Type Checking for Reliable APIs

Maria Kechagia and Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business
Athens, Greece
{mkechagia,dds} @aueb.gr

Abstract—In this paper, we propose to configure at compile
time the checking associated with Application Programming
Interfaces’ methods that can receive possibly malformed values
(e.g. erroneous user inputs and problematic retrieved records
from databases) and thus cause application execution failures.
To achieve this, we design a type system for implementing a
pluggable checker on the Java’s compiler and find at compile time
insufficient checking bugs that can lead to application crashes
due to malformed inputs. Our goal is to wrap methods when
they receive external inputs so that the former generate checked
instead of unchecked exceptions. We believe that our approach
can improve Java developers’ productivity, by using exception
handling only when it is required, and ensure client applications’
stability. We want to evaluate our checker by using it to verify
the source code of Java projects from the Apache ecosystem.
Also, we want to analyze stack traces to validate the identified
failures by our checker.

Keywords-application programming interfaces;
type systems;

exceptions;

I. INTRODUCTION

Application programming interfaces (APIs) are bundles of
interfaces, classes, methods, and fields that developers use
to program the main functionalities of client systems and
applications. Even though APIs are the builders of modern
software, mostly the last five years there is growing research
interest regarding APIs’ usability [1]-[4] and evaluation [5]-
[7]. Still, there is scant research concerning the automation of
methods that can guarantee APIs’ reliability. This possibly oc-
curs because APIs run on diverse usage contexts and on many
devices with different specifications, making APIs’ debugging
and testing challenging [8].

Currently, to ensure applications and systems’ robustness,
programming languages, such as Java, C++, C#, Objective-
C and scripting languages, provide exception handling mech-
anisms on several flavors. Here, we take into account the
controversial exception types of the Java programming lan-
guage. We investigate how Java can be extended to improve
the reliability of Java APIs and the productivity of client
applications’ developers.

In brief, Java has two types of exceptions: checked and
unchecked.! If a client application can do something when
an exceptional condition occurs, and this condition is unpre-
dictable, then there should be used a checked exception. This
guarantees that the client will handle the exceptional condition,

1 https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html.
All the referred URLs are archived in http://istlab.dmst.aueb.gr/~mkehagia/checker.txt

preventing the application from execution failures. If the client
application can predict and avoid an exceptional condition (e.g.
by passing correct values), or if the client application cannot do
anything to recover from that condition, then there should be
used an unchecked exception. This does not force the client
to write exception handling code that could be buggy [9].

In this work, we propose to configure at compile time the
checking associated with API methods that can receive pos-
sibly malformed values and thus cause application execution
failures (e.g. due to erroneous user inputs and problematic
retrieved records from databases). To achieve this, we design
a type system for checking methods that can possibly receive
malformed values passed as external inputs.

We plan to implement a pluggable checker on the Java’s
compiler and find at compile time insufficient checking bugs
related to invalid inputs. In particular, we wrap a method
and throw a checked instead of an unchecked exception only
when this method receives external inputs. This approach can
improve: 1) the productivity of Java developers, by using
checked exceptions when it is needed, and 2) the robustness
of client applications. We expect that our technique will assist
the building of modern mobile and web applications that their
stability highly depends on received external inputs, such as:
user inputs, data from network, and sensor inputs [10].

To evaluate our checker, we can use it to verify the source
code of Apache Java projects. Also, we can analyze stack
traces from these projects to cross-check the identified failures
by our checker. Here, we list ten stack traces extracted from the
Jira issue tracker that we manually analyzed to show execution
failures that could have been avoided, by using our system.

The structure of this paper is as follows. Section II lists
motivating examples of our proposal. Section III presents the
design of the type system for the checker. Finally, Section IV
presents related work and Section V outlines our conclusions
and plans for future work.

II. MOTIVATING EXAMPLES

An application execution failure (crash) can be related to
user input. For instance, consider the case when the user passes
an invalid URL to the arguments of a Java program. An error
would occur and the application would crash. To avoid such
errors, the javadoc of the URL class informs Java developers
to always throw and handle a MalformedURLException
(checked) exception when creating a new URL.?

2htlps://docs.oracle.com/javase/7/d0cs/api/java/net/URL.html#URL(java.lang.String)

Listing 1. Malformed URL
import java.net.MalformedURLException;
import java.net.URL;

public class URLReader {
public static void main (String[]
try {
/+ URL signature:
* URL (String spec) throws MalformedURLException
*/

args) {

// Case 1: user input
URL urll = new URL(args[0]);

/).
} catch (MalformedURLException e) {
System.err.println("Invalid URL");
// Give some new URL or use default URL ...
}

// Case 2: constant url
URL url2 = new URL("http://www.example.com");

/)

Java’s compile-time checks that ensure whether develop-
ers handle specific types of exceptions (checked) have been
controversial within the software engineering community [8],
[11]. In the following, we explain when there is a need for
exception static checking and when this is unnecessary.

We argue that only when a method (or a constructor)
receives external input, this method should throw a checked
exception. For Case 1, in Listing 1, the programmer should
handle a checked exception, because it is unpredictable if the
user input will be well-formed.

On the contrary, for a constant value (see Case 2 in
Listing 1) exception handling is needless, since the value of
the URL is known at compile-time and its validity can be tested
before releasing the software. Failures in such cases can be
crashes due to a misconfiguration. These should be handled
by specified IT personnel.

Listing 2. Case for unchecked exception
J *

* URL (ThrowingUncheckedException dummy,

* @WellformedURL String spec)

* throws InvalidUrlUncheckedException

*/
// Case 3: Constant value
String u = "http://www.example.com/";

URL url3 = new URL(ThrowingUncheckedException.instance,
@WellformedURL u);

In this context, we propose that our system will modify the
program, during compilation, to use a different version of the
URL constructor (see the block comment in Listing 2). The
new constructor will throw an unchecked exception instead of
a checked one. Then, Case 2 in Listing 1 should get modified
(while compiling) into Case 3 in Listing 2, whereas Case 1 in
Listing 1 should remain as it is. Consequently, programmers
would not need to use exception handling for Case 2. This
makes their source code cleaner, more maintainable, and, at
the same time, more reliable.

Furthermore, methods that can currently raise unchecked

Listing 3. Malformed pattern
import java.util.regex.InvalidPatternCheckedException;
import java.util.regex.Pattern;

public class Parser {

public static void main (String[] args) {
try {
// Case 4: User input
Pattern patternl = Pattern.compile(args[0]);
V2

} catch(InvalidPatternCheckedException e) {
System.err.println("Invalid pattern");
// Give a new correct pattern ...

}

/# Pattern compile (String regex)
* throws PatternSyntaxException

*/

// Case 5: Constant value

Pattern pattern2 = Pattern.compile ("“xy");
Y2

exceptions can be similarly converted to also raise checked
ones when needed. For instance, take into account Listing 3.
According to the javadoc of the compile method, this
method can throw an unchecked exception.® We agree that
this is reasonable for Case 5, where the pattern is a constant
value. However, when the pattern comes as a user input, we
envisage that the client should wrap the compile method
with a checked exception. Thus, Case 4 in Listing 3 should get
modified (while compiling) into Case 6 in Listing 4, whereas
Case 5 should remain as it is. Consequently, the programmer
should write a try—catch block to handle the checked ex-
ception, InvalidPatternCheckedException, that the
compile method would throw in Case 4.

Listing 4. Case for checked exception
/*
* Pattern compile (ThrowingCheckedException dummy,
* String regex) throws InvalidPatternCheckedException
*/

// Case 6: User input
Pattern pattern = Pattern.compile (

ThrowingCheckedException.instance, args[0]);

We want to build on top of the Java type system and
add specific checks, so that the compiler can prove that an
error due to a malformed external input will not manifest at
runtime. To do this, we use the Checker Framework.* Given
that this framework can strengthen the Java compiler, but it
does not permit illegal Java programs, we have first to modify
particular Java libraries. Notice that in Case 3 and Case 6 we
use new overloaded methods. As a future work, we have also
to consider the functional features of Java 8, because they can
make method overloading unclear. This mainly occurs when
in functions only method names are referred without formal
or actual parameters.

3 https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#-
compile(java.lang.String)
4hllps://docs.oracle.com/javase/tulorial/j ava/annotations/type_annotations.html

TABLE I
EXAMPLES OF API FAILURES IN APACHE PROJECTS

Project Source Sink Method Root Unchecked Exception ~ Crash Cause

1 Hadoop URI URI.getHost NullPointerException Invalid host name

2 Lucene file index Long.parseLong NumberFormatException Invalid file name

3 Fop factor InputHandler.transformTo Illegal ArgumentException Illegal symbol

4 Pivot path FileBrowserSheet.setRootDirectory Illegal ArgumentException Invalid directory

5 Cassandra node Integer.parselnt NumberFormatException Malformed string

6 Spark data file Double.parseDouble NumberFormatException Wrong field separators
7 Tuscany property Integer.parselnt NumberFormatException Impossible data conversion
8 Mahout csv file KMeansDriver.buildClusters TllegalStateException Invalid arguments

9 Olio argument Integer.parselnt NumberFormatException Invalid argument

10 Tapestry URL URLEncoderImpl.decode Illegal ArgumentException Incorrect URL

v A

| @LooseURL String | | @LooseDate String| | @LoosePattern Strin4

L i 7

‘ @WellformedURL Slring| | Date Strin4 | dPatt .Strin4

Fig. 1. Type hierarchy of the Well-formedness Type Checker

Table I shows API failures that could have been avoided if
developers were forced by our system to catch the appropriate
exceptions. We have manually extracted and analyzed these
ten crash reports from the Jira issue tracker.’

III. TYPE CHECKER

We plan to implement a pluggable checker on the Checker
Framework [12] and find at compile time bugs that can lead
to execution failures due to invalid inputs. In this section, we
describe the type system and the related type inference rules
that we have designed. According to Papi et al. [12] and the
framework’s manual, we present the prerequisites for the new
pluggable checker of the Checker Framework.

A. Type Qualifiers and Hierarchy

According to Weitz et al., a type qualifier (annotation) is
attached to every occurrence of a type in the language [13].
Here, we define the annotations for the type system and
the sub-typing relationships among qualified types. The well-
formedness checker will implement a qualified type system
where for every Java type, @Wellformed WF'T is a subtype
of @Loose LT.

In addition, we suggest the use of annotations for each type
of well-formedness for the validation of the values passed in
the arguments of a method. Specifically, for the URL type
system, a reference of type @LooseURL String can have
a malformed String value. By contrast, a reference of
type @WellformedURL String always refers to a well-
formed String value (e.g. a well-formed URL). Thus, an
expression of type @WellformedURL String can never
cause a crash related to a malformed URL. From an API
designer’s perspective, we can consider the signature of the
URL constructor in the block comment of Listing 2 where we

5htlps://issues.apache.org/jira/browse/ (login required)

have annotated the String spec argument that should be
always well-formed (@WellformedURL).

For each type of well-formedess (e.g. URL, date, pattern)
there will be used different type qualifiers. See the hierarchy
in Figure 1. This prevents from passing a well-formed Date
for instance into a context that expects a well-formed URL.

B. Type Inference Rules

In the following, we present the inference rules of our type
system of well-formedness. We generalize our inference rules
by using our generic annotations, namely, LT represents a
@Loose LT type and WF'T represents a @Wellformed
WET type. The funct(tl,t2) refers to any operation between
tl and t2, such as t1 + ¢2. The first general rule (see
equation 1) defines the operation (where T is a general type).
The remaining rules say that if there is a loose type in an
operation, the output type will be loose too (see equations 3
and 4); Otherwise, if all types are well-formed, the output type
will be well-formed (see equation 2). We have based our rules
on Pierce’s semantics [14].

'k funct: (T,7T) =T (D)
I'Ft1:WFT THt2: WFT @)
I'F funct(t1,t2) : WFT
I'tt1:WFT T'kHt2:LT 3)
Tt funct(tl,t2) : LT
TH#1:LT TH2: LT
“)

't funct(tl,t2) : LT
C. Type Introduction Rules
Even though constants are theoretically always well-formed,
they can also be validated (e.g. by the Checker Framework) at
compile time [15]. Equation 5 refers that a constant type K
should be anyway well-formed, WF'T.

r-K WFT (&)

We define as a default type for all values the loose one
(@Loose), because not all values should be strictly well-
formed, such as in the case of a URL, a date, or an SQL state-
ment. This convention reduces the programmer’s annotation
burden, because they have to add only the @Wellformed
annotation where a particular variable in a program should
not be malformed.

D. Produced Exceptions

During compilation, there will be applied the following
conventions regarding the exceptions that methods that receive
possibly malformed external inputs can throw. Equation 6
says that a method with well-formed arguments can throw
an unchecked exception (Case 2 in Listing 1 and Case 5 in
Listing 3). On the contrary, equation 7 says that a method that
can receive malformed external input can throw a checked
exception (Case 1 in Listing 1 and Case 4 in Listing 3).

f(WFT) = throws

(6)

unchecked exception

f(LT) = throws checked exception

(N
IV. RELATED WORK

Several studies have been conducted concerning the relia-
bility of modern APIs. Existing work mainly refers to security
issues [5], [7] and changes in API source code that may
introduce bugs [6], [16]. We investigate API design deficien-
cies, regarding exception handling, that hinder developers to
productively write robust applications.

A significant body of research also focuses on the study
of the exception handling mechanisms in Java. Empirical
studies show that exception handling in Java programs makes
programming difficult and buggy [8], [9], [17]. This has led
researchers to develop static and dynamic analysis tools to
predict and simplify the use of exceptions [8], [18], [19].
Contrary to previous approaches, we propose a type system for
checking (while compiling) methods that can possibly accept
malformed values passed as external inputs.

V. CONCLUSION

We discuss a well-known problem that several client appli-
cations’ developers of Java APIs face regarding the handling of
redundant checked exceptions. To alleviate this, we designed a
type system for the implementation of a pluggable checker to
find at compile time bugs that can lead to application crashes
due to malformed inputs. We envisage to wrap methods and
throw checked instead of unchecked exceptions only when
these methods receive unpredictable external inputs.

As a future work, we want to run the type checker on
Apache Java projects’ source code to find methods that can
potentially accept malformed external inputs and crash client
applications. Also, we want to use stack traces from the Jira
issue tracker to cross-check which methods actually cause
crashes because of problematic external inputs. Finally, we
would like to run a trial on Java professionals to evaluate the
usefulness of our system.

ACKNOWLEDGMENT

We thank Leonidas Lampropoulos for help in verifying
the type inference rules and Michael Ernst for his internal
reviews and comments on the paper. This project has received
funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732223.

(1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

M. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703-732, 2011.

S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do API
documentation and static typing affect API usability?” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 632-642.

A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “API code recommendation
using statistical learning from fine-grained changes,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 511-522.

B. A. Myers and J. Stylos, “Improving API usability,” Commun. ACM,
vol. 59, no. 6, pp. 62-69, May 2016.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627-638.
M. Linares-Véasquez, G. Bavota, C. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness: A
threat to the success of Android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. ACM, 2013,
pp. 477-487.

L. Li, T. F. D. A. Bissyande, Y. Le Traon, and J. Klein, “Accessing
inaccessible Android APIs: An empirical study,” in Proceedings of the
32nd International Conference on Software Maintenance and Evolution,
2016, p. 12.

M. P. Robillard and G. C. Murphy, “Static analysis to support the
evolution of exception structure in object-oriented systems,” ACM Trans.
Softw. Eng. Methodol., vol. 12, no. 2, pp. 191-221, Apr. 2003.

F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” Journal of Systems and
Software, vol. 106, pp. 82-101, 2015.

L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic
and scalable fault detection for mobile applications,” in Proceedings of
the 12th Annual International Conference on Mobile Systems, Applica-
tions, and Services, ser. MobiSys *14. New York, NY, USA: ACM,
2014, pp. 190-203.

Y. Zhang, G. Salvaneschi, Q. Beightol, B. Liskov, and A. C. Myers,
“Accepting blame for safe tunneled exceptions,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2016, pp. 281-295.

M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D.
Ernst, “Practical pluggable types for Java,” in Proceedings of the 2008
International Symposium on Software Testing and Analysis. ACM,
2008, pp. 201-212.

K. Weitz, G. Kim, S. Srisakaokul, and M. D. Ernst, “A type system for
format strings,” in Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, 2014, pp. 127-137.
B. C. Pierce, Types and Programming Languages, 1st ed.
Press, 2002, see Chapter 8.

V. Karakoidas, D. Mitropoulos, P. Louridas, and D. Spinellis, “A
type-safe embedding of SQL into java using the extensible compiler
framework J%,” Computer Languages, Systems & Structures, vol. 41,
pp. 1-20, 2015.

T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the Android ecosystem,” in 2013 IEEE International
Conference on Software Maintenance, Sept 2013, pp. 70-79.

M. B. Kery, C. Le Goues, and B. A. Myers, “Examining programmer
practices for locally handling exceptions,” in Proceedings of the 13th
International Workshop on Mining Software Repositories. ACM, 2016,
pp. 484-487.

W. Weimer and G. C. Necula, “Exceptional situations and program
reliability,” ACM Transactions on Programming Language Systems,
vol. 30, no. 2, pp. 8:1-8:51, 2008.

J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in
commodity JVMS,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, 2014, pp. 83-101.

The MIT

