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Abstract

High-resolution spectroscopy has been used to study the composition and dynamics of exoplanetary atmospheres.
In particular, the spectrometer CRIRES installed on the ESO-VLT has been used to record high-resolution spectra
in the near-IR of gaseous exoplanets. Here we present a new automatic pipeline to analyze CRIRES data sets. Said
pipeline is based on a novel use of the principal component analysis and the cross-correlation function. The
exoplanetary atmosphere is modeled with the  -REx code using opacities at high temperatures from the ExoMol
project. In this work we tested our analysis tools on the detection of CO and H2O in the atmospheres of the hot
Jupiters HD209458b and HD189733b. The results of our pipeline are in agreement with previous results in the
literature and other techniques.

Key words: methods: data analysis – planets and satellites: atmospheres – techniques: spectroscopic

1. Introduction

More than 4000 confirmed exoplanets are currently listed in
the catalogs, together with basic planetary, stellar, and orbital
parameters as they become known. Transit and direct imaging
spectroscopy from space and ground facilities are enabling the
study of the physical and chemical properties of some of these
exoplanets. From space, one can observe exoplanet spectra in
the UV, VIS, and IR at low spectral resolution, without the
hurdle of telluric contamination. Molecules, ions, atoms, or
absorbers able to imprint strong modulations in the recorded
spectra can be detected by using space-borne facilities, (e.g.,
Charbonneau et al. 2002; Tinetti et al. 2007; Grillmair et al.
2008; Linsky et al. 2010; Fraine et al. 2014; Sing et al. 2016;
Tsiaras et al. 2016a, 2016b, 2018; Damiano et al. 2017). By
contrast, observations from the ground at high-resolution
(R>25,000) have enabled the detection of molecules or
atoms whose weak absorptions are hard to detect at low
spectral resolution. This is particularly true for alkali metals
and CO that have been found in the atmospheres of most hot
Jupiters analyzed (Redfield et al. 2008; Snellen et al. 2010;
Birkby et al. 2013, 2017; de Kok et al. 2013; Brogi et al.
2014, 2016; Birkby 2018).

High-resolution spectroscopy (HRS) allows us to resolve
molecular bands into individual lines. Using radial velocity
measurements and techniques such as the cross-correlation
function (CCF) we may separate three physically different
sources: telluric absorption, stellar absorption, and the
planetary spectrum, which are normally entangled. The aim
—but also the biggest challenge—is to recognize the planetary
signal among the telluric and the stellar signals, which can be
orders of magnitude stronger. The standard method used in the
literature to analyze HRS data is to apply a number of
corrections that involve the correction of the airmass, the
subtraction of a modeled stellar spectrum from the data, and the
use of ad hoc masks to eliminate residual strong features
(Snellen et al. 2010; Birkby et al. 2013, 2017; Brogi et al.
2014, 2016; Birkby 2018).

In this paper we present and assess an alternative automatic
procedure to analyze HRS data from the raw images to the final
result, which requires no manual intervention that could
interfere with the objectivity and repeatability of the analysis.
Our analysis method is based on a novel use of the principal
component analysis (PCA) and CCF. The exoplanetary
atmosphere has been simulated using  -REx (Waldmann
et al. 2015a, 2015b) and line lists have been adopted from the
ExoMol project (Tennyson et al. 2016).
We applied our analysis method to two data sets recorded

with VLT/CRIRES freely available on the ESO archive. The
exoplanets observed are HD209458b and HD189733b (see
Table 1), the most studied planets up to date, and therefore
good examples for testing new and/or different data analysis
techniques. HD209458b (Mazeh et al. 2000) was the first
planet analyzed with high-resolution spectroscopy: Snellen
et al. (2010) reported a detection of CO in its atmosphere. CO
is absent in the Earthʼs atmosphere but also in the stellar
spectrum due to the relatively hot temperature of HD209458.
The CO signal in the exoplanetary atmosphere should not be
contaminated by the star and Earthʼs atmosphere. By contrast
the star hosting HD189733b is a K type (Bouchy et al. 2005)
showing CO absorption features in its spectrum: additional
caution is therefore needed to remove the potential stellar
contamination. Brogi et al. (2016) have reported the detection
of H2O and CO in the atmosphere of HD189733b.
In Section 2 we describe our analysis method, in Section 3

we show the results, and in Section 4 discussion and
conclusions are presented.

2. Data Analysis

We selected data sets relative to HD189733b and
HD209458b that are publicly available on the ESO archive.
These are part of 289.C-5030(A) and 383.C-0045(A) programs
(PI: I. Snellen; Figures 1(a) and 2(a)). The observations have
been recorded by using VLT/CRIRES at the highest resolution
available (R=100,000) through the 0 2 slit. Both data sets
cover a narrow wavelength range, i.e., 2287.54–2345.34 nm and
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2291.79–2349.25 nm, respectively, with three gaps (∼200 pixels
per gap) due to the physical separation of CRIRES’s detectors.
Both data sets have been recorded with the nodding method
ABBA for a better background subtraction (Snellen et al. 2010;
Brogi et al. 2016). The steps of the analysis process are
represented in Figure 3 and are described in following sections.

2.1. Data Reduction and Calibration

We adopted the pipeline provided by ESO (Crire kit Version-
2.3.3) to process the raw data. The CRIRES’s reduction pipeline
has been embedded into our code thanks to ESO’s EsoRex,
which is a command-line-driven utility that can launch pipeline
reduction routines (they are referred to as recipes). These are
individual scripts that perform specific actions to the input data.
The reduction process performs the following steps:

1. Dark subtraction;
2. Correction for detector nonlinearity;
3. Flat-fielding;
4. Combination of nodding exposures;
5. Spectrum extraction;
6. Wavelength calibration.

The master reduction files (e.g., dark and flat) are provided with
the raw data, while the specific nonlinearity correction files need
to be downloaded from the archive.3 The 1D spectrum is extracted
from the reduced images via an optimal extraction (Horne 1986).
By using the ABBA nodding method, we obtained 45 spectra for
the HD189733b data set and 51 for the HD209458b data set.

To subtract and correct the telluric absorption, the calibration
from the ESO pipeline is not accurate enough; we followed
instead the procedure described in the literature (Snellen et al.
2010; Birkby et al. 2013, 2017; Brogi et al. 2013, 2014, 2016;
de Kok et al. 2013), which involves a further calibration using

the SKYCALC tool.4 This simulates the telluric absorption
spectrum for a specific night.
The first step is to normalize each spectrum of each detector

by dividing it by its median. This step is necessary to avoid
differences of baseline across spectra. After the normalization,

Table 1
Relevant Parameters of the Studied Targets

Parameter HD189733 HD209458

Stellar Parameters
Rå (Re) 0.756±0.018a (1.155 0.016

0.014
-
+ )a

Teff (K) 5040±50a 6065±50a

Må (Me) 0.806±0.048a 1.119±0.033a

glog ( ) (csg) 4.587±0.015a 4.361±0.008a

vsys (km s−1) −2.361±0.003b −14.7652±0.0016c

Planet Parameters

Teq (K) 1201 12
13

-
+( )a 1449±12a

a (au) 0.03120(27)d 0.04707 0.00047
0.00046

-
+( )a

Rp (RJup) 1.178 0.023
0.016

-
+( )d 1.359 0.019

0.016
-
+( )a

Mp (MJup) 1.144 0.056
0.057

-
+( )a 0.685±0.015a

P (days) 2.21857567(15)e 3.52474859(38)f

T0 (BJDUTC) 2454279.436714(15)e 2452826.629283(87)f

I (deg) 85.710±0.024e 86.71±0.05a

Notes.
a Torres et al. (2008).
b Bouchy et al. (2005).
c Mazeh et al. (2000).
d Triaud et al. (2009).
e Agol et al. (2010).
f Knutson et al. (2007).

Figure 1. HD189733b data set. In (a), the data are shown after calibration, normalization, and spike correction. In (b), the data are shown after the mean has been
subtracted from each column. In (c), the results of PCA are shown. In (d), the data are shown after the application of PCA and the injection of the CO model.

3 https://www.eso.org/sci/facilities/paranal/instruments/crires/doc/VLT-
MAN-ESO-14200-4032_v91.pdf

4 https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr
+INS.NAME=SKYCALC
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working on one detector at a time, we consider the mean
spectrum. Here, the strongest lines (all the lines reaching a
minimum <0.8) have been identified as homogeneously
distributed as possible to cover the whole x-axis range. These
same lines are also been identified within the telluric template.
A Gaussian fit is then performed for each of these lines and the
centroid is taken. The extracted spectrum centroids indicate the
pixel number position. In the telluric template, instead, they
indicate wavelength positions of the lines. We performed a
fourth-order polynomial fit to establish the relationship
between pixels and wavelengths (Snellen et al. 2010). All the
single spectra are then interpolated via a third-order spline to

the derived wavelength grid to have the same grid for all the
spectra.
We analyzed each detector separately as a two-dimensional

matrix, where the x-axis contains wavelengths and y-axis time:
every row of this matrix is a spectrum, every column is a temporal
series at a given wavelength (see Figures 1(a) and 2(a)). We
therefore have four different matrices. Finally, the pipeline
removes all the cosmic rays or spikes that could occur at the edges
of the spectra due to the spline interpolation to the wavelength
grid. The pipeline takes one column at a time of each 2D matrix,
it calculates the median of the column, and all the values outside
3σ from the median are set to the median value.

2.2. Decomposition Analysis (PCA)

The next steps involve the correction for telluric absorption,
the subtraction of stellar signal, and the subtraction of
correlated noise. The use of an ad hoc mask to remove the
strongest telluric features has been frequently adopted in the
literature (e.g., Snellen et al. 2010; Brogi et al. 2016). Other
works have considered an unsupervised linear transformation
technique to identify patterns in data, i.e., PCA. In Artigau
et al. (2014) PCA was used to correct high-resolution spectra
and improve the radial velocity accuracy for low-mass
planetary detection. Similarly, in de Kok et al. (2013),
Ridden-Harper et al. (2016), and Piskorz et al. (2016, 2017),
PCA has been used to identify and detrend the telluric
absorption. In those works PCA was used to decompose the
data in the wavelength domain. Here, we explore the use of
PCA applied to both wavelength and time domains. Addition-
ally, we propose an objective criterion to determine an optimal
selection of the principal components to be considered and the
exact number of components to be subtracted. More recently,
the algorithm SYSREM developed by Tamuz et al. (2005) has
been adopted to perform a similar task (Birkby et al. 2017;
Nugroho et al. 2017). SYSREM allows us to extract
components iteratively one by one; however, the orthogonality

Figure 2. HD209458b data set. In (a), the data are shown after calibration, normalization, and spike correction. In (b), the data are shown after the mean has been
subtracted from each column. In (c), the results of PCA are shown. In (d), the data are shown after the application of PCA and the injection of the CO model.

Figure 3. Box colors indicate different classes of action: green boxes represent
an external input coming from other models or different sources (e.g., user), the
red box includes the external reduction algorithm. Finally, the blue boxes
contain the calculations developed for the analysis of the data.
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of the extracted components is not guaranteed (Tamuz et al.
2005).

As PCA is highly sensitive to data scaling, we subtracted
each column of the data matrices by its mean (Figures 1(b) and
2(b)). On a typical spectroscopic data set, the number of spectra
are less than the wavelength bins, resulting in matrices that
have more columns than rows. Here, we adopt the eigenvalue
decomposition (EVD) of the covariance matrix (Jolliffe 2002).
The dimension of the covariance matrix and the number of
principal components (eigenvectors) are equal to the number of
rows of the input matrix. Two cases are then considered:

1. Time domain matrix (TDM); we use the individual
spectra as rows and the wavelength bins as columns.

2. Wavelength domain matrix (WDM); we transpose the matrix
to have the spectra as columns and wavelength bins as rows.

In the WDM/TDM case the principal components (eigenvec-
tors) contain the information of the correlations in the
wavelength/time domain. We consider, for example, the first
detector of the HD189733b data set: Figure 4 shows the first

five components of the TDM case (left) and the first five of the
WDM (right). The TDM components contain the time-domain
information and the first one, in particular, is linked to the
variations of the airmass: these are linearly correlated as we can
appreciate from Figure 5. The WDM components show the
correlation in the wavelength domain and they appear to be
correlated with the telluric transmission spectrum. A good
example is the strong feature around 200 (Figure 4, x-axis unit,
∼2290 nm) that persists in all the components.
The TDM case has been chosen as best method for the

following reasons:

1. The WDM component space cannot be fully described
since there are more variables (1024 spectral bins) than
observations (45 spectra for HD189733b and 51 for
HD209458b data set). The eigenvalues are null after the
44th or 50th component, depending on the data set.

2. The application of a telluric mask is required if the WDM
case is chosen to remove most prominent telluric features
that persist after PCA has been applied.

Figure 4. Left panels: first five eigenvectors of the TDM case. Right panels: first five eigenvectors of the WDM covariance matrix.
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Following this choice, we calculated 50 TDM components for
the HD209458b data set and 44 components for the HD189733b
data set. They are equal to the number of recorded spectra
minus one, due to the normalization performed before the
PCA decomposition. From the eigenvalues we calculated the
explained variance ratio (EVR) as follows: EVR j j il l= å ,
where λi are the eigenvalues. The EVR estimates the information
carried by each principal component in percentage. The EVRs of
each principal component for every detector of both data sets are
shown in Figures 6 and 7. The first component always has the

largest variance (∼80%) as the telluric signal is the most
significant.
The components are chosen to maximize the signal-to-noise

ratio (S/N) of the CCF peak expected at the theoretical Kp and vrest
of the planet (see Equation (3); Section 2.5; Figures 6 and 7). This
task is accomplished by removing iteratively the low-order
components, which supposedly are telluric or stellar in origin,
and the high-order components, which account for noncorrelated
signal, presumably noise. The remaining components (time domain
eigenvectors) are then projected back onto the original space.

Figure 6. Detectors’ variances of the PCA decomposition relative to the HD189733bb data set. The first component always carries more than 75% of the information.
However, the variance is different for each of the detectors. The green dashed lines indicate the calculated component range relative to the water vapor.

Figure 5. Linear relation between the first component of each detector in the time domain and the recorded airmass for the HD189733b data set.
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After the application of PCA, each column of the output
matrix was divided by its standard deviation to restore the S/N
of the processed data (Birkby et al. 2013; de Kok et al. 2013;
Nugroho et al. 2017; Ridden-Harper et al. 2016; Figures 1(c)
and 2(c)).

2.3. Cross-correlation Function

The CCF measures the similarity of two signals. It is also
often called sliding dot product since it returns a single value
from the product of two signals when one slides over the
other. Considering two series x and y, the normalized CCF at
the delay d, for discrete series, is defined as follows (Bracewell
1965):

d

x i x y i d y

x i x y i d y
CCF , 1i

i i

2 2

å

å å
=

- - -

- - -
( )

(( ( ) ) · ( ( ) ))

( ( ) ) · ( ( ) )
( )

where x is the mean of the array x, y is the mean of the array y,
and i=0, 1, 2 ... N−1. The idea of using such a function is to
find possible correlations between the data and an atmospheric

model. The cross-correlation aims at matching similarities
between the two signals.
The exoplanet atmospheric models have been simulated

using  -REx (Waldmann et al. 2015a, 2015b). The CO and
H2O line lists at the planetary temperature were provided by
ExoMol (Tennyson & Yurchenko 2012; Tennyson et al. 2016).
Every row of the data matrix (every single spectrum), after

the application of PCA, is cross-correlated with the simulated
exoplanet atmospheric spectrum. This spectrum is interpolated
to the same wavelength grid of the data, and it is then shifted
from −100 to 100 km s−1 with 1.0 km s−1 as the step. The step
is chosen based on the precision obtained during the calibration
step (∼1.0 km s−1) and on the velocity resolution of the
instrument (1.5 km s−1).
The CCF transforms the matrices (one for each of the four

detectors of CRIRES) from the wavelength domain to the
velocity domain. The CCF matrices are then added together to
obtain one single matrix (we will refer to it as the CCF matrix).
At this stage the exoplanetary signal is not visible (see

Figure 8, top left panel). We then injected a synthetic signal
with the orbital parameters of the planet to predict the position
of the signal (Figure 8, bottom left panel) and to calculate the
area of the S/N matrix interested by the planetary signal (see

Figure 7. Detectors’ variances of the PCA decomposition relative to the HD209458b data set. The first component always carries more than 75% of the information.
However, the variance is different for each of the detectors. The red dashed lines highlight the determined component range relative to the CO, while the green dashed
lines are relative to the H2O.
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Section 2.5 and Figures 9 and 10). This step is performed after
the calibration (before the PCA decomposition) and the effects
of this process are not visible until the CCF is performed,
because the signal intensity is at least three orders of magnitude
weaker than the telluric and stellar signals. The injected model
cross-correlates with itself, resulting, for example, in the signal
shown in Figure 8 (bottom panels). Finally, the injection
process allows us to monitor the signal during the PCA
decomposition. That helps to determine when the component
subtraction starts to erase part of the signal.

2.4. Signal Extraction

At this stage the planetary signal was barely visible or
completely invisible, therefore we coadded the single CCFs
(rows of the CCF matrix) in transit to obtain the integrated
signal from the planet. As the data were aligned to the telluric

spectrum reference system, the planetary spectrum moved
across time; we then realigned the single CCFs to the reference
system of the planet by computing the following correction:

V K t v v tsin 2 , 2p p sys barypf= + +[ ( )] ( ) ( )

where Kp is the radial velocity amplitude of the planet
(Equation (3)) and f(t) is the orbital phase (Equation (5)):

K v isin , 3p orb= ( ) ( )

v
a

P

2
, 4orb

orb

p
= ( )

t
t T

P
. 50

orb
f =

-( ) ( )

All parameters are listed in Table 1.

Figure 8. Top left panel: the four CCFs of the four detectors of CRIRES of the HD209458b data set summed together. Bottom left panel: same as top but with the
model injected. The injection is 1× the synthesized model (R Rp  ∼10−3). Top right panel: cross-correlation after changing the reference frame from the Earth to
the rest frame of the exoplanet. In this frame the planetary cross-correlation signal is aligned to 0 km s−1. Bottom right panel: same as the top right panel, but with the
injection. The injected signal is aligned to 0 km s−1 in the exoplanetʼs rest frame.

Figure 9. Cross-correlations of water vapor coadded in transit for the HD209458b data set. The injected signal and the planetary signal are still present after using PCA.
The coadded CCFs are relative to the HD209458b rest frame (Kp=145.041 km s−1). This graph has been generated considering PCA components from 33 to 43.
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Once all CCFs were aligned to the planetary rest frame, we
coadded in time only the in-transit CCFs. These were selected
by computing the transit time (Seager & Mallén-Ornelas 2003;
Kipping 2010). When all the in-transit cross-correlations are
summed together, the 2D cross-correlation matrix is reduced to
a 1D signal, which is connected to the theoretical orbital
velocity of the planet. To explore different orbital velocities we
proceeded as follows:

1. We let Kp vary from 0 to 250 km s−1 with a 1 km s−1

step;
2. For each Kp we applied the correction in Equation (2) to

every single CCF in the CCF matrix; and
3. We summed only the in-transit cross-correlations.

In this way we were able to explore all possible orbital
velocities including those corresponding to the host star.
Following the previous steps, we obtained a matrix with Kp on

Figure 11. Results for the HD209458b data set. Top left panel: S/N map for the carbon monoxide. The maximum point is compatible with the planetary orbital
parameters. Top right panel: distributions (i.e., in-trail and out-trail) used to compute the Welchʼs T-test. The null hypothesis is rejected with a confidence greater than
7σ. Bottom left panel: S/N map of the water vapor. The peak is compatible with the planetary parameters. Bottom right panel: distribution used to compute the
Welchʼs T-test. The null hypothesis is rejected with a confidence of 6.56σ.

Figure 10. Cross-correlations of the planetary signal and of the injected water vapor coadded in transit for the HD189733b data set. The coadded CCFs are calculated
at the theoretical orbital velocity of the planet HD189733b (Kp=152.564 km s−1). The CCFs are the result of the combination of the PCA components from 12th
to 27th.
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the y-axis and the velocity rest frame along the x-axis (vrest).
From this matrix two different outputs were extracted: the S/N
map and the T-test statistic.

2.5. S/N Matrix

We considered the last matrix obtained, i.e., Kp on the y-axis
and vrest on the x-axis. We calculated the standard deviation of
this matrix excluding those points potentially correlated to the
planetary signal ( v 15rest <∣ ∣ km s−1), and we divided the entire
matrix by this value. We refer to the obtained matrix as the S/N
matrix (Figure 11, left panels and Figure 12, left panels).

To assign an uncertainty to the Kp value we followed the
same procedure as reported in Brogi et al. (2016), i.e., we took
the maximum value of the matrix and, fixing the relative vrest,
we calculated the Kp interval where the S/N dropped by a unit
around the Kp peak. The same approach was used to determine
the uncertainty for vrest.

The S/N map is not only useful to visually represent the
results but also to inspect whether spurious signals or telluric
residuals are present. These signals may have a high-S/N value
but are located at different Kp and/or vrest from those expected
for the planetary signal.

We calculated the S/N matrix for each excluded principal
component. Two loops need to be performed to explore the
entire principal component space: the first loop subtracts higher
variance components onward and aims to remove the most

correlated signal (e.g., telluric absorption and stellar signal).
The second loop subtracts lower variance components back-
ward and aims to remove uncorrelated noise from the data.
Finally, the principal components were selected to maximize
the peak of the S/N matrix in correspondence with the
expected planetary Kp and vrest.

2.6. Welch’s T-test Statistics

The Welchʼs T-test is used to test the hypothesis that two
populations have equal means. This test compares the
population of points on the CCF map connected to the
planetary signal with those that are not.
From the CCF matrix we defined, as done in the literature

(Brogi et al. 2016; Nugroho et al. 2017):

1. In-trail, those values inside a squared box centered on the
CCF’ peak with a radius of ±15 km s−1;

2. Out-trail, those values outside the in-trail box.

We extracted two families of values from the CCF matrix and
these were compared through the Welchʼs T-test (Figure 11,
right panels and Figure 12, right panels). The test, calculated
using scipy.stats.ttest ind in python, provides a p-value (two-
tailed) that was converted into σ value (significance interval)
through the inversion of the survival function (SF):

pSF value 2 , 6value
1s = - ( ‐ ) ( )

Figure 12. Results for the HD189733b data set. Top left panel: S/N map for the carbon monoxide. The maximum point is compatible with the result reported in Brogi
et al. (2016) but it is not compatible with the expected value. Bottom left panel: S/N map of the water vapor. The peak is compatible with the planetary parameters.
Bottom right panel: distribution used to compute the Welchʼs T-test. The null hypothesis is rejected with a confidence of 5.21σ.
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where the SF−1 is the inverse of the SF that is calculated from
the cumulative density function (CDF) as follows:

SF 1 CDF. 7= - ( )

3. Results

HD209458b: For the cross-correlation process, we assumed an
isothermal T−p profile at T=1400 K, with the pressure
varying from 10−5 to 104 Pa. We did not include clouds or
line broadening due to the rotation of the planet. We used
10−3 as volume mixing ratio (VMR) for both molecules;
this value is compatible with chemical models’ predictions
for hot-Jupiter atmospheres (Venot et al. 2012). The same
value was also used by Snellen et al. (2010) for the CO.

The signal obtained for CO peaks at S/N=5.7
(Figure 11, top left panel and Table 2). The signal is
compatible with the planetary orbital parameters
(K 148p 15

16= -
+ km s−1, v 3.0rest 1.1

1.3= - -
+ km s−1). This result

has been obtained by considering components from the 7th
to the 28th (Figure 7, red lines). The statistical significance
of the result is also confirmed by the Welchʼs T-test
(Figure 11, top right panel). Using a box of radius
15 km s−1 the null hypothesis is rejected with a confidence
greater than 7σ; the shift of the in-trail population is
noticeable with respect to the out-trail values that are,
instead, distributed as a Gaussian centered to zero.

The signal of the water vapor is more difficult to
detect since the Earthʼs atmosphere also contains water. To
extract the planetary signal a robust telluric correction is
required, and therefore several components need to be
subtracted using PCA. A signal at the compatible planetary
parameters is observable in the S/N map in Figure 11
(bottom left panel). The maximum peaks at S/N=3.95,
K 140p 16

25= -
+ km s−1, and v 4.0rest 1.6

1.4= - -
+ km s−1 and it is

obtained considering components from the 33th to the 43th
(Figure 7, green lines). To demonstrate that the H2O
planetary signal survives after 33 components have been
subtracted, Figure 9 shows the in-transit coadded cross-
correlation relative to the range of components aforemen-
tioned. Both the injected and non-injected signals survive
to the PCA correction (note that the injected signal does
not include any atmospheric dynamics, so it is not
blueshifted like the planetary signal). Moreover, the
coadded cross-correlation value is lower with respect to
the CO case meaning that the concentration of water is
lower than CO or that PCA has erased part of the signal.
Finally, the Welchʼs T-test is performed on the in-trail and
out-trail populations (Figure 11, bottom right panel and
Table 2). In this case the shift of the in-trail population is
not as strong as in the CO case but the null hypothesis is
rejected with a confidence greater than 6σ.

HD189733b: The planetary transmission spectrum was mod-
eled with isothermal T−p profiles at T=1000 K. The
pressure varies from 10−5 to 104 Pa, and we did not
include clouds or any line broadening due to the rotation of
the planet. We used 10−3 as the VMR; this value is
compatible with chemical model predictions for hot
Jupiters (Venot et al. 2012).

CO detection is highly difficult since the star, being a
K-type star (T∼4900 K), contains CO in the outer regions.
In Brogi et al. (2016) a master stellar spectrum has been
simulated and subtracted to the data, but the stellar

contamination continued to be persistent also in the result.
In this work, PCA was not as effective as in the HD209458b
case because the star spectrum moves 1–2 pixels on the
detector preventing an optimal correction. The result (see
Figure 12, top left panel and Table 2) is compatible with the
one claimed by Brogi et al. (2016) (S/N=5.1, Kp =
194 41

19
-
+ km s−1, v 1.7rest 1.2

1.1= - km s−1); however, the error
on the Kp, being smaller than the one reported in literature,
does not include the theoretical value of the orbital velocity
of the planet (Kp=152.564 km s−1). The signal determined
at lower Kp (∼85 km s−1) is due to stellar contamination that
results from the Rossiter–McLaughlin effect combined with
the change of reference frame from the Earth to the
barycentric one (Brogi et al. 2016).

Concerning water vapor, the same discussion as for
HD209458b can be applied here. The planetary water signal
needs to be disentangled from the telluric absorption. The
result obtained (Figure 6, green lines and Figure 12) is
compatible with both the literature and the theoretical
parameters, e.g., see Figure 10, where the planetary signal is
compared with the injected one. The injected signals do not
account for v 0rest ¹ km s−1; we can appreciate the data
being blueshifted. Here the Welchʼs T-test confirms that the
null hypothesis can be rejected with a confidence greater
than 5σ (Figure 12, bottom right panel and Table 2).

We performed an additional test by cross-correlating the
telluric model used in the calibration process with the data to
check if any telluric signal still persists. Using the components
reported in the results we did not notice any significant
correlation with the telluric signal at the position of the
planetary parameters. We have also tried to cross-correlate
other molecules with the data (e.g., CH4, NH3, and CO2), but
no correlations have been found.

4. Discussion and Conclusions

We presented here and tested a new automatic method, from
the raw images to the final result, based on the iterative use of

Table 2
This Work and Previous Results

Parameter HD189733 HD209458

Previous Results Brogi et al. (2016) Snellen et al. (2010)

S/NCO L L
Kp,CO (km s−1) 205 51

38
-
+ L

vp,CO (km s−1) L 140±10
vrest, CO(km s−1) 1.6 1.8

2.0- -
+ ∼2

S/N H O2 5.5 L
Kp,H O2 (km s−1) 183 59

38
-
+ L

vrest,H O2 (km s−1) 1.58 1.50
1.65- -

+ L

Results This Work This Work

S/NCO 5.24 5.7
Kp,CO (km s−1) 190±16 148 15

16
-
+

vrest, CO(km s−1) 3.0 1.3
1.0- -

+ 3.0 1.1
1.3- -

+

W T-testCO (σ) L 21.62
S/N H O2 3.69 3.95

Kp,H O2 (km s−1) 167 21
32

-
+ 140 16

25
-
+

vrest,H O2 (km s−1) 4.0 1.8
2.0- -

+ 4.0 1.6
1.4- -

+

W T-test H O2 (σ) 5.21 6.56
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PCA and CCF to reanalyze two CRIRES data sets observed
with a high-resolution spectroscopy technique. Our pipeline
does not assume prior knowledge, e.g., the variation of the
airmass, nor does it require ad hoc corrections, e.g., masks to
remove telluric lines. The PCA components are automatically
selected by maximizing the signal extracted. The algorithm is
able to calculate the final result (S/N maps and Welch’s T-test)
without manual intervention, allowing us to analyze rapidly
many data sets.

CO and H2O have been detected in the HD209458b data set,
and H2O in the HD189733b data set. The detection of CO in
the HD209458b atmosphere is supported by an S/N peak of
5.7 at Kp and vrest compatible with the planetary orbital
parameters. Contrary to CO, H2O is present in the Earthʼs
atmosphere and therefore an accurate telluric correction is
required. The lower S/N peak may be due to a lower
concentration of H2O with respect to CO in the atmosphere
of HD209458b, or part of the signal might have been removed
by PCA. In both detections a blueshift has been observed and
this could be explained with high-altitude winds. The results
presented here are in agreement with the results published by
Snellen et al. (2010).

Concerning HD189733b, using our method, we have been
able to detect H2O. Even in this data set a blueshift of the signal
has been observed and also in this case it could be associated
with high-altitude winds. The detected CO signal is compatible
with the literature (Brogi et al. 2016), but it is not in agreement
with the theoretical radial velocity of the planet, and could be
due to stellar contamination (the K-type star shows CO spectral
features).

We note that the requirement on maximization of the S/N
peak may lead to biased Kp and vrest values. In the work
presented here this effect, if present, does not exceed the
reported error bars: changes of less than one pixel are found
between one component and the others (one pixel corresponds
to the CCF step).

We note that the EVR is different for each detector
(Figures 7 and 6), and this means that the planetary signal is
contained in different components in each detector. An optimal
approach should adapt the number of components per detector
based on their variance.

Future work will consider the use of the algorithm presented
here to analyze high-resolution observations taken by other
instruments. These include CRIRES+ (Follert et al. 2014);
GIANO-B, a high-dispersion spectrograph at TNG (Oliva et al.
2012), which covers 0.9–2.5 μm with a resolution of
(R=50,000); IRCS-SUBARU (Kobayashi et al. 2000), which
uses a lower resolution (R=20,000) but covers a broader
range (from 1 to 5μm); and CARMENES at Calar Alto
Observatory (Quirrenbach et al. 2014) with a spectral
resolution up to 80,000 in the near-IR (0.9–1.7 μm).
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