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Abstract
To be successful in real-world tasks, Reinforcement
Learning (RL) needs to exploit the compositional,
relational, and hierarchical structure of the world,
and learn to transfer it to new environments. Re-
cent advances in representation learning for lan-
guage make it possible to build models that acquire
world knowledge from text corpora and integrate
this knowledge into downstream decision making
problems. We thus argue that the time is right to
investigate a tight integration of natural language
understanding into RL in particular. We survey the
state of the field, including work on instruction fol-
lowing, text games, and learning from textual do-
main knowledge. Finally, we call for the devel-
opment of new environments as well as more in-
vestigation into the potential uses of recent Natural
Language Processing (NLP) methods for such tasks.

1 Introduction
Languages, whether natural or formal, allow us to encode
abstractions, to generalize, to communicate plans, intentions,
and requirements, both to other parties and to ourselves [Gop-
nik and Meltzoff, 1987]. These are fundamentally desirable
capabilities of artificial agents. However, agents trained with
traditional approaches within dominant paradigms such as
Reinforcement Learning (RL) and Imitation Learning (IL) typ-
ically lack such capabilities, and struggle to efficiently learn
from interactions with rich and diverse environments. In this
paper, we argue that the time has come for natural language to
become a first-class citizen of solutions to sequential decision
making problems (i.e. those often approached with RL1). We
survey recent work and tools that are beginning to make this
shift possible, and outline next research steps.

Humans are able to learn quickly in new environments due
to a rich set of commonsense priors about the world, some
of which are reflected in natural language [Shusterman et
al., 2011]. It is thus natural to question whether agents can
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1We write RL for brevity and to focus on a general case, but

our arguments are relevant for many sequential decision making
approaches, including IL and planning.

learn not only from rewards or demonstrations, but also from
language, to improve generalization and sample efficiency
in sequential decision making problems. While some envi-
ronments require agents to process language by design, for
instance if language is part of the observation space [Branavan
et al., 2009], a growing body of work suggests that language
in RL has broader applications. In this survey, we are par-
ticularly interested in sequential decision making problems
with the following properties: (a) the use of RL methods is
severely constrained by data efficiency due to limited or ex-
pensive environment interactions, and (b) human priors that
would help to solve the task are or can be expressed easily in
natural language.

Information that could be useful for RL tasks is con-
tained in both general and task-specific large textual cor-
pora. For instance, consider pre-training neural represen-
tations of words and sentences from large general textual
corpora. Such pre-trained representations have shown great
success in transferring syntactic and, to some extent, seman-
tic information to downstream tasks [Peters et al., 2018b;
Goldberg, 2019]. Cross-domain transfer from self-supervision
on language data might similarly help to initialize RL agents.
In addition, applying machine reading techniques [Banko et
al., 2007] to task-specific corpora like game manuals and
wikis has the promise to inform agents of valuable starting
policies [Branavan et al., 2012] or task-specific environmental
dynamics and reward structure [Narasimhan et al., 2018].

Previous attempts at using language for RL tasks have
mostly been limited to relatively small [Janner et al., 2018] or
synthetic language corpora [Hermann et al., 2017]. We argue
that recent significant advances in pre-training and representa-
tion learning [Peters et al., 2018a; Radford et al., 2019] make
it worth revisiting this research agenda with a much more
ambitious scope for the integration of natural language and
RL. While the problem of grounding language (i.e. learning
the correspondence between text and environment features)
remains a significant research challenge, past work has shown
that high-quality linguistic representations can improve other
types of cross-modal transfer (e.g. zero-shot transfer in image
classification [Frome et al., 2013]) and might be similarly
applied in RL.

This survey focuses on the current state of the field of in-
tegrating natural language into RL agents and environments.
We first provide background on RL and techniques for self-



supervision and transfer in natural language (§2). We then
review prior work, considering settings where interaction with
language is necessary (§3.1) and where language can option-
ally be used to facilitate learning (§3.2). In the former category
we review instruction following, induction of reward from lan-
guage, and environments with text in the action or observation
space, all of which have language in the problem formulation
itself. In the latter, we review work that has used language
to facilitate RL by transfer from domain-specific textual re-
sources, or as a means of representing policies.

We conclude by identifying what we believe are the most
important challenges for integrating natural language in RL
(§4). Inspired by gaps in the existing literature, we advocate
for the development of new research environments utilizing
domain knowledge in natural language, as well as a wider use
of NLP methods like pre-trained language models and parsers
to inform RL agents about the structure of the world.

2 Background
2.1 Reinforcement and Imitation Learning
Reinforcement Learning [Sutton and Barto, 2018] is a frame-
work that enables agents to reason about sequential decision
making as an optimization process. Problems are formulated
as Markov Decision Processes (MDPs), tuples 〈S,A, T,R, γ〉
where S is the set of states, A the set of actions, T the tran-
sition function T : S × A → S, R the reward function
T : S × A × S → <, and γ ∈ [0, 1) is a discount factor,
typically set by either the environment or the agent designer.
Given this setup, the goal of the optimization process is to find
a policy π(a|s) = p(A = a|S = s) that maximises the ex-
pected discounted cumulative return

∑∞
k=0 γ

krk+1. Partially
observable MDPs (POMDPs) are used to model settings in
which the agent cannot access the Markov state S, and must
instead rely only on noisy or ambiguous observations.

Since their inception, RL algorithms have been success-
ful in applications such as continuous control [White and
Sofge, 1992], dialogue systems [Singh et al., 2002], and board
games [Tesauro, 1995]. Recent improvements in function ap-
proximation and pattern recognition made possible by deep
learning have allowed RL to scale to problems with high di-
mensional input spaces such as videogames [Torrado et al.,
2018] and complex planning problems such as Go [Silver
et al., 2017]. For a review on such recent algorithmic de-
velopments see [Arulkumaran et al., 2017]. State-of-the-art
methods are often sample inefficient, requiring millions or
billions of interactions, and often generalize poorly to tasks
even marginally different to those seen during training.

Imitation learning typically employs the same formalism as
RL but no rewards are observed. Instead, the learning algo-
rithm has access to demonstrations of optimal or near-optimal
policies. Supervised learning methods can then be used to find
an approximately optimal policy. IL can be combined with RL
by providing a favorable policy initialisation or an auxiliary
objective.

2.2 Transfer from Natural Language
NLP has seen a recent surge of models that transfer syn-
tactic and semantic knowledge to various downstream tasks.

Current NLP systems commonly employ deep learning mod-
els and represent (sequences of) words using dense vector
representations that are either pre-trained from large tex-
tual corpora or that are learned from scratch for the task
at hand [Deerwester et al., 1990; Mikolov et al., 2013;
Peters et al., 2018a]. These models are motivated by Firth’s
distributional hypothesis: “You shall know a word by the
company it keeps” [Firth, 1957]. Hence, the learned vector
representation of a word like scorpion should be similar to
spider if the corresponding words appear in similar contexts,
e.g., if they can both be found around other words like ven-
omous or exoskeleton. Such word representations can transfer
knowledge to downstream language processing tasks [Peters et
al., 2018b] (e.g. in text classification problems, the knowledge
that documents containing the word scorpion are likely about
animals even if only spider appears in the training data).

It is thus natural to ask whether knowledge about the world,
communicated in the form of language, might also prove use-
ful for other decision making problems. This communication
may take the form of explicit goals (go to the door on the
far side of the room), constraints on policies (avoid the scor-
pion), or generic information about the reward or transition
function (scorpions are fast). In the following section, we
survey existing literature on using natural language to aid goal
specification, sample efficiency and generalization in RL.

3 Current Use of Natural Language in RL
In reviewing efforts that integrate language in RL we high-
light work that develops tools, approaches, or insights that we
believe may be particularly valuable for improving the gen-
eralization or sample efficiency of learning agents through
their use of natural language. We separate the literature
into language-conditional RL (in which interaction with lan-
guage is necessitated by the problem formulation itself) and
language-assisted RL (in which language is used to facilitate
learning). The two categories are not exclusive, in that for
some language-conditional RL tasks, NLP methods or addi-
tional textual corpora are used to assist learning [Bahdanau et
al., 2019; Goyal et al., 2019].

3.1 Language-conditional RL
We first review literature for tasks in which integrating natural
language is unavoidable, i.e., when the task itself is to interpret
and execute instruction given in natural language, or natural
language is part of the state and action space. Approaches
to such tasks, we argue in (§4.1), can also be improved by
developing methods that enable transfer from general and task-
specific textual corpora. Methods developed for language-
conditional tasks are relevant for language-assisted RL as they
both deal with the problem of grounding natural language
sentences in the context of RL. Moreover, in cases such as
instruction following of sequences, the full instructions are
often not necessary to solve the underlying RL problem but
they assist learning by structuring the policy [Andreas et al.,
2017] or by providing auxiliary rewards [Goyal et al., 2019].

Instruction Following
Instruction following agents are presented with tasks defined
by high-level (sequences of) instructions. We focus on in-



structions that are represented by (at least somewhat natural)
language, and may take the form of formal specifications of
appropriate/inappropriate actions, of goal states (or goals in
general), or of desired policies. Effective instruction follow-
ing agents execute the low level actions corresponding to the
optimal policy or reach the goal specified by their instructions,
and can generalize to unseen instructions during testing.

In a typical instruction following problem, the agent is
given a description of the goal state or of a preferred pol-
icy as a proxy for a description of the task [MacMahon et
al., 2006]. Some work in this area focuses on simple ob-
ject manipulation tasks [Wang et al., 2016; Bahdanau et al.,
2019], while other work focuses on 2D or 3D navigation
tasks where the goal is to reach a specific entity. Entities
might be described by predicates (“Go to the red hat”) [Her-
mann et al., 2017] or in relation to other entities (“Reach
the cell above the westernmost rock.”) [Janner et al., 2018].
Some approaches use object-level representation and rela-
tional modeling to exploit the structure of the instruction in
relation to world entities [Chen and Mooney, 2011], or embed
both the instruction and observation to condition the policy
directly [Mei et al., 2016]. The use of human-generated in-
structions, as apposed to synthetic language, is not a standard
in the field [Hermann et al., 2017], but natural language in-
structions are for example used in [MacMahon et al., 2006;
Misra et al., 2017].

This line of work has strong ties to Hierarchical RL [Barto
and Mahadevan, 2003], with individual sentences or clauses
from instructions corresponding to subtasks [Branavan et al.,
2010]. When the vocabulary of instructions is sufficiently
simple, an explicit options policy can be constructed that asso-
ciates each task description with its own modular sub-policy
[Andreas et al., 2017]. A more flexible approach is to use a
single policy that conditions on the currently executed instruc-
tion, allowing some generalization to unseen instructions [Mei
et al., 2016; Oh et al., 2017]. Current approaches of this form,
however, require first pre-training the policy to interpret each
of the primitives in a single-sentence instruction following
setting.

Rewards from Instructions
Another use of instructions is to induce a reward function
for RL agents or planners to optimize. This is relevant when
the environment reward is not available to the agent at test
time, but is either given during training [Tellex et al., 2011]
or can be inferred from expert trajectories. The work address-
ing this setting is influenced by methods from the inverse
reinforcement learning (IRL) literature [Ziebart et al., 2008;
Ho and Ermon, 2016]. A common architecture consists of a
reward-learning module that learns to ground an instruction to
a (sub-)goal state or trajectory segment, and is used to generate
a reward for a policy-learning module or planner.

When the transition function is known and full demonstra-
tions are available, the reward function can be learned using
standard IRL methods like MaxEnt IRL [Ziebart et al., 2008]
as in [Fu et al., 2019]. Otherwise, given a dataset of goal-
instruction pairs, as in [Bahdanau et al., 2019], the reward
function is learned through an adversarial process similar to
that of [Ho and Ermon, 2016]. For a given instruction, the

reward-learning module aims to discriminate goal states from
the states visited by the policy (assumed non-goal), while the
agent is rewarded for visiting states the discriminator cannot
distinguish from the goal states.

When environment rewards are available but are very sparse,
instructions may still be used to generate auxiliary rewards
to help learn efficiently. In this setting, [Goyal et al., 2019]
and [Wang et al., 2019] use auxiliary reward-learning modules
trained offline to predict whether trajectory segments corre-
spond to natural language annotations of expert trajectories.
[Agarwal et al., 2019] perform a meta-optimisation to learn
auxiliary rewards conditioned on features extracted from in-
structions: the auxiliary rewards are learned so as to increase
performance on the true objective after being used for a policy
update. As some environment rewards are available, these
settings are closer to language-assisted RL.

Language in the Observation and Action Space
Environments that use natural language as a first-class citizen
for driving the interaction with the agent present a strong chal-
lenge for RL algorithms. Natural language heavily exploits
ambiguity and common bias to cheaply encode information.
Furthermore, linguistic observation and action spaces grow
combinatorially as the size of the vocabulary and the complex-
ity of the grammar increase, and grow compositionally when
interaction relies on multiple sentences, paragraphs, or longer
text. Examples of settings that include these problems are
dialogue systems, question answering (Q&A), and text games.
The former two are largely areas of historical focus in NLP
research, and they have been extensively reviewed by [Chen
et al., 2017] and [Bouziane et al., 2015] respectively. Re-
cently, however, work has emerged around visual and embod-
ied Q&A, in which agents are tasked with performing multi-
modal visual and language-based reasoning [Antol et al., 2015;
Johnson et al., 2017], or act in a 3D environment while
answering queries as part of the task [Das et al., 2017;
Chen et al., 2018]. These new lines of research attempt to
introduce more elements of decision making with respect to
both tasks and algorithms.

Text games are easily framed as RL environments and make
a good testbed for structure learning, knowledge extraction,
and transfer across tasks [Branavan et al., 2012]. [Narasimhan
et al., 2015] also observe that when the action space of the text
game is constrained to verb-object pairs, decomposing the Q-
function as separate parts for verb and object provides enough
structure to make learning more tractable, although they don’t
propose a way to scale this method to action-sentences of
arbitrary length. To facilitate the development of a consistent
set of benchmarks in this problem space, [Côté et al., 2018]
propose TextWorld, a framework that allows the generation of
instances of text games that behave as RL environments. They
note that existing work on word-level embedding models for
text games (e.g. [Kostka et al., 2017]) only achieve acceptable
performance on easy tasks.

3.2 Language-assisted RL
In this section, we consider work that explores how knowledge
about the structure of the world can be transferred from natural
language corpora and methods into RL tasks, in cases where



language itself is not essential to the task. Textual information
can assist learning by specifying informative features, annotat-
ing states or entities in the environment, or describing shared
subtasks in a multitask setting. In most cases covered here,
the textual information is task-specific, with a few cases of
using task-independent information through language parsers
[Branavan et al., 2012] and sentence embeddings [Goyal et
al., 2019].

Language for Communicating Domain Knowledge
In a more general setting than instruction following, any kind
of text containing potentially task-relevant information could
be available. Such text may contain advice regarding the policy
an agent should follow or information about the environment
dynamics. Such unstructured and descriptive (in contrast to
instructive) textual information is more abundant and can be
found in wikis, manuals, books, or the web. However, using
such information requires (i) retrieving useful information
for a given context and (ii) grounding that information with
respect to observations.

[Eisenstein et al., 2009] learn abstractions in the form of
conjunctions of predicate-argument structures that can recon-
struct sentences and syntax in task-relevant documents using
a generative model. These abstractions are used to obtain
a feature space that improves imitation learning outcomes.
[Branavan et al., 2012] develop an agent that learns a pol-
icy for the first few moves in Civilization II, a turn-based
strategy game, while accessing the game’s natural language
manual. The agent is trained using Monte Carlo rollouts to
simultaneously estimate Q-values, select relevant sentences
from the manual, and classify whether words in the manual
relate to the state, action, or neither. This task is simplified by
hand-engineered features that help match states and actions
to relevant words and sentences. More recently, [Narasimhan
et al., 2018] investigate planning in a 2D game environment
where properties of entities in the environment are annotated
by natural language (e.g. the ‘spider’ and ‘scorpion’ entities
might be annotated with the descriptions “randomly moving
enemy” and “an enemy who chases you”, respectively). De-
scriptive annotations facilitate transfer by learning a mapping
between the annotations and the transition dynamics of the
environment.

Language for Structuring Policies
One use of natural language is communicating information
about the state and/or dynamics of an environment. As such,
it is a great candidate for building priors on the structure or
representations used by an agents’ models. This can include
shaping representations towards more generalizable abstrac-
tions, making the representation space more interpretable to
humans, or structuring the computations within a model.

[Andreas et al., 2016] propose a neural architecture that
is dynamically composed of a collection of jointly-trained
neural modules, based on the parse tree of a natural language
prompt. While originally developed for visual question an-
swering, [Das et al., 2018] and [Bahdanau et al., 2019] suc-
cessfully apply variants of this idea to RL tasks. [Andreas et
al., 2018] explores the idea of natural language descriptions as
a policy parametrization in a 2D navigation task adapted from
[Janner et al., 2018]. In a pre-training phase, the agent learns

to imitate expert trajectories conditional on instructions. The
agent is then adapted to the new task, in which instructions
and expert trajectories are not available, by optimizing in the
space of natural language instructions.

Compositionality and hierarchical structure of natural lan-
guage make it a particularly good candidate for representing
policies in hierarchical RL. [Shu et al., 2018] and [Andreas
et al., 2018] can be viewed as using language (rather than
logical or learned representations) as policy specifications for
a hierarchical agent.

4 Future of Natural Language in RL
The preceding sections surveyed the literature exploring how
natural language can be integrated with RL. Several trends
are evident: (i) studies for language-conditional RL are more
numerous than for language-assisted RL, (ii) learning from
task-dependent text is more common than learning from task-
independent text, (iii) within work studying transfer from
task-dependent text, only a handful of papers study how to
use unstructured and descriptive text, (iv) there are only a
few papers exploring methods for structuring internal plans
and building compositional representations using the structure
of language, and finally (v) natural language, as opposed to
synthetic languages, is still not the standard in research on
instruction following.

To advance the field, we argue that more research effort
should be spent on learning from naturally occurring text cor-
pora in contrast to instruction following. While learning from
unstructured and descriptive text is particularly difficult, it
has a much greater application range and potential for impact.
Moreover, we argue for development of more diverse environ-
ments with real-world semantics. The tasks used so far use
small and synthetic language corpora, and are too artificial to
significantly benefit from transfer from real-world textual cor-
pora. In addition, we emphasize the importance of developing
standardized environments and evaluations for comparing and
measuring progress of models that integrate natural language
into RL agents.

We believe that there are several factors that make focusing
such efforts worthwhile now: (i) recent progress in pre-training
language models, (ii) general advances in representation learn-
ing, as well as (iii) development of tools that make construction
of environments for RL agents easier. Some significant work,
especially in language-assisted RL, has been done prior to
the surge of deep learning methods [Eisenstein et al., 2009;
Branavan et al., 2012], and is worth revisiting. In ad-
dition, we encourage the reuse of software infrastructure,
e.g. [Chevalier-Boisvert et al., 2018; Bahdanau et al., 2019;
Côté et al., 2018] for constructing environments and standard-
ized tests.

4.1 Learning from Text Corpora in the Wild
The web contains abundant textual resources that provide
instructions and how-to’s.2 For many games, detailed walk-
throughs and strategy guides exist. We believe that transfer
from task-independent corpora could also enable agents to

2e.g. https://www.wikihow.com/ or https://stackexchange.com/
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better utilize such task-dependent corpora. Preliminary re-
sults that demonstrate zero-shot capabilities [Radford et al.,
2019] suggest that a relatively small dataset of instructions or
descriptions could suffice to ground and consequently utilize
task-dependent information for better sample efficiency and
generalization of RL agents.

Task-independent Corpora
Natural language mirrors how humans think and communicate
about the world. For instance, a state-of-the-art pre-trained
language model would assign a higher probability to “get
the green apple from the tree behind the house” than to “get
the green tree from the apple behind the house”. Harnessing
such implicit commonsense knowledge captured by statistical
language models could allow us to transfer such knowledge to
RL agents.

In the short-term, we anticipate more use of pre-trained
word and sentence representations for research on language-
conditional RL. For example, consider instruction following
with natural language annotations. Without transfer from a lan-
guage model (or another language grounding task as in [Yu et
al., 2018]), instruction following systems cannot generalize to
instructions containing unseen synonyms or paraphrases (e.g.
“fetch a stick”, “return with a stick”, “grab a stick and come
back”). While pre-trained word and sentence representations
alone will not solve the problem of grounding an unseen ob-
ject or action, they do help with generalization to instructions
with similar meaning but unseen words and phrases. In addi-
tion, we believe that learning representations for transferring
knowledge about analogies, going beyond using analogies as
an auxiliary tasks [Oh et al., 2017] will play an import role in
generalizing to unseen intsructions.

As pre-trained language models and automated question
answering become more capable, one interesting long-term
direction are studies on agents that can query knowledge more
explicitly. For example, during the process of planning in
natural language, an agent that has a pre-trained language
model as sub-component could let the latter complete “to
open the door, I need to...” with “turn the handle”. Such
an approach could be expected to learn more rapidly than
tabula rasa reinforcement learning. However, such agents
would need to be capable of reasoning and planning in natural
language, which is a related line of work (see Language for
Structuring Policies in §3.2).

Task-dependent Corpora
Research on transfer from descriptive task-dependent cor-
pora is promising due to its wide application potential. It
also requires development of new environments, as early re-
search may require access to relatively structured and par-
tially grounded forms of descriptive language similarly to
[Narasimhan et al., 2018]. One avenue for early research
are environments with relatively complex but still synthetic
languages, providing information about environmental dynam-
ics or advice about good strategies. For example, in works
studying transfer from descriptive task-dependent language
corpora [Janner et al., 2018; Narasimhan et al., 2018], natural
language sentences could be embedded using representations
from pre-trained language models. Integration of pre-trained
machine reading systems with RL agents trained to query them

could help in extracting useful information from unstructured
task-specific language corpora such as the game manual used
in [Branavan et al., 2012].

4.2 Towards Diverse Environments with
Real-World Semantics

One of the central promises of language in RL is the ability
to rapidly specify and help agents adapt to new goals, re-
ward functions, and environment dynamics. This capability
is not exercised at all by standard RL benchmarks like strat-
egy games (which typically evaluate agents against a single or
small number of fixed reward functions). It is evaluated in only
a limited way by existing instruction following benchmarks,
which operate in closed task domains (navigation, object ma-
nipulation, etc.) and closed worlds. The simplicity of these
tasks is often reflected in the simplicity of the language that de-
scribes them, with small vocabulary sizes and multiple pieces
of independent evidence for the grounding of each word.

Real natural language has important statistical properties,
such as the power-law distribution of word frequencies, that
do not appear in environments with synthetically generated
language and small numbers of entities [Zipf, 1949]. Without
environments that encourage humans to talk about (and force
agents to learn from) complex composition and the “long
tail” of lexicon entries, we cannot hope that RL methods that
incorporate language in closed-world tasks will generalize at
all outside of such tasks.

A natural starting point is provided by open-world video
games like Minecraft [Johnson et al., 2016], in which users
are free to assemble complex structures from simple parts, and
thus have an essentially unlimited universe of possible objects
to describe and goals involving those objects. Looking ahead,
as core machine learning tools for learning from feedback
and demonstrations become sample-efficient enough to use in
the real world, we anticipate that tools combining language
and RL will find applications as wide-ranging as autonomous
vehicles, virtual assistants and household robots.

5 Conclusion
The currently predominant way RL agents are trained restricts
their use to environments where all information about the
policy can be gathered from directly acting in and receiving re-
ward from the environment. This tabula rasa learning results
in low sample efficiency and poor performance when trans-
ferring to other environments. Utilizing natural language in
RL agents could drastically change this by transferring knowl-
edge from natural language corpora to RL tasks, as well as
between tasks, consequently unlocking RL for more diverse
and real-world tasks. While there is a growing body of papers
that incorporate language into RL, most of the research effort
has been focused on simple RL tasks and synthetic languages,
with highly structured and instructive text.

To realize the potential of language in RL, we advocate
for more research into learning from unstructured or descrip-
tive language corpora, with a greater use of NLP tools like
pre-trained language models. Such research also requires de-
velopment of more challenging environments that reflect the
semantics and diversity of the real world.
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Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery
Fine, James Moore, Matthew Hausknecht, Layla El
Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler.
TextWorld: A Learning Environment for Text-based
Games. arXiv:1806.11532 [cs, stat], 2018.

[Das et al., 2017] Abhishek Das, Samyak Datta, Georgia
Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Em-
bodied Question Answering. CVPR, 2017.

[Das et al., 2018] Abhishek Das, Georgia Gkioxari, Stefan
Lee, Devi Parikh, and Dhruv Batra. Neural Modular Con-
trol for Embodied Question Answering. CoRL, 2018.

[Deerwester et al., 1990] Scott Deerwester, Susan T Dumais,
George W Furnas, Thomas K Landauer, and Richard Harsh-
man. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–407,
1990.

[Eisenstein et al., 2009] Jacob Eisenstein, James Clarke, Dan
Goldwasser, and Dan Roth. Reading to learn: constructing
features from semantic abstracts. In ACL, 2009.

[Firth, 1957] John R Firth. A synopsis of linguistic theory,
1957.

[Frome et al., 2013] Andrea Frome, Greg S Corrado, Jon
Shlens, Samy Bengio, Jeff Dean, Marc Aurelio Ranzato,
and Tomas Mikolov. DeViSE: A Deep Visual-Semantic
Embedding Model. In NIPS, 2013.

[Fu et al., 2019] Justin Fu, Anoop Korattikara, Sergey Levine,
and Sergio Guadarrama. From Language to Goals: Inverse
Reinforcement Learning for Vision-Based Instruction Fol-
lowing. In ICLR, 2019.

[Goldberg, 2019] Yoav Goldberg. Assessing BERT’s Syntac-
tic Abilities. CoRR, abs/1901.05287, 2019.

[Gopnik and Meltzoff, 1987] Alison Gopnik and Andrew
Meltzoff. The development of categorization in the sec-
ond year and its relation to other cognitive and linguistic
developments. Child development, 1987.

[Goyal et al., 2019] Prasoon Goyal, Scott Niekum, and Ray-
mond J. Mooney. Using Natural Language for Reward
Shaping in Reinforcement Learning. arXiv:1903.02020 [cs,
stat], 2019.

[Hermann et al., 2017] Karl Moritz Hermann, Felix Hill, Si-
mon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer,
David Szepesvari, Wojciech Marian Czarnecki, Max Jader-
berg, Denis Teplyashin, Marcus Wainwright, Chris Apps,
Demis Hassabis, and Phil Blunsom. Grounded Language
Learning in a Simulated 3d World. arXiv:1706.06551 [cs,
stat], 2017.

https://github.com/maximecb/gym-minigrid


[Ho and Ermon, 2016] Jonathan Ho and Stefano Ermon. Gen-
erative Adversarial Imitation Learning. In NIPS, 2016.

[Janner et al., 2018] Michael Janner, Karthik Narasimhan,
and Regina Barzilay. Representation learning for grounded
spatial reasoning. TACL, 2018.

[Johnson et al., 2016] Matthew Johnson, Katja Hofmann,
Tim Hutton, and David Bignell. The malmo platform for
artificial intelligence experimentation. In IJCAI, pages
4246–4247, 2016.

[Johnson et al., 2017] Justin Johnson, Bharath Hariharan,
Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning. In
CVPR, 2017.

[Kostka et al., 2017] B. Kostka, J. Kwiecieli, J. Kowalski,
and P. Rychlikowski. Text-based adventures of the golovin
AI agent. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG), 2017.

[MacMahon et al., 2006] Matt MacMahon, Brian
Stankiewicz, and Benjamin Kuipers. Walk the talk:
Connecting language, knowledge, and action in route
instructions. In AAAI, 2006.

[Mei et al., 2016] Hongyuan Mei, Mohit Bansal, and
Matthew R. Walter. Listen, Attend, and Walk: Neural
Mapping of Navigational Instructions to Action Sequences.
AAAI, 2016.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg Corrado, and Jeffrey Dean. Distributed Repre-
sentations of Words and Phrases and their Compositionality.
NIPS, 2013.

[Misra et al., 2017] Dipendra Misra, John Langford, and
Yoav Artzi. Mapping Instructions and Visual Observa-
tions to Actions with Reinforcement Learning. EMNLP,
2017.

[Narasimhan et al., 2015] Karthik Narasimhan, Tejas D.
Kulkarni, and Regina Barzilay. Language understanding
for text-based games using deep reinforcement learning. In
EMNLP, 2015.

[Narasimhan et al., 2018] Karthik Narasimhan, Regina Barzi-
lay, and Tommi Jaakkola. Grounding Language for Transfer
in Deep Reinforcement Learning. JAIR, 2018.

[Oh et al., 2017] Junhyuk Oh, Satinder P. Singh, Honglak
Lee, and Pushmeet Kohli. Zero-shot task generalization
with multi-task deep reinforcement learning. In ICML,
2017.

[Peters et al., 2018a] Matthew E. Peters, Mark Neumann,
Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word represen-
tations. In NAACL, 2018.

[Peters et al., 2018b] Matthew E. Peters, Mark Neumann,
Luke Zettlemoyer, and Wen-tau Yih. Dissecting contex-
tual word embeddings: Architecture and representation. In
EMNLP, 2018.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

[Shu et al., 2018] Tianmin Shu, Caiming Xiong, and Richard
Socher. Hierarchical and Interpretable Skill Acquisition in
Multi-task Reinforcement Learning. ICLR, 2018.

[Shusterman et al., 2011] Anna Shusterman, Sang Ah Lee,
and Elizabeth Spelke. Cognitive effects of language on
human navigation. Cognition, 2011.

[Silver et al., 2017] David Silver, Julian Schrittwieser, Karen
Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel, and Demis Has-
sabis. Mastering the game of Go without human knowledge.
Nature, 2017.

[Singh et al., 2002] Satinder Singh, Diane Litman, Michael
Kearns, and Marilyn Walker. Optimizing dialogue manage-
ment with reinforcement learning: Experiments with the
njfun system. JAIR, 2002.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Tellex et al., 2011] Stefanie Tellex, Thomas Kollar, Steven
Dickerson, Matthew R Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. Understanding natural language
commands for robotic navigation and mobile manipulation.
In AAAI, 2011.

[Tesauro, 1995] Gerald Tesauro. Temporal Difference Learn-
ing and TD-Gammon. Communications of the ACM, 1995.

[Torrado et al., 2018] Ruben Rodriguez Torrado, Philip Bon-
trager, Julian Togelius, Jialin Liu, and Diego Perez-Liebana.
Deep reinforcement learning for general video game ai. In
CIG. IEEE, 2018.

[Wang et al., 2016] Sida I Wang, Percy Liang, and Christo-
pher D Manning. Learning Language Games through Inter-
action. In ACL, 2016.

[Wang et al., 2019] Xin Wang, Qiuyuan Huang, Asli
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