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Abstract

We propose an alternative formulation of a Left-Right Symmetric Model (LRSM) where the

difference between baryon number (B) and lepton number (L) remains an unbroken symmetry.

This is unlike the conventional formulation, where B − L is promoted to a local symmetry and is

broken explicitly in order to generate Majorana neutrino masses. In our case B−L remains a global

symmetry after the left-right symmetry breaking, allowing only Dirac mass terms for neutrinos. In

addition to parity restoration at some high scale, this formulation provides a natural framework to

explain B−L as an anomaly-free global symmetry of the Standard Model and the non-observation

of (B − L)-violating processes. Neutrino masses are purely Dirac type and are generated either

through a two loop radiative mechanism or by implementing a Dirac seesaw mechanism.
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I. INTRODUCTION

With the discovery of the Higgs boson the last missing piece of evidence confirming the

Standard Model (SM) of particle physics has been obtained. However, the observation of

neutrino oscillations has established non-vanishing neutrino masses, which is undeniable evi-

dence of physics beyond the SM. In the SM the left-handed fermions transform as electroweak

doublets while the right-handed fermions transform as singlets due to parity violation. Thus,

it is natural to seek for a left-right symmetric theory at a high energy scale, where both the

left-handed and the right-handed fermions transform on an equal footing under the gauge

group and parity is restored. At some high energy the left-right symmetric gauge group and

parity is broken spontaneously, which explains the observed parity violation at low energies.

This motivates the left-right symmetric model (LRSM), in which the SM gauge group

SU(3)c × SU(2)L × U(1)Y is extended to make it left-right symmetric SU(3)c × SU(2)L ×

SU(2)R × U(1)X [1]. Several versions of the LRSM exist in literature (see for example [2]

for a recent review) and in almost all of these models one identifies the generator of the

group U(1)X with the B − L symmetry, where B is the baryon number and L is the lepton

number1. For the SM particles this identification follows simply from the charge equation

relating the SM gauge group to the LRSM gauge group which is broken by the conventional

choice of a triplet Higgs scalar. If this choice is generalised for the right-handed neutrinos

one can then generate small Majorana neutrino masses for the neutrinos through the seesaw

mechanism [5]. However, in general this choice is not unique for new fermions added to the

SM spectrum or for alternative Higgs sectors.

In the conventional LRSM, at some high energy scale compared to the electroweak sym-

metry breaking scale the left-right symmetric gauge symmetry group can be written as

GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)X , (1)

which breaks down to the SM gauge group SU(3)c × SU(2)L × U(1)Y . The electric charge

is related to the generators of the gauge groups by the relation

Q = T3L + T3R +
X

2
= T3L + Y . (2)

In the conventional case the quantum number X is identified with the B − L symmetry,

so that B − L becomes a local gauge symmetry of the model. Consequently, the left-

1 For some exceptions see e.g. [3, 4].
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right symmetry breaking can induce several (B − L)-violating interactions, including the

generation of Majorana neutrino masses via a seesaw mechanism. The transformations of

the left- and right-handed fermions under the left-right symmetric gauge group GLR ≡

SU(3)c × SU(2)L × SU(2)R × U(1)B−L are given by

qL =

(
uL

dL

)
≡ [3, 2, 1,

1

3
] , qR =

(
uR

dR

)
≡ [3, 1, 2,

1

3
] ,

`L =

(
νL

eL

)
≡ [1, 2, 1,−1] , `R =

(
νR

eR

)
≡ [1, 1, 2,−1] . (3)

Left-right symmetry naturally includes the right-handed neutrinos νR. The symmetry break-

ing pattern is given by

SU(3)c × SU(2)L × SU(2)R × U(1)X [GLR]

MR→ SU(3)c × SU(2)L × U(1)Y [GSM ]

mW→ SU(3)c × U(1)Q [Gem] ,

where MR corresponds to the SU(2)R breaking scale. The relevant scalar sector is given by

Φ =

(
Φ0

1 Φ+
1

Φ−2 Φ0
2

)
: [1, 2, 2, 0] ,

∆L =

( ∆+
L√
2

∆++
L

∆0
L −∆+

L√
2

)
L

: [1, 3, 1, 2] ,

∆R =

( ∆+
R√
2

∆++
R

∆0
R −∆+

R√
2

)
R

: [1, 1, 3, 2] . (4)

. In the conventional LRSM, the X = B−L symmetry is broken by the triplet Higgs scalar

∆R ≡ [1, 1, 3, 2] and from left-right parity symmetry one must also have another triplet Higgs

scalar ∆L ≡ [1, 3, 1, 2]. For both the triplets ∆L,R, the U(1) quantum number is B−L = −2.

In the absence of any additional symmetry, the gauge symmetry allows the interactions of

the Higgs triplets with the fermions

L = f`TLC
−1`L∆L + f`TRC

−1`R∆R , (5)

which determine the B − L quantum number of ∆L,R uniquely, allowing the identification

X = B − L. The SM Higgs doublet breaking the electroweak symmetry also gives masses

to the fermions, which in the presence of both left- and right-handed fermions transforming

as doublets dictate that the SM Higgs doublet should be a bi-doublet under the group GLR:

φ ≡ [1, 2, 2, 0] , (6)
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with X = B − L = 0.

When this conventional model is embedded in grand unified theories like SO(10) GUT,

the theory contains diquarks (∆qq that couple to two quarks) or leptoquarks (∆lq that

couple to a quark and a lepton or an anti-lepton) [6]. All these scalar fields belong to one

126-dimensional representation of SO(10) and their quantum numbers are determined by the

quantum numbers of the fermions, which dictates X = B−L. In this conventional formalism

there are many sources of B−L violation, all of which could affect the lepton asymmetry of

the universe, and hence, the baryon asymmetry of the universe. Usually one considers mainly

the interactions of the right-handed neutrinos NR for studying leptogenesis [7, 8] and assume

all other interactions to decouple before T ≈MN , where MN is the mass of the lightest right-

handed neutrino. The lepton asymmetry generated by the decays of the lightest right-handed

neutrino would then get converted to a baryon asymmetry of the universe in the presence

of the sphalerons before the electroweak phase transition. However, after the decays of the

right-handed neutrinos there could be fast (B − L)-violating interactions originating from

the spontaneous breaking of the gauged B − L symmetry [9–16]2.

A complete study should thus address all the following interactions: (i) Interactions of

the gauge boson WR with the right-handed leptons, and also with the Higgs triplet ∆R

which violate B − L quantum numbers [9–16, 18]. In some models, these interactions can

also generate a lepton asymmetry. (ii) Interactions of the diquark Higgs scalars ∆qq with

themselves and with the dilepton Higgs scalars [19–23]. When a model predicts neutron-

antineutron oscillation, light diquark Higgs scalar are predicted. These models may wash out

the lepton asymmetry generated by the right-handed neutrino decays. (iii) The interactions

of the right-handed triplet Higgs scalars ∆R [24–27] can also affect the lepton asymmetry

generated by other mechanisms. (iv) The left-handed triplet Higgs scalars ∆L can generate a

lepton asymmetry and also a neutrino mass, after the right-handed neutrinos decay [28–32].

Even when M∆ > MN , the Higgs decay can generate an asymmetry, which is not affected

by the slow lepton number violating decays of the right-handed neutrinos.

In what follows, we will construct a formulation of an LRSM with an unbroken B − L

symmetry, where all these interactions are absent because B−L is not spontaneously broken

and consequently one ends up with very different phenomenology and signatures. Firstly,

we note that in general, one can define a new quantum number ζ, such that in Eq. (1) we

2 For a recent review with some relevant discussion see for example [17].
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have,

X = (B − L) + ζ . (7)

Thus, if ζ 6= 0, then B − L can as well become a global unbroken symmetry, independent

of the left-right symmetry. In this work we point out an alternative scheme of left-right

symmetry breaking, where B−L is no longer considered to be a local gauge symmetry, but

remains an unbroken symmetry. Consequently, all fermions including the neutrinos are Dirac

particles. Interestingly, in this model the neutrinos can have tiny Dirac masses generated

through either a two loop radiative correction or a Dirac seesaw mechanism [33] depending

on the Higgs sector of the model. This formulation also provides a natural framework to

explain B − L as a global symmetry of the SM and can explain the non-observation of any

(B−L)-violating processes. The baryon asymmetry of the universe can be explained in this

formulation through (B − L)-conserving neutrinogenesis mechanism [34–36].

The plan for rest of the paper is as follows. In Section II, we present an LRSM with an

unbroken B−L symmetry where no Higgs bi-doublet is present and the Higgs sector consists

of a right-handed doublet, a left-handed doublet and a parity-odd singlet. In this scenario

the quark masses and the charged lepton masses are generated through a seesaw mechanism

introducing new vector-like states, while the neutrino masses are generated radiatively at

the two loop level. In Section III, we study the two loop radiative contribution in the con-

text of neutrino masses and mixing by constructing a left-right symmetric parametrisation

á la Casas-Ibarra and present a phenomenological numerical analysis for a minimal 2 × 2

case, showing the dependence of the PMNS mixing matrix angle on the hierarchy of heavy

charged lepton masses and the left-right symmetry breaking scale. In Section IV, we present

another alternative realisation of an LRSM with a global B − L symmetry in the presence

of a bi-doublet Higgs. In this scenario the quarks acquire their masses through the vacuum

expectation value of the bi-doublet, while the charged and the neutral lepton masses are

generated through Dirac seesaw mechanism in the presence of heavy vector-like states. In

Section V, we outline the observable phenomenology of this formulation and discuss con-

straints from various considerations. Finally in Section VI we conclude and comment on

the possible implementation of a dark matter candidate and leptogenesis mechanisms to

generate the observed baryon asymmetry of the universe in this scenario.
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II. LEFT-RIGHT SYMMETRIC MODEL WITH AN UNBROKEN B−L SYMME-

TRY

The fermion content of this model is the same as given in Eq. (3). In addition we

will add vector-like fermions. For the left-right symmetry breaking, we now use a doublet

Higgs scalars χR ≡ [1, 1, 2, 1], whose vacuum expectation value (VEV) breaks the left-right

symmetry GLR ≡ SU(3)c×SU(2)L×SU(2)R×U(1)X [37, 38]. It is crucial to note that this

field does not have any exclusive interaction with the SM fermions, and hence the B − L

quantum number is no longer uniquely determined as compared to the conventional LRSM.

Therefore for χR, we can choose B − L = 0, and hence ζ = 1 in Eq. (7). The left-right

symmetry ensures that we have a second doublet Higgs scalar χL ≡ [1, 2, 1, 1], with the same

assignment of B − L = 0 and ζ = 1. Interestingly, these assignments do not require any

additional global symmetries, but will allow B−L to remain as a global unbroken symmetry

after the electroweak symmetry breaking.

A priori we have two choices of Higgs sector for breaking the electroweak symmetry.

The first choice is that we keep the Higgs bi-doublet from the conventional model; after

electroweak symmetry breaking it will then generate Dirac masses for all the fermions. Such

a scenario is the subject of discussion in Section IV. In this section we will be primarily

interested in the alternative possibility, with no Higgs bi-doublet and where the left-handed

Higgs doublet χL ≡ [1, 2, 1, 1] breaks the electroweak symmetry. In such a scenario the

quark masses and the charged lepton masses are generated through a seesaw mechanism

introducing new vector-like states [33]. Interestingly, in this scenario the neutrino masses

can be generated radiatively at the two loop level induced by WL −WR mixing at the one

loop level [39]. The field content of this model is summarised in Table I.

The necessity of the scalar field ρ in the model is justifiable from an examination of

the relevant scalar potential [40]. In the absence of the Higgs bi-doublet the general scalar

potential of this model can be written as

V =−µ2
χ(χ†LχL + χ†RχR) + λ1[(χ†LχL)2 + (χ†RχR)2] + λ2(χ†LχL)(χ†RχR)− µ2

ρρ
2 + λρρ

4

+ µρχρ(χ†LχL − χ
†
RχR) + λρχρ

2(χ†LχL + χ†RχR) . (8)

Redefining λ1 and λ2 in terms of λ+ = (λ1 + λ2/2)/2 and λ− = (λ1 − λ2/2)/2 and using

the parametrisation 〈χ0
L〉 = r sin β, 〈χ0

R〉 = r cos β and 〈ρ〉 = s, we can recast the scalar
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Field SU(2)L SU(2)R B − L ζ X = (B − L) + ζ SU(3)C

qL 2 1 1/3 0 1/3 3

qR 1 2 1/3 0 1/3 3

`L 2 1 -1 0 -1 1

`R 1 2 -1 0 -1 1

UL,R 1 1 1/3 1 4/3 3

DL,R 1 1 1/3 -1 -2/3 3

EL,R 1 1 -1 -1 -2 1

χL 2 1 0 1 1 1

χR 1 2 0 1 1 1

ρ 1 1 0 0 0 1

TABLE I. Field content of the LRSM with an unbroken B−L symmetry in the absence of a Higgs

bi-doublet.

potential in Eq. (8) as

V = −µ2
χr

2 + λ+r
4 + λ−r

4 cos2 2β − µ2
ρs

2 + λρs
4 − µρχsr2 cos 2β + λρχs

2r2 . (9)

Minimising the scalar potential with respect to r, β and s we obtain

−µ2
χ + 2λ+r

2 + 2λ−r
2 cos2 2β − µρχs cos 2β + λρχs

2 = 0 , (10)

µρχr
2s sin 2β − 2λ−r

4 cos 2β sin 2β = 0 , (11)

λρχr
2 − µ2

ρ + 2λρs
2 − µρχ cos 2β = 0 . (12)

From Eq. (11) it is evident that for µρχ = 0, i.e. if the ρ field is decoupled from the model

then β = π/4, π/2, · · ·. Here β = π/4 corresponds to the unbroken parity symmetry case

〈χ0
L〉 = 〈χ0

R〉 and β = π/2 corresponds to the case where 〈χ0
L〉 = 0, 〈χ0

R〉 6= 0, leading to

massless quarks and charged leptons. Therefore we conclude that it is crucial for the model

to have a ρ field with µρχ 6= 0 thus giving cos 2β = µρχs/2λ−r
2, leading to a realistic mass

spectrum for quarks and charged leptons of the model. Thus, we will consider the symmetry

breaking pattern

SU(3)c × SU(2)L × SU(2)R × U(1)X × P [GLRP ]
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〈ρ〉→ SU(3)c × SU(2)L × SU(2)R × U(1)X [GLR]

〈χR〉→ SU(3)c × SU(2)L × U(1)Y [GSM ]

〈Φ〉→ SU(3)c × U(1)Q [Gem] .

In this scheme, the usual Dirac mass terms for the SM fermions are not allowed due to the

absence of a Higgs bi-doublet scalar. However, under the presence of vector-like copies of

quark and charged lepton gauge isosinglets, the charged fermion mass matrices can assume

a seesaw structure. The relevant Yukawa interaction Lagrangian in this model is given by

−L = huLχLqLUR + huRχRqRUL + hdLχ̃LqLDR + hdRχ̃RqRDL + hLχ̃L`LER + hRχ̃R`REL

+mUULUR +mDDLDR +mEELER + h.c. , (13)

where we suppress the flavour and colour indices on the fields and couplings for brevity.

χ̃L,R denotes τ2χ
∗
L,R, where τ2 is the usual second Pauli matrix. Note that, in general, if the

parity symmetry is broken by the VEV of a singlet scalar at some high scale as compared

to the left-right symmetry breaking scale then the Yukawa couplings corresponding to the

right-type and left-type Yukawa terms may run differently under the renormalisation group

below the parity breaking scale. This approach where the left-right parity symmetry and

SU(2)R breaking scales are decoupled from each other was first proposed in [41]. Therefore,

while writing the Yukawa terms above we distinguish the left- and right-handed couplings

explicitly with the subscripts L and R.

After electroweak symmetry breaking we can write the mass matrices for the quarks as

[42–46]

MuU =

(
0 huLuL

h†uRuR mU

)
, MdD =

(
0 hdLuL

h†dRuR mD

)
. (14)

where 〈χL,R〉 = uL,R. Up to leading order in huLuL, the SM and heavy vector partner

up-quark masses are given by

mu ≈ huLhuR
uLuR
mU

, m̂U ≈
√
m2
U + (huRuR)2 , (15)

A priori, the up type quark mass matrices can be diagonalised via left and right unitary

transformations giving rise to the usual Cabibbo-Kobayashi-Maskawa (CKM) matrix and

its right handed analog, in the basis where down-type quark mass matrix is already diago-

nal. Simplified expressions for the mixing angles θL,RU can be found in the limit where the
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Yukawa couplings are assumed to be real and therefore the diagonalising unitary matrices

are simplified to orthogonal matrices OL,R. In this case the mixing angles θL,RU are given by

tan(2θL,RU ) ≈ 2huL,uR
uL,RmU

m2
U ± (huRuR)2

. (16)

The down-quark masses and mixing are obtained in an analogous manner. Note that in

writing the above equations we have dropped the flavour indices of the Yukawa couplings

huL,uR which determine the observed quark and charged lepton mixings. The hierarchy of

the quark masses can be explained by assuming either a hierarchical structure of the Yukawa

couplings or a hierarchical structure of more than one generation of the vector-like quark

masses.

Similarly, the charged lepton masses are generated through a Dirac seesaw mechanism.

However, we explicitly assume more than one generation of vector-like charged lepton and

work in a basis where the vector-like charged lepton masses are diagonal. In such a basis

the SM charged lepton masses are given by

mlij = uLuRhLikM
−1
Ek
h†Rkj . (17)

The charged lepton mass matrix given in Eq. (17) can be diagonalised by the bi-unitary

transformation

mdiag
lα

= U l†
Lαi
mlijU

l
Rjα

, (18)

where lmL(R) = UL(R)l
f
L(R) with the superscripts m and f correspond to the mass and flavour

bases, respectively. Light Dirac neutrino masses are generated through a two loop contribu-

tion employing the mixing of WL and WR occurring at a one loop level [39]. The relevant

Feynman diagram is shown in Fig. 1. The computation of this diagram leads to the following

tL

bL

tR

bR

T

B

W+
L W+

R

lL lREkνL νR

FIG. 1. Two-loop radiative diagram generating Dirac neutrino masses.
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neutrino mass term

L =−g
2
Lg

2
R

2

mBmT

m2
WL
m2
WR

htLh
†
tRhbLh

†
bRu

3
Lu

3
R ν̄LihLikI ′kh

†
Rkj
νRj , (19)

where I ′k = mEkIk corresponds to a diagonal matrix, with

Ik =

∫
d4k

(2π)4

∫
d4p

(2π)4

3m2
WL
m2
WR

+ (p2 −m2
WL

)(p2 −m2
WR

)

p2(p2 −m2
Ek

)(p2 −m2
WL

)(p2 −m2
WR

)k2(k2 −m2
B)(p+ k)2[(p+ k)2 −m2

T ]
.

(20)

Here p and k denote the momenta of the WL and b in the loops, respectively. Note that

to simplify the analysis we have made the assumption that the top and the bottom quarks

contribute dominantly in the one loop diagram inducing the mixing between WL and WR,

and consequently in writing Eq. (19) we treat the corresponding Yukawa couplings ht and

hb as numbers instead of matrices in the presence of more than one generation of heavy

vector-like quarks. On the other hand, hL,R are in general 3 × 3 matrices which play a

crucial role in understanding the neutrino mass and mixings. We would like to point out

that for a scenario with a single generation of vector-like charged lepton or more than one

generation of vector-like charged lepton with degenerate masses in the integral given in Eq.

(20) the neutrino mass matrix turns out to be directly proportional to the charged lepton

mass matrix and consequently, the PMNS matrix turns out to be diagonal which is ruled

out by the current neutrino oscillation data3. However, we would like to emphasise that the

above argument is no longer true in the case where more than one generation of vector-like

charged lepton with a hierarchical mass spectrum is considered. In Section III, we shall focus

on this scenario and show that it is indeed possible to accommodate non-trivial mixings in

the PMNS mixing matrix using only the two loop radiative contribution if more than one

generation of heavy vector-like charged lepton is present.

In Appendices A and B we sketch two alternative methods of evaluating the two loop

integral given in Eq. (20). Note that even though such integrals have been evaluated in the

literature for one heavy vector-like charged lepton state under some simplifying assumptions

[39], it is crucial to evaluate them more generally to understand the dependence of the

integral on the vector-like quark masses, which generate a non-trivial mixing for the neutrinos

3 In such scenarios the situation can be remedied by extending the field content of the model to also include

heavy vector-like neutrinos to realise a Dirac seesaw scenario or by extending the Higgs sector to realise

a one loop radiative mechanism for generating the neutrino masses.
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in addition to nonzero masses. Following the approach outlined in Appendix A, the final

neutrino mass is given by

mνij =
g2
Lg

2
R

2

mbmt

m2
WL
m2
WR

uLuR hLikJkh
†
Rkj

, (21)

where

Jk =
mEk

(16π2)2

∫ ∞
0

dr
αk

r + αk

∫ 1

0

dx ln

[
x(1− x)r + (1− x)

x(1− x)r + (1− x) + xβk

(1− x)r + βk
(1− x)r

]
,(22)

with αk = m2
B/m

2
Ek

and βk = m2
T/m

2
Ek

. The neutrino mass matrix given in Eq. (21) can be

diagonalised by the bi-unitary transformation

mdiag
να = Uν†

Lαi
mνijU

ν
Rjα

, (23)

where Uν
L and Uν

R are the left- and right-handed unitary matrices corresponding to the

bi-unitary transformation diagonalising the neutrino mass matrix.

III. A LEFT-RIGHT SYMMETRIC PARAMETRISATION OF THE RADIATIVE

NEUTRINO MASSES AND MIXING

To analyse the two loop radiative neutrino masses and mixings phenomenologically, it

is convenient to parametrise the charged lepton and neutrino masses. From Eqs. (17) and

(18) the diagonal charged lepton matrix is given by

mdiag
l = Ul†

LhLM̂
−1
E h†RU

l
R , (24)

where the matrices have been made bold to distinguish them from numbers and M̂−1
E =

uLuRm
−1
E is a diagonal matrix. Similarly, from Eqs. (21) and (23) the diagonal neutrino

mass matrix is given by

mdiag
ν = Uν†

L hLMEνh
†
RU

ν
R , (25)

where

MEν =
g2
Lg

2
R

2

mbmt

m2
WL
m2
WR

uLuR J (26)

is a diagonal matrix with J being the diagonal matrix corresponding to the integral Eq.

(22). If J is not proportional to m−1E then one can have a non-trivial PMNS mixing matrix

UL = Ul†
LU

ν
L by solving Eqs. (24) and (25) simultaneously, for hL and hR to fit the neutrino
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oscillation data. A comprehensive numerical analysis of the 3 × 3 general left-right asym-

metric mixing case is highly non-trivial and involves a large number of parameters. This

is beyond the scope of the current work and will be addressed in a future work. Here we

will focus on a particularly interesting limiting case where the left- and right-handed uni-

tary rotation matrices and the Yukawa couplings are identical i.e. Ul,ν
L ≡ Ul,ν

R ≡ Ul,ν and

hL ≡ hR ≡ h. This helps us in constructing a new parametrisation à la Casas-Ibarra [47]

which immensely simplifies the underlying numerical analysis of simultaneously solving Eqs.

(24) and (25). Even though such a simplifying assumption need not to be true in general,

it enables us to explore the qualitative dependence of the PMNS mixing angle on different

model parameters by using a phenomenological approach. As noted before, for a diagonal

mE and J, M̂−1
E and MEν are diagonal matrices in generation space, which allows us to

write the identities

(mdiag
l

−1/2
Ul† h M̂

−1/2
E ) (M̂

−1/2
E h† Ul mdiag

l

−1/2
) = I = RlR†l , (27)

(mdiag
ν

−1/2
Uν† h M

1/2
Eν

) (M
1/2
Eν

h† Uν mdiag
ν

−1/2
) = I = RνR†ν , (28)

where Rl,ν are arbitrary unitary matrices (R†R = I). Working in a basis where the charged

lepton masses are diagonal, i.e. Ul = I and Uν ≡ U, the PMNS mixing matrix, one can

solve Eq. (27) for the Yukawa matrix h up to an arbitrary unitary matrix Rl

h = mdiag
l

1/2Rl M̂
1/2
E , (29)

which can then be substituted in Eq. (28) to solve for the PMNS mixing matrix up to an

arbitrary unitary matrix Rν

U = (h†)−1M
−1/2
Eν
R†ν mdiag

ν

1/2
. (30)

In order to understand the dependence of the PMNS mixing angle on different model pa-

rameters (in particular, the left-right symmetry breaking scale and mass scale of the heavy

vector-like fermions) and the arbitrary unitary rotation matrices qualitatively, we explore

the discussed parametrisation to solve Eq. (29) and (30) simultaneously for a 2 × 2 case.

Furthermore we restrict ourselves to the case where all the Yukawa matrices and rotation

matrices are real. With these simplifying assumptions, the arbitrary rotation matrices Rl,ν

and the PMNS matrix U can now be parametrised in terms of one rotation angle each

U =

(
cos θ sin θ

− sin θ cos θ

)
, Rl =

(
cos θl sin θl

−ξ sin θl ξ cos θl

)
, Rν =

(
cos θν sin θν

−ξ sin θν ξ cos θν

)
,(31)

12



Parameter Best Fit ± 1σ Parameter Best Fit ± 1σ

sin2 θ12/10−1 3.20+0.20
−0.16 δCP/π (NO) 1.21+0.21

−0.15

sin2 θ23/10−1 (NO) 5.47+0.20
−0.30 δCP/π (IO) 1.56+0.13

−0.15

sin2 θ23/10−1 (IO) 5.51+0.18
−0.30 ∆m2

21 [10−5 eV2] 7.55+0.20
−0.16

sin2 θ13/10−2 (NO) 2.160+0.083
−0.069

∣∣∆m2
31

∣∣ [10−3 eV2
]

(NO) 2.50± 0.03

sin2 θ13/10−2 (IO) 2.220+0.074
−0.076

∣∣∆m2
31

∣∣ [10−3 eV2
]

(IO) 2.42+0.03
−0.04

TABLE II. Current global best-fit values for the neutrino oscillation parameters, taken from [52].

where ξ = ±1, and θ corresponds to the usual PMNS maximal angle θ23. Among the other

free parameters we set gR = gL, mT = 1.5 TeV to be consistent with the current search

limits from [48, 50, 51] and the lightest vector-like charged lepton mass mE1 = 1 TeV to

be consistent with the current search limits from [49], as benchmark points. For the 2 × 2

matrix mdiag
l we choose the diagonal entries to be muon and tau masses. Further, the 2× 2

approximation makes use of the hierarchy of mass squared splittings – the diagonal entries

of mdiag
ν are set by the splittings, while the 2× 2 mixing angle θ corresponds approximately

to the 3 × 3 atmospheric mixing angle θ23. We use the best-fit values for the atmospheric

and solar neutrino mass squared differences from the global oscillation analysis [52]. For

an easy reference, the relevant global analysis parameters are summarised in Table II. For

these benchmark choices, we solve Eqs. (29) and (30) simultaneously to obtain simultaneous

solutions for four parameters θ, uR, θl and θl as a function of the mass difference between two

generations of vector-like charged lepton masses mE2−mE1 ≡ ∆mE for different benchmark

values of mB .

In Fig. 2, we present the numerical solutions for the case of normal ordering, setting the

lightest neutrino mass to be 10−2 eV as a bench mark choice and using the resultant heavier

neutrino masses as the diagonal entries of mdiag
ν . In the top left plot we show the relevant

SU(2)R breaking VEV uR as a functions of the mass difference between two generations of

vector-like charged lepton masses ∆mE for different benchmark values of mB and in the top

right plot we show the variation of the 2×2 PMNS mixing angle corresponding to the usual

mixing angle θ23 as a function of the mass difference between two generations of vector-like

charged lepton masses ∆mE for different benchmark values of mB. Vector-like quark masses

are limited to be heavier than mQ & 1.4 TeV [48, 50, 51], which is satisfied for all our choices.
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FIG. 2. Numerical solutions for 2 × 2 case simultaneously fitting Eqs. (29) and (30) for the case

of normal ordering of neutrino masses: (top left) SU(2)R breaking scale uR, (top right) 2 × 2

PMNS mixing angle, (middle left) the arbitrary rotation matrix angles in Rl, (middle right) the

arbitrary rotation matrix angles in Rν , (bottom) the maximal element of the Yukawa matrix h,

as a function of the mass difference between two generations of vector-like charged lepton masses

∆mE for different benchmark values of mB. See text for the benchmark values of the other relevant

parameters.
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FIG. 3. Numerical solutions for 2 × 2 case simultaneously fitting Eqs. (29) and (30) for the case

of inverted ordering of neutrino masses: (top left) SU(2)R breaking scale uR, (top right) 2 × 2

PMNS mixing angle, (middle left) the arbitrary rotation matrix angles in Rl, (middle right) the

arbitrary rotation matrix angles in Rν , (bottom) the maximal element of the Yukawa matrix h,

as a function of the mass difference between two generations of vector-like charged lepton masses

∆mE for different benchmark values of mB. See text for the benchmark values of the other relevant

parameters.
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It is evident from these plots that one requires a SU(2)R breaking VEV of uR ∼

O(102) TeV to generate the correct neutrino mass splitting and a maximal PMNS mix-

ing angle. Although, a priori, it appears to be relatively high as compared to the currently

accessible mass scales at the LHC, it is interesting to note that such mass scales are in

agreement with the strong cosmological bounds (discussed in Section V) on the SU(2)R

breaking scale in this model. As mentioned earlier, these plots also clearly demonstrate that

the hierarchy of masses of the two generations of vector-like charged lepton masses play a

crucial role in generating a non-trivial PMNS mixing angle in contrast to the scenario with

a single generation of vector-like charged lepton or more than one generation of vector-like

charged lepton with degenerate masses where the neutrino mass matrix turns out to be

directly proportional to the charged lepton mass matrix leading to a trivial PMNS mixing

matrix inconsistent with the neutrino oscillation data. A large splitting ∆mE & 100 TeV

is thus required to achieve a large neutrino mixing angle. In our benchmark choice, this is

achieved using a hierarchical heavy fermion spectrum. Note that only a strictly hierarchical

spectrum with ∆mE/mE1 & 100 can lead to the maximal neutrino mixing angle case. In

the middle two plots we show the arbitrary rotation matrix angles in Rl and Rν defined in

Eq. (31) as a function of the mass difference between two generations of vector-like charged

lepton masses ∆mE for different benchmark values of mB. Finally, in the bottom plot we

show the maximal element of the Yukawa matrix h as a function of the mass difference

between two generations of vector-like charged lepton masses ∆mE for different benchmark

values of mB, which shows that the numerical solutions correspond to Yukawa couplings

well within the perturbative regime.

In Fig. 3, we present the numerical solutions for the case of inverted ordering using

the best-fit values for the atmospheric and solar neutrino mass squared differences from

the global oscillation analysis of [52], setting the lightest neutrino mass to be 10−2 eV

as a benchmark choice and using the second and third generation neutrino masses as the

diagonal entries of mdiag
ν . We note that in this case one also requires a SU(2)R breaking

VEV of uR ∼ O(102) TeV to generate the correct neutrino mass splitting and a maximal

PMNS mixing angle.
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IV. LEFT-RIGHT SYMMETRIC MODEL WITH A GLOBAL B−L SYMMETRY

IN THE PRESENCE OF A BI-DOUBLET HIGGS

In this alternative scenario a Higgs bi-doublet breaks the electroweak symmetry. The field

content and their transformations are summarised in Table. III. The quarks acquire their

masses through the vacuum expectation value of the bi-doublet while the Yukawa couplings

giving rise to lepton masses are forbidden by some symmetry4. Both the charged and the

neutral leptons would then acquire Dirac seesaw masses in this scenario [33]5. For this

purpose, we introduce four singlet vector-like fermions, which are the charged and neutral

heavy leptons:

σL ≡ [1, 1, 1, 0] , σR ≡ [1, 1, 1, 0] , EL ≡ [1, 1, 1, 2] , ER ≡ [1, 1, 1, 2] , (32)

carrying B − L = 1, and hence, ζ = −1 for the neutral fermions σL,R and ζ = 1 for the

charged fermions EL,R. The left-right symmetry breaking will allow mixing of these fermions

with the light leptons, and hence, the assignment of lepton number is more natural than the

conventional left-right symmetric models, where similar new singlets carry vanishing lepton

numbers. The VEVs of the fields χL,R introduce mixing of the new neutral leptons σL,R with

the neutrinos and the new charged leptons EL,R with the charged leptons. As far as quark

masses are concerned, vector-like heavy quark fields are not necessary for this scheme, but

nonetheless can be included. The general scalar potential with all the scalar fields can be

written as

V = µ2
1Tr[Φ†Φ] + µ2

2(Tr[Φ̃Φ†] + Tr[Φ̃†Φ]) + λ1(Tr[Φ†Φ])2 + λ2[(Tr[Φ̃Φ†])2 + (Tr[Φ̃†Φ])2]

+ λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ] + λ4Tr[Φ†Φ](Tr[Φ̃Φ†] + Tr[Φ̃†Φ]) + µ2
h(χ

†
LχL + χ†RχR)

+ λ5[(χ†LχL)2 + (χ†RχR)2] + λ6(χ†LχL)(χ†RχR) + α1Tr[Φ†Φ](χ†LχL + χ†RχR)

+ α2(χ†LΦΦ†χL + χ†RΦ†ΦχR) + α3(χ†LΦ2Φ†2χL + χ†RΦ̃†Φ̃χR) + α4(χ†LΦΦ̃†χL

+ χ†RΦ†Φ̃χR) + α∗4(χ†LΦ̃Φ†χL + χ†RΦ̃†Φ̃χR) + µhΦ1(χ†LΦχR + χ†RΦ†χL)

+ µhΦ2(χ†LΦ̃χR + χ†RΦ̃†χL)− µ2
ρρ

2 + λ7ρ
4 +Mρ(χ†LχL − χ

†
RχR)

+ λ8ρ
2(χ†LχL + χ†RχR) + λ9ρ

2Tr[Φ†Φ] + λ10ρ
2[Det(Φ) + Det(Φ†)] , (33)

4 For example one may introduce an additional discrete Z2 symmetry, such that LR, σR and ER are odd

under this discrete symmetry. Note that in such a case the vector-like mass term for σ and E will break

this Z2 symmetry softly.
5 For other interesting implementations of purely Dirac neutrino masses in the context of other models see

for example [53–56].
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Field SU(2)L SU(2)R B − L ζ X = (B − L) + ζ SU(3)C

qL 2 1 1/3 0 1/3 3

qR 1 2 1/3 0 1/3 3

`L 2 1 -1 0 -1 1

`R 1 2 -1 0 -1 1

EL,R 1 1 -1 -1 -2 1

σL,R 1 1 -1 +1 0 1

χL 2 1 0 1 1 1

χR 1 2 0 1 1 1

ρ 1 1 0 0 0 1

Φ 2 2 0 0 0 1

TABLE III. Field content of the LRSM with a unbroken B − L symmetry in the presence of a

Higgs bi-doublet.

where Φ̃ = τ2Φ∗τ2. Using the notation 〈χL〉 = uL, 〈χR〉 = uR, 〈Φ〉 = diag(v1, v2) and

〈ρ〉 = s, we minimise the scalar potential to obtain

µ2
LuL + 2λ5u

3
L + λ6uLu

2
R + µhφ(v1 + v2)uR = 0 , (34)

µ2
RuR + 2λ5u

3
R + λ6uRu

2
L + µhφ(v1 + v2)uL = 0 , (35)

where µhφ = (µhΦ1v2 + µhΦ2v1)/(v1 + v2). The effective mass terms µ2
L and µ2

R are given by

µ2
L = µ2

h +Ms+ λ8ρ
2 + (α4 + α∗4)v1v2 + α1(v2

1 + v2
2) + α2v

2
2 + α3v

2
1 ,

µ2
R = µ2

h −Ms+ λ8ρ
2 + (α4 + α∗4)v1v2 + α1(v2

1 + v2
2) + α2v

2
2 + α3v

2
1 . (36)

From Eqs. (34), (35) one gets

uLuR(2Ms) + (2λ5 − λ6)(u2
L − u2

R)uLuR + µhφ(v1 + v2)(u2
R − u2

L) = 0 . (37)

One can derive the seesaw relation from the above equation as

uLuR =
µhφ(v1 + v2)(u2

L − u2
R)

2Mρ+ (2λ5 − λ6)(u2
L − u2

R)
. (38)

Assuming the hierarchy uL � uR � s,M yields

uL =
−µhφ(v1 + v2)uR

2Ms
. (39)
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Thus in this scenario a small uL/uR can be obtained by choosing the scales M,ρ, µhφ appro-

priately.

The Yukawa term for the quarks involving the Higgs bi-doublet is given by

−Lbi-doublet = fij q̄LqRΦ + f ′ij q̄LqRΦ̃ + h.c. , (40)

where Φ̃ = τ2Φτ2 and τ2 is the second Pauli matrix. After the electroweak symmetry is

broken via the VEV of the Higgs scalar bi-doublet, one can obtain the Dirac mass terms for

the SM quarks. Thus, the case of quark masses is similar to the conventional LRSM case

and we will not repeat the details here6. On the other hand, for the charged and neutral

leptons there is no Dirac mass term due to the Higgs bi-doublet as mentioned earlier7. The

Yukawa interactions giving mass to the leptons are given by

L = fLL
T
LC
−1σLχL + fRL

T
RC
−1σRχR +mσσL σR + hLL̄LχLER

+ hRL̄RχREL +mEEL ER + h.c. . (41)

The charged lepton masses are generated through a Dirac seesaw mechanism (similar to

Section II) and the mass matrix is given by

mlij = uLuRhLikM
−1
Ek
h†Rkj . (42)

For convenience of analysing the neutrino sector we shall work with the CP conjugates of

the right-handed fields

νR
CP→ (νR)c = (νc)L = NL and σR

CP→ (Σc)L = ΣL , (43)

so that the neutrino mass matrix can be written in the basis ( νL NL σL ΣL ) as

Mν =


0 0 a 0

0 0 0 b

a 0 0 c

0 b c 0

 . (44)

Here a = fLuL; b = fRuR; and c = mσ. This gives six Dirac neutrinos, three very heavy ones

with mass ∼ c, and three light ones with mass ∼ ab/c [57–59]. The heavy Dirac neutrinos are

6 Note that, in the presence of vector-like quarks in the model there can be a seesaw type contribution as

well [42].
7 To ensure this we assume that under a discrete Z2 symmetry the right-handed fields LR, σR, and ER are

odd, while all other fields are even.
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made of σL and ΣL, while the light Dirac neutrinos are the usual neutrinos, a combination

of νL and NL or νR. Note that one can a priori draw a two loop diagram similar to Fig. 1,

without the vector-like fields in a scenario where the charged lepton and quark masses are

generated by the bi-doublet Higgs and only neutrino masses are vanishing at the tree level.

However, in such a diagram the external neutrino lines can be folded to generate a tadpole

correction to the VEV of the neutral component of bi-doublet Higgs which diverges and

therefore must be cancelled by adding a counterterm [60]. Therefore, one must ensure that

the bi-doublet VEV satisfies the constraint 〈0|Tr[Φτ2Φ∗τ2]|0〉 = 0 at the tree level, implying

that there is no mixing between WL −WR at the tree level.

V. PHENOMENOLOGY AND CONSTRAINTS

We now briefly outline the general observable phenomenology of our LRSM, specifically

the complimentary constraints cosmology and direct collider searches can put on additional

gauge bosons to the SM. These constraints can be interpreted in the MZ′−g′ parameter space

of an unbroken additional gauge group U(1)X , where MZ′ is the mass of the U(1)X mediator

(Z ′) and g′ is the coupling strength of Z ′ to fermions. They are however directly transferable

to the MWR
− gR parameter space of our model. Given the benchmark parameter values

considered in this paper, and the subsequent ∼ O(102) TeV size of the SU(2)R breaking

scale, we are most interested in constraints in the region MWR
> 1 TeV.

The bound on the number of fermionic relativistic degrees of freedom at the time of Big

Bang Nucleosynthesis (BBN), Neff < 4 (obtained at 90% CL from the abundances of light

nuclei), can exclude an important region in the generic MZ′ − g′ parameter space. With

the addition of right-handed neutrinos νR to the SM, the U(1)X mediator can lead to the

thermalisation of νR with the photon bath via the process f̄f ↔ ν̄RνR. In particular, the

size of this effect can be increased through resonant enhancement at temperatures around

MZ′ when the mediator goes on-shell.

Over the mass range 1 eV < MZ′ < 1 TeV, BBN puts a varying upper bound on the

coupling g′ from the condition that the thermalisation of νR does not contribute considerably

to Neff . For masses MZ′ < 1 MeV, for example, νR must thermalise after the photon

temperature ∼ 1 MeV, giving g′ < 3× 10−7 keV/MZ′ . Natural couplings of order unity are

similarly excluded for 1 MeV < MZ′ < 10 GeV, but both of these regimes are clearly not of
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interest in our scenario. For MZ′ > 10 GeV the f̄f ↔ ν̄RνR process can be treated at TBBN as

a four-fermion contact interaction and constraints are thus made on the ratio MZ′/g′. This

is analogous to a constraint on the ratio MWR
/gR, which also leads to thermalisation via

f̄f ↔ ν̄RνR. The constraint presented in Ref. [61] is MZ′/g′ > 6.7 TeV. For the benchmark

couplings considered in the radiative and Higgs bi-doublet cases in this paper, this puts a

lower bound on MWR
in the range 1 − 6 TeV. Ref. [62] similarly investigates the regime

MZ′ � TBBN, but instead studies the relationship between Neff and the temperature T dec
νR

at

which νR decouples. Enforcing the interaction rate Γ(T dec
νR

) to be equal to the Hubble rate

H(T dec
νR

) at this temperature, a bound of similar size can be placed on MWR
/gR.

Direct searches for additional gauge bosons have also been performed at colliders, with

analyses probing large values of MZ′ . The study of LEP 2 data [63] in Ref. [64] parametrises

the effect of Z ′ exchange on di-electron and di-muon channels with a four-fermion contact

interaction for MZ′ � 200 GeV. This improves on similar model independent bounds from

the CDF and DØ experiments at the Tevatron [65, 66] to MZ′/g′ > 6.9 TeV. In the mass

range MZ′ = 0.5−3.5 TeV, the ATLAS and CMS experiments at the LHC constrain slightly

more of the parameter space than the linear constraint on MZ′/g′ [67, 68]. A more recent

ATLAS analysis sets a lower bound on the mediator mass of MZ′ > 5.1 TeV using the

Sequential Standard Model (SSM) benchmark scenario, where the couplings g′ are the same

as those of the SM [69]. For the benchmark value of gR considered in this paper and the

subsequent lower bound of MWR
& 5 TeV, we can safely expect the additional gauge boson

WR to be out of reach at the high-luminosity LHC 8.

VI. CONCLUSION

The question of how neutrinos acquire their masses, needed to understand the observed

oscillation phenomena, remains one of the main outstanding issues in particle physics. The

overwhelming majority of explanations work by generating ∆L = 2 Majorana masses for

neutrinos, with the type-I seesaw mechanism as the most prominent example. While this

approach clearly has theoretical and phenomenological advantages, it is also important to

pursue other potential solutions.

In this paper, we have proposed an alternative formulation of a Left-Right Symmetric

8 For a relevant discussion of WR multi-leptonic decay modes see [70, 71].
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Model where B−L is not broken and thus neutrino Majorana masses are strictly forbidden.

Instead, B − L remains a global symmetry after the left-right symmetry breaking, allowing

only Dirac mass terms for neutrinos. While parity is restored at a high scale, this formulation

provides a natural framework to explain B − L as an anomaly-free global symmetry of the

SM. In this model, a bi-doublet Higgs is not present and the charged SM fermion masses

fundamentally originate from a Dirac seesaw mechanism connected to heavy vector-like

fermion partners. The lightness of neutrinos in the instance is explained as neutrino Dirac

mass terms are induced at the two-loop level, cf. Fig. 1. Alternatively, a Dirac seesaw

mechanism can be invoked for the neutrinos as well if the corresponding heavy vector-like

neutrino partners exist. We show that for an appropriate spectrum of heavy states, not only

the lightness of neutrinos relative to the charged fermions can be explained, but also a large

two flavour mixing in the leptonic sector. An analysis of the full three-flavour framework

will be reported elsewhere.

Our models may be enhanced in several directions. For example, while neutrinoless double

beta decay is strictly forbidden, one can add a light charge-neutral scalar particle φ with

quantum numbers [1, 1, 2, 1] under our model gauge group. This particle can potentially be a

Dark Matter candidate [72–74] with a Yukawa coupling to the heavy N of the form gφNNφ.

In this case, 0νββφ decay with emission of the light neutral scalar φ via a single effective

dimension-7 operator of the form Λ−3
NP(ūOd)(ēOν)φ is possible. This provides a working

example of a scenario where purely Dirac neutrinos can mimic the conventional 0νββ decay

associated with violation of lepton number by two units and thus the Majorana nature of

neutrinos. This supports the necessity of searches for extra particles in double beta decay

in order to fully understand the nature of neutrinos [75].

Finally, we would also like to make some remarks on the possibility of realising leptoge-

nesis in this formalism. In our scenarios, leptogenesis may occur through neutrinogenesis

[34, 35]. To give an example, the scalar field χR can decay as χR → `R+ER and χR → Φ†+Φ

because of the coupling χ†RχRΦ†Φ when χR acquires a VEV. Through self-energy diagrams

there can then be an interference and these decays can generate an asymmetry in the ζ

quantum number which means that there will be more ER compared to EL, since `R and φ

has ζ = 0. However, since B − L is conserved, the asymmetry in ER will be same as the

asymmetry in `R. Since B−L is conserved, the out-of-equilibrium three-body decays of ER

and EL will produce different amounts of νL and νR. Since the Yukawa couplings responsible
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for νR+φ→ νL+WL are not allowed, the amount of lepton asymmetry stored in νR will not

be converted into νL. Thus although there is no B − L asymmetry, there is an asymmetry

in νL and an equal and opposite amount of asymmetry in νR. Since the νR asymmetry will

not get converted to a baryon asymmetry in the presence of sphalerons, the νL asymmetry

will generate a baryon asymmetry of the universe. Since B−L is an unbroken symmetry in

this model, there are no other washout interactions that can affect the baryon asymmetry

of the universe. Alternatively, one can also add an additional heavy doublet scalar field to

implement a neutrinogenesis mechanism similar to [36].
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Appendix A: Evaluation of the two loop integral using the Passarino-Veltman in-

tegral reduction

In this section we outline the evaluation of the two loop integral given in Eq. (20) using

the Passarino-Veltman integral reduction. Note that the first term in the numerator of

Eq. (20) is suppressed by m2
WL
/m2

WR
with respect to the second term and therefore can be

neglected to obtain

Ik '
∫

d4k

(2π)4

∫
d4p

(2π)4

1

p2(p2 −m2
Ek

)k2(k2 −m2
B)(p+ k)2[(p+ k)2 −m2

T ]
. (A1)

Next using Partial-fraction decomposition and Passarino-Veltman reduction formula the

integral can be simplified to obtain

Ik =
i

16π2m2
Tm

2
Bm

2
Ek

∫
d4k

(2π)4

[
1

k2 −m2
B

− 1

k2

] [
B0(k2,m2

E,m
2
T )−B0(k2, 0,m2

T )

−B0(k2,m2
E, 0) +B0(k2, 0, 0)

]
, (A2)
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where B0 is the Passarino-Veltman function defined as [76]

B0

(
k2,m2

1,m
2
2

)
=

1

ε
−
∫ 1

0

dx ln

(
−x (1− x) k2 + (1− x) m2

1 + xm2
2

µ2

)
. (A3)

Next performing a Wick rotation and defining the dimensionless quantities αk = m2
B/m

2
Ek

and βk = m2
T/m

2
Ek

the integral given in Eq. (A2) can be further simplified to obtain

Ik =
1

(16π2)2m2
Bm

2
T

∫ ∞
0

dr
αk

r + αk

∫ 1

0

dx ln

[
x(1− x)r + (1− x)

x(1− x)r + (1− x) + xβk

(1− x)r + βk
(1− x)r

]
.

(A4)

Appendix B: Evaluation of the two loop integral using master integral reduction

In this section we outline another alternative approach using master integral reduction for

the evaluation of the two loop integral given in Eq. (A1). Using Feynman parametrisation

the two loop integral can be written as

Ik =

∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3G(m1(x1,mEk), 2;m2(x2,mB), 2;m3(x3,mT ), 2; 0) , (B1)

where

G(m1, α1;m2, α2;m3, α3; q2) =

∫
dDp dDk

1

(p2 −m2
1)α1(k2 −m2

2)α2 [(p+ k + q)2 −m2
3)]α3

.

(B2)

The integration given by Eq. (B2) can be obtained by taking derivative of the basic master

integral

G(m1, 2;m2, 2;m3, 2; 0) = ∂m2
2
∂m2

3
G(m1, 2;m2, 1;m3, 1; 0) , (B3)

where the master integral is given by [77]

G(m1, 2;m2, 1;m3, 1; 0) = π4
[ 2

ε2
+

1

ε
[−1 + 2γ + 2 log(πm2

1)] +
1

4
+
π2

12

+
1

4
[−1 + 2γ + 2 log(πm2

1)]2 − 1 + g(m1,m2,m3; 0)
]
, (B4)

with

g(m1,m2,m3; 0) =

∫ 1

0

dx [ 1 + Sp(1− µ2)− µ2

1− µ2
log µ2 ] , (B5)

where Sp(z) corresponds to the Spence function and the following notations are used

µ2 =
ax+ b(1− x)

x(1− x)
, a =

m2
2

m2
1

, b =
m2

3

m2
1

. (B6)
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