times in which we had the

same i events followed by any event (included the right one). According to the

probability value of the guessed event, we calculate the average probability.

Figure 4.9a shows the data for all the sequences for which the last event

has been correctly guessed by Tiresias. Note that the X axis starts at 0.5

because, as Figures 4.8a and 4.8b showed, the number of predictions with a

lower confidence is very low. The values for i (sequence length) less than 5

show that the system’s prediction is not very confident. Longer sequences (i

greater than 5), instead, are more unique and often correctly predict the last

event. The opposite happens when we evaluate the sequences involving events

not guessed correctly by our system (Figure 4.9b). In fact, the left part of the

graph presents sequences where the wrongly guessed event was rarely the one

following the i previous events. This may mean that in those cases there are

sequences that differ only for the last event and a few events are quite frequent.

4.5. Case Studies 127

Takeaways. Long sequences including the guessed event are more frequent

when we analyze the successful guesses. This situation is more common than

the unsuccessful guesses as the system reaches high accuracy. Therefore, ac-

cording to the graphs the system seem to rely more on long-term memory than

short-term memory.

4.4.7 Tiresias Runtime Performance

We now discuss the specific characteristics of the system and its runtime per-

formance.

The training phase is the longest one: building a Tiresias model is a

long process that can be performed offline. Tiresias takes around 10 hours

to retrain the model. Considered the stability of the model, which as shown

in Section 4.4.5 can be effective for long periods of time, rebuilding the model

does not have to be done every day. We also showed that it is possible to

identify when the system needs retraining because of a discontinuity in the

distribution of events (see Section 4.4.4). Once trained, Tiresias takes 25ms

to 80ms to predict the upcoming event using the variable-length security events

in a given system.

Tiresias’ predictive model trained using one day of data is about 31MB.

It can be easily pushed to the endpoints with limited network footprint. Note

that with the advance of deep learning libraries, especially the recent devel-

opment of TensorFlow, it is feasible for Tiresias to be deployed not only in

traditional endpoints (e.g., PCs) but in mobile and embedded devices as well.

This is another aspect that exemplifies the general applicability of Tiresias.

4.5 Case Studies
In this section we describe a set of case studies showcasing the capabilities

of Tiresias in different real-world scenarios. We first show how Tiresias

can be used to detect a coordinated multi-step attack against a Web server

(Section 4.5.1). We then provide a number of real-world settings in which

128 Chapter 4. Security Alarms Prediction

Tiresias’ prediction labels can be modified to achieve specific goals, for ex-

ample predicting entire classes of attacks (Section 4.5.2).

4.5.1 Predicting Events in a Multi-Step Attack

The first scenario where Tiresias’ prediction capability can be leveraged is

when facing multi-step, coordinated attacks, i.e., a single attack involving

multiple steps performed sequentially or in parallel by an attacker and resulting

in multiple alerts being raised by the IPS. The difficulty of identifying such

attacks originates from the fact that some of the intermediate steps of a multi-

step attack can be considered benign when seen individually by an IPS engine.

Moreover, most attacks observed in the wild are the result of automated scripts,

which are essentially programmed to check for some precondition on the victim

systems and subsequently trigger the adequate exploit(s). For instance, an

attack might consists of the following steps: (i) run reconnaissance tasks if

port 80/tcp (HTTP) is open, (ii) trigger a list of exploits against the Web

application framework, e.g., Apache and (iii) execute a list of exploits against

other possible applications running on top of it. Therefore, we may not observe

all steps of an attack on every victim system, depending on which branches

of the attack scripts were executed. This variability of observed events across

systems hinders the identification of the global multi-step attack.

To identify candidate multi-step attacks in our dataset of IPS events we

used the following approach. For each event ei observed on any of the mon-

itored machines we compute its frequency of occurrence across all machines.

We then consider a candidate multi-step attack any sequence of events ei oc-

curring at the same frequency with an error margin of 10% to capture the

variability in attacks as explained above. We also set a support threshold on

the number of machines exhibiting that sequence so as to avoid a biased fre-

quency obtained from too few samples. To uncover the case study presented

here we empirically set this threshold to 1000 machines. For network-sourced

attack steps, we also extract the source IP address to determine the likelihood

of the global event sequence to be generated by a single attacker.

4.5. Case Studies 129

start

end

e10 e12 e8 e10 e29 e28 e7 e11 e7 e6 e9 e55 e3 e9 e0 e6

e3 e7 e2 e12 e7 e6 e55 e7 e9 e3 e10 e11 e8 e21 e7 e12

e13

(e5) (e3) (e7)

(e4) (e55) (e1)

(a) Tiresias prediction process in machine1
start

end

e31 e23 e41 e4 e7 e11 e12 e11 e8 e46 e5 e29 e9 e3 e9 e3

e9 e3 e7 e18 e7 e6 e7 e6 e55 e10 e12 e7 e6 e12

(e18)

(e0) (e2)

(…)correct borderline incorrect real event

(e10)

e7 e6

(e11)

(b) Tiresias prediction process in machine2

Figure 4.10: Step by step visualization of Tiresias prediction process in two real
systems. Tiresias starts with event e10 and e31 respectively as the
initial feed and predicts the upcoming security event step by step.
The predictions are colored by their probabilistic scores, where green
indicates Tiresias returns a correct prediction with probabilistic
score greater than 0.5, orange indicates Tiresias returns a correct
event prediction with probabilistic score less than 0.5 (but remains
the largest probabilistic score), and red indicates a wrong prediction
(the actual events are shown in parentheses in this case).

We present the case of a multi-step attack captured by the IPS and which

was successfully learned by the prediction tool. The attack consists of multiple

attempts to exploit a Web server and the Web application running on top of it.

First, the attacker checks the Web server software for several vulnerabilities. In

this case, it quickly identifies the server as running Apache and then attempts

to exploit several vulnerabilities, such as Struts-related vulnerabilities. It then

switches to checking the presence of a Web application running on top and

then fingerprinting it. In this step, the attacker triggers different exploits

against known vulnerabilities in various Content Management Systems, such

as Wordpress, Drupal, Joomla. Eventually, the attack appears to fail as the

various steps are individually blocked by the IPS.

To be able to visualize the decision process and explain how Tiresias

operates given the aforementioned multi-step attack, we feed Tiresias a list

of security events from a machine that was under the coordinated attack. By

putting Tiresias in this real-world environment, we are able to visualize how

130 Chapter 4. Security Alarms Prediction

Tiresias predicts the upcoming events as illustrated in Figure 4.10. Note

that events {e0, ..., e13} belong to the coordinated attack.

The process operates as follows. Take machine1 in Figure 4.10a for ex-

ample, Tiresias takes event e10 as the initial feed and predicts the upcoming

event e12. It then verifies with the actual event to check if e12 is the correct

prediction. In our case, e12 is the correct prediction with a confidence score

higher than 0.5 (therefore e12 in a green box in Figure 4.10a). Tiresias auto-

matically leverages both e10 and e12 as “contextual information” to enable its

internal memory array cells to better predict the next event. The same step is

repeated: e8 is correctly predicted, Tiresias uses e10,e12, and e8 to prepare

its internal cells. In the case that Tiresias makes a wrong prediction, e.g.,

it predicts e10 instead of the actual observed event e5 (e10 is enclosed in a red

box in Figure 4.10a), Tiresias uses the actual event e5 together with previous

historical events. This enables Tiresias to stay on track with the observed

events and predict events that are closely relating to those of the coordinated

attack. This may lead Tiresias to incorrectly predict some random attacks

the system experienced. For example, e55 is a ‘PHP shell command execution’

attack which was observed in the security event sequences, but not part of this

particular coordinated attack. It is important to notice that Tiresias is able

to correctly predict e13 (an attack relating to CVE-2017-9805) that was not

presented in the previous events, even thought its predecessors, such as e12, e3,

e10, appeared multiple times. We consider this a good example of Tiresias

using long-term memory to carry out the correct prediction as detailed in Sec-

tion 4.4.6. It is also interesting to see how Tiresias adapts itself during its

operation as shown in Figure 4.10b (multiple e7 and e6 in dashed line rectan-

gles). We can observe that Tiresias did not correctly predict e6 twice when

given e7 (see ¶ and ·). Nevertheless, Tiresias is capable of leveraging the

contextual information (i.e., the actual observed events) to rectify its behav-

ior. As we can observe in ¸, Tiresias is able to make a borderline prediction

and in ¹ Tiresias makes a confident and correct prediction of e6.

4.5. Case Studies 131

To further exemplify Tiresias’ sequential prediction capability in the

above setup, we run it on 8 February (2018) test data using the model trained

on 3 January (2018) and predict all upcoming events of 200 randomly selected

machines (this effectively generates 32,391 sequences due to the step-by-step

setup) with a precision of 94%, and against 8 December (2017) test data using

a model trained on 4 November (2017) and obtain a precision of 80.89%.

These experimental results provide additional evidence of Tiresias’ prediction

capability in a real-world environment.

4.5.2 Adjusting the Prediction Granularity

The goal of Tiresias is primarily to accurately determine the next event that

is going to occur on a given monitored system. In some cases multiple security

events might share some common traits. For example, multiple IPS events can

be used to describe different attacks against a particular software application,

network protocol, etc. These shared traits can then be used to categorize

such events. This categorization is specific to the security application that

generated these events. Also, the categorization process undoubtedly results

in a compressed and coarser-gained set of security events. In this section we

describe several cases where such a categorization can be leveraged when the

system fails to predict the exact security event but successfully predicts the

exact traits, or categories of the attacks, such as the targeted network protocol

and software application, or the attack type. To begin with, we extracted

categories from the IPS signature labels and descriptions. These categories

correspond to characteristics of attacks described by these signatures and are

defined as follows. Whenever possible, we identify the verdict of the signature,

the severity of the attack, the type of attack, e.g., remote command execution

(RCE), SQL injection, etc, the targeted application, if any, the targeted network

protocol, if any, and whether the attack exploits a particular CVE. There is

thus a one-to-many relationship between each signature and the categories it

belongs to. We then uncover machines for which the categories of a mistakenly

132 Chapter 4. Security Alarms Prediction

predicted event matches exactly the categories of the correct prediction. About

3.5% of failed prediction results exhibit this pattern.

For our first example we consider a machine that was targeted by the

Shellshock exploits targeting the Unix shell BASH. Several vulnerabilities were

uncovered in the context of these infamous attacks, namely CVE-2014-6271,

CVE-2014-6277, CVE-2014-6278, CVE-2014-7169, CVE-2014-7186 and CVE-

2014-7187. These six vulnerabilities translate into six IPS signatures. These

signatures all belong to the same categories, which include (i) block, (ii) high,

(iii) RCE, (iv) bash and (v) CVE. These categories mean that the exploit attempt

is meant to be (i) blocked because its potential security impact on the targeted

machine is of (ii) high severity. This verdict is explained by the fact that,

if successful, the exploit would enable the attacker to perform a remote code

execution (or RCE) by exploiting a known vulnerability (with an assigned

CVE identifier) against the Unix shell BASH. In this case study, a machine

was targeted by several of the Shellshock exploits. After observing an attempt

to exploit CVE-2014-6271, the system predicted another attempt to exploit

the same vulnerability, instead of the correct prediction for CVE-2014-6278.

While the event-level prediction result is wrong, the category-level prediction

successfully identify an attempt to exploit a Shellshock vulnerability.

The second example is related to a machine that has apparently visited

or have been triggered to visit a website distributing fake anti-virus software.

Several IPS signatures have been defined to capture different aspects of these

malicious websites, for instance, regular expressions matching specific HTML

content, suspicious JavaScript code, etc. In this example, the system predicted

that the machine would be redirected to a fake AV website containing a partic-

ular piece of malicious HTML code while in reality, the machine was redirected

to a fake AV website containing a malicious piece of JavaScript code.

Additionally, we evaluate the performance of our security event forecast

model in predicting if the upcoming event should be blocked or allowed, a

relaxation as the aim is not to determine the exact event that will happen,

4.6. Discussion 133

but if it is a low-priority alarm (that is still allowed by the product we receive

the data from) or if it is a high-priority one (that is blocked immediately).

This is one of the essential tasks that a predictive intrusion prevention system

needs to resolve. Our experiment shows that the proposed predictive model

is able to achieve 88.9% precision in predicting if the upcoming event should

be blocked or allowed. This represents a 8% precision increase comparing to

the exact event prediction on the same day. Nevertheless, The added value of

adjusting the prediction granularity obviously depends on the accuracy of the

categorization and the expected level of granularity of the prediction.

4.6 Discussion

Limitations of Tiresias. A recurrent neural network, broadly speaking, is a

statistical model. The more the model “sees” (i.e., the more training data) the

better the prediction performance is. For rare events, since the model does not

have enough training samples, Tiresias may not correctly predict these rare

intrusion attempts. Existing statistical and machine learning methods are yet

to offer a satisfactory solution to this problem [169, 170, 171]. It would also be

interesting to understand whether the recent work by Kaiser et al. [172] that

makes deep models learn to remember rare words can be applied to predict rare

intrusion attempts. DeepLog, a previously proposed system [81], focused on

anomaly detection in regulated environments, such as Hadoop and OpenStack,

with limited variety of events. In such a specific log environment, DeepLog

is able to use a small fraction of normal log entries to train and achieves

good detection results. Nevertheless, DeepLog still requires a small fraction of

normal log entries would generate enough representative events and patterns.

Another limitation following rare events prediction is model retraining when

new security events (e.g., new signatures) are created. This retraining is

inevitable because machine learning models can only recognize events they

have been trained upon. Our experimental results (Section 4.4.3) show that

Tiresias takes around 10 hours to retrain and can be redeployed in a timely

134 Chapter 4. Security Alarms Prediction

fashion in a real-world scenario. As mentioned in Section 4.4.6 the nodes

that are activated in an LSTM are not easy to examine. For this reason we

cannot guarantee that the system does not take into consideration spurious

correlations. At the same time we tried to limit this issue by extensively

evaluate Tiresias over a large amount of data and in different settings.

Data limitations. For its operation, Tiresias relies on a dataset of pre-

labeled security events. An inherent limitation of this type of data is that

an event can be labeled only if it belongs to a known attack class. If, for

example, a new zero-day vulnerability started being exploited in the wild, this

would not be reflected in the data until a signature is created for it. To reduce

the window between when an attack is being run and when it starts being

detected by an intrusion prevention system security companies typically use

threat intelligence systems and employ human specialists to analyze unlabeled

data looking for new attack trends.

Tiresias performance. Sections 4.4 and 4.5 show the effectiveness of the

system. The prediction of a security event in such a complicated environment

is an important challenge. Tiresias shows the ability of effectively tackling

this challenge, showing stability, even when the training set is months older

than the test set, and robustness to noise while detecting multistage attacks.

We evaluated Tiresias over different time periods to thoroughly prove its

qualities; as we discussed, the system may need retraining only in case the

data presents radical changes, while its precision does not decrease quickly if

the training set is older than the test set. The system can support different

dimensions of the training set as it has been tested using one day or one week

of data. The differences are minimal: performance is extremely similar, but

weekly training seems slightly more robust to anomalies on a specific day of

data. However, weekly training sets require more time to build the model.

Sections 4.4.6 and 4.5 show how long-term memory and noise filtering are

both important factors in the precision of the neural networks, explaining why

the baseline methods used in Section 4.4.3 are less precise than Tiresias.

4.6. Discussion 135

Deployment. The architecture of Tiresias enables it to be reasonably flex-

ible in terms of real-world deployment. Tiresias can be deployed for each

endpoint to proactively defend against attacks as we can see in Section 4.5.

At the same time, Tiresias can be tailored to protect an enterprise by train-

ing with the data coming from that enterprise only and thus better deal with

the attacks targeting that enterprise. Note that Tiresias’ predictive model

trained using one day of data is about 31MB. It can be easily pushed to the end-

points with limited network footprint. Together with the mobile TensorFlow

library, it is practically feasible for Tiresias to protect mobile/embedded de-

vices by training with security event data coming from those devices only. For

example, Tiresias can be trained using the data collected by smart routers

with an IPS installed and deployed in these routers to protect smart home

environments.

Evasion. Tiresias may be subject to evasion techniques from malicious

agents. A vulnerability of deep learning systems is that while the system

is classifying samples, it adapts its rules. Therefore, it may be subject to

poisoning attacks from a criminal who influences the decision rules using fake

actions before attacking the victim. However, to achieve such evasion, the

attackers must apply such fake actions at a massive scale and target thousands

of machines. A technique that could be used by adversaries is mimicry attacks,

i.e., evading security systems by injecting many irrelevant events to cover the

alerts generated by a real attack. We argue that Tiresias has the potential

to be resistant to these attacks. Indeed, we have seen in the case studies that

Tiresias is able to filter out the noise from the sequences of events observed

on the machines, and detect the important events correctly. An interesting

future work would be to be able to quantify the amount of events necessary

to evade systems like Tiresias. Zero day attacks may be difficult to detect:

a zero day attack may replicate known sequences of actions to exploit new

vulnerabilities, but that would still be detected; when the zero day is applying

136 Chapter 4. Security Alarms Prediction

a new kind of multi-step attack that has a different sequence of events, it may

not be detected.

Chapter 5

Detecting Malware by Using

Markov Chains as Behavioral

Models

This section is describing the third phase on which we operated in this work:

detection. It is describing how we developed a new approach to Android

malware detection using API calls. As explained in Section 2.7 there has been

a research gap in how to model sequences of API calls to identify malicious

apps and distinguish them from benign ones. In fact, our attempt of modeling

the sequences of API calls through Markov Chains is novel and aims to take

into account the fact that different apps may use different kind of API calls,

and may use API calls in different orders.

Detecting malware on mobile devices presents additional challenges com-

pared to desktop/laptop computers: smartphones have limited battery life,

making it infeasible to use traditional approaches requiring constant scan-

ning and complex computation [173]. Therefore, Android malware detection

is typically performed by Google in a centralized fashion, i.e., by analyzing

apps submitted to the Play Store using a tool called Bouncer [174]. However,

many malicious apps manage to avoid detection [175], and anyway Android’s

openness enables manufacturers and users to install apps that come from third-

138 Chapter 5. Malware detection

party market places, which might not perform any malware checks at all, or

anyway not as accurately [99].

As a result, the research community has devoted significant attention to

malware detection on Android (Section 2.7). Previous work has often relied on

the permissions requested by apps [89, 176], using models built from malware

samples. This strategy, however, is prone to false positives, since there are

often legitimate reasons for benign apps to request permissions classified as

dangerous [89]. Another approach, used by DroidAPIMiner [4], is to per-

form classification based on API calls frequently used by malware. However,

relying on the most common calls observed during training prompts the need

for constant retraining, due to the evolution of malware and the Android API

alike. For instance, “old” calls are often deprecated with new API releases, so

malware developers may switch to different calls to perform similar actions,

which affects DroidAPIMiner’s effectiveness due to its use of specific calls.

5.1 MaMaDroid: Using Static Analysis to De-

tect Malware

5.1.1 Overview

We now introduce MaMaDroid, a novel system for Android malware detec-

tion. MaMaDroid characterizes the transitions between different API calls

performed by Android apps – i.e., the sequence of API calls. It then models

these transitions as Markov chains, which are in turn used to extract features

for machine learning algorithms to classify apps as benign or malicious. Ma-

MaDroid does not actually use the sequence of raw API calls, but abstracts

each call to either its package or its family. For instance, the API call getMes-

sage() is parsed as:

package︷ ︸︸ ︷
java︸︷︷︸

family

.lang.Throwable: String getMessage()

︸ ︷︷ ︸
API call

5.1. MaMaDroid: Using Static Analysis to Detect Malware 139

Call Graph
Extraction (1)

Sequence
Extraction (2)

Markov Chain
Modeling (3)

Classification
(4)?

Figure 5.1: Overview of MaMaDroid operation. In (1), it extracts the call graph
from an Android app, next, it builds the sequences of (abstracted)
API calls from the call graph (2). In (3), the sequences of calls are
used to build a Markov chain and a feature vector for that app. Fi-
nally, classification is performed in (4), labeling the app as benign or
malicious.

Given these two different types of abstractions, we have two modes of

operation for MaMaDroid, each using one of the types of abstraction. We

test both, highlighting their advantages and disadvantages — in a nutshell,

the abstraction to family is more lightweight, while that to package is more

fine-grained.

MaMaDroid’s operation goes through four phases, as depicted in Fig-

ure 5.1. First, we extract the call graph from each app by using static analysis

(1), next we obtain the sequences of API calls for the app using all unique

nodes in the call graph and associating, to each node, all its child nodes (2).

As mentioned, we abstract a call to either its package or family. Finally, by

building on the sequences, MaMaDroid constructs a Markov chain model

(3), with the transition probabilities used as the feature vector to classify the

app as either benign or malware using a machine learning classifier (4). In the

rest of this section, we discuss each of these steps in detail.

5.1.2 Call Graph Extraction

The first step in MaMaDroid is to extract the app’s call graph. We do so

by performing static analysis on the app’s apk.1 Specifically, we use a Java

1The standard Android archive file format containing all files, including the Java byte-
code, making up the app.

140 Chapter 5. Malware detection

optimization and analysis framework, Soot [177], to extract call graphs and

FlowDroid [92] to ensure contexts and flows are preserved.

To better clarify the different steps involved in our system, we employ a

“running example,” using a real-world malware sample. Specifically, Figure 5.2

lists a class extracted from the decompiled apk of malware disguised as a

memory booster app (with package name com.g.o.speed.memboost), which

executes commands (rm, chmod, etc.) as root [178]. To ease presentation,

we focus on the portion of the code executed in the try/catch block. The

resulting call graph of the try/catch block is shown in Figure 5.3. Note that, for

simplicity, we omit calls for object initialization, return types and parameters,

as well as implicit calls in a method. Additional calls that are invoked when

getShell(true) is called are not shown, except for the add() method that is

directly called by the program code, as shown in Figure 5.2.

5.1.3 Sequence Extraction

Next, we extract the sequences of API calls from the call graph. Since Ma-

MaDroid uses static analysis, the graph obtained from Soot represents the

sequence of functions that are potentially called by the program. However,

each execution of the app could take a specific branch of the graph and only

execute a subset of the calls. For instance, when running the code in Figure 5.2

multiple times, the Execute method could be followed by different calls, e.g.,

getShell() in the try block only or getShell() and then getMessage() in the

catch block.

In this phase, MaMaDroid operates as follows. First, it identifies a set of

entry nodes in the call graph, i.e., nodes with no incoming edges (for example,

the Execute method in the snippet from Fig. 5.2 is the entry node if there is

no incoming edge from any other call in the app). Then, it enumerates the

paths reachable from each entry node. The sets of all paths identified during

this phase constitutes the sequences of API calls which will be used to build a

Markov chain behavioral model and to extract features (see Section 5.1.4).

5.1. MaMaDroid: Using Static Analysis to Detect Malware 141

package com.fa.c;

import android.content.Context;
import android.os.Environment;
import android.util.Log;
import com.stericson.RootShell.execution.Command;
import com.stericson.RootShell.execution.Shell;
import com.stericson.RootTools.RootTools;
import java.io.File;

public class RootCommandExecutor {
public static boolean Execute(Context paramContext) {

paramContext = new Command(0, new String[] { "cat " + Environment.
getExternalStorageDirectory().getAbsolutePath() + File.separator + Utilities.
GetWatchDogName(paramContext) + " > /data/" + Utilities.GetWatchDogName(paramContext)
, "cat " + Environment.getExternalStorageDirectory().getAbsolutePath() + File.
separator + Utilities.GetExecName(paramContext) + " > /data/" + Utilities.GetExecName
(paramContext), "rm " + Environment.getExternalStorageDirectory().getAbsolutePath() +
File.separator + Utilities.GetWatchDogName(paramContext), "rm " + Environment.

getExternalStorageDirectory().getAbsolutePath() + File.separator + Utilities.
GetExecName(paramContext), "chmod 777 /data/" + Utilities.GetWatchDogName(
paramContext), "chmod 777 /data/" + Utilities.GetExecName(paramContext), "/data/" +
Utilities.GetWatchDogName(paramContext) + " " + Utilities.
GetDeviceInfoCommandLineArgs(paramContext) + " /data/" + Utilities.GetExecName(
paramContext) + " " + Environment.getExternalStorageDirectory().getAbsolutePath() +
File.separator + Utilities.GetExchangeFileName(paramContext) + " " + Environment.
getExternalStorageDirectory().getAbsolutePath() + File.separator + " " + Utilities.
GetPhoneNumber(paramContext) });

try {
RootTools.getShell(true).add(paramContext);
return true;

}
catch (Exception paramContext) {
Log.d("CPS", paramContext.getMessage());

}
return false;

}
}

Figure 5.2: Code snippet from a malicious app (com.g.o.speed.memboost) execut-
ing commands as root.

Abstracting Calls to Families/Packages. Rather than analyzing raw API

calls, we build MaMaDroid to work at a higher level, and operate in one of

two modes by abstracting each call to either its package or family. This allows

the system to be resilient to API changes and achieve scalability. In fact,

our experiments, presented in Section 5.2, show that, from a dataset of 44K

apps, we extract more than 10 million unique API calls, which would result

in a very large number of nodes, with the corresponding graphs (and feature

vectors) being quite sparse. Since as we will see the number of features used

by MaMaDroid is the square of the number of nodes, having more than 10

million nodes would result in an impractical computational cost.

142 Chapter 5. Malware detection

com.fa.c.RootCommandExecutor:
Execute()

android.util.Log:
d()

com.stericson.RootTools.RootTools:
getShell()

java.lang.Throwable:
getMessage()

com.stericson.RootShell.execution.Shell:
add()

Figure 5.3: Call graph of the API calls in the try/catch block of Figure 5.2. (Re-
turn types and parameters are omitted to ease presentation).

When operating in package mode, we abstract an API call to its pack-

age name using the list of Android packages2, which as of API level 24 (the

current version as of September 2016) includes 243 packages, as well as 95

from the Google API.3 Moreover, we abstract developer-defined packages (e.g.,

com.stericson.roottools) as well as obfuscated ones (e.g. com.fa.a.b.d), respec-

tively, as self-defined and obfuscated. Note that we label an API call’s

package as obfuscated if we cannot tell what its class implements, extends,

or inherits, due to identifier mangling [179]. When operating in family mode,

we abstract to nine possible families, i.e., android, google, java, javax, xml,

apache, junit, json, dom, which correspond to the android.*, com.google.*,

java.*, javax.*, org.xml.*, org.apache.*, junit.*, org.json, and org.w3c.dom.*

packages. Again, API calls from developer-defined and obfuscated packages

are abstracted to families labeled as self-defined and obfuscated, respec-

tively. Overall, there are 340 (243+95+2) possible packages and 11 (9+2)

families.

5.1.3.1 Abstraction to Classes

Families and Packages abstractions give two different levels of granularity and,

even though the packages abstraction is differentiating among API calls with

2https://developer.android.com/reference/packages.html
3https://developers.google.com/android/reference/packages

https://developer.android.com/reference/packages.html
https://developers.google.com/android/reference/packages

5.1. MaMaDroid: Using Static Analysis to Detect Malware 143

com.fa.c.RootComman-
dExecutor: Execute()
[self-defined, self-

defined, self-defined]

com.fa.c.RootCom-
mandExecutor:

Execute()
[self-defined, self-

defined, self-defined]

com.fa.c.RootCom-
mandExecutor:

Execute()
[self-defined, self-

defined, self-defined]

com.stericson.Root-
Tools.RootTools: getShell()

[self-defined, self-
defined, self-defined]

com.stericson.RootShell.
execution.Shell: add()
[self-defined, self-

defined, self-defined]

android.util.Log:
d()

[android.util.Log,
android.util, android]

java.lang.Throwable:
getMessage()

[java.lang.Throwable,
java.lang, java]

Figure 5.4: Sequence of API calls extracted from the call graphs in Figure 5.3, with
the corresponding package/family abstraction in square brackets.

more than an order of magnitude, the information loss about each API is still

high. For this reason we designed the class abstraction, aiming to limit the

information loss and increase the granularity.

In class mode, we abstract each call to its class name using a whitelist of

all class names in the Android and Google APIs, which consists respectively,

4,855 and 1,116 classes.4

In Figure 5.4, we show the sequence of API calls obtained from the call

graph in Figure 5.3. We also report, in square brackets, the family, the package,

and the class to which the call is abstracted.

5.1.4 Markov Chain Based Modeling
Next, MaMaDroid builds feature vectors, used for classification, based on

the Markov chains representing the sequences of extracted API calls for an

app. Before discussing this in detail, we review the basic concepts of Markov

chains.

Markov chains are memoryless models where the probability of transition-

ing from a state to another only depends on the current state [165]. Markov

chains are often represented as a set of nodes, each corresponding to a different

state, and a set of edges connecting one node to another labeled with the prob-
4https://developer.android.com/reference/classes.html

https://developer.android.com/reference/classes.html

144 Chapter 5. Malware detection

self-defined

java.lang android.util

0.5

0.25 0.25

self-defined

java android

0.5

0.25 0.25

Figure 5.5: Markov chains originating from the call sequence example in Sec-
tion 5.1.3 when using packages (a) or families (b).

ability of that transition. The sum of all probabilities associated to all edges

from any node (including, if present, an edge going back to the node itself) is

exactly 1.The set of possible states of the Markov chain is denoted as S . If S j

and Sk are two connected states, Pjk denotes the probability of transition from

S j to Sk. Pjk is given by the number of occurrences (O jk) of state Sk after state

S j, divided by O ji for all states i in the chain, i.e., Pjk =
O jk

∑i∈S O ji
.

Building the model. MaMaDroid uses Markov chains to model app be-

havior, by evaluating every transition between calls. More specifically, for each

app, MaMaDroid takes as input the sequence of abstracted API calls of that

app – i.e., packages or families, depending on the selected mode of operation

– and builds a Markov chain where each package/family is a state and the

transitions represent the probability of moving from one state to another. For

each Markov chain, state S0 is the entry point from which other calls are made

in a sequence. As an example, Figure 5.5 illustrates the two Markov chains

built using packages and families, respectively, from the sequences reported in

Figure 5.4.

We argue that considering single transitions is more robust against at-

tempts to evade detection by inserting useless API calls in order to deceive

signature-based systems (see Section 2). In fact, MaMaDroid considers all

possible calls – i.e., all the branches originating from a node – in the Markov

5.1. MaMaDroid: Using Static Analysis to Detect Malware 145

chain, so adding calls would not significantly change the probabilities of tran-

sitions between nodes (specifically, families or packages, depending on the

operational mode) for each app.

Feature Extraction. Next, we use the probabilities of transitioning from one

state (abstracted call) to another in the Markov chain as the feature vector

of each app. States that are not present in a chain are represented as 0 in

the feature vector. Also note that the vector derived from the Markov chain

depends on the operational mode of MaMaDroid. With families, there are

11 possible states, thus 121 possible transitions in each chain, while, when ab-

stracting to packages, there are 340 states and 115,600 possible transitions and

with classes, there are 5,973 states therefore, 35,676,729 possible transitions.

We also apply Principal Component Analysis (PCA) [180], which performs

feature selection by transforming the feature space into a new space made of

components that are a linear combination of the original features. The first

components contain as much variance (i.e., amount of information) as possible.

The variance is given as percentage of the total amount of information of the

original feature space. We apply PCA to the feature set in order to select

the principal components, as PCA transforms the feature space into a smaller

one where the variance is represented with as few components as possible,

thus considerably reducing computation/memory complexity. Furthermore,

the use of PCA could also improve the accuracy of the classification, by taking

misleading features out of the feature space, i.e., those that make the classifier

perform worse.

5.1.5 Classification

The last step is to perform classification, i.e., labeling apps as either benign

or malware. To this end, we test MaMaDroid using different classification

algorithms: Random Forests [39], 1-Nearest Neighbor (1-NN) [1], 3-Nearest

Neighbor (3-NN) [1], and Support Vector Machines (SVM) [181]. Each model

is trained using the feature vector obtained from the apps in a training sample.

146 Chapter 5. Malware detection

Category Name Date Range #Samples #Samples #Samples
(API Calls) (Call Graph)

Benign oldbenign Apr 2013 – Nov 2013 5,879 5,837 5,572
newbenign Mar 2016 – Mar 2016 2,568 2,565 2,465

Total Benign: 8,447 8,402 8,037

Malware

drebin Oct 2010 – Aug 2012 5,560 5,546 5,512
2013 Jan 2013 – Jun 2013 6,228 6,146 6,091
2014 Jun 2013 – Mar 2014 15,417 14,866 13,804
2015 Jan 2015 – Jun 2015 5,314 5,161 4,451
2016 Jan 2016 – May 2016 2,974 2,802 2,555

Total Malware: 35,493 34,521 32,413

Table 5.1: Overview of the datasets used in our experiments.

Results are presented and discussed in Section 5.3, and have been validated

by using 10-fold cross validation.

Also note that, due to the different number of features used in family/-

package modes, we use two distinct configurations for the Random Forests

algorithm. Specifically, when abstracting to families, we use 51 trees with

maximum depth 8, while, with packages, we use 101 trees of maximum depth

64. To tune Random Forests we followed the methodology applied in Bernard

et al. [182].

5.2 Datasets

5.2.1 Employed Dataset

In this section, we introduce the datasets used in the evaluation of Ma-

MaDroid, which include 43,940 apk files – 8,447 benign and 35,493 malware

samples. We include a mix of older and newer apps, ranging from October

2010 to May 2016, as we aim to verify that MaMaDroid is robust to changes

in Android malware samples as well as APIs. To the best of our knowledge, we

are leveraging the largest dataset of malware samples ever used in a research

paper on Android malware detection.

Benign Samples. Our benign datasets consist of two sets of samples: (1) one,

which we denote as oldbenign, includes 5,879 apps collected by PlayDrone [183]

5.2. Datasets 147

between April and November 2013, and published on the Internet Archive5 on

August 7, 2014; and (2) another, newbenign, obtained by downloading the

top 100 apps in each of the 29 categories on the Google Play store6 as of

March 7, 2016, using the googleplay-api tool.7 Due to errors encountered

while downloading some apps, we have actually obtained 2,843 out of 2,900

apps. Note that 275 of these belong to more than one category, therefore, the

newbenign dataset ultimately includes 2,568 unique apps.

Android Malware Samples. The set of malware samples includes apps that

were used to test Drebin [127], dating back to October 2010 – August 2012

(5,560), which we denote as drebin, as well as more recent ones that have been

uploaded on the VirusShare8 site over the years. Specifically, we gather from

VirusShare, respectively, 6,228, 15,417, 5,314, and 2,974 samples from 2013,

2014, 2015, and 2016. We consider each of these datasets separately for our

analysis.

API Calls and Call Graphs. For each app in our datasets, we extract the

list of API calls, using Androguard [184], since, as explained in Section 5.3.5,

these constitute the features used by DroidAPIMiner [4], against which we

compare our system. Due to Androguard failing to decompress some of the

apks, bad CRC-32 redundancy checks, and errors during unpacking, we are

not able to extract the API calls for all the samples, but only for 40,923 (8,402

benign, 34,521 malware) out of the 43,940 apps (8,447 benign, 35,493 malware)

in our datasets.

Also, to extract the call graph of each apk, we use Soot. Note that for

some of the larger apks, Soot requires a non-negligible amount of memory to

extract the call graph, so we allocate 16GB of RAM to the Java VM heap space.

2,472 (364 benign + 2,108 malware) samples, Soot is not able to complete the

extraction due to it failing to apply the jb phase as well as reporting an error

5https://archive.org/details/playdrone-apk-e8
6https://play.google.com/store
7https://github.com/egirault/googleplay-api
8https://virusshare.com/

https://archive.org/details/playdrone-apk-e8
https://play.google.com/store
https://github.com/egirault/googleplay-api
https://virusshare.com/

148 Chapter 5. Malware detection

0 5000 10000 15000 20000 25000 30000 35000 40000
#API Calls

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2013Len.txt
2014Len.txt
2015Len.txt
2016Len.txt
drebinLen.txt
newbenignLen.txt
oldbenignLen.txt

Figure 5.6: CDF of the number of API calls in different apps in each dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Calls

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2016
2015
2014
2013
drebin
newbenign
oldbenign

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Calls

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2016
2015
2014
2013
drebin
newbenign
oldbenign

(b)

Figure 5.7: CDFs of the percentage of android and google family calls in different
apps in each dataset.

in opening some zip files (i.e., the apk). The jb phase is used by Soot to

transform Java bytecode into jimple intermediate representation (the primary

IR of Soot) for optimization purposes. Therefore, we exclude these apps in our

evaluation and discuss this limitation further in Section 5.4.3.

In Table 5.1, we provide a summary of our seven datasets, reporting the

total number of samples per dataset, as well as those for which we are able to

extract the API calls (second-to-last column) and the call graphs (last column).

Characterization of the Datasets. Aiming to shed light on the evolution

of API calls in Android apps, we also performed some measurements over our

datasets. In Figure 5.6, we plot the Cumulative Distribution Function (CDF)

5.2. Datasets 149

1.0 0.5 0.0 0.5 1.0 1.5
PCA1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
C

A
2

oldbenign
newbenign

(a)

1.0 0.5 0.0 0.5 1.0 1.5
PCA1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
C

A
2

drebin
2013
2014
2015
2016

(b)

Figure 5.8: Positions of benign vs malware samples in the feature space of the first
two components of the PCA (family mode).

of the number of unique API calls in the apps in different datasets, highlighting

that newer apps, both benign and malicious, are using more API calls overall

than older apps. This indicates that as time goes by, Android apps become

more complex. When looking at the fraction of API calls belonging to specific

families, we discover some interesting aspects of Android apps developed in

different years. In particular, we notice that API calls to the android fam-

ily become less prominent as time passes (Figure 5.7a), both in benign and

malicious datasets, while google calls become more common in newer apps

(Figure 5.7b).

In general, we conclude that benign and malicious apps show the same

evolutionary trends over the years. Malware, however, appears to reach the

same characteristics (in terms of level of complexity and fraction of API calls

from certain families) as legitimate apps with a few years of delay.

Principal Component Analysis. Finally, we apply PCA to select the two

most important PCA components. We plot and compare the positions of the

two components for benign (Figure 5.8a) and malicious samples (Figure 5.8b).

As PCA combines the features into components, it maximizes the variance of

the distribution of samples in these components, thus, plotting the positions

of the samples in the components shows that benign apps tend to be located

in different areas of the components space, depending on the dataset, while

150 Chapter 5. Malware detection

malware samples occupy similar areas but with different densities. These dif-

ferences highlight a different behavior between benign and malicious samples,

and these differences should also be found by the machine learning algorithms

used for classification.

5.3 MaMaDroid Evaluation
We now present a detailed experimental evaluation of MaMaDroid. Using

the datasets summarized in Table 5.1, we perform four sets of experiments:

(1) we analyze the accuracy of MaMaDroid’s classification on benign and

malicious samples developed around the same time; (2) we evaluate its robust-

ness to the evolution of malware as well as of the Android framework by using

older datasets for training and newer ones for testing (and vice-versa); (3) we

measure MaMaDroid’s runtime performance to assess its scalability; and,

finally, (4) we compare against DroidAPIMiner [4], a malware detection

system that relies on the frequency of API calls.

5.3.1 Preliminaries

When implementing MaMaDroid in family mode, we exclude the json and

dom families because they are almost never used across all our datasets, and

junit, which is primarily used for testing. In package mode, to avoid mis-

labeling when self-defined APIs have “android” in the name, we split the

android package into its two classes, i.e., android.R and android.Manifest.

Therefore, in family mode, there are 8 possible states, thus 64 features,

whereas, in package mode, we have 341 states and 116,281 features (cf. Sec-

tion 5.1.4).

As discussed in Section 5.1.5, we use four different machine learning al-

gorithms for classification – namely, Random Forests, 1-NN, 3-NN, and SVM.

Since both accuracy and speed are worse with SVM than with the other three

algorithms, we omit results obtained with SVM. To assess the accuracy of the

classification, we use the F-measure metric.

5.3. MaMaDroid Evaluation 151

Drebin &
OldBenign

2013 &
OldBenign

2014 &
OldBenign

2014 &
Newbenign

2015 &
Newbenign

2016 &
Newbenign

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

RF

1-NN

3-NN

Figure 5.9: F-measure of MaMaDroid classification with datasets from the same
year (family mode).

PPPPPPPPPMode
Dataset [Precision, Recall, F-measure]

drebin & oldbenign 2013 & oldbenign 2014 & oldbenign 2014 & newbenign 2015 & newbenign 2016 & newbenign
Family 0.82 0.95 0.88 0.91 0.93 0.92 0.88 0.96 0.92 0.97 0.99 0.98 0.89 0.93 0.91 0.87 0.91 0.89
Package 0.95 0.97 0.96 0.98 0.95 0.97 0.93 0.97 0.95 0.98 1.00 0.99 0.93 0.98 0.95 0.92 0.92 0.92
Family (PCA) 0.84 0.92 0.88 0.93 0.90 0.92 0.87 0.94 0.90 0.96 0.99 0.97 0.87 0.93 0.90 0.86 0.88 0.87
Package (PCA) 0.94 0.95 0.94 0.97 0.95 0.96 0.92 0.96 0.94 0.97 1.00 0.99 0.91 0.97 0.94 0.88 0.89 0.89

Table 5.2: F-measure, precision, and recall obtained by MaMaDroid, using Ran-
dom Forests, on various dataset combinations with different modes of
operation, with and without PCA.

Finally, note that all our experiments perform 10-fold cross validation

using at least one malicious and one benign dataset from Table 5.1. In other

words, after merging the datasets, the resulting set is shuffled and divided into

ten equal-size random subsets. Classification is then performed ten times using

nine subsets for training and one for testing, and results are averaged out over

the ten experiments.

5.3.2 Detection Performance
We start our evaluation by measuring how well MaMaDroid detects malware

by training and testing using samples that are developed around the same time.

To this end, we perform 10-fold cross validations on the combined dataset

composed of a benign set and a malicious one. Table 5.2 provides an overview

of the detection results achieved by MaMaDroid on each combined dataset,

in the two modes of operation, both with PCA features and without. The

reported F-measure, precision, and recall scores are the ones obtained with

Random Forest, which generally performs better than 1-NN and 3-NN.

152 Chapter 5. Malware detection

Family mode. In Figure 5.9, we report the F-measure when operating in

family mode for Random Forests, 1-NN and 3-NN. The F-measure is always

at least 88% with Random Forests, and, when tested on the 2014 (malicious)

dataset, it reaches 98%. With some datasets, MaMaDroid performs slightly

better than with others. For instance, with the 2014 malware dataset, we

obtain an F-measure of 92% when using the oldbenign dataset and 98% with

newbenign. In general, lower F-measures are due to increased false positives

since recall is always above 91%, while precision might be lower, also due to

the fact that malware datasets are larger than the benign sets. We believe

that this follows the evolutionary trend discussed in Section 5.2.1: while both

benign and malicious apps become more complex as time passes, when a new

benign app is developed, it is still possible to use old classes or re-use code from

previous versions and this might cause them to be more similar to old malware

samples. This would result in false positives by MaMaDroid. In general,

MaMaDroid performs better when the different characteristics of malicious

and benign training and test sets are more predominant, which corresponds to

datasets occupying different positions of the feature space.

Package mode. When MaMaDroid runs in package mode, the classifi-

cation performance improves, ranging from 92% F-measure with 2016 and

newbenign to 99% with 2014 and newbenign, using Random Forests. Fig-

ure 5.10 reports the F-measure of the 10-fold cross validation experiments

using Random Forests, 1-NN, and 3-NN (in package mode). The former gen-

erally provide better results also in this case.

With some datasets, the difference in performance between the two modes

of operation is more noticeable: with drebin and oldbenign, and using Ran-

dom Forests, we get 96% F-measure in package mode compared to 88% in

family mode. These differences are caused by a lower number of false positives

in package mode. Recall remains high, resulting in a more balanced system

overall. In general, abstracting to packages rather than families provides bet-

ter results as the increased granularity enables identifying more differences

5.3. MaMaDroid Evaluation 153

Drebin &
OldBenign

2013 &
OldBenign

2014 &
OldBenign

2014 &
Newbenign

2015 &
Newbenign

2016 &
Newbenign

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

RF

1-NN

3-NN

Figure 5.10: F-measure of MaMaDroid classification with datasets from the
same year (package mode).

between benign and malicious apps. On the other hand, however, this likely

reduces the efficiency of the system, as many of the states deriving from the

abstraction are used a only few times. The differences in time performance

between the two modes are analyzed in details in Section 5.3.6.

Using PCA. As discussed in Section 5.1.4, PCA transforms large feature

spaces into smaller ones, thus it can be useful to significantly reduce compu-

tation and, above all, memory complexities of the classification task. When

operating in package mode, PCA is particularly beneficial, since MaMaDroid

originally has to operate over 116,281 features. Therefore, we compare results

obtained using PCA by fixing the number of components to 10 and checking

the quantity of variance included in them. In package mode, we observe that

only 67% of the variance is taken into account by the 10 most important PCA

components, whereas, in family mode, at least 91% of the variance is included

by the 10 PCA Components.

As shown in Table 5.2, the F-measure obtained using Random Forests and

the PCA components sets derived from the family and package features is only

slightly lower (up to 3%) than using the full feature set. We note that lower

F-measures are caused by a uniform decrease in both precision and recall.

154 Chapter 5. Malware detection

5.3.3 Detection Over Time

As Android evolves over the years, so do the characteristics of both benign and

malicious apps. Such evolution must be taken into account when evaluating

Android malware detection systems, since their accuracy might significantly

be affected as newer APIs are released and/or as malicious developers modify

their strategies in order to avoid detection. Evaluating this aspect constitutes

one of our research questions, and one of the reasons why our datasets span

across multiple years (2010–2016).

As discussed in Section 5.1.2, MaMaDroid relies on the sequence of

API calls extracted from the call graphs and abstracted at either the package

or the family level. Therefore, it is less susceptible to changes in the An-

droid API than other classification systems such as DroidAPIMiner [4] and

Drebin [127]. Since these rely on the use, or the frequency, of certain API

calls to classify malware vs benign samples, they need to be retrained following

new API releases. On the contrary, retraining is not needed as often with Ma-

MaDroid, since families and packages represent more abstract functionalities

that change less over time. Consider, for instance, the android.os.health

package: released with API level 24, it contains a set of classes helping devel-

opers track and monitor system resources.9 Classification systems built before

this release – as in the case of DroidAPIMiner [4] (released in 2013, when

Android API was up to level 20) – need to be retrained if this package is more

frequently used by malicious apps than benign apps, while MaMaDroid only

needs to add a new state to its Markov chain when operating in package mode,

while no additional state is required when operating in family mode.

To verify this hypothesis, we test MaMaDroid using older samples as

training sets and newer ones as test sets. Figure 5.11a reports the F-measure

of the classification in this setting, with MaMaDroid operating in family

mode. The x-axis reports the difference in years between training and test

9https://developer.android.com/reference/android/os/health/
package-summary.html

https://developer.android.com/reference/android/os/health/package-summary.html
https://developer.android.com/reference/android/os/health/package-summary.html

5.3. MaMaDroid Evaluation 155

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

e
a
su

re

RF
1-NN
3-NN

(a) F-measure of MaMaDroid
classification using older samples
for training and newer for testing

(family mode).

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

e
a
su

re

RF
1-NN
3-NN

(b) F-measure of MaMaDroid
classification using older samples
for training and newer for testing

(package mode).

Figure 5.11: F-measure values in the different test settings.

data. We obtain 86% F-measure when we classify apps one year older than

the samples on which we train. Classification is still relatively accurate, at 75%,

even after two years. Then, from Figure 5.11b, we observe that the F-measure

does not significantly change when operating in package mode. Both modes

of operations are affected by one particular condition, already discussed in

Section 5.2.1: in our models, benign datasets seem to “anticipate” malicious

ones by 1–2 years in the way they use certain API calls. As a result, we

notice a drop in accuracy when classifying future samples and using drebin

(with samples from 2010 to 2012) or 2013 as the malicious training set and

oldbenign (late 2013/early 2014) as the benign training set. More specifically,

we observe that MaMaDroid correctly detects benign apps, while it starts

missing true positives and increasing false negatives — i.e., achieving lower

recall.

We also set to verify whether older malware samples can still be detected

by the system—if not, this would obviously become vulnerable to older (and

possibly popular) attacks. Therefore, we also perform the “opposite” experi-

ment, i.e., training MaMaDroid with newer datasets, and checking whether

it is able to detect malware developed years before. Specifically, Figure 5.12a

and 5.12b report results when training MaMaDroid with samples from a

156 Chapter 5. Malware detection

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

e
a
su

re

RF
1-NN
3-NN

(a) F-measure of MaMaDroid
classification using newer samples
for training and older for testing

(family mode).

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

e
a
su

re

RF
1-NN
3-NN

(b) F-measure of MaMaDroid
classification using newer samples
for training and older for testing

(package mode).

Figure 5.12: F-measure values in the different test settings.

given year, and testing it with others that are up to 4 years older: Ma-

MaDroid retains similar F-measure scores over the years. Specifically, in

family mode, it varies from 93% to 96%, whereas, in package mode, from 95%

to 97% with the oldest samples.

5.3.4 Case Studies of False Positives and Negatives

The experiment analysis presented above show that MaMaDroid Android

malware with high accuracy. As in any detection system, however, the system

makes a small number of incorrect classifications, incurring some false positives

and false negatives. Next, we discuss a few case studies aiming to better

understand these misclassifications. We focus on the experiments with newer

datasets, i.e., 2016 and newbenign.

False Positives. We analyze the manifest of the 164 apps mistakenly detected

as malware by MaMaDroid, finding that most of them use “dangerous”

permissions [185]. In particular, 67% of the apps write to external storage, 32%

read the phone state, and 21% access the device’s fine location. We further

analyzed apps (5%) that use the READ_SMS and SEND_SMS permissions,

i.e., even though they are not SMS-related apps, they can read and send SMSs

as part of the services they provide to users. In particular, a “in case of

5.3. MaMaDroid Evaluation 157

Testing Sets
drebin & oldbenign 2013 & oldbenign 2014 & oldbenign 2015 & oldbenign 2016 & oldbenign

Training Sets [4] Our Work [4] Our Work [4] Our Work [4] Our Work [4] Our Work
drebin & oldbenign 0.32 0.96 0.35 0.95 0.34 0.72 0.30 0.39 0.33 0.42
2013 & oldbenign 0.33 0.94 0.36 0.97 0.35 0.73 0.31 0.37 0.33 0.28
2014 & oldbenign 0.36 0.92 0.39 0.93 0.62 0.95 0.33 0.78 0.37 0.75

drebin & newbenign 2013 & newbenign 2014 & newbenign 2015 & newbenign 2016 & newbenign
Training Sets [4] Our Work [4] Our Work [4] Our Work [4] Our Work [4] Our Work

2014 & newbenign 0.76 0.98 0.75 0.98 0.92 0.99 0.67 0.85 0.65 0.81
2015 & newbenign 0.68 0.97 0.68 0.97 0.69 0.99 0.77 0.95 0.65 0.88
2016 & newbenign 0.33 0.96 0.35 0.98 0.36 0.98 0.34 0.92 0.36 0.92

Table 5.3: Classification performance of DroidAPIMiner [4] vs MaMaDroid
(our work).

emergency” app is able to send messages to several contacts from its database

(possibly added by the user), which is a typical behavior of Android malware

in our dataset, ultimately leading MaMaDroid to flag it as malicious.

False Negatives. We also check the 114 malware samples missed by Ma-

MaDroid when operating in family mode, using VirusTotal.10 We find that

18% of the false negatives are actually not classified as malware by any of

the antivirus engines used by VirusTotal, suggesting that these are actually

legitimate apps mistakenly included in the VirusShare dataset. 45% of Ma-

MaDroid’s false negatives are adware, typically, repackaged apps in which

the advertisement library has been substituted with a third-party one, which

creates a monetary profit for the developers. Since they are not performing

any clearly malicious activity, MaMaDroid is unable to identify them as

malware. Finally, we find that 16% of the false negatives reported by Ma-

MaDroid are samples sending text messages or starting calls to premium

services. We also do a similar analysis of false negatives when abstracting to

packages (74 samples), with similar results: there a few more adware samples

(53%), but similar percentages for potentially benign apps (15%) and samples

sending SMSs or placing calls (11%).

In conclusion, we find that MaMaDroid’s sporadic misclassifications

are typically due to benign apps behaving similarly to malware, malware that

do not perform clearly-malicious activities, or mistakes in the ground truth

labeling.

10https://www.virustotal.com

https://www.virustotal.com

158 Chapter 5. Malware detection

5.3.5 MaMaDroid vs DroidAPIMiner

We also compare the performance of MaMaDroid to previous work using

API features for Android malware classification. Specifically, we compare to

DroidAPIMiner [4], because: (i) it uses API calls and its parameters to

perform classification; (ii) it reports high true positive rate (up to 97.8%) on

almost 4K malware samples obtained from McAfee and Genome [186], and

16K benign samples; and (iii) its source code has been made available to us

by the authors.

In DroidAPIMiner, permissions that are requested more frequently by

malware samples than by benign apps are used to perform a baseline classifi-

cation. Since there are legitimate situations where a non-malicious app needs

permissions tagged as dangerous, DroidAPIMiner also applies frequency

analysis on the list of API calls, specifically, using the 169 most frequent API

calls in the malware samples (occurring at least 6% more in malware than

benign samples) —leading to a reported 83% precision. Finally, data flow

analysis is applied on the API calls that are frequent in both benign and ma-

licious samples, but do not occur by at least, 6% more in the malware set.

Using the top 60 parameters, the 169 most frequent calls change, and authors

report a precision of 97.8%.

After obtaining DroidAPIMiner’s source code, as well as a list of

packages used for feature refinement, we re-implement the system by mod-

ifying the code in order to reflect recent changes in Androguard (used by

DroidAPIMiner for API call extraction), extract the API calls for all apps

in the datasets listed in Table 5.1, and perform a frequency analysis on the

calls. Androguard fails to extract calls for about 2% (1,017) of apps in our

datasets as a result of bad CRC-32 redundancy checks and error in unpack-

ing, thus DroidAPIMiner is evaluated over the samples in the second-to-last

column of Table 5.1. We also implement classification, which is missing from

the code provided by the authors, using k-NN (with k=3) since it achieves the

best results according to the paper. We use 2/3 of the dataset for training and

5.3. MaMaDroid Evaluation 159

1/3 for testing as implemented by Aafer et al. [4]. A summary of the result-

ing F-measures obtained using different training and test sets is presented in

Table 5.3.

We set up a number of experiments to thoroughly compare DroidAPIMiner

to MaMaDroid. First, we set up three experiments in which we train

DroidAPIMiner using a dataset composed of oldbenign combined with

one of the three oldest malware datasets each (drebin, 2013, and 2014), and

testing on all malware datasets. With this configuration, the best result (with

2014 and oldbenign as training sets) amounts to 62% F-measure when tested

on the same dataset. The F-measure drops to 33% and 39%, respectively,

when tested on samples one year into the future and past. If we use the

same configurations in MaMaDroid, in package mode, we obtain up to 97%

F-measure (using 2013 and oldbenign as training sets), dropping to 73% and

94%, respectively, one year into the future and into the past. For the datasets

where DroidAPIMiner achieves its best result (i.e., 2014 and oldbenign),

MaMaDroid achieves an F-measure of 95%, which drops to respectively,

78% and 93% one year into the future and the past. The F-measure is stable

even two years into the future and the past at 75% and 92%, respectively.

As a second set of experiments, we train DroidAPIMiner using a

dataset composed of newbenign combined with one of the three most re-

cent malware datasets each (2014, 2015, and 2016). Again, we test

DroidAPIMiner on all malware datasets. The best result is obtained with

the dataset (2014 and newbenign) used for both testing and training, yielding

a F-measure of 92%, which drops to 67% and 75% one year into the future

and past respectively. Likewise, we use the same datasets for MaMaDroid,

with the best results achieved on the same dataset as DroidAPIMiner. In

package mode, MaMaDroid achieves an F-measure of 99%, which is main-

tained more than two years into the past, but drops to respectively, 85% and

81% one and two years into the future.

160 Chapter 5. Malware detection

As summarized in Table 5.3, MaMaDroid achieves significantly higher

performance than DroidAPIMiner in all but one experiment, with the F-

measure being at least 75% even after two years into the future or the past

when datasets from 2014 or later are used for training. Note that there is

only one setting in which DroidAPIMiner performs slightly better than

MaMaDroid: this occurs when the malicious training set is much older than

the malicious test set. Specifically, MaMaDroid presents low recall in this

case: as discussed, MaMaDroid’s classification performs much better when

the training set is not more than two years older than the test set.

5.3.6 Runtime Performance

We envision MaMaDroid to be integrated in offline detection systems, e.g.,

run by Google Play. Recall that MaMaDroid consists of different phases,

so in the following, we review the computational overhead incurred by each of

them, aiming to assess the feasibility of real-world deployment. We run our

experiments on a desktop equipped with an 40-core 2.30GHz CPU and 128GB

of RAM, but only use one core and allocate 16GB of RAM for evaluation.

MaMaDroid’s first step involves extracting the call graph from an apk

and the complexity of this task varies significantly across apps. On average, it

takes 9.2s±14 (min 0.02s, max 13m) to complete for samples in our malware

sets. Benign apps usually yield larger call graphs, and the average time to

extract them is 25.4s±63 (min 0.06s, max 18m) per app. Note that we do not

include in our evaluation apps for which we could not successfully extract the

call graph.

Next, we measure the time needed to extract call sequences while abstract-

ing to families or packages, depending on MaMaDroid’s mode of operation.

In family mode, this phase completes in about 1.3s on average (and at most

11.0s) with both benign and malicious samples. Abstracting to packages takes

slightly longer, due to the use of 341 packages in MaMaDroid. On average,

this extraction takes 1.67s±3.1 for malicious apps and 1.73s±3.2 for benign

5.3. MaMaDroid Evaluation 161

samples. As it can be seen, the call sequence extraction in package mode does

not take significantly more than in family mode.

MaMaDroid’s third step includes Markov chain modeling and feature

vector extraction. This phase is fast regardless of the mode of operation

and datasets used. Specifically, with malicious samples, it takes on average

0.2s±0.3 and 2.5s±3.2 (and at most 2.4s and 22.1s), respectively, with families

and packages, whereas, with benign samples, averages rise to 0.6s±0.3 and

6.7s±3.8 (at most 1.7s and 18.4s).

Finally, the last step involves classification, and performance depends on

both the machine learning algorithm employed and the mode of operation.

More specifically, running times are affected by the number of features for

the app to be classified, and not by the initial dimension of the call graph,

or by whether the app is benign or malicious. Regardless, in family mode,

Random Forests, 1-NN, and 3-NN all take less than 0.01s. With packages, it

takes, respectively, 0.65s, 1.05s, and 0.007s per app with 1-NN, 3-NN, Random

Forests.

Overall, when operating in family mode, malware and benign samples

take on average, 10.7s and 27.3s respectively to complete the entire process,

from call graph extraction to classification. Whereas, in package mode, the

average completion times for malware and benign samples are 13.37s and 33.83s

respectively. In both modes of operation, time is mostly (> 80%) spent on call

graph extraction.

We also evaluate the runtime performance of DroidAPIMiner [4]. Its

first step, i.e., extracting API calls, takes 0.7s±1.5 (min 0.01s, max 28.4s) per

app in our malware datasets. Whereas, it takes on average 13.2s±22.2 (min

0.01s, max 222s) per benign app. In the second phase, i.e., frequency and data

flow analysis, it takes, on average, 4.2s per app. Finally, classification using

3-NN is very fast: 0.002s on average. Therefore, in total, DroidAPIMiner

takes respectively, 17.4s and 4.9s for a complete execution on one app from our

162 Chapter 5. Malware detection

benign and malware datasets, which while faster than MaMaDroid, achieves

significantly lower accuracy.

In conclusion, our experiments show that our prototype implementation of

MaMaDroid is scalable enough to be deployed. Assuming that, everyday, a

number of apps in the order of 10,000 are submitted to Google Play, and using

the average execution time of benign samples in family (27.3s) and package

(33.83s) modes, we estimate that it would take less than an hour and a half

to complete execution of all apps submitted daily in both modes, with just 64

cores. Note that we could not find accurate statistics reporting the number

of apps submitted everyday, but only the total number of apps on Google

Play [187]. On average, this number increases of a couple of thousands per

day, and although we do not know how many apps are removed, we believe

10,000 apps submitted every day is likely an upper bound.

5.3.7 Finer-Grained Abstraction

In Section 5.3, we have showed that building models from abstracted API calls

allows MaMaDroid to obtain high accuracy, as well as to retain it over the

years, which is crucial due to the continuous evolution of the Android ecosys-

tem. Our experiments have focused on operating MaMaDroid in family and

package mode (i.e., abstracting calls to family or package).

In this section, we investigate whether a finer-grained abstraction –

namely, to classes – performs better in terms of detection accuracy. Recall

that our system performs better in package mode than in family mode due to

the system using in the former, finer and more features to distinguish between

malware and benign samples, so we set to verify whether one can trade-off

higher computational and memory complexities for better accuracy. To this

end, as discussed in Section 5.1.3, we abstract each API call to its correspond-

ing class name using a whitelist of all classes in the Android API, which consists

of 4,855 classes (as of API level 24), and in the Google API, with 1,116 classes,

plus self-defined and obfuscated.

5.3. MaMaDroid Evaluation 163
XXXXXXXXXXDataset

Mode [Precision, Recall, F-measure]
Class Package

drebin, oldbenign 0.95 0.97 0.96 0.95 0.97 0.96
2013, oldbenign 0.98 0.95 0.97 0.98 0.95 0.97
2014, oldbenign 0.93 0.97 0.95 0.93 0.97 0.95
2014, newbenign 0.98 1.00 0.99 0.98 1.00 0.99
2015, newbenign 0.93 0.98 0.95 0.93 0.98 0.95
2016, newbenign 0.91 0.92 0.92 0.92 0.92 0.92

Table 5.4: MaMaDroid’s Precision, Recall, and F-measure when trained and
tested on dataset from the same year in class and package modes.

5.3.8 Reducing the Size of the Problem

Since there are 5,973 classes, processing the Markov chain transitions that

results in this mode increases the memory requirements. Therefore, to reduce

the complexity, we cluster classes based on their similarity. To this end, we

build a co-occurrence matrix that counts the number of times a class is used

with other classes in the same sequence in all datasets. More specifically, we

build a co-occurrence matrix C, of size (5,973·5,973)/2, where Ci, j denotes the

number of times the i-th and the j-th class appear in the same sequence, for all

apps in all datasets. From the co-occurrence matrix, we compute the cosine

similarity (i.e., cos(xxx,yyy) = xxx·yyy
||xxx||·||yyy||), and use k-means to cluster the classes based

on their similarity into 400 clusters and use each cluster as the label for all the

classes it contains. Since we do not cluster classes abstracted to self-defined

and obfuscated, we have a total of 402 labels.

5.3.9 Class Mode Results

In Table 5.4, we report the resulting F-measure in class mode using the above

clustering approach when the classifier is trained and tested on samples from

the same year. Once again, we also report the corresponding results from

package mode for comparison. Overall, we find that class abstraction does

not provide significantly higher accuracy. In fact, compared to package mode,

abstraction to classes only yields an average increase in F-measure of 0.0012.

164 Chapter 5. Malware detection

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

Class
Package

(a) F-measure of MaMaDroid
classification using newer samples for
training and older for testing (class

mode).

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

Class
Package

(b) F-measure of MaMaDroid
classification using older samples for
training and newer for testing (class

mode).

Figure 5.13: F-measure values in the different test settings.

5.3.10 Detection Over Time

We also report in Figures 5.13a and 5.13b (The x-axis shows the difference in

years between the training and test data.), the accuracy when MaMaDroid

is trained and tested on dataset from different years. We find that, when

MaMaDroid operates in class mode, it achieves an F-measure of 0.95 and

0.99, respectively, when trained with datasets one and two years newer than

the test sets, as reported in Figure 5.13a). Likewise, when trained on datasets

one and two years older than the test set, F-measure reaches 0.84 and 0.59,

respectively (see Figure 5.13b).

Overall, comparing results from Figure 5.11b to Figure 5.13b, we find

that finer-grained abstraction actually performs worse with time when older

samples are used for training and newer for testing. We note that this is due

to a possible number of reasons: 1) newer classes or packages in recent API

releases cannot be captured in the behavioral model of older tools whereas,

families are; and 2) evolution of malware either as a result of changes in the

API or patching of vulnerabilities or presence of newer vulnerabilities that

allows for stealthier malicious activities.

5.4. Discussion 165

On the contrary, Figure 5.12b and 5.13a show that finer-grained abstrac-

tion performs better when the training samples are more recent than the test

samples. This is because from recent samples, we are able to capture the

full behavioral model of older samples. However, our results indicate there

is a threshold for the level of abstraction which when exceeded, finer-grained

abstraction will not yield any significant improvement in detection accuracy.

This is because API calls in older releases are subsets of subsequent releases.

For instance, when the training samples are two years newer, MaMaDroid

achieves an F-measure of 0.99, 0.97, and 0.95 respectively, in class, package,

and family modes. Whereas, when they are three years newer, the F-measure

is respectively, 0.97, 0.97, and 0.96 in class, package, and family modes.

5.4 Discussion
We now discuss the implications of our results with respect to the feasibility

of modeling app behavior using static analysis and Markov chains, discuss

possible evasion techniques, and highlight some limitations of our approach.

5.4.1 Lessons Learned

Our work yields important insights around the use of API calls in malicious

apps, showing that, by modeling the sequence of API calls made by an app

as a Markov chain, we can successfully capture the behavioral model of that

app. This allows MaMaDroid to obtain high accuracy overall, as well as to

retain it over the years, which is crucial due to the continuous evolution of the

Android ecosystem.

As discussed in Section 5.2.1, the use of API calls changes over time,

and in different ways across malicious and benign samples. From our newer

datasets, which include samples up to Spring 2016 (API level 23), we observe

that newer APIs introduce more packages, classes, and methods, while also

deprecating some. Figure 5.6, 5.7a, and 5.7b show that benign apps are using

more calls than malicious ones developed around the same time. We also

notice an interesting trend in the use of Android and Google APIs: malicious

166 Chapter 5. Malware detection

apps follow the same trend as benign apps in the way they adopt certain

APIs, but with a delay of some years. This might be a side effect of Android

malware authors’ tendency to repackage benign apps, adding their malicious

functionalities onto them.

Given the frequent changes in the Android framework and the continuous

evolution of malware, systems like DroidAPIMiner [4] – being dependent on

the presence or the use of certain API calls – become increasingly less effective

with time. As shown in Table 5.3, malware that uses API calls released after

those used by samples in the training set cannot be identified by these systems.

On the contrary, as shown in Figure 5.11a and 5.11b, MaMaDroid detects

malware samples that are 1 year newer than the training set obtaining an 86%

F-measure (as opposed to 46% with DroidAPIMiner). After 2 years, the

value is still at 75% (42% with DroidAPIMiner), dropping to 51% after 4

years.

We argue that the effectiveness of MaMaDroid’s classification remains

relatively high “over the years” owing to Markov models capturing app be-

havior. These models tend to be more robust to malware evolution because

abstracting to families or packages makes the system less susceptible to the

introduction of new API calls. Abstraction allows MaMaDroid to capture

newer classes/methods added to the API, since these are abstracted to already-

known families or packages. In case newer packages are added to the API,

and these packages start being used by malware, MaMaDroid only requires

adding a new state to the Markov chains, and probabilities of a transition from

a state to this new state in old apps would be 0. Adding only a few nodes does

not likely alter the probabilities of the other 341 nodes, thus, two apps created

with the same purpose will not strongly differ in API calls usage if they are

developed using almost consecutive API levels.

We also observe that abstracting to packages provides a slightly better

tradeoff than families. In family mode, the system is lighter and faster, and

actually performs better when there are more than two years between training

5.4. Discussion 167

and test set samples However, even though both modes of operation effectively

detect malware, abstracting to packages yields better results overall. Nonethe-

less, this does not imply that less abstraction is always better: in fact, a system

that is too granular, besides incurring untenable complexity, would likely cre-

ate Markov models with low-probability transitions, ultimately resulting in

less accurate classification. We also highlight that applying PCA is a good

strategy to preserve high accuracy and at the same time reducing complexity.

5.4.2 Evasion

Next, we discuss possible evasion techniques and how they can be addressed.

One straightforward evasion approach could be to repackage a benign app with

small snippets of malicious code added to a few classes. However, it is difficult

to embed malicious code in such a way that, at the same time, the resulting

Markov chain looks similar to a benign one. For instance, our running example

from Section 5.1 (malware posing as a memory booster app and executing

unwanted commands as root) is correctly classified by MaMaDroid; although

most functionalities in this malware are the same as the original app, injected

API calls generate some transitions in the Markov chain that are not typical

of benign samples.

The opposite procedure – i.e., embedding portions of benign code into

a malicious app – is also likely ineffective against MaMaDroid, since, for

each app, we derive the feature vector from the transition probability between

calls over the entire app. In other words, a malware developer would have to

embed benign code inside the malware in such a way that the overall sequence

of calls yields similar transition probabilities as those in a benign app, but

this is difficult to achieve because if the sequences of calls have to be different

(otherwise there would be no attack), then the models will also be different.

An attacker could also try to create an app from scratch with a similar

Markov chain to that of a benign app. Because this is derived from the se-

quence of abstracted API calls in the app, it is actually very difficult to create

sequences resulting in Markov chains similar to benign apps while, at the same

168 Chapter 5. Malware detection

time, actually engaging in malicious behavior. Nonetheless, in future work, we

plan to systematically analyze the feasibility of this strategy.

Moreover, attackers could try using reflection, dynamic code loading, or

native code [188]. Because MaMaDroid uses static analysis, it fails to detect

malicious code when it is loaded or determined at runtime. However, Ma-

MaDroid can detect reflection when a method from the reflection package

(java.lang.reflect) is executed. Therefore, we obtain the correct sequence

of calls up to the invocation of the reflection call, which may be sufficient to

distinguish between malware and benign apps. Similarly, MaMaDroid can

detect the usage of class loaders and package contexts that can be used to load

arbitrary code, but it is not able to model the code loaded; likewise, native

code that is part of the app cannot be modeled, as it is not Java and is not

processed by Soot. These limitations are not specific of MaMaDroid, but

are a problem of static analysis in general, which can be mitigated by using

MaMaDroid alongside dynamic analysis techniques.

Malware developers might also attempt to evade MaMaDroid by nam-

ing their self-defined packages in such a way that they look similar to that of

the android, java, or google APIs, e.g., creating packages like java.lang.re-

flect.malware and java.lang.malware, aiming to confuse MaMaDroid into ab-

stracting them to respectively, java.lang.reflect and java.lang. However,

this is easily prevented by whitelisting the list of packages from android, java,

or google APIs.

Another approach could be using dynamic dispatch so that a class X in

package A is created to extend class Y in package B with static analysis re-

porting a call to root() defined in Y as X.root(), whereas, at runtime Y.root()

is executed. This can be addressed, however, with a small increase in Ma-

MaDroid’s computational cost, by keeping track of self-defined classes that

extend or implement classes in the recognized APIs, and abstract polymorphic

functions of this self-defined class to the corresponding recognized package,

5.4. Discussion 169

while, at the same time, abstracting as self-defined overridden functions in the

class.

Finally, identifier mangling and other forms of obfuscation could be used

aiming to obfuscate code and hide malicious actions. However, since classes in

the Android framework cannot be obfuscated by obfuscation tools, malware

developers can only do so for self-defined classes. MaMaDroid labels ob-

fuscated calls as obfuscated so, ultimately, these would be captured in the

behavioral model (and the Markov chain) for the app. In our sample, we ob-

serve that benign apps use significantly less obfuscation than malicious apps,

indicating that obfuscating a significant number of classes is not a good eva-

sion strategy since this would likely make the sample more easily identifiable

as malicious.

5.4.3 Limitations

MaMaDroid requires a sizable amount of memory in order to perform clas-

sification, when operating in package mode, working on more than 100,000

features per sample. The quantity of features, however, can be further re-

duced using feature selection algorithms such as PCA. As explained in Section

5.3 when we use 10 components from the PCA the system performs almost as

well as the one using all the features; however, using PCA comes with a much

lower memory complexity in order to run the machine learning algorithms,

because the number of dimensions of the features space where the classifier

operates is remarkably reduced.

Soot [177], which we use to extract call graphs, fails to analyze some

apks. In fact, we were not able to extract call graphs for a fraction (4.6%) of

the apps in the original datasets due to scripts either failing to apply the jb

phase, which is used to transform Java bytecode to the primary intermediate

representation (i.e., jimple) of Soot or not able to open the apk. Even though

this does not really affect the results of our evaluation, one could avoid it by

using a different/custom intermediate representation for the analysis or use

different tools to extract the call graphs.

170 Chapter 5. Malware detection

In general, static analysis methodologies for malware detection on Android

could fail to capture the runtime environment context, code that is executed

more frequently, or other effects stemming from user input [127]. These limi-

tations can be addressed using dynamic analysis, or by recording function calls

on a device. Dynamic analysis observes the live performance of the samples,

recording what activity is actually performed at runtime. Through dynamic

analysis, it is also possible to provide inputs to the app and then analyze the

reaction of the app to these inputs, going beyond static analysis limits. To

this end, we plan to integrate dynamic analysis to build the models used by

MaMaDroid as part of future work.

Chapter 6

Discussion

This chapter will discuss the different aspects of the technical chapters of this

work. Although each of the chapters has its own related discussion sections,

the aim of this section is to show how all these contributions have common

points and what they highlight.

We presented three phases of study, prediction, and detection of malicious

activities on the Internet. In Chapter 3 we presented a framework to study

the kind of malware that could be attacking your PC by feeding it simulated

user triggers and recording its reactions. Chapter 4 shows Tiresias, a system

that predicts multi-step attacks phases, in order to prepare system administra-

tors to counter these actions by knowing in advance what is going to happen.

Next, we present MaMaDroid (Chapter 5), a system for Android malware

detection. These three phases are crucial in the fight against cybercriminals

and our goal is to tackle adversaries strategies over these different levels. The

idea of working on different phases that have the common goal of making cy-

bercriminal operations harder, is based on an holistic approach: it is necessary

to improve on several aspects and contemporary operate on different angles to

be efficient.

All the techniques of this work have another concept in common: under-

standing and extracting malicious behavior. We evaluate the fact that mali-

cious behavior has to follow certain paths that can differ from benign ones; for

instance, information stealing malware will always have to send these informa-

172 Chapter 6. Discussion

tion to the C&C servers. Being able to extrapolate the behavior can be the

key for more appropriate countering actions. The concept of behavior in this

context is seen as the actions defining the malicious events and it can involve

some of the actions taken into account that are not necessarily malicious any-

time, independently from what operates them (sending personal information

on the Internet may be done automatically also by benign software). External

actions, such as user triggers, have to be taken into account, as mentioned in

Section 2.4 when talking about Zhang et al. [134], context makes the difference

in understanding these phenomena.

The techniques, statistical frameworks, and systems created are built on

and aiming to reinforce existing techniques and system security research areas.

In different terms, we did not reinvent the wheel, we did not invent a new car,

but modified the existing ones to make them better. We are not the first ones

using a sandbox, but we operate the sandbox to induce the malicious samples

to operate different actions, rather than just wait and record. We are not

the first ones using deep learning for prediction purposes, but we use it for a

specific purpose where, properly tuned, can release its potential. We are not

the first ones focusing on API calls and using ML on the information extracted

on their usage, but with the use of abstraction and Markov Chains, we relate

them into sequences, lose detailed information to gain on the gross idea of

what is happening when apps are running.

Causality in malware behavior. In Chapter 3 we extract behavior as

the ability to react to certain user triggers. The causality framework based

on counterfactual analysis has been proven effective both in an application

presenting minor quantities of noise (the extensions leaking browser history in

Section 3.3) and in one presenting challenges that caused noise in the results

(the malware samples network traffic analysis in Section 3.2). For the second

one it has been necessary to apply the whole statistical framework that allowed

to rule out the noise and extract the causality relationships. At the beginning,

we present the methodology itself and the chapter shows how the methodology

173

is not efficient because tailored and limited to a specific application, but can

be extended as it is general and applicable to different challenges.

As mentioned earlier, this chapter is showing that sandboxes/honeypots

can be more than passive tools that record everything done by the pieces of

code we analyze. When we passively analyze such code we may have only a few

operations made by the analyzed sample, or we may have a stream of actions

that do not look coherent. When analyzing this information we might not

extract nor analyze what we needed. The simulation of user triggers may help

to select the actions we seek, unveil the pieces of information that can lead to

the results the defense system is looking for. Our approach to sandboxes is not

avoiding the limitations of such tool (Section 3.2.4), it is trying to build on the

qualities of the tool. Malware may detect simulated environments, therefore

we changed settings that might be checked by malicious samples. However,

the simulation of user triggers makes such virtual environments more real to

the malicious samples.

The application to network traffic (Section 3.2) is not including any kind

of detection systems. When we worked on this project we thought about how to

implement such system: given the distribution of how many times samples from

each family reacted to the triggers, it is possible to see whether the distribution

of triggered experiments for an unknown sample is closer to a family rather

than the other ones. When working on this phase, our goal was to investigate

whether the counterfactual analysis model and the statistical framework were

efficient or not, but, considered how general the model can be, it is possible to

add an interesting evolution into a possibly reliable detection system. In such

development, it would be important to add triggers and malware families.

Section 3.3 is already showing a possible implementation of a detection

system based on unsupervised classification using linear regression. As this

application has shown less noise affecting the measurements, we have been able

to develop a classification system even though we had a few points available

for regression. The causality framework is part of a more complicated system,

174 Chapter 6. Discussion

it is not stand alone in this case. However, it is the starting point, having the

rest of the system building on the results of this step.

Prediction through deep learning. The second phase analyzed in this

work is explained in Chapter 4. We successfully aimed to building a classifier

based on deep learning and able to predict the exact event that is going to

happen next out of 4495 possible options. The results are showing Tiresias’

ability of efficiently identifying the steps of multi-step attacks to prevent the

attacker from doing them.

Behavior is defined as the signatures triggered by the adversary’s actions

because we applied Tiresias to a database of Intrusion Prevention Systems

events. In this case, as well as the previous ones, the behavior is given by

actions that are essential to the adversary final goal. The key of this phase

is foreseeing what an adversary could do, act preemptively to disrupt the

adversary’s actions. Such approach allows system administrators to prepare

the defenses where there weren’t and the system could have been hit. The use

of an advanced statistical tool as deep learning is carefully evaluated against

less complicated structures showing that the potential of this tool is higher

than the one of, for instance, Markov Chains as we have to rely on particular

mechanisms that are involving long term memory for this specific problem.

Detection of Android malware using Markov Chains. The third phase,

following the prediction one, is detection. Prediction is a rather new research

trend where we act by anticipating the adversary’s moves. However, as this

approach cannot be implemented on all the aspects of the malware and ma-

licious behavior world, it is necessary to focus on the detection of malicious

samples as well. In the specific case of this work, MaMaDroid (Section 5) is a

tool focused on the detection of Android malware. In this case MaMaDroid

models the sequences of API calls of the analyzed apps. The API calls are

nothing more than the single actions that the apps can do and the sequences

are the apps behavior.

175

The system is efficient, presenting high F1 scores because there actu-

ally is a clear difference between the behavior of benign and malicious apps.

Moreover, it fits requirements for the implementation on infrastructures such

as markets. MaMaDroid is designed to act as a security check before the

malicious apps get on the market. Even though the families abstraction is

lightweight and could be implemented on a mobile phone, the packages one is

slightly more efficient; the finer resolution of this abstraction results in higher

F1 scores at the cost of an heavier model that can be managed more easily by

central markets rather than personal devices. MaMaDroid is not immune

to evasion techniques, at the same time it is an approach that tackles the

Android malware detection field from a different angle with satisfying results.

We discuss the possible evasion techniques in Section 5.4.3, but the techniques

are not related to how MaMaDroid itself works: they are more related to

which techniques have to be used (e.g., static analysis) and the stealthiness

of malicious samples.

Chapter 7

Ethical Discussion of this Work

In the previous sections of this work we discussed the technical contributions

and how they have been filling open gaps and opening new questions in studies

on malicious behavior. In this Section, we are going to analyze what are the

ethical implications of these works. We will analyze all the technical sections

one by one and then the ethical implications of possible implementations into

the wild.

7.1 Research Analysis and Ethics
Doing research in security and cybercrime has several ethical implications.

Starting from the most obvious ones, like involving humans, to less obvious

ones, like the possible attacks that can be done by malicious samples running

in a monitored environment.Every project has ethical implications that have

to be evaluated. When doing research, we are interested in the results of every

project, but it is important that the work follows guidelines. Moreover, the

results we are able to reach are subject to deductions and interpretations. A

researcher may come to incorrect conclusions that may affect the decisions of

practitioners in the field.

Causality in Malware Activities. When it comes to the research related

to the first phase, there are many implications related to the experimental

environment to be taken into account: we run malware samples that are active

and functioning to study their reactions. It implies that no real information

178 Chapter 7. Ethical Discussion of this Work

of any kind should be used during the experiments as malicious samples may

otherwise use this information for their own purposes.

Samples may also use the virtual environment for attacks to third ma-

chines; these attacks may be different one from the other and it is important

to implement security measures: limiting bandwidth to avoid DoS attacks,

redirecting SMTP packages to avoid spamming campaigns or targeted black-

mailing messages, limited lifetime of the virtual environment to limit the pos-

sible advanced exploits that may be run against other machines. All these

restrictions are needed to avoid that research becomes an harm to someone

else’s life.

We already talked about how hard it is to establish causal relationships

and how a causal relationship is an extremely strong link between variables,

but it is also important to think about what it means to declare such a strong

link. Some of the findings related to this phase are intuitive and researchers

and practitioners can easily see them by using logic. However, other aspects

may be less straightforward; for instance, establishing the linear relationship

between amount of history in the browser and aggregate size of the packets sent

to leak the history. The rationale behind this result is intuitive, but the reality

of telecommunications may affect these results: there can be packets sent more

than once or payloads that have been limited in sizes, creating overhead. It

is important that findings are valid and that events that may affect them are

not undermining the validity of the results.

Predicting Security Alarms due to Malicious Activities Using Deep

Learning Algorithms. The second phase is related to the use of advanced

tools such as Deep Learning. We often evaluate Deep Learning as a black box

from which we take into account only the results. However, in some cases this

may lead to having biases being unnoticed. When we do not notice the biases

that are affecting the dataset or the decisions we pose important threats of

validity of the results. In our field of research this may lead to several issues,

(a) the paper is presenting results that are not reliable nor valid, (b) the results

7.1. Research Analysis and Ethics 179

presented raise the bar of acceptance for other research projects in the field

without being as good as they are presented, (c) the system may be used for

future work that will base itself on invalid constructions or tools.

These reasons may be seen as common to all the research fields that

are presenting any kind of result, however, the use of Deep Learning can

be even more prone to these issues. Deep Learning (and more in general

Machine Learning) is often seen as black magic that solves the problems for

the researcher. For this reason it is often used without full knowledge of its

rules, protocols, and mechanisms. By applying Deep Learning in this way,

researchers cannot notice if something is affecting the validity of their own

results.

This work has other ethical implications related to research: Tiresias is

one of the few works on prediction of events and preemptive behavior. This

fairly new trend may become one of the most explored themes in the system

security field and the oldest works a reference for the newest ones. The validity

of Tiresias’s methodology, its datasets and evaluation are even more crucial

under this light.

Detecting Malware by Using Markov Chains as Behavioral Models.

The last phase we worked on is the detection one. The detection phase is

one of those that is continuously raising interest over the years. As for our

system, MaMaDroid is a system applying Machine Learning algorithms in

a relatively new field, android malware. While the considerations thought

for Deep Learning systems in the previous paragraphs are valid for Machine

Learning systems, the works on detection present another important ethical

concern: full disclosure and complete reproducibility. This is an ethical concern

that affects all the aspects of research; however, Tiresias has been created

using datasets from a private company and may be implemented by them;

the amount of information that can be shared is, therefore, limited. In such

cases the work has to have detailed descriptions to allow the community to

thoroughly understand it, but cannot be fully disclosed as there is company

180 Chapter 7. Ethical Discussion of this Work

related information. MaMaDroid, on the other hand, is using public data

on a topic that has been widely explored. When we claim MaMaDroid

performances are better than the ones of DroidAPIMiner, we have to be

able to prove it. For this reason we preferred using only DroidAPIMiner

(of which the authors sent the original source code), rather than other systems

(e.g. DREBIN) of which the sourcecode is not available. For the same reason,

MaMaDroid source code is publicly available for researchers to try it and

compare its efficiency with the one of their systems.

7.2 Systems Ethics and Implementation in the

Wild

The area of information security that this work is part of, is system security.

Practitioners all over the world are constantly developing systems for their

own companies and monitoring the systems produced by researchers in their

work. This means that research is influencing the world around us and the

implementation of systems that are inspired by researcher’s work is not un-

common. In this section we are going to understand what are the implications

of the systems developed in this work.

Causality in the wild. In the first part of this thesis we talked about a

statistical framework. We already described how the use of triggers may posi-

tively affect the sandboxing techniques and how effective this can be, however

we also mentioned how important it is to study the validity of the results

(Section 7.1). When we foresee this framework implementations into the wild,

we think about howits results can be significant. This system could be imple-

mented to analyze new software characteristics in environments where crucial

information and operations are, e.g., a bank subnetwork where stock exchange

operations are handled. This kind of networks are limited in the amount of

operations and the traffic that can be exchanged, therefore it is possible to find

out which behaviors are suspicious. Moreover, Ex-Ray is already an effective

7.2. Systems Ethics and Implementation in the Wild 181

application of such framework that could be implemented as security check by

those markets that are selling browser extensions.

Prediction of Security Alarms in the wild. The second area of work

we talked about is the prediction of alarms. Tiresias has shown reliability,

however, as expected, it does not have 100% Accuracy. When implemented

in the wild, such system has to give indication on whether the prediction is

reliable or not and on which could be the risk of an incorrect prediction in case

there are two possible events with similar probability. Handling these issues

is crucial because a system like Tiresias can be a valuable help for system

administrators, however, a wrong prediction cannot turn into a disaster for the

company. Systems adminitrators rely on the suggestions given by automated

systems every day; they rely on wrong suggestions as well, in their decisions.

When we talk about prediction of events, a wrong suggestion may be hinting

that a specific attack is about to happen instead of another one. We may

consider a wrong prediction like not having any prediction at all about the

attack, however this is not correct as the reactions of the administrator may

affect how the attack develops or, even worse, may delay the application of

the correct countermeasures. It is therefore crucial that systems like Tiresias

give a detailed feedback on which could be the kind of attack but also whether

other (completely different) attacks could be misinterpreted and being the ones

taking place.

Android Malware Detection in the wild. The evaluation of system errors

is crucial also in detection systems like MaMaDroid. We have explained

in Section 2.2 that systems security is not about having one system able to

detect everything. MaMaDroid is an extremely effective system, however it

may miss malicious apps that without other controls could be injected into

the market. As for Tiresias, MaMaDroid must be carefully evaluated to

understand which decision could be borderline or which one could be wrong

because the app presents characteristics that are leading to wrong evaluations.

182 Chapter 7. Ethical Discussion of this Work

By being able to evaluate all these things it is possible to determine whether

it is necessary to further check the specific app or not.

Chapter 8

Conclusions and Final Remarks

This thesis is the final product of three years of research work. We presented

the successful research aiming to help in the continuous arms race between

cybercriminals and the security community. This work can be an inspirational

starting point for new research work as well as being used by practitioners as

part of their tools. They have been milestones for the teams working on them

and they have been proven to be efficient elements respecting high standards

of research.

We worked on tools for measuring, predicting and detecting malicious

behavior on the Internet. We decided to operate on these three phases as part

of the most crucial ones to apply advanced statistical methods in this field.

In the first phase we have presented a statistical framework to study

causality relationships between user and malicious behavior. We have pre-

sented and thoroughly evaluated two practical applications of this tool, the

study of malicious samples from different malware families in a sandboxing

environment and the study of browser extensions leaking browser history.

In the prediction phase we have worked on Tiresias, a system able to pre-

dict multi-step attacks. We have evaluated the system over different datasets,

analyzed it over different timescales, and evaluated case studies to have better

insights on the work.

In the detection phase we have created MaMaDroid, a system that

is applying Markov Chains on sequences of API calls to distinguish between

184 Chapter 8. Conclusions and Final Remarks

benign and malicious apps. We analyzed MaMaDroid’s performance using

different malware datasets, studying the evolution of the malware samples and

how the system is able to adapt through the years.

This thesis tackled the issues related to malicious behavior on the Internet

from different points of view, focusing on the concept of behavior, how to

recognise patterns in Internet behavior (whether benign or malicious) and the

use of ML and other advanced statistical methods for this scope. The systems

created as part of this work have in common a very important aspect: their

versatility. In fact, the causality framework is applicable to several different

issues, MaMaDroid can be easily integrated in security systems used by

Android markets and the adaptation to different versions of the Android OS

(or different OSs using the same kind of API architecture and functionalities)

is immediate. Tiresias can be implemented on several devices and we have

shown that its detection sub-system is usable by devices with limited power

as well.

The versatility of the systems is not the only takeaway from this work.

The results are showing, without any doubt, that statistical systems are able

to extrapolate and evaluate patterns from different issues in a very efficient

way. However, as explained in Section 2.3.2.1for ML systems, the work of

the statistical methods would not be that effective without an effective rep-

resentation. Among the different settings in which we have used statistical

evaluation, a particular mention goes to the abstraction invented and imple-

mented in MaMaDroid: this technique is an important contribution to the

features extraction for these systems. Abstraction has removed detailed in-

formation about API calls by keeping only the general name, representing its

very rough behavior (classes and packages) or even just an indication of what

is involved (families). The use of abstraction allowed to use a much more

lightweight system, but increased the robustness as well. In fact, while the

evaluation metrics highlighted great performances even when abstracting at

the highest level of granularity, we were able to extract information readable

185

by users as well on how the classifier was working. Abstraction is a technique

that should definitely be evaluated by the community in other problems as it

probably is the most promising idea that can be listed as contribution of this

thesis.

Bibliography

[1] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classifi-

cation. John Wiley & Sons, 2012.

[2] Michael A. Nielsen. Neural networks and deep learning, volume 25. De-

termination press USA, 2015.

[3] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. Seven ways

to apply the cyber kill chain with a threat intelligence platform. Leading

Issues in Information Warfare & Security Research, 1(1):80, 2014.

[4] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining api-

level features for robust malware detection in android. In International

conference on security and privacy in communication systems, pages

86–103. Springer, 2013.

[5] Gary Schneider, Jessica Evans, and Katherine Pinard. The Internet-

Illustrated. Nelson Education, 2009.

[6] Fred Cohen. Computer viruses. Computers & security, 6(1):22–35, 1987.

[7] Fred Cohen. Computer viruses, 1985.

[8] Tim Berners-Lee. World wide web, 1992.

[9] McAfee labs threat report december 2017. page 13, 2017.

[10] Evan Perez and Daniella Diaz. White house announces retaliation

against russia: Sanctions, ejecting diplomats, 2016.

188 Bibliography

[11] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Bot-

miner: Clustering analysis of network traffic for protocol-and structure-

independent botnet detection. 2008.

[12] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and Tu-

dor Dumitras. The dropper effect: Insights into malware distribution

with downloader graph analytics. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pages

1118–1129. ACM, 2015.

[13] Gavin O’Gorman and Geoff McDonald. Ransomware: A growing men-

ace. Symantec Corporation, 2012.

[14] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit

Sinha, Amr Youssef, Mourad Debbabi, and Lingyu Wang. On the anal-

ysis of the zeus botnet crimeware toolkit. In Privacy Security and Trust

(PST), 2010 Eighth Annual International Conference on, pages 31–38.

IEEE, 2010.

[15] Ralph Langner. To kill a centrifuge: a technical analysis of what

stuxnet’s creators tried to achieve. 2013.

[16] Jonathan Berr. Wannacry ransomware attack losses could reach

4billion,2017.

[17] Ellen Nakashima. Russian military was behind tpetyayberattack in ukraine,

cia concludes, 2018.

[18] Lucky Onwuzurike, Mario Almeida, Enrico Mariconti, Jeremy Blackburn, Gi-

anluca Stringhini, and Emiliano De Cristofaro. A family of droids: Analyzing

behavioral model based android malware detection via static and dynamic

analysis. arXiv preprint arXiv:1803.03448, 2018.

[19] Mario Almeida, Muhammad Bilal, Alessandro Finamore, Ilias Leontiadis, Yan

Grunenberger, Matteo Varvello, and Jeremy Blackburn. CHIMP: Crowdsourc-

Bibliography 189

ing human inputs for mobile phones. In Proceedings of the 2018 World Wide

Web Conference, WWW ’18, pages 45–54. International World Wide Web

Conferences Steering Committee, 2018.

[20] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. What happens

after you are pwnd: Understanding the use of leaked webmail credentials in

the wild. In Proceedings of the 2016 Internet Measurement Conference, pages

65–79. ACM, 2016.

[21] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. Harvesting

wild honey from webmail beehives. In Engineering Secure Software and Sys-

tems (ESSoS), 2016.

[22] Enrico Mariconti, Guillermo Suarez-Tangil, Jeremy Blackburn, Emiliano

De Cristofaro, Nicolas Kourtellis, Ilias Leontiadis, Jordi Luque Serrano, and

Gianluca Stringhini. ” you know what to do”: Proactive detection of YouTube

videos targeted by coordinated hate attacks. arXiv preprint arXiv:1805.08168,

2018.

[23] Enrico Mariconti, Jeremiah Onaolapo, Syed Sharique Ahmad, Nicolas Niki-

forou, Manuel Egele, Nick Nikiforakis, and Gianluca Stringhini. Why allowing

profile name reuse is a bad idea. In Proceedings of the 9th European Workshop

on System Security, page 3. ACM, 2016.

[24] Enrico Mariconti, Jeremiah Onaolapo, Syed Sharique Ahmad, Nicolas Niki-

forou, Manuel Egele, Nick Nikiforakis, and Gianluca Stringhini. What’s in a

name?: Understanding profile name reuse on twitter. In Proceedings of the 26th

International Conference on World Wide Web, pages 1161–1170. International

World Wide Web Conferences Steering Committee, 2017.

[25] Enrico Mariconti, Jeremiah Onaolapo, Gordon Ross, and Gianluca Stringhini.

A methodology to assess malware causality in network activities. In Engineer-

ing Secure Software and Systems (ESSoS), 2016.

190 Bibliography

[26] Enrico Mariconti, Jeremiah Onaolapo, Gordon Ross, and Gianluca Stringhini.

The cause of all evils: Assessing causality between user actions and malware

activity. In USENIX Workshop on Cyber Security Experimentation and Test

(CSET), volume 10. USENIX, 2017.

[27] Enrico Mariconti, Jeremiah Onaolapo, Gordon Ross, and Gianluca Stringhini.

What’s your major threat? on the differences between the network behavior

of targeted and commodity malware. In Availability, Reliability and Security

(ARES), 2016 11th International Conference on, pages 599–608. IEEE, 2016.

[28] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil, Gianluca

Stringhini, William Robertson, and Engin Kirda. Ex-ray: Detection of history-

leaking browser extensions. In Proceedings of the 33rd Annual Computer Se-

curity Applications Conference, pages 590–602. ACM, 2017.

[29] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano

De Cristofaro, Gordon Ross, and Gianluca Stringhini. Mamadroid: Detecting

android malware by building markov chains of behavioral models. In Network

and Distributed System Security Symposium (NDSS), 2016.

[30] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano

De Cristofaro, Gordon Ross, and Gianluca Stringhini. MaMaDroid: Detecting

android malware by building markov chains of behavioral models (extended

version). arXiv preprint arXiv:1711.07477, 2017.

[31] Wentao Chang, An Wang, Aziz Mohaisen, and Songqing Chen. Characterizing

botnets-as-a-service. In ACM SIGCOMM Computer Communication Review,

volume 44, pages 585–586. ACM, 2014.

[32] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven

computer network defense informed by analysis of adversary campaigns and

intrusion kill chains. page 14, 2011.

[33] Sewall Wright. Correlation and causation. Journal of agricultural research,

20(7):557–585, 1921.

Bibliography 191

[34] Tyler Vigen. Spurious correlations. Hachette books, 2015.

[35] Karl Pearson. Mathematical contributions to the theory of evolution.—on a

form of spurious correlation which may arise when indices are used in the

measurement of organs. Proceedings of the royal society of london, 60(359-

367):489–498, 1897.

[36] David Hume. An enquiry concerning human understanding. In Seven Master-

pieces of Philosophy, pages 191–284. Routledge, 2016.

[37] David Lewis. Counterfactuals and comparative possibility. In Ifs, pages 57–85.

Springer, 1973.

[38] Judea Pearl. Causality. Cambridge university press, 2009.

[39] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735–80, 1997-12-01.

[41] Tin Kam Ho. Random decision forests. In Document analysis and recognition,

1995., proceedings of the third international conference on, volume 1, pages

278–282. IEEE, 1995.

[42] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[43] Leo Breiman. Using adaptive bagging to debias regressions, 1999.

[44] Thomas G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomization.

Machine learning, 40(2):139–157, 2000.

[45] Leo Breiman. Classification and regression trees. Routledge, 2017.

[46] R. Behi and M. Nolan. Causality and control: key to the experiment. British

Journal of Nursing (Mark Allen Publishing), 5(4):252–255, March 1996.

192 Bibliography

[47] Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and Paramvir Bahl. Automat-

ing network application dependency discovery: Experiences, limitations, and

new solutions. In OSDI, volume 8, pages 117–130, 2008.

[48] Ali Zand, Giovanni Vigna, Richard Kemmerer, and Christopher Kruegel. Rip-

pler: Delay injection for service dependency detection. In INFOCOM, 2014

Proceedings IEEE, pages 2157–2165. IEEE, 2014.

[49] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck.

Mast: Triage for market-scale mobile malware analysis. In Proceedings of the

sixth ACM conference on Security and privacy in wireless and mobile networks,

pages 13–24. ACM, 2013.

[50] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: feature

hashing malware for scalable triage and semantic analysis. In Proceedings of

the 18th ACM conference on Computer and communications security, pages

309–320. ACM, 2011.

[51] Dhilung Kirat, Lakshmanan Nataraj, Giovanni Vigna, and B. S. Manjunath.

Sigmal: A static signal processing based malware triage. In Proceedings of the

29th Annual Computer Security Applications Conference, pages 89–98. ACM,

2013.

[52] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song,

and Heng Yin. Automatically identifying trigger-based behavior in malware.

In Botnet Detection, pages 65–88. Springer, 2008.

[53] Samuel T. King, Zhuoqing Morley Mao, Dominic G. Lucchetti, and Peter M.

Chen. Enriching intrusion alerts through multi-host causality. In NDSS, 2005.

[54] Hao Zhang, Danfeng Daphne Yao, and Naren Ramakrishnan. Detection of

stealthy malware activities with traffic causality and scalable triggering rela-

tion discovery. In Proceedings of the 9th ACM symposium on Information,

computer and communications security, pages 39–50. ACM, 2014.

Bibliography 193

[55] Jim Freer, Keith Beven, and Bruno Ambroise. Bayesian estimation of uncer-

tainty in runoff prediction and the value of data: An application of the GLUE

approach. Water Resources Research, 32(7):2161–2173, 1996.

[56] William R. Thompson. On the likelihood that one unknown probabil-

ity exceeds another in view of the evidence of two samples. Biometrika,

25(3):285–294, 1933.

[57] Eero P. Simoncelli and Edward H. Adelson. Noise removal via bayesian wavelet

coring. In Proceedings of the 3rd IEEE International Conference on Image

Processing, volume 1, 1996.

[58] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling.

In Advances in neural information processing systems, pages 2249–2257, 2011.

[59] Stefan Heule, Devon Rifkin, Alejandro Russo, and Deian Stefan. The most

dangerous code in the browser. page 7, 2015.

[60] Frans Rosand Linus Sd. Chrome extensions - aka total absence of privacy,

2015.

[61] Oleksii Starov and Nick Nikiforakis. Extended tracking powers: Measuring

the privacy diffusion enabled by browser extensions. In Proceedings of the 26th

International Conference on World Wide Web, pages 1481–1490. International

World Wide Web Conferences Steering Committee, 2017.

[62] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. Ver-

ified security for browser extensions. In 2011 IEEE Symposium on Security

and Privacy, pages 115–130. IEEE, 2011-05.

[63] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song.

Dynamic spyware analysis. Usenix Annual Technical Conference (ATC), 2007.

[64] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, and Vern Paxson. Hulk: Eliciting malicious behavior in browser

extensions. 2014.

194 Bibliography

[65] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros

Kapravelos, Damon Mccoy, Antonio Nappa, Vern Paxson, Paul Pearce, Niels

Provos, and Moheeb Abu Rajab. Ad injection at scale: Assessing deceptive ad-

vertisement modifications. In 2015 IEEE Symposium on Security and Privacy,

pages 151–167. IEEE, 2015-05.

[66] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,

Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You

are what you include: large-scale evaluation of remote javascript inclusions. In

Proceedings of the 2012 ACM conference on Computer and communications

security - CCS ’12, page 736. ACM Press, 2012.

[67] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking: Policy

and technology. In 2012 IEEE Symposium on Security and Privacy, pages

413–427. IEEE, 2012-05.

[68] Franziska Roesner, Kohno Tadayoshi, and David Wetherall. Detecting and de-

fending against third-party tracking. Usenix Symposium on Networked Systems

Design and Implementation (NSDI), 2012.

[69] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roes-

ner. Internet jones and the raiders of the lost trackers: An archaeological study

of web tracking from 1996 to 2016. page 18, 2016.

[70] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS:

Detecting privacy leaks in iOS applications. page 15, 2011.

[71] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androi-

dLeaks: Automatically detecting potential privacy leaks in android applica-

tions on a large scale. In Trust and Trustworthy Computing, volume 7344,

pages 291–307. Springer Berlin Heidelberg, 2012.

[72] Chaz Lever, Platon Kotzias, Davide Balzarotti, Juan Caballero, and Manos

Antonakakis. A lustrum of malware network communication: Evolution and

Bibliography 195

insights. In 2017 IEEE Symposium on Security and Privacy (SP), pages

788–804. IEEE, 2017-05.

[73] Yun Shen, Enrico Mariconti, Pierre-Antoine Vervier, and Gianluca Stringhini.

Tiresias: Predicting security events through deep learning. Conference on

Computer and Communication Systems (CCS), page 14, 2018.

[74] Kyle Soska and Nicolas Christin. Automatically detecting vulnerable websites

before they turn malicious. In USENIX Security Symposium, pages 625–640,

2014.

[75] Leyla Bilge, Yufei Han, and Matteo Dell’Amico. RiskTeller: Predicting the

risk of cyber incidents. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 1299–1311. ACM, 2017.

[76] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir,

Michael Bailey, and Mingyan Liu. Cloudy with a chance of breach: Forecasting

cyber security incidents. In USENIX Security Symposium, pages 1009–1024,

2015.

[77] Yang Liu, Jing Zhang, Armin Sarabi, Mingyan Liu, Manish Karir, and Michael

Bailey. Predicting cyber security incidents using feature-based characteriza-

tion of network-level malicious activities. In Proceedings of the 2015 ACM

International Workshop on International Workshop on Security and Privacy

Analytics, pages 3–9. ACM, 2015.

[78] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vulnerability disclosure

in the age of social media: Exploiting twitter for predicting real-world exploits.

In USENIX Security Symposium, pages 1041–1056, 2015.

[79] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions

in binaries with neural networks. In USENIX Security Symposium, pages

611–626, 2015.

196 Bibliography

[80] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural

nets can learn function type signatures from binaries. In Proceedings of the

26th USENIX Conference on Security Symposium, Security, volume 17, 2017.

[81] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly

detection and diagnosis from system logs through deep learning. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 1285–1298. ACM, 2017.

[82] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer,

Nicolas Christin, and Lorrie Faith Cranor. Fast, lean, and accurate: Modeling

password guessability using neural networks. In USENIX Security Symposium,

pages 175–191, 2016.

[83] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian, Mady Marinescu, and

Anil Thomas. Malware classification with recurrent networks. In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference

on, pages 1916–1920. IEEE, 2015.

[84] Denis Maslennikov. Mobile malware evolution: An overview, part 4, 2011.

[85] Denis Maslennikov. Mobile malware evolution, part 5, 2012.

[86] McAfee. McAfee mobile threat report q1, 2018. page 16, 2018.

[87] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting android

applications to java bytecode. In Proceedings of the ACM SIGSOFT 20th

international symposium on the foundations of software engineering, page 6.

ACM, 2012.

[88] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-

ner. Android permissions demystified. In Proceedings of the 18th ACM confer-

ence on Computer and communications security, pages 627–638. ACM, 2011.

Bibliography 197

[89] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mo-

bile phone application certification. In Proceedings of the 16th ACM conference

on Computer and communications security, pages 235–245. ACM, 2009.

[90] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.

Riskranker: scalable and accurate zero-day android malware detection. In

Proceedings of the 10th international conference on Mobile systems, applica-

tions, and services, pages 281–294. ACM, 2012.

[91] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: stati-

cally vetting android apps for component hijacking vulnerabilities. In Proceed-

ings of the 2012 ACM conference on Computer and communications security,

pages 229–240. ACM, 2012.

[92] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[93] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. An-

droid taint flow analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN

International Workshop on the State of the Art in Java Program Analysis, pages

1–6. ACM, 2014.

[94] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean

Wang. Appintent: Analyzing sensitive data transmission in android for privacy

leakage detection. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pages 1043–1054. ACM, 2013.

[95] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and SWRD Center.

ScanDal: Static analyzer for detecting privacy leaks in android applications.

MoST, 12:110, 2012.

198 Bibliography

[96] Lok-Kwong Yan and Heng Yin. DroidScope: Seamlessly reconstructing the OS

and dalvik semantic views for dynamic android malware analysis. In USENIX

security symposium, pages 569–584, 2012.

[97] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.

TaintDroid: an information-flow tracking system for realtime privacy moni-

toring on smartphones. ACM Transactions on Computer Systems (TOCS),

32(2):5, 2014.

[98] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: automatic

security analysis of smartphone applications. In Proceedings of the third ACM

conference on Data and application security and privacy, pages 209–220. ACM,

2013.

[99] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my

market: detecting malicious apps in official and alternative android markets.

In NDSS, volume 25, pages 50–52, 2012.

[100] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro.

CopperDroid: Automatic reconstruction of android malware behaviors. In

NDSS, 2015.

[101] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert

Bos. Paranoid android: versatile protection for smartphones. In Proceedings

of the 26th Annual Computer Security Applications Conference, pages 347–356.

ACM, 2010.

[102] Michelle Y. Wong and David Lie. IntelliDroid: A targeted input generator for

the dynamic analysis of android malware. In NDSS, volume 16, pages 21–24,

2016.

[103] Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann. DyTa: dynamic symbolic

execution guided with static verification results. In Proceedings of the 33rd

International Conference on Software Engineering, pages 992–994. ACM, 2011.

Bibliography 199

[104] Yajin Zhou Xuxian Jiang and Zhou Xuxian. Detecting passive content leaks

and pollution in android applications. In Proceedings of the 20th Network and

Distributed System Security Symposium (NDSS), 2013.

[105] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. Effective

real-time android application auditing. In Security and Privacy (SP), 2015

IEEE Symposium on, pages 899–914. IEEE, 2015.

[106] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,

Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. Brahmastra:

Driving apps to test the security of third-party components. In USENIX Se-

curity Symposium, pages 1021–1036, 2014.

[107] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.

NetworkProfiler: Towards automatic fingerprinting of android apps. In INFO-

COM, volume 13, pages 809–817, 2013.

[108] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Vis-

aggio. Acquiring and analyzing app metrics for effective mobile malware detec-

tion. In Proceedings of the 2016 ACM on International Workshop on Security

And Privacy Analytics, pages 50–57. ACM, 2016.

[109] Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. Storm-

droid: A streaminglized machine learning-based system for detecting android

malware. In Proceedings of the 11th ACM on Asia Conference on Computer

and Communications Security, pages 377–388. ACM, 2016.

[110] Hanlin Zhang, Yevgeniy Cole, Linqiang Ge, Sixiao Wei, Wei Yu, Chao Lu,

Genshe Chen, Dan Shen, Erik Blasch, and Khanh D. Pham. ScanMe mo-

bile: a cloud-based android malware analysis service. ACM SIGAPP Applied

Computing Review, 16(1):36–49, 2016.

[111] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection

using sequences of system calls. Journal of computer security, 6(3):151–180,

1998.

200 Bibliography

[112] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin

Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware

detection at the end host. In USENIX security symposium, volume 4, pages

351–366, 2009.

[113] Madhu K. Shankarapani, Subbu Ramamoorthy, Ram S. Movva, and Srini-

vas Mukkamala. Malware detection using assembly and API call sequences.

Journal in computer virology, 7(2):107–119, 2011.

[114] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Vis-

aggio. Detecting android malware using sequences of system calls. In Proceed-

ings of the 3rd International Workshop on Software Development Lifecycle for

Mobile, pages 13–20. ACM, 2015.

[115] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input

generation system for android apps. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, pages 224–234. ACM, 2013.

[116] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. Droidfuzzer: Fuzzing the

android apps with intent-filter tag. In Proceedings of International Conference

on Advances in Mobile Computing & Multimedia, page 68. ACM, 2013.

[117] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Au-

tomated concolic testing of smartphone apps. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software En-

gineering, page 59. ACM, 2012.

[118] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-

mated random testing. In ACM Sigplan Notices, volume 40, pages 213–223.

ACM, 2005.

[119] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via

sandbox detection. In Proceedings of the 9th ACM symposium on Information,

computer and communications security, pages 447–458. ACM, 2014.

Bibliography 201

[120] Justin Sahs and Latifur Khan. A machine learning approach to android mal-

ware detection. In Intelligence and security informatics conference (eisic),

2012 european, pages 141–147. IEEE, 2012.

[121] Dong-Jie Wu, Ching-Hao Mao, Te-EnWei, Hahn-Ming Lee, and Kuo-Ping Wu.

Droidmat: Android malware detection through manifest and api calls tracing.

In Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on,

pages 62–69. IEEE, 2012.

[122] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural

detection of android malware using embedded call graphs. In Proceedings of

the 2013 ACM workshop on Artificial intelligence and security, pages 45–54.

ACM, 2013.

[123] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras.

Droidminer: Automated mining and characterization of fine-grained malicious

behaviors in android applications. In European symposium on research in

computer security, pages 163–182. Springer, 2014.

[124] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:

behavior-based malware detection system for android. In Proceedings of the

1st ACM workshop on Security and privacy in smartphones and mobile devices,

pages 15–26. ACM, 2011.

[125] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William

Enck. Appcontext: Differentiating malicious and benign mobile app behaviors

using context. In Proceedings of the 37th International Conference on Software

Engineering-Volume 1, pages 303–313. IEEE Press, 2015.

[126] Joshua Garcia, Mahmoud Hammad, Bahman Pedrood, Ali Bagheri-Khaligh,

and Sam Malek. Obfuscation-resilient, efficient, and accurate detection and

family identification of android malware. Department of Computer Science,

George Mason University, Tech. Rep, 2015.

202 Bibliography

[127] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad

Rieck, and CERT Siemens. DREBIN: Effective and explainable detection of

android malware in your pocket. In Ndss, volume 14, pages 23–26, 2014.

[128] Yang Chen, Mo Ghorbanzadeh, Kevin Ma, Charles Clancy, and Robert McG-

wier. A hidden markov model detection of malicious android applications at

runtime. In Wireless and Optical Communication Conference (WOCC), 2014

23rd, pages 1–6. IEEE, 2014.

[129] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visaggio. An hmm

and structural entropy based detector for android malware: An empirical

study. Computers & Security, 61:1–18, 2016.

[130] John P. John, Alexander Moshchuk, Steven D. Gribble, and Arvind Krishna-

murthy. Studying spamming botnets using botlab. In NSDI, volume 9, pages

291–306, 2009.

[131] Christian Rossow, Christian J. Dietrich, Chris Grier, Christian Kreibich, Vern

Paxson, Norbert Pohlmann, Herbert Bos, and Maarten Van Steen. Prudent

practices for designing malware experiments: Status quo and outlook. In

Security and Privacy (SP), 2012 IEEE Symposium on, pages 65–79. IEEE,

2012.

[132] Alberto Ortega. Pafish, 2013.

[133] Steven L. Scott. A modern bayesian look at the multi-armed bandit. Applied

Stochastic Models in Business and Industry, 26(6):639–658, 2010.

[134] Jing Zhang, Zakir Durumeric, Michael Bailey, Mingyan Liu, and Manish Karir.

On the mismanagement and maliciousness of networks. In Network and Dis-

tributed System Security Symposium (NDSS), 2014.

[135] David A. Harville. Bayesian inference for variance components using only error

contrasts. Biometrika, 61(2):383–385, 1974.

Bibliography 203

[136] Roberto Trotta. Bayes in the sky: Bayesian inference and model selection in

cosmology. Contemporary Physics, 49(2):71–104, 2008.

[137] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha,

Amr Youssef, Mourad Debbabi, and Lingyu Wang. On the analysis of the zeus

botnet crimeware toolkit. In Privacy Security and Trust (PST), 2010 Eighth

Annual International Conference on, pages 31–38. IEEE, 2010.

[138] John Aycock. Spyware and Adware, volume 50. Springer Science & Business

Media, 2010.

[139] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth,

Roberto Perdisci, and Wenke Lee. Understanding malvertising through ad-

injecting browser extensions. In Proceedings of the 24th international con-

ference on world wide web, pages 1286–1295. International World Wide Web

Conferences Steering Committee, 2015.

[140] Sajjad Arshad, Amin Kharraz, and William Robertson. Identifying extension-

based ad injection via fine-grained web content provenance. In International

Symposium on Research in Attacks, Intrusions, and Defenses, pages 415–436.

Springer, 2016.

[141] George AF Seber and Alan J Lee. Linear Regression Analysis. John Wiley &

Sons, 2012.

[142] S. I. V. Sousa, F. G. Martins, M. C. M. Alvim-Ferraz, and M. C. Pereira. Mul-

tiple linear regression and artificial neural networks based on principal compo-

nents to predict ozone concentrations. Environmental Modelling & Software,

22(1):97–103, 2007.

[143] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression.

Statistics and Computing, pages 199–222, 2004.

[144] Lorrie Faith Cranor, Joseph Reagle, and Mark S. Ackerman. Beyond con-

cern: Understanding net users’ attitudes about online privacy. The Internet

204 Bibliography

upheaval: raising questions, seeking answers in communications policy, pages

47–70, 2000.

[145] Naresh K. Malhotra, Sung S. Kim, and James Agarwal. Internet users’ in-

formation privacy concerns (IUIPC): The construct, the scale, and a causal

model. Information systems research, 15(4):336–355, 2004.

[146] Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced

persistent threats. In IFIP International Conference on Communications and

Multimedia Security, pages 63–72. Springer, 2014.

[147] Gianluca Stringhini and Olivier Thonnard. That ain’t you: Blocking

spearphishing through behavioral modelling. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, pages

78–97. Springer, 2015.

[148] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong Chua, Prateek

Saxena, and Engin Kirda. A look at targeted attacks through the lense of an

NGO. In USENIX Security Symposium, pages 543–558, 2014.

[149] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis

of drive-by-download attacks and malicious JavaScript code. In Proceedings of

the 19th international conference on World wide web, pages 281–290. ACM,

2010.

[150] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and Na-

gendra Modadugu. The ghost in the browser: Analysis of web-based malware.

HotBots, 7:4–4, 2007.

[151] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege esca-

lation. In USENIX Security Symposium, 2003.

[152] Brown Farinholt, Mohammad Rezaeirad, Paul Pearce, Hitesh Dharmdasani,

Haikuo Yin, Stevens Le Blond, Damon McCoy, and Kirill Levchenko. To catch

a ratter: Monitoring the behavior of amateur darkcomet rat operators in the

Bibliography 205

wild. In 2017 38th IEEE Symposium on Security and Privacy (SP), pages

770–787. Ieee, 2017.

[153] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-

lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your

botnet is my botnet: analysis of a botnet takeover. In Proceedings of the 16th

ACM conference on Computer and communications security, pages 635–647.

ACM, 2009.

[154] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin

Kirda. Cutting the gordian knot: A look under the hood of ransomware

attacks. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 3–24. Springer, 2015.

[155] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele.

PayBreak: defense against cryptographic ransomware. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security,

pages 599–611. ACM, 2017.

[156] Grant Ho, Aashish Sharma Mobin Javed, Vern Paxson, and David Wagner.

Detecting credential spearphishing attacks in enterprise settings. In Proceed-

ings of the 26rd USENIX Security Symposium (USENIX Security’17), pages

469–485, 2017.

[157] Guofei Gu, Phillip A. Porras, Vinod Yegneswaran, Martin W. Fong, andWenke

Lee. Bothunter: Detecting malware infection through ids-driven dialog corre-

lation. In USENIX Security Symposium, volume 7, pages 1–16, 2007.

[158] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based

attacks. In Proceedings of the 10th ACM conference on Computer and com-

munications security, pages 251–261. ACM, 2003.

[159] Gianluca Stringhini, Yun Shen, Yufei Han, and Xiangliang Zhang. Marmite:

spreading malicious file reputation through download graphs. In Proceedings

206 Bibliography

of the 33rd Annual Computer Security Applications Conference, pages 91–102.

ACM, 2017.

[160] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting

intrusions using system calls: Alternative data models. In Proceedings of the

1999 IEEE symposium on security and privacy (Cat. No. 99CB36344), pages

133–145. IEEE, 1999.

[161] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-

aware neural language models. In AAAI, pages 2741–2749, 2016.

[162] Michiel Hermans and Benjamin Schrauwen. Training and analysing deep re-

current neural networks. In Advances in neural information processing systems,

pages 190–198, 2013.

[163] Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Rus-

lan R. Salakhutdinov, and Yoshua Bengio. Architectural complexity measures

of recurrent neural networks. In Advances in Neural Information Processing

Systems, pages 1822–1830, 2016.

[164] Kamil Rocki. Recurrent memory array structures. arXiv preprint

arXiv:1607.03085, 2016.

[165] James R. Norris. Markov chains. Number 2. Cambridge university press, 1998.

[166] Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra,

and Jenifer C. Lai. Class-based n-gram models of natural language. Compu-

tational linguistics, 18(4):467–479, 1992.

[167] Denis Arrivault, Dominique Benielli, Francois Denis, and Remi Eyraud.

Sp2learn: A toolbox for the spectral learning of weighted automata. In Inter-

national Conference on Grammatical Inference, pages 105–119, 2017.

[168] Kamvar Kamvar, Sepandar Sepandar, Klein Klein, Dan Dan, Manning Man-

ning, and Christopher Christopher. Spectral learning. In International Joint

Conference of Artificial Intelligence. Stanford InfoLab, 2003.

Bibliography 207

[169] Gary M. Weiss and Haym Hirsh. Learning to predict rare events in event

sequences. In KDD, pages 359–363, 1998.

[170] Jianxin Wu, James M. Rehg, and Matthew D. Mullin. Learning a rare event

detection cascade by direct feature selection. In Advances in Neural Informa-

tion Processing Systems, pages 1523–1530, 2004.

[171] Junseok Kwon and Kyoung Mu Lee. A unified framework for event summa-

rization and rare event detection. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pages 1266–1273. IEEE, 2012.

[172] Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to re-

member rare events. arXiv preprint arXiv:1703.03129, 2017.

[173] Iasonas Polakis, Michalis Diamantaris, Thanasis Petsas, Federico Maggi, and

Sotiris Ioannidis. Powerslave: analyzing the energy consumption of mobile

antivirus software. In International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 165–184. Springer, 2015.

[174] Jon Oberheide and Charlie Miller. Dissecting the android bouncer. Summer-

Con2012, New York, 2012.

[175] Google Play has hundreds of Android apps that contain malware. http://

www.trustedreviews.com/news/malware-apps-downloaded-google-play,

2016.

[176] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina

Nita-Rotaru, and Ian Molloy. Android permissions: a perspective combining

risks and benefits. In Proceedings of the 17th ACM symposium on Access

Control Models and Technologies, pages 13–22. ACM, 2012.

[177] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,

and Vijay Sundaresan. Soot: A java bytecode optimization framework. In

CASCON First Decade High Impact Papers, pages 214–224. IBM Corp., 2010.

http://www.trustedreviews.com/news/malware-apps-downloaded-google-play
http://www.trustedreviews.com/news/malware-apps-downloaded-google-play

208 Bibliography

[178] Ryan De Souza. Ghost push android malware responsible for infecting 600k

new users daily, 2015.

[179] Patrick Schulz. Code protection in android. Insititute of Computer Science,

Rheinische Friedrich-Wilhelms-Universitgt Bonn, Germany, 110, 2012.

[180] Ian Jolliffe. Principal component analysis. In International encyclopedia of

statistical science, pages 1094–1096. Springer, 2011.

[181] Marti A. Hearst, Susan T. Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their ap-

plications, 13(4):18–28, 1998.

[182] Simon Bernard, Sébastien Adam, and Laurent Heutte. Using random forests

for handwritten digit recognition. In Document Analysis and Recognition,

2007. ICDAR 2007. Ninth International Conference on, volume 2, pages

1043–1047. IEEE, 2007.

[183] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of

google play. In ACM SIGMETRICS Performance Evaluation Review, vol-

ume 42, pages 221–233. ACM, 2014.

[184] Anthony Desnos. Androguard-reverse engineering, malware and goodware

analysis of android applications, 2013.

[185] Panagiotis Andriotis, Martina Angela Sasse, and Gianluca Stringhini. Permis-

sions snapshots: Assessing users’ adaptation to the android runtime permission

model. In Information Forensics and Security (WIFS), 2016 IEEE Interna-

tional Workshop on, pages 1–6. IEEE, 2016.

[186] Xuxian Jiang and Yajin Zhou. Dissecting android malware: Characterization

and evolution. In 2012 IEEE Symposium on Security and Privacy, pages

95–109. IEEE, 2012.

[187] AppBrain Stats. Number of android applications. 2014.

Bibliography 209

[188] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,

and Giovanni Vigna. Execute this! analyzing unsafe and malicious dynamic

code loading in android applications. In NDSS, volume 14, pages 23–26, 2014.

	Introduction
	The Malware World
	Statistics and Learning Algorithms
	The Rationale Behind this Work
	Side Projects I Contributed to During my PhD
	Contributions Statement
	The Document Outline

	Background and Related Work
	Malware Behavior
	Defense Systems
	Intervention Actions and Areas
	Defensive Tools

	Statistical Methods
	Correlation and Causation
	Counterfactual Analysis Causality

	Machine Learning and Deep Learning Algorithms
	What is Machine Learning?
	Machine Learning Evaluation
	K-Nearest Neighbors Classifier
	Random Forests
	Deep Learning

	Causality in Malware Traffic
	Browser Abuse
	Prediction of Malicious Activities
	Security Events Sequences and the Application of Deep Learning Algorithms
	Security Event Forecast
	Recurrent Neural Network Applications in Security Research

	Android Malware and Static Analysis
	Static Analysis, Markov Chains and Malware Classification
	Program Analysis
	Android Malware Detection

	Causality Assessment in Malware Activities Using Counterfactual Analysis
	Causality in Malware Traffic
	Approach Formalization
	Experimental Environment
	Sandboxing Background
	Sandbox Implementation Details
	Extracting and Labeling Network Conversations
	Chains of Events
	Statistical Analysis

	Causality Framework Application: Malware Network Traffic
	Application of the Methodology
	Employed Dataset
	Instantiation of the Experiments
	Extraction and Labeling Network Conversation
	Labeling and Chains Settings

	Evaluation
	Labeling Results
	Beta Distributions
	Statistical Evaluation of Causality and Experimental Validity

	Discussion
	Labeling Results
	Results and Validity

	Limitations

	Causality Framework Application: Browser History Leakage
	Linear Regression and Causality Background
	The Environment
	HTTP URL Honeypot
	Types of Trackers
	Threat Model

	Ex-Ray Methodology
	Overview
	Application of Counterfactual Analysis

	Ex-Ray Counterfactual Analysis Evaluation
	Experimental Setting
	Ex-Ray Counterfactual Analysis Results

	Discussion and Limitations

	Predicting Security Alarms due to Malicious Activities Using Deep Learning Algorithms
	Motivation
	Methodology
	Architecture Overview
	Recurrent Memory Array

	Employed Dataset
	Evaluation
	Experimental Setup
	Overall Prediction Results
	Comparison Study
	Influence of Training Period Length
	Stability Over Time
	Sequence Length Evaluation
	Tiresias Runtime Performance

	Case Studies
	Predicting Events in a Multi-Step Attack
	Adjusting the Prediction Granularity

	Discussion

	Detecting Malware by Using Markov Chains as Behavioral Models
	MaMaDroid: Using Static Analysis to Detect Malware
	Overview
	Call Graph Extraction
	Sequence Extraction
	Abstraction to Classes

	Markov Chain Based Modeling
	Classification

	Datasets
	Employed Dataset

	MaMaDroid Evaluation
	Preliminaries
	Detection Performance
	Detection Over Time
	Case Studies of False Positives and Negatives
	MaMaDroid vs DroidAPIMiner
	Runtime Performance
	Finer-Grained Abstraction
	Reducing the Size of the Problem
	Class Mode Results
	Detection Over Time

	Discussion
	Lessons Learned
	Evasion
	Limitations

	Discussion
	Ethical Discussion of this Work
	Research Analysis and Ethics
	Systems Ethics and Implementation in the Wild

	Conclusions and Final Remarks
	Bibliography

