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BELTRAMI-NET: DOMAIN INDEPENDENT DEEP D-BAR LEARNING FOR

ABSOLUTE IMAGING WITH ELECTRICAL IMPEDANCE TOMOGRAPHY (A-EIT)

S. J. HAMILTON, A. HÄNNINEN, A. HAUPTMANN, AND V. KOLEHMAINEN

Abstract. Objective: To develop, and demonstrate the feasibility of, a novel image reconstruction method

for absolute Electrical Impedance Tomography (a-EIT) that pairs deep learning techniques with real-time

robust D-bar methods and examine the influence of prior information on the reconstruction. Approach:
A D-bar method is paired with a trained Convolutional Neural Network (CNN) as a post-processing step.

Training data is simulated for the network using no knowledge of the boundary shape by using an associated
nonphysical Beltrami equation rather than simulating the traditional current and voltage data specific to

a given domain. This allows the training data to be boundary shape independent. The method is tested

on experimental data from two EIT systems (ACT4 and KIT4) with separate training sets of varying prior
information. Main Results: Post processing the D-bar images with a CNN produces significant improvements

in image quality measured by Structural SIMilarity indices (SSIMs) as well as relative `2 and `1 image

errors. Significance: This work demonstrates that more general networks can be trained without being
specific about boundary shape, a key challenge in EIT image reconstruction. The work is promising for

future studies involving databases of anatomical atlases.

1. Introduction

Electrical Impedance Tomography (EIT) probes a body with low-amplitude electrical currents applied on
surface electrodes. The surface measurements can then be used as inputs to solve a mathematical inverse
problem to recover the internal electrical properties (conductivity and permittivity) of the object. As EIT
is a low-cost, non-invasive imaging modality with no ionizing radiation, it has several medical and industrial
applications, see [Cheney et al. (1999)] and [Mueller and Siltanen (2012)]. The image recovery task in EIT,
recovering the internal conductivity from the surface electrode measurements, is a severely ill-posed nonlinear
inverse problem thus requiring carefully designed reconstruction algorithms capable of handling incorrectly
known boundary shape, electrode locations, and noise in the measured EIT data. The ill-posedness of the
inverse problem often results in images with low spatial resolution or severe image corruption due to modeling
errors in a minimization task. The D-bar method [Knudsen et al. (2009); Nachman (1996)] has been shown
to be robust to modeling errors and noise [Murphy and Mueller (2009); Hamilton et al. (2018)].

By viewing these low-resolution, real-time [Dodd and Mueller (2014)], D-bar images as convolutions of
the true images one can develop and train a Convolutional Neural Network (CNN) to learn the blurring
inherent in the D-bar reconstruction process on data of that type. This idea was introduced in [Hamilton
and Hauptmann (2018)] and tested on experimental EIT data for absolute imaging in 2D. There, the training
data for the network was simulated from the forward EIT model

(1)
∇ · σ(z)∇u(z) = 0, z ∈ Ω ⊂ R2

σ ∂u∂ν = g, z ∈ ∂Ω

using the electrode continuum model [Hyvönen (2009); Hauptmann (2017)] based on continuum current/voltage
data computed from a known circular domain boundary. The trained network was then directly applied to
D-bar reconstructions from the experimental data with no transfer training required. By contrast, here
we simulate our training data from the associated, non-physical, Beltrami problem [Astala and Päivärinta
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2 S. J. HAMILTON, A. HÄNNINEN, A. HAUPTMANN, AND V. KOLEHMAINEN

(2006a,b)] and ‘Shortcut D-bar Method’ [Astala et al. (2010)] to remove any knowledge of the boundary
(shape and electrodes) from the training process. We test the network on EIT data from two different EIT
machines (ACT4 [Liu et al. (2005)] and KIT4 [Kourunen et al. (2008)]) with different boundary shapes. In
practice, a network could be constructed using a database of CT scans where all that is needed is approxi-
mate internal structure boundaries (heart, lungs, spine, etc) and reasonable conductivity value windows for
each type of inclusion. The CTs could be scaled such that the maximum radial component of the thorax
boundary is one. Alternatively, one could bypass any direct incorporation of organs by instead training
using inclusions of ellipses, circles, etc. The patient-specific voltage and current EIT data would then be
scaled to correspond to a maximum radius of 1 by scaling the associated DN (or ND) matrix by the largest
radial component of the patient’s approximated boundary shape (see [Isaacson et al. (2004)]). In this study
we investigate the particular question of how informative the training data needs to be in order to perform
the desired image enhancement task after an initial reconstruction. That means, we consider two different
scenarios in this study:

i.) Thoracic measurements for a human patient, here a database can be built from anatomical atlases.
In this setting the imaging task is highly constrained by anatomical features and hence training
data can be tuned to be specific for this particular task. This constitutes a case of high a priori
knowledge. We consider tank data with thoracic specific agar targets.

ii.) Assessment of more generic training data without any anatomical prior information, with which
we are able to achieve sufficient reconstruction quality for a vast application area. This can be
considered a more generic task with low level of a priori information.

Due to the ill-posedness and non-linearity of the EIT problem, the resolution and practical utility of
the EIT images is basically dependent on the amount of prior information available and how well one is
able to transform the prior information and related uncertainties into a computationally useful form. The
literature contains a number of approaches for utilizing prior information, including regularization-based
techniques [Borsic et al. (2002); Kaipio et al. (1999); Kolehmainen et al. (2019); Vauhkonen et al. (1998)],
Bayesian approaches [Kaipio et al. (2000)] as well as prior informed D-bar methods [Alsaker and Mueller
(2016); Alsaker et al. (2018)], which all produce high quality solutions and have different technical benefits
and intricacies. For example, considering a case where one would have prior information available in form
of a set of plausible sample images from an anatomical atlas, the problem in the Bayesian setup would be
how to transform the set of sample images into a form of a prior density model. The purpose of the present
study is to propose a new kind of approach for an accurate EIT reconstruction. The key ingredient of the
proposed approach is to train a CNN for post processing enhancement of a standard EIT reconstruction
(which has poor resolution). One feature of the proposed approach is that it allows straightforward inclusion
of sample based prior information into the learning process. This can be particularly advantageous in the
cases where the prior is available only in form of a set of plausible solutions, such as set of images from an
anatomical atlas, instead of having a parametric model for the prior density. The proposed approach allows
straightforward utilization of the samples as input to the learning process.

The application of deep learning methods, in particular Convolutional Neural Networks (CNNs), has
attracted major attention in recent years and shows great promise for improving images in tomographic re-
construction tasks. The most prominent approach, which we follow here as well, is given by post-processing
of an initial reconstruction based on an analytic inversion formula, such as filtered back-projection in X-ray
CT [Kang et al. (2017)] and [Jin et al. (2017)]. Other promising clinical applications of this approach are
dynamic cardiovascular magnetic resonance imaging [Schlemper et al. (2018); Hauptmann et al. (2019)].
Recent studies, in addition to [Hamilton and Hauptmann (2018)], have explored the possibility of using
deep learning for EIT with artificial neural networks [Martin and Choi (2017)] and variational autoencoders
for lung imaging [Seo et al. (2018)]. Furthermore, several studies propose combining iterative variational
techniques with deep learning to obtain superior reconstruction quality and more flexible generalization by
including the forward operator in the network architectures [Adler and Öktem (2017)]; [Hammernik et al.
(2018)]; and [Hauptmann et al. (2018)]. In this study we follow the approach discussed in [Hamilton and
Hauptmann (2018)], but without the need for boundary shapes in the training data. We proceed to compare
our results to variational techniques with comparable amount of prior information for both imaging scenarios
mentioned above.
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BELTRAMI-NET FOR 2D ABSOLUTE EIT 3

Section 2 presents the methods used in this work including the proposed new algorithm and how recon-
struction quality will be assessed. Results of the proposed method on experimental EIT tank data from
ACT4 and KIT4 are presented in Section 3 and conclusions drawn in Section 4.

2. Methods

Here we consider the 2D real-valued conductivity EIT problem

(2) ∇ · σ(z)∇u(z) = 0, z ∈ Ω ⊂ R2,

where σ = σ(z) is the spatially dependent conductivity and u = u(z) the electric potential. The current
and voltage measurements take the form of approximate knowledge of the Neumann-to-Dirichlet (ND) map
Rσ : σ ∂u∂ν 7→ g for z ∈ ∂Ω which maps a boundary current to the corresponding boundary voltage, and
ν = ν(z) denotes the outward unit normal vector to ∂Ω. Here, for simplicity, we assume the conductivity is
constant σ = σ0 in a neighborhood of the boundary. If σ is not constant near ∂Ω, a padding of the domain
can be used as in [Nachman (1996); Siltanen and Tamminen (2016)] reducing the problem back to the case
studied here.

The ND map Rσ can be approximated from the measured current and voltage data with the matrix Rσ

(3) Rσ(m,n) :=
L∑
`=1

φm` v
n
`

|e`|
, 1 ≤ m,n ≤ numLI

where L denotes the number of electrodes used, numLI is the number of linearly independent current patterns
applied (maximum is L − 1), and φm, and vn denote the normalized m-th current pattern vector and n-th
voltage vectors (see [Isaacson et al. (2004); Hamilton et al. (2018)] for scaling details). The methods described
below assume the boundary conductivity σ0 = 1 and that the domain has a maximum radial component
of 1. However, if this is not the case for the measured data, the ND matrix Rσ can be scaled appropriately,
as described in [Isaacson et al. (2004)], reducing the problem to the case studied here.

2.1. Intro to D-bar Methods for 2D EIT. While various D-bar based reconstruction algorithms for 2D
EIT exist, they all have the same main structure:

[Current & Voltage Data]
1−→ [Scattering data]

2−→ [Conductivity].

The scattering data is non-physical, and can be thought of as a nonlinear Fourier transform. The D-bar
methods differ in the particular formulas used to compute the scattering data and recover the conductivity.
D-bar methods come from inverse-scattering theory, an area of mathematics that brought the elegant solution
to the Korteweg-de Vries (KdV) equation. D-bar methods for EIT get their name from a ∂̄ (D-bar) equation
used to recover the conductivity σ in Step 2 above.

Here we simulate our training data using using a variation of the ‘Shortcut D-bar Method’ [Astala et al.
(2010)] which blends the D-bar method from the Schrödinger equation and that of the Beltrami equation.
This is done to allow us to train the network using L∞ conductivities (Beltrami method) but still reconstruct
the conductivity from the scattering data using the Schrödinger ∂̄k equation which [Astala et al. (2010)]
suggest is more robust than Step 2 of the Beltrami method. A recent paper by Lytle et al. (2018) in
fact prove that the integral equations in the Schrödinger formulation of the D-bar method hold for L∞

conductivities which are one near ∂Ω.

2.1.1. Algorithm for Simulating the Training Data. Let Ω be the unit disc. Given a set of N conductivities

{σn}Nn=1 in L∞(Ω), for each σn compute the associated low-pass D-bar reconstruction σDB
n as follows: 1)

Generate the Beltrami scattering data τ(k) for |k| ≤ R for some chosen radius R > 0, and 2) Solve the
Schrödinger ∂̄k equation using the Beltrami scattering data for |k| ≤ r where r ≤ R.

Step 1: Generate the Beltrami scattering data τn(k) for σn(z) for k ∈ C, |k| ≤ R as in [Astala et al. (2010)]

(4) τn(k) :=
1

2π

∫
R2

∂̄z [M+µn
(z, k)−M−µn

(z, k)] dz1dz2

where M±µn(z, k) = e−ikzf±µn(z, k) are solutions to the Beltrami equation

(5) ∂̄z f±µn
(z, k) = ±µn(z)∂z f±µn

(z, k)
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4 S. J. HAMILTON, A. HÄNNINEN, A. HAUPTMANN, AND V. KOLEHMAINEN

satisfying M±µn
(z, k) = 1 + O

(
1
|z|

)
for large |z| and µn(z) = 1−σn(z)

1+σn(z) denotes the corresponding

Beltrami coefficient.

Step 2: Relate the Beltrami and Schrödinger scattering data via tn(k) = −4πikτn(k), setting tn(k) = 0 for

all |k| > R. Recover the low-pass D-bar reconstruction σDB
n = [mn(z, 0)]

2
by solving the Schrödinger

∂̄k equation [Knudsen et al. (2009)]

(6) ∂̄kmn(z, k) =
1

4πk̄
tn(k)e(z,−k)mn(z, k),

for each z ∈ [−1, 1]2, where e(z, k) := exp{i(kz+ k̄z̄)} is a unitary multiplier, using the integral form

(7) mn(z, κ) = 1 +
1

4π2

∫
C

tn(k)e(z,−k)

(κ− k)k̄
mn(z, k) dκ1dκ2,

and the computational method outlined in [Mueller et al. (2002), Astala et al. (2010)].
Note that no electrode or boundary information is used in the training data as µn(z) = 0 near ∂Ω.

The choice of Ω = D does not include boundary specific information since in the reconstruction step from
experimental data, we will scale the ND map by the maximum radial component of the experimental domain
Ωmeas, shrinking the problem to exist within our studied domain Ω = D. Additionally, note that the integral
in (7) reduces to an integral over |k| ≤ R due to the compact support of tn(k), and from [Nachman (1996)]
tn(k)

k̄
= 0 for k = 0.

2.1.2. Recovery of Conductivity from Experimental Data. Recover the D-bar reconstruction σDB from the
measured current and voltage data via a modification to the Schrödinger t ‘exp’ method as follows.

Step 1: Compute the modified Schrödinger ‘exp’ scattering data

texp(k) =

∫
∂Ω1

eik̄z̄ (Λσ − Λ1) eikzds(z)

=

∫
∂Ω1

eik̄z̄
[
Λσ
(
eikz

)
− ikνeikz

]
ds(z),(8)

for k ∈ C \0, |k| ≤ Rmeas for some chosen radius 0 < Rmeas ≤ R.

Step 2: Recover the D-bar conductivity reconstruction σDB = (mexp(z, 0))
2

using (6) with texp in place of

tn, setting texp(k)

k̄
= 0 for k = 0.

The second line (8) comes from computing Λ1e
ikz = 1∇

(
eikz

)
· ν = ikνeikz which uses a continuum

approximation for the DN map Λ1 where ν = ν(z) is the unit outward facing normal to the scaled boundary
∂Ω1 which has maximal radial component 1. The DN matrix approximation to Λσ is computed from
Lσ = (Rσ)

−1
via (3). The DN map is also scaled by the radius of the smallest circle containing the imaged

domain Ωmeas, and σ0 the conductivity near the boundary ∂Ωmeas. If σ0 is unknown, the best constant-
conductivity fit to the measured data can be used as described in [Cheney et al. (1990)]. The resulting
conductivity at the end of the algorithm is then re-scaled by σ0. Here we compute ν numerically using a
parameterization of the approximate boundary shape function (see [Hamilton et al. (2018)] for robustness
studies of D-bar methods to incorrect boundary shape). Note that we only require the measured current
and voltage data, approximate boundary shape of the imaged domain Ωmeas, and approximate locations of
the electrodes for the D-bar reconstruction σDB.

2.1.3. Why Choose the Beltrami Approach? Inspired by the success of the ‘Deep D-bar’ approach in [Hamil-
ton and Hauptmann (2018)], we chose to again use a low-pass D-bar image as as starting point due
to their real-time capabilities and general blurry but reliable reconstructions. By training a CNN with
data/reconstructions from the Beltrami equation (5) rather than by using a FEM approach on the tra-
ditional conductivity equation (2), the trained CNN does not dependent on a specified domain boundary
making the approach more general and theoretically reducing the need to re-train the network for individuals
of different domain shapes. This is due to the fact that the conductivity is assigned to a constant value out-
side of the organs. Since µ(z) = 1−σ

1+σ , and we scale σ such that it has a background value of 1 in the Beltrami
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BELTRAMI-NET FOR 2D ABSOLUTE EIT 5

problem, this makes µ = 0 outside the organs and removes the issue of the domain boundary completely
from the problem. This has the advantage of, e.g. in thoracic imaging, being able to use a more generally
trained CNN from an anatomical atlas that does not require the patient to have the same domain boundary
as what was used to train a FEM based network. Alternative approaches could of course be used where the
FEM based reconstructions are created from various domain boundaries as well, however this may increase
the size of the training data and is outside the scope of this study.

2.2. Deep Learning and image reconstruction. The driving motivation to use deep learning methods
in imaging and in particular for image reconstruction is motivated by the limitation of hand-crafted priors
in variational and statistical reconstruction methods. By training a network on data that represents the
desired images, we can learn more general data-driven representations, also referred to as the learned data
manifold. The draw back of learning based methods is clearly, that these learned priors are only implicit
and do not have an analytical representation.

Applications in tomographic image reconstruction can be roughly divided into three categories:

a.) Fully learned: A mapping from data to reconstruction is learned without the need of a model (after
training).

b.) Model enforced: Direct reconstruction by an analytically known and understood reconstruction
procedure, ideally a regularization strategy, followed by learned post-processing.

c.) Model-based: Reconstruction in a cascaded sense, where the model information is used repeatedly.
Typically these are given as learned iterative reconstruction algorithms.

Even though fully learned reconstruction methods have been studied and demonstrate promising results
[Martin and Choi (2016) and Zhu et al. (2018)], this approach neglects any model knowledge and hence
analytically known robustness results. In contrast, using the model in approach b.) and c.) retains known
properties and stability results. Additionally, for EIT it was shown to improve stability [Martin and Choi
(2017)], especially for reconstructions from measurement data. In this study we chose to use the D-bar
algorithm, a known regularization strategy for EIT [Knudsen et al. (2009)], as starting point to have stability
in the input to the network. For the network architecture we chose the very successful U-net architecture
[Ronneberger et al. (2015)], a multiscale convolutional neural network. This particular network architecture
has been proposed by [Kang et al. (2017) and [Jin et al. (2017)] for post-processing corrupted reconstructions,
and has been shown to be successful in the application to a variety of tomographic problems [Antholzer et al.
(2018) and Hauptmann et al. (2019)], but has also been the focus of analytical studies Ye et al. (2018). Thus,
we follow the incentive to combine a robust regularization strategy with a well established, and partially
understood, network architecture for reconstruction in our application.

2.2.1. Beltrami-Net for absolute EIT. In this study we follow the approach of post-processing corrupted
reconstructions, which in our case are given by the D-bar algorithm described above in Section 2.1. This
methodology is motivated by the fact that the initial reconstruction is of convolutional type, such as the
normal operator in CT, or in our case inversion of the truncated scattering transform, that can be interpreted
as nonlinear Fourier transform. Consequently, we follow [Jin et al. (2017)] where the authors propose that
a CNN can be used to remove artefacts and recover resolution loss present in the initial reconstruction.

Let us denote the used U-net architecture by GΘ, where Θ are the learnable network parameters consisting
of convolutional filters and biases, see [Goodfellow et al. (2016)] for an introduction. Then the supervised
learning task is given as the optimization problem to find an optimal set of parameters, such that a loss
function is minimized with respect to the training set. Specifically, in our case the training set is given by
ground truth conductivities σn and corresponding D-bar reconstructions σDB

n for n ∈ N = {1, . . . , N}, both
given on the square [−1, 1]2. We remind that the D-bar reconstructions for this training set are obtained from
the Beltrami scattering data as outlined in section 2.1.1. Given this training set, the aim is to find network
parameters, such that GΘ maps from D-bar reconstructions to the correct ground truth conductivity. Thus,
we aim to find an optimal set of parameters as

(9) Θ = arg min
Θ

N∑
n=1

‖GΘ(σDB
n )− σn‖22.
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6 S. J. HAMILTON, A. HÄNNINEN, A. HAUPTMANN, AND V. KOLEHMAINEN

The optimization is typically performed in subsets (batches) of training pairs {σn, σDB
n }I⊂N , rather than

the whole training set. Details on the specific training data and the training procedures are given in section
2.4.

The chosen network architectures differ slightly depending on which task, i) or ii), of the Section 1
is considered. For scenario i.) the thoracic imaging task, we employ the same network architecture as
described in [Hamilton and Hauptmann (2018)] as it has been shown to be specifically suited to reproduce
structures in a known constrained environment with strong prior information. For task ii.) with minimal
a priori knowledge, an assessment of network architectures was performed and we found that adding a
residual connection as in [Jin et al. (2017)] increased robustness in recovering more general shapes that were
not present in the training set. In both cases we kept the filter size of the convolutional kernels as 5 × 5
and used 4 max-pool layers, as the original U-Net architecture suggests. Networks are implemented with
TensorFlow in Python.1

2.3. Evaluation of the Method. To evaluate the effectiveness of our proposed Beltrami-net method we
tested it on experimental data from two different EIT machines, namely, ACT4 from Rensselaer Polytechnic
Institute (RPI) [Liu et al. (2005)] and KIT4 from the University of Eastern Finland (UEF) [Kourunen
et al. (2008)]. We evaluate reconstruction quality using Structural SIMilarity Indices (SSIMs) and relative
`1 and `2 image errors. The ground truth inclusion boundaries were extracted from photographs of the
experiments. We compare the Beltrami-Net reconstructions to the classical low-pass D-bar reconstructions
as well as (structured) total variation reconstructions.

2.3.1. Comparison to Variational Methods. To compare the results to regularization based absolute EIT
reconstructions, we include 2D reconstructions using a regularized non-linear least squares formulation

(10) σ̂ = arg min
σ>0
{‖V − U(σ)‖2 + αΨ(σ)},

where Ψ(σ) is a structured total variation (STV) regularization functional [Kolehmainen et al. (2019)], defined
as

(11) Ψ(σ) =

∫
Ω

√
‖∇σ‖2B(p) + β dr

where p(r) is an auxiliary reference image and B(p) is a symmetric matrix valued mapping which is used to
incorporate prior information from the reference image and β is a smoothing parameter. In a nutshell, the
idea is to choose the mapping B(p) such that the regularization promotes similar alignment of structures
(represented by the level sets) of the unknown σ and the reference image p. Following [Kolehmainen et al.
(2019)], we define

(12) B(r) = I − (1− γ(r))ν(r)ν(r)T

where

(13) ν(r) =

{
0 if ‖∇p(r)‖ = 0
∇p(r)/‖∇p(r)‖ otherwise

is a vector field (normal to the level sets of p) and

(14) γ(r) =

{
0.025 when ‖∇p(r)‖ > 0
1 otherwise

is an edge weighting function which is designed to promote a small penalty for changes in σ in locations
where p exhibits changes. The discretization of the method (10) is based on the Finite element method
(FEM) and the non-linear optimization is solved by a lagged Gauss-Newton method equipped with a line
search algorithm. The line search is implemented using bounded minimization such that the non-negativity
σ > 0 is enforced. The regularization parameter α was tuned manually for the best visual quality of the
reconstruction. For more details of the method, see [Kolehmainen et al. (2019)].

1Codes will be published on github: https://github.com/asHauptmann/BeltramiNet
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2.3.2. Experimental Data. Archival ACT4 data, taken on a circular tank of radius 15cm with 32 electrodes
(width 2.5cm), was used. Agar targets with added graphite were placed in a saline bath (0.3 S/m) filled
to a height of 2.25cm. Conductive and resistive targets were used to simulate the heart and aorta, as
well as the lung and spine, respectively. See Figure 1 for the experimental setups. Table 1 displays the
measured conductivities of the targets, using test-cells, computed via Impedimed’s SFB-7 bioimpedance
meter2. Trigonometric voltage patterns, with maximum amplitude 0.5V, were applied at a frequency of
3kHz and the resulting currents measured. For consistency with previous studies, a change of basis was
performed on the measured current and voltage data to synthesize the data that would have occurred if
current had been applied instead of voltage (see [Hamilton and Hauptmann (2018)]). The ND and DN
matrices were then computed as described in Section 2, equation (3).

Healthy Injury 1 Injury 2 Injury 3

Figure 1. The experimental setups for the ACT4 data collection. Four scenarios were
tested beginning with a ‘Healthy’ setup: conductive heart and aorta, resistive lungs and
spine. In ‘Injury 1’, the bottom portion of the right (DICOM orientation) lung was removed
and replaced with a conductive agar target matching the conductivity of the heart/aorta.
In ‘Injury 2’, the removed portion of the right lung was replaced with three plastic pipes
and for ‘Injury 3’ the removed portion is replaced with three copper pipes.

Table 1. Conductivity Values for ACT4 targets at 3.3kHz

Measured Values Simulated Values
(S/m) Ranges (S/m)

Heart/Aorta 0.67781 [0.5, 0.8]
Lungs/Spine 0.056714 [0.01, 0.2]
Saline Background 0.3 [0.29, 0.31]
Injury 1: Agar/Graphite 0.67781 [0.01, 1.5]
Injury 2: Plastic Tubes 0 [0.01, 1.5]
Injury 3: Copper Tubes infinite [0.01, 1.5]

We collected KIT4 data using two different, translationally symmetric tanks to obtain data for two
different boundary shapes, namely circle and chest-shaped, as shown in Figure 2. In each tank, the number
of electrodes is sixteen. Adjacent (skip-0) current patterns were applied with current frequency at 10kHz
and amplitude 3mA. Conductive and resistive agar targets were used across all the KIT4 experiments. The
circular tank has a radius of 14cm with 16 electrodes of width 2.5cm. Agar targets of conductivity 67 mS/m
(large object on the top) and 305 mS/m (smaller, nearly circular object on the bottom right) were placed in
a saline bath of conductivity 135 mS/m filled to a height of 45mm. The chest shaped tank has a perimeter of
1.02m with 16 electrodes of width 2cm attached. The locations of the electrodes are not exactly equidistant
from one another but can be seen from the photographs (see Figure 2). Agar targets consisting of high
conductivity 323 mS/m (targets with pink ink) and low conductivity 61 mS/m (white) were placed in a
saline bath (conductivity 135 mS/m, height 47mm for the Chest-Healthy and Chest-Cut targets, and 44mm
for the Chest-Split target in Figure 2). The right (DICOM) lung was cut and two simulated injuries explored:
1) the bottom portion was removed completely (Fig. 2: Chest-Cut) and 2) the bottom portion was replaced
with a higher conductivity piece of agar (Fig. 2: Chest-Split).

2https://www.impedimed.com/products/sfb7-for-body-composition/
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Circle Chest-Healthy Chest-Cut Chest-Split

Figure 2. Experimental setups for the KIT4 data on three different experimental tank
setups. Circle: The large object is low conductivity and small object is high conductivity.
Chest: The agar targets are either high (pink) or low (white) conductivity.

2.4. Training Data. Two sets of training data were used in this study, tailored to the ACT4 and KIT4
experiments. We introduce the notation σ̃ to denote a conductivity that has not yet been scaled to a
boundary conductivity of 1, reserving σ solely for conductivities with a boundary value of 1.

2.4.1. ACT4 phantoms. Candidate phantoms σ̃n for the ACT4 training were formed by extracting the ap-
proximate boundaries of the inclusions from the ‘Healthy’ setup shown in Figure 3 (first). The approximate
boundaries are shown in red ∗ and the true boundaries are shown in black dots (Figure 3, second). Phantoms
σ̃n were generated as follows.

• Determine which objects are included. Random numbers were generated from the uniform distribu-
tion on [0, 1] to determine whether each inclusion (left lung: 90%, right lung: 90%, spine: 100%,
heart: 95%, aorta: 95%) was included in σ̃n.
• Determine the conductivities of each target in σ̃n. The conductivities were assigned by drawing

random numbers from uniform distributions using the respective conductivity windows outlined in
Table 1.
• Determine the locations of each target in σ̃n. The coordinates of the each inclusion were created by

adding noise, using the awgn command in Matlab, to the ‘approximate’ coordinates (red stars) of
the corresponding inclusion, see Figure 3.

As the ACT4 experiments contained ‘injuries’ to the right (DICOM) lung, simple injuries were simulated in
the training data as follows. For each included lung, do the following:

• Determine if the given lung contains an injury. Generate a random number to determine whether
or not an injury took place in the lung (50% chance).
• If yes, divide the lung into two regions.. Create a horizontal dividing line randomly by using the

max and min vertical x2 coordinates of the lung dividing the lung into two regions.
• Assign the injury. Draw a random number to determine which region (top or bottom) the ‘injury’

took place (50-50 chance), and another random number drawn from the uniform distribution on the
interval [0.01, 1.5] to determine the conductivity of the injured region.

More complicated injuries were not considered here to allow for direct comparison to the previous study
[Hamilton and Hauptmann (2018)]. Sample phantoms σn can be seen in Figure 3, third and fourth images.
The range in which organ boundaries are sampled for the training data is illustrated in Figure 4, not including
‘cuts’. Additionally we show weighting function used for the structured TV reconstructions, representing a
smiliar amount of priort information on where organ boundaries are expected.

2.4.2. KIT4 phantoms. Conductivity phantoms σ̃n for the KIT4 training data were more general as the sizes
and locations of the targets in the experiments varied greatly. Phantoms consisted of one to three ellipses of
varying size (semi-major and minor axes chosen from the uniform distribution on [0.2, 0.35]), location ρeiθ

for ρ ∈ [0, 0.6] and θ ∈ [0, 2π), and angular orientation in [0, 2π). The ellipses were not permitted to overlap,
and were all forced to be completely contained inside a z-disc of radius 0.95. The background conductivity
was chosen from the uniform distribution on the interval [0.13, 0.145]. For each inclusion, a random number
was drawn to determine whether the inclusion was more or less conductive than the background (50-50
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ACT4 Healthy
True & Approximate

Boundaries
Sample Healthy Sample Injured

Figure 3. Samples of the simulated conductivities used to generate the ACT4 training data
corresponding to the experiments shown in Figure 1. Starting with a healthy setup (left),
the ‘true organ boundaries’ (shown in black dots) were extracted from the photograph along
with an ‘approximate organ boundaries’ (red stars) which are displayed in the second image.
Noise was added to these approximate boundary points to generate the organ boundaries
used in the simulated conductivities. Samples of such conductivities are shown in the third
and fourth images with the true organ boundaries outlined in black dots.

Structured TV

Boundaries

Beltrami-Net

Boundaries

Figure 4. Comparison of Structured TV (STV) prior organ boundaries and boundaries
extracted from Beltrami-Net training data. Note this excludes the ‘cuts’ simulated for the
training data of Beltrami-Net. The image on the left is the weighting function γ(r) for the
STV, equation (14)).

chance) and conductivities randomly assigned from the corresponding uniform distributions [0.29, 0.34] and
[0.05, 0.075]. The chance of a target being split into two pieces was 1 in 3. If split, no region could be
smaller than 1/4 the size of the whole inclusion, and the split could be along any dividing line (horizontal,
diagonal, vertical). Divided inclusions were forced to either 1) have one part match the conductivity of the
background, or 2) be split into a portion that is more conductive than the background and a portion that is
less conductive than the background. Sample simulated conductivities σ̃n are shown in Figure 7.

2.4.3. Producing training data. For each conductivity phantom σ̃n, the conductivity was scaled to a boundary
value of 1 via σn = 1

σbn
σ̃n where σbn denotes the constant conductivity near the the boundary, here the

constant background value. If using a more complicated anatomical atlas, the value for σbn would be the
constant conductivity for the tissue at the patient’s boundary. Then, the conductivity is extended to [−1, 1]2

by setting σn = 1 for z ∈ [−1, 1]2 \ Ωn. Then, for each scaled conductivity σn, the Beltrami scattering data
τn(k) (4) was computed for |k| ≤ RACT4 = 5 or |k| ≤ RKIT4 = 5.5, using a 25× 25 uniformly spaced k−grid

on [−5, 5]2 or [−5.5, 5.5]2, respectively, by solving (5) with Beltrami coefficient µn(z) = 1−σn(z)
1+σn(z) as outlined in

Step 1 of Section 2.1.1. Next, the blurred D-bar reconstruction σDB
n was recovered by Step 2 of Section 2.1.1

as follows. First, the Beltrami τn was related to the Schrödinger tn scattering data by tn(k) = −4πikτn(k).
Then, a random number Rn was generated for the new scattering radius cutoff from the uniform distribution
on [3.5, 5] for ACT4, or [4, 5.5] for KIT4. Then, the computed scattering data tn was interpolated to a new
26× 26 k − grid with maximum radius Rn on [−Rn, Rn]2. A non-uniform cutoff threshold was enforced by
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0.05

0.1

0.15

0.2

0.25

0.3

Figure 5. Samples of the simulated conductivities used to generate the KIT4 training
data corresponding to the experiments shown in Figure 2. One to three ellipses of varying
eccentricities were randomly included with the possibility of inclusions being divided into
two pieces of with no portion smaller than 1/4 of the original inclusion.

setting tn(k) = 0 if |Re(tn(k)| or |Im(tn(k)| exceeded thresh = 24 or |k| > Rn. Then, the ∂̄k equation

was solved using the integral form (7) and the D-bar conductivity recovered as σDB
n (z) = σbn (mn(z, 0))

2
,

rescaling by the boundary conductivity σbn , using a 26× 26 z−grid on [−1, 1]2 with gridsize hz ≈ 0.0317.

2.4.4. Training the networks. A total of 4, 096 (ACT4) and 15, 360 (KIT4) pairs {σ̃n, σDB
n } were created for

use as training data in the U-net architectures described above in Section 2.2. Training was performed with
the Adam optimizer and an initial learning rate of 10−4 to minimize the `2-loss (9) with a batch size of 16
and for a total of 200,000 iterations. Training was monitored with a simulated validation set of ∼ 5% of the
training set size. The long training time, in terms of iterations, was mainly necessary to obtain constant areas
in the inclusions as well as background. The training procedure took roughly 3 hours for each experiment
on a single Nvidia Titan XP GPU.

Then, after the successful training procedure, the effectiveness was evaluated on simulated datasets σDB
n

not used in the training or validation data (Section 3.1) as well as experimental reconstructions for the ACT4
and KIT4 data, applied to the respective ACT4 or KIT4 network (Section 3.2).

3. Results & Discussion

Here we present the results of the new Beltrami-Net method on experimental, as well as simulated, data
from the ACT4 and KIT4 EIT systems.

3.1. Reconstructions from Simulated Data. We begin by visually testing the quality of the Beltrami-
Net approach on simulated data. We explore test cases consistent with the training data, as well as phantoms
that deviate from the procedure for creating the training set.

Figure 6 shows sample low-pass D-bar and Beltrami-Net reconstructions from simulated test data for the
ACT4 scenario. As it can be seen, if the injuries are consistent with the training, at most a single horizontal
dividing line in the lung as in Sims 1-2, the network can almost perfectly recover the targets. If the test data
deviates from this convention, Sims 3-5, it is more difficult to recover the correct location and structure, most
notably for vertical divisions. Nevertheless, for two dividing lines the network is able locate the conductivity
change correctly and establishes a sharp division in the reconstruction.

Reconstructions from simulated test data for KIT4 are shown in Figure 7. Most notably, if the inclusions
are isolated and do not include a cut, the network can reconstruct these very well. We note here that the
training data only included up to 3 inclusions. Nevertheless, the network seems to have no difficulties to
reconstruct 4 inclusions in the image. As can be seen, the cut ellipses are more difficult to reconstruct. In
most cases the network manages to include a cut in the ellipse, but in a wrong orientation. In some cases,
such as simulation 5, the network is not able to distinguish between a cut and two separate inclusions.
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Figure 6. Results for simulated test data with the network trained for the ACT4 data.
Note that the training data only included single horizontal divisions in the lungs. Each row
is plotted on its own scale.
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12 S. J. HAMILTON, A. HÄNNINEN, A. HAUPTMANN, AND V. KOLEHMAINEN

Truth
Low Pass

D-bar Image
Beltrami-Net

Image

S
im

5
S
im

4
S
im

3
S
im

2
S
im

1

Figure 7. Results for simulated test data with the network trained for KIT4. Note that
the training data only included up to 3 inclusions. All images are on the same scale.
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3.2. Reconstructions from Experimental Data. We next present reconstructions from the ACT4 and
KIT4 experimental data.

3.2.1. Experimental Reconstructions from ACT4. Figure 8 depicts the results of the Beltrami-Net approach
on four experiments with ACT4 data: Healthy and Injuries 1-3 as shown in Figure 1. The black dots
represent the approximate boundaries of the ‘healthy’ organs, extracted from the photograph. SSIMs, as
well as relative `1 and `2 errors, were computed for the experimental reconstructions with the exception of
Injury 3, which has infinite conductors (copper tubes). The comparisons, in Table 2, used approximate
‘truth’ images formed by assigning the measured conductivity values (Table 1) in the respective regions.
Note that the coordinates for the bottom portion of the right (DICOM) lung were not specific to each injury,
instead the entire region was assigned the same conductivity, even when the injury did not fill up the space
as in Injury 2, plastic tubes and Injury 1 which is smaller than the original lung.

The a-EIT reconstructions (10) are computed as references for the Beltrami-Net in both, the ACT and
KIT4, experiments. In both cases, we aim to construct the matrix field B(p) such that the amount of prior
information would be comparable to the Beltrami-Net reconstructions. In case of the ACT experiments,
the network is trained using an ensemble of realistic chest images and therefore we chose to use a piecewise
constant reference image p(r) which corresponds to the exact boundary configuration in the healthy case,
leading to a situation where (11) is based on more detailed anatomical prior than the Beltrami-Net and is
labeled ‘Structural TV’ on Figure 8.

The obtained reconstructions for the ACT4 scenario are overall of high quality. Visually, we can identify
the injuries in the lungs clearly from the Belrami-Net reconstructions as shown in Figure 8. Both high
conductive injuries are very clearly reconstructed and are even clearly visible in the D-Bar reconstructions
and the STV images. The lower conductive injury is harder to identify, in the D-bar reconstruction this
results in a overall lower conductivity in the right (DICOM) lung. The Beltrami-Net then manages to shift
the lower conductivity to bottom of the lung, but cannot establish a sharp boundary. The Structural TV
image does manage to identify that something of quite low conductivity is occurring in the lower portion
of the right (DICOM) lung, however the overall contrast of the image suffers significantly with the heart
and aorta reconstructed at values much lower than the truth. We note here, that the Beltrami network
was only trained on horizontal injuries, nevertheless it manages to reproduce diagonal cuts for the high
conductive injuries. Additionally, the STV reconstructions did not assume injuries in the lungs yet managed
to reconstruct them.

Quantitatively, the Beltrami-Net reconstructions show clear improvements over the low-pass D-bar recon-
structions by all metrics in Table 2. We remind here, that this is a case with strong a-priori knowledge and
hence the results are expected to be of very high quality. However, unlike the previous study, [Hamilton and
Hauptmann (2018)], the Beltrami-Net method did recover sharp diagonal divisions even when only training
on horizontal cuts. The STV reconstructions offered slight to moderate improvements in SSIM, `1 and `2
errors over the low-pass D-bar reconstructions for the ‘Healthy’ and ‘Agar’ phantoms. The results for the
‘Plastic’ case were mixed. Overall, the Beltrami-Net reconstructions obtained the best SSIMs and lowest `1
and `2 errors.

Table 2. Quantitative results for ACT4 experiments: Structural SIMilarity indices, as well
as relative `1 and `2 images errors.

Low Pass D-Bar Beltrami-Net Structured TV
Experiment SSIM `1-error `2-error SSIM `1-error `2-error SSIM `1-error `2-error

Healthy 0.5680 31.43% 22.03% 0.7296 23.75% 13.75% 0.6548 30.38% 21.27%
Agar 0.5176 35.87% 24.62% 0.6963 27.79% 21.01% 0.6332 32.56% 19.37%
Plastic 0.5085 34.91% 24.44% 0.7053 22.26% 13.29% 0.5952 37.61% 30.08%

3.2.2. Experimental Reconstructions from KIT4. We next applied the Beltrami-Net method to the KIT4
datasets corresponding to Figure 2 and compared to total variation regularized reconstructions (TV) as
outlined in Section 2.3. The reconstructed images are shown in Figure 9 and quantitative measurements
(SSIM and relative `1 and `2 images errors) presented in Table 3. Note that in the case of the KIT4 data,
the network was trained using generic piecewise regular conductivities without prior knowledge about the
locations of the edges. For these cases we selected a constant reference image p(r) = 1 in structured TV
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Figure 8. Results for the experimental ACT4 data comparing the initial low-pass D-bar
images to the post-processed Beltrami-Net images as well as the Structural TV method.
Note that Beltrami-Net images are displayed here on the circular geometry of the tank, for
presentation only. The D-bar images on the full square [−1, 1]2 were used as inputs to the
CNN to produce the Beltrami-Net images. The Structural TV images did use knowledge of
the circular domain shape. Each row is plotted on its own scale.

regularization (11), leading to B(p) = I and the regularization functional (11) becomes conventional isotropic
TV regularization. For clarity, we call such reconstruction ‘TV’ reconstructions for the KIT4 data.

As one can see in Figure 9, all three methods produce images where the inclusions are clearly visible. The
low-pass D-bar reconstructions are quite blurry as expected, but the post-processed images with Beltrami-
Net are of very high contrast with sharp edges. In the TV reconstructions, the boundary edges tend to be
slightly blurred and there is a clear loss of contrast, which is a quite usual side-effect for TV regularized
reconstructions. Neither of the methods is able to identify the split chest in the fourth phantom, and instead
separate the lung into the two areas of opposing conductivity with saline between them. We note here
that the Beltrami-Net was trained with generic prior knowledge of only elliptic inclusions. Nevertheless, the
Beltrami-Net reconstructions show shapes that differ from this simple prior. Hence we hypothesize that the
network mainly learns a segmentation and correction of the existing features in the D-bar reconstructions.

The quantitative measures, SSIM, as well as relative `1 and `2 image errors, were computed for each
case by comparing to approximate ‘truth’ images constructed using the measured conductivity values and
photographs of the experiments, see Table 3. The quantitative improvements of Beltrami-Net are rather
minor in this case. This is as expected due to low prior information. SSIM of D-Bar and Beltrami-Net are
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Figure 9. KIT4 Results for the various test scenarios. The initial D-bar image is compared
to the Beltrami-Net image. The D-bar images, on the full square [−1, 1]2 are used as the
‘input’ images for the CNN. Images are displayed here clipped to their respective tank
geometries for presentation only. Each row is plotted on its own scale.

quite comparable, but generally high already. Most notably, even though the `2-error is quite constant as
well, there is a clear improvement in `1-error, most likely due to sharper boundary edges. The TV-LS method
provides comparable metrics and reconstructions, outperforming both the low-pass D-bar and Beltrami-Net
methods for the SSIM of the Chest Healthy and Chest Cut phantoms, but underperforming for the Chest
Split experiment. Most notably, the Beltrami-Net reconstruction are consistently better in `1-error for all
provided measures.

Table 3. Quantitative results for KIT4 experiments.

Low Pass D-Bar Beltrami-Net TV
Experiment SSIM `1-error `2-error SSIM `1-error `2-error SSIM `1-error `2-error

Circ Agar 0.8831 23.08% 14.39% 0.8921 19.53% 13.11% 0.8843 22.09% 16.14%
Chest Healthy 0.8507 26.29% 15.73% 0.8370 21.03% 17.33% 0.8709 24.30% 17.03%
Chest Cut 0.8684 22.56% 15.55% 0.8516 18.67% 15.26% 0.8939 20.80% 16.11%
Chest Split 0.8244 28.79% 14.76% 0.8267 21.78% 16.90% 0.7877 36.28% 36.25%

3.3. Discussion and Generalization. The major concern on learned methods for image reconstruction is
with respect to their stability under noisy measurement data. This concern is addressed in two ways here.
First, the low-pass D-bar algorithm used here is a regularization strategy controlled by the cut-off radius
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in the scattering data t(k), or texp(k), which means that there exists a continuous dependence of noise in
the measurement to reconstruction error as outlined in [Knudsen et al. (2009)]. To allow for different noise
levels, we have created the training data with varying cut-off radii, that way the network can deal with
reconstructions from measurements under different noise. To address the robustness of the second part in
the reconstruction procedure, namely the trained networks, we performed the following empirical tests to
illustrate the behavior.

3.3.1. Examining robustness of the networks. An established way to examine robustness of networks are via
adversarial attacks, where one aims to find a minimal perturbation in the input that leads to a maximal
perturbation in the output. Motivated by the study in [Antun et al. (2019)], we performed such an adversarial
attack on the trained Beltrami-Net KIT4 network to examine its stability. That is, given the initial D-Bar
reconstruction σDB we aim to find a minimal perturbation δσ that maximizes the distance in the output,
such that

(15) max
δσ
‖GΘ(σDB + δσ)−GΘ(σDB)‖22 − α‖δσ‖22.

The results for such a test on the KIT4 network are presented in Figure 10 for a small and large perturbation
found by maximizing (15), where a small perturbation corresponds to an early stage in the maximization of
(15) and a large perturbation to a later stage. The perturbations found (left column) led to misclassification
in some pixels that would belong to the inclusions, which then led to a large error in the output but to
a very small qualitative difference in the image. Even for the large perturbation (bottom row), which in
fact produces an input image that is not possible as a low-pass filtered output of the D-Bar reconstruction,
the reconstruction by Beltrami-Net can be considered qualitatively stable. This illustrates the fact that the
network mainly learns a segmentation of the D-bar reconstruction.

Finally, to illustrate the different nature of the two trained networks, Figure 11 presents a ‘Garbage-
in\Garbage-out’ test by feeding the network randomly distributed noise. First we tested uniformly dis-
tributed noise, such that minimal and maximal values were in the range of the low-pass D-bar reconstruc-
tions used to train the respective networks. The result of this experiment, as shown in Figure 11, nicely
illustrates the different nature of the two networks. The KIT4 network with minimal prior knowledge, i.e.
trained only on ellipses therefore only learning a segmentation of the input images, reconstructs ‘garbage’
with the random noise. Whereas the network trained for the ACT4 thoracic reconstructions with strong
prior information stands in strong contrast. That network in fact learned a projection of the input images
to the data manifold of thoracic phantoms. Thus, the random noise that was in the range of the learned
input values was projected onto the data manifold of thoracic phantoms. However, it produced a completely
implausible image that can be easily ruled out as an error. On the other hand, if the noise is not in the
range, i.e. we chose random Gaussian noise with negative values as shown in column 3, the projection onto
the data manifold is not successful and produces a highly corrupted image which can also be ruled out.

3.3.2. Extensions. Whereas the presented approach utilizes the D-bar methodology, specifically without
the need of boundary shapes in the training data, the framework can be extended to other reconstruction
algorithms. For example, results of non-linear optimization or even linearization based reconstruction like a
single step Gauss-Newton could be used as inputs of learning. In order to retain boundary insensitivity, we
suspect that the training data needs to be created with varying boundary shapes.

4. Conclusions

In this work we introduced a novel image reconstruction method for absolute EIT that pairs a Convolu-
tional Neural Network with a real-time D-bar method. The training data was computed using the Beltrami
equation instead of directly solving the conductivity equation (2) to allow for robustness to changes and
uncertainty in domain boundary shape. To demonstrate feasibility, we considered two conceptually differ-
ent settings: i) A constrained case of thoracic imaging with the ACT4 measurements, where high a-priori
knowledge is available, and ii) A very general setting with the KIT4 experiments on varying tank boundary
and inclusion shapes with minimal prior knowledge in the training data. Consequently, the obtained results
are slightly different in their nature. Whereas the ACT4 reconstructions are of very high quality and close
to the target/image prior, the KIT4 reconstructions are more general and it is harder to obtain the exact
shapes of the targets, in particular for the ‘Chest-Cut’ and ‘Chest-Split’ examples where the sharp divisions
in the right (DICOM) lung are smoothed into ellipses. Compared the the reference method of total variation
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Perturbation δσ

D-Bar Rec. σDB Beltrami-Net GΘ(σDB)
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Figure 10. Computation of adversarial perturbations to test network stability, for the
KIT4 dataset. The orignial D-Bar reconstruction and Beltrami-net output is shown in
the first row. The second row shows a small perturbation, that causes some pixels in the
Beltrami-Net output to be assigned the background value. The last row shows a very large
perturbation, that causes some major parts of the large inclusion to be classified wrongly.

constrained least square reconstructions, the reconstruction quality of Beltrami-Net is quite similar with a
slight advantage in contrast and hence `1-error measures.

We believe that this comparison provides good insight of what is possible in EIT in combination with
deep learning based post-processing, in particular for D-bar based methods. We remind here, that EIT is
a highly ill-posed inverse problem and hence it is not surprising that strong prior knowledge is needed to
obtain high-quality images. Thus, we believe that the presented approach will be most useful in constrained
imaging settings, where boundary shapes might vary, such as thoracic imaging for the identification of
lung volumes or injuries. Additionally, process monitoring and non-destructive testing, where knowledge of
possible composition and defects is known, may be areas of interest for this approach.
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Figure 11. Garbage-in\Garbage-out test on both networks. Random noise (top row) was
fed into the two networks and the resulting Beltrami-Net results are shown (bottom row).
This illustrates the difference in prior information learned by the network. Whereas, the
KIT4 network merely learns a segmentation, the ACT4 network learns a specific projection
to a thoracic phantom data manifold.
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