
Symbolic Register Automata

Loris D’Antoni1, Tiago Ferreira2, Matteo Sammartino2(B),
and Alexandra Silva2

1 University of Wisconsin–Madison, Madison, WI 53706-1685, USA
loris@cs.wisc.edu

2 University College London, Gower Street, London WC1E 6BT, UK
me@tiferrei.com, {m.sammartino,a.silva}@ucl.ac.uk

Abstract. Symbolic Finite Automata and Register Automata are two
orthogonal extensions of finite automata motivated by real-world prob-
lems where data may have unbounded domains. These automata address
a demand for a model over large or infinite alphabets, respectively. Both
automata models have interesting applications and have been success-
ful in their own right. In this paper, we introduce Symbolic Register
Automata, a new model that combines features from both symbolic and
register automata, with a view on applications that were previously out
of reach. We study their properties and provide algorithms for emptiness,
inclusion and equivalence checking, together with experimental results.

1 Introduction

Finite automata are a ubiquitous formalism that is simple enough to model
many real-life systems and phenomena. They enjoy a large variety of theoret-
ical properties that in turn play a role in practical applications. For example,
finite automata are closed under Boolean operations, and have decidable empti-
ness and equivalence checking procedures. Unfortunately, finite automata have
a fundamental limitation: they can only operate over finite (and typically small)
alphabets. Two orthogonal families of automata models have been proposed to
overcome this: symbolic automata and register automata. In this paper, we show
that these two models can be combined yielding a new powerful model that can
cover interesting applications previously out of reach for existing models.

Symbolic finite automata (SFAs) allow transitions to carry predicates over
rich first-order alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets [12]. For example, an SFA can
define the language of all lists of integers in which the first and last elements are
positive integer numbers. Despite their increased expressiveness, SFAs enjoy the
same closure and decidability properties of finite automata—e.g., closure under
Boolean operations and decidable equivalence and emptiness.
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Register automata (RA) support infinite alphabets by allowing input charac-
ters to be stored in registers during the computation and to be compared against
existing values that are already stored in the registers [17]. For example, an RA
can define the language of all lists of integers in which all numbers appearing in
even positions are the same. RAs do not have some of the properties of finite
automata (e.g., they cannot be determinized), but they still enjoy many useful
properties that have made them a popular model in static analysis, software
verification, and program monitoring [15].

In this paper, we combine the best features of these two models—first order
alphabet theories and registers—into a new model, symbolic register automata
(SRA). SRAs are strictly more expressive than SFAs and RAs. For example,
an SRA can define the language of all lists of integers in which the first and
last elements are positive rational numbers and all numbers appearing in even
positions are the same. This language is not recognizable by either an SFA nor
by an RA.

While other attempts at combining symbolic automata and registers have
resulted in undecidable models with limited closure properties [11], we show
that SRAs enjoy the same closure and decidability properties of (non-symbolic)
register automata. We propose a new application enabled by SRAs and imple-
ment our model in an open-source automata library.

In summary, our contributions are:

– Symbolic Register Automata (SRA): a new automaton model that can handle
complex alphabet theories while allowing symbols at arbitrary positions in the
input string to be compared using equality (Sect. 3).

– A thorough study of the properties of SRAs. We show that SRAs are closed
under intersection, union and (deterministic) complementation, and provide
algorithms for emptiness and forward (bi)simulation (Sect. 4).

– A study of the effectiveness of our SRA implementation on handling regular
expressions with back-references (Sect. 5). We compile a set of benchmarks
from existing regular expressions with back-references (e.g., (\d)[a-z]∗\1)
and show that SRAs are an effective model for such expressions and existing
models such as SFAs and RAs are not. Moreover, we show that SRAs are more
efficient than the java.util.regex library for matching regular expressions
with back-references.

2 Motivating Example

In this section, we illustrate the capabilities of symbolic register automata using
a simple example. Consider the regular expression rp shown in Fig. 1a. This
expression, given a sequence of product descriptions, checks whether the prod-
ucts have the same code and lot number. The reader might not be familiar with
some of the unusual syntax of this expression. In particular, rp uses two back-
references \1 and \2. The semantics of this construct is that the string matched
by the regular expression for \1 (resp. \2) should be exactly the string that
matched the subregular expression r appearing between the first (resp. second)
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C:(.{3}) L:(.) D:[^\s]+( C:\1 L:\2 D:[^\s]+)+
(a) Regular expression rp (with back-reference).

C:X4a L:4 D:bottle C:X4a L:4 D:jar

(b) Example text matched by rp.
C:X4a L:4 D:bottle C:X5a L:4 D:jar

(c) Example text not matched by rp.

C
1

: true/   r1 ‘ ’

D ^\s

true/   r2 true/   r3 L : true/   r4

2
: true/=r1 ‘ ’true/=r2 true/=r3 L : true/=r4 ‘ ’

  ^\s

^\s

  ^\s

:

D‘ ’ :

C

‘ ’

‘ ’

(d) Snippets of a symbolic register automaton Ap corresponding to rp.

Fig. 1. Regular expression for matching products with same code and lot number—i.e.,
the characters of C and L are the same in all the products.

two parenthesis, in this case (.{3}) (resp. (.)). Back-references allow regular
expressions to check whether the encountered text is the same or is different
from a string/character that appeared earlier in the input (see Figs. 1b and c for
examples of positive and negative matches).

Representing this complex regular expression using an automaton model
requires addressing several challenges. The expression rp:

1. operates over large input alphabets consisting of upwards of 216 characters;
2. uses complex character classes (e.g., \s) to describe different sets of characters

in the input;
3. adopts back-references to detect repeated strings in the input.

Existing automata models do not address one or more of these challenges. Finite
automata require one transition for each character in the input alphabet and
blow-up when representing large alphabets. Symbolic finite automata (SFA)
allow transitions to carry predicates over rich structured first-order alphabet
theories and can describe, for example, character classes [12]. However, SFAs
cannot directly check whether a character or a string is repeated in the input.
An SFA for describing the regular expression rp would have to store the charac-
ters after C: directly in the states to later check whether they match the ones of
the second product. Hence, the smallest SFA for this example would require bil-
lions of states! Register automata (RA) and their variants can store characters in
registers during the computation and compare characters against values already
stored in the registers [17]. Hence, RAs can check whether the two products have
the same code. However, RAs only operate over unstructured infinite alphabets
and cannot check, for example, that a character belongs to a given class.

The model we propose in this paper, symbolic register automata (SRA), com-
bines the best features of SFAs and RAs—first-order alphabet theories and
registers—and can address all the three aforementioned challenges. Figure 1d
shows a snippet of a symbolic register automaton Ap corresponding to rp. Each
transition in Ap is labeled with a predicate that describes what characters can
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trigger the transition. For example, ^\s denotes that the transition can be trig-
gered by any non-space character, L denotes that the transition can be triggered
by the character L, and true denotes that the transition can be triggered by any
character. Transitions of the form ϕ/→ ri denote that, if a character x satisfies
the predicate ϕ, the character is then stored in the register ri. For example, the
transition out of state 1 reads any character and stores it in register r1. Finally,
transitions of the form ϕ/= ri are triggered if a character x satisfies the pred-
icate ϕ and x is the same character as the one stored in ri. For example, the
transition out of state 2 can only be triggered by the same character that was
stored in r1 when reading the transition out state 1—i.e., the first characters in
the product codes should be the same.

SRAs are a natural model for describing regular expressions like rp, where
capture groups are of bounded length, and hence correspond to finitely-many
registers. The SRA Ap has fewer than 50 states (vs. more than 100 billion for
SFAs) and can, for example, be used to check whether an input string matches
the given regular expression (e.g., monitoring). More interestingly, in this paper
we study the closure and decidability properties of SRAs and provide an imple-
mentation for our model. For example, consider the following regular expression
rpC that only checks whether the product codes are the same, but not the lot
numbers:

C:(.{3}) L:. D:[^\s]+( C:\1 L:. D:[^\s]+)+

The set of strings accepted by rpC is a superset of the set of strings accepted by
rp. In this paper, we present simulation and bisimulation algorithms that can
check this property. Our implementation can show that rp subsumes rpC in 25 s
and we could not find other tools that can prove the same property.

3 Symbolic Register Automata

In this section we introduce some preliminary notions, we define symbolic register
automata and a variant that will be useful in proving decidability properties.

Preliminaries. An effective Boolean algebra A is a tuple (D, Ψ, � �,⊥,
�,∧,∨,¬), where: D is a set of domain elements; Ψ is a set of predicates
closed under the Boolean connectives and ⊥,� ∈ Ψ . The denotation func-
tion � � : Ψ → 2D is such that �⊥� = ∅ and ��� = D, for all ϕ,ψ ∈ Ψ ,
�ϕ ∨ ψ� = �ϕ� ∪ �ψ�, �ϕ ∧ ψ� = �ϕ� ∩ �ψ�, and �¬ϕ� = D \ �ϕ�. For ϕ ∈ Ψ ,
we write isSat(ϕ) whenever �ϕ� �= ∅ and say that ϕ is satisfiable. A is decidable
if isSat is decidable. For each a ∈ D, we assume predicates atom(a) such that
�atom(a)� = {a}.

Example 1. The theory of linear integer arithmetic forms an effective BA, where
D = Z and Ψ contains formulas ϕ(x) in the theory with one fixed integer variable.
For example, divk := (x mod k) = 0 denotes the set of all integers divisible by k.
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Notation. Given a set S, we write P(S) for its powerset. Given a function
f : A → B, we write f [a �→ b] for the function such that f [a �→ b](a) = b
and f [a �→ b](x) = f(x), for x �= a. Analogously, we write f [S �→ b], with
S ⊆ A, to map multiple values to the same b. The pre-image of f is the function
f−1 : P(B) → P(A) given by f−1(S) = {a | ∃b ∈ S : b = f(a)}; for readability,
we will write f−1(x) when S = {x}. Given a relation R ⊆ A × B, we write aRb
for (a, b) ∈ R.

Model Definition. Symbolic register automata have transitions of the form:

p
ϕ/E,I,U−−−−−→ q

where p and q are states, ϕ is a predicate from a fixed effective Boolean algebra,
and E, I, U are subsets of a fixed finite set of registers R. The intended inter-
pretation of the above transition is: an input character a can be read in state
q if (i) a ∈ �ϕ�, (ii) the content of all the registers in E is equal to a, and (iii)
the content of all the registers in I is different from a. If the transition succeeds
then a is stored into all the registers U and the automaton moves to q.

Example 2. The transition labels in Fig. 1d have been conveniently simplified to
ease intuition. These labels correspond to full SRA labels as follows:

ϕ/→r =⇒ ϕ/∅, ∅, {r} ϕ/=r =⇒ ϕ/{r}, ∅, ∅ ϕ =⇒ ϕ/∅, ∅, ∅ .

Given a set of registers R, the transitions of an SRA have labels over the following
set: LR = Ψ × {(E, I, U) ∈ P(R) × P(R) × P(R) | E ∩ I = ∅}. The condition
E ∩ I = ∅ guarantees that register constraints are always satisfiable.

Definition 1 (Symbolic Register Automaton). A symbolic register
automaton (SRA) is a 6-tuple (R,Q, q0, v0, F,Δ), where R is a finite set of reg-
isters, Q is a finite set of states, q0 ∈ Q is the initial state, v0 : R → D ∪ {�} is
the initial register assignment (if v0(r) = �, the register r is considered empty),
F ⊆ Q is a finite set of final states, and Δ ⊆ Q × LR × Q is the transition

relation. Transitions (p, (ϕ, �), q) ∈ Δ will be written as p
ϕ/�−−→ q.

An SRA can be seen as a finite description of a (possibly infinite) labeled tran-
sition system (LTS), where states have been assigned concrete register values,
and transitions read a single symbol from the potentially infinite alphabet. This
so-called configuration LTS will be used in defining the semantics of SRAs.

Definition 2 (Configuration LTS). Given an SRA S, the configuration LTS
CLTS(S) is defined as follows. A configuration is a pair (p, v) where p ∈ Q is
a state in S and a v : R → D ∪ {�} is register assignment; (q0, v0) is called the
initial configuration; every (q, v) such that q ∈ F is a final configuration. The
set of transitions between configurations is defined as follows:

p
ϕ/E,I,U−−−−−→ q ∈ Δ E ⊆ v−1(a) I ∩ v−1(a) = ∅

(p, v) a−→ (q, v[U �→ a]) ∈ CLTS(S)
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Intuitively, the rule says that a SRA transition from p can be instantiated to
one from (p, v) that reads a when the registers containing the value a, namely
v−1(a), satisfy the constraint described by E, I (a is contained in registers E
but not in I). If the constraint is satisfied, all registers in U are assigned a.

A run of the SRA S is a sequence of transitions in CLTS(S) starting from the
initial configuration. A configuration is reachable whenever there is a run ending
up in that configuration. The language of an SRA S is defined as

L (S) := {a1 . . . an ∈ Dn | ∃(q0, v0)
a1−→ . . .

an−−→ (qn, vn) ∈ CLTS(S), qn ∈ F}
An SRA S is deterministic if its configuration LTS is; namely, for every word
w ∈ D� there is at most one run in CLTS(S) spelling w. Determinism is important
for some application contexts, e.g., for runtime monitoring. Since SRAs subsume
RAs, nondeterministic SRAs are strictly more expressive than deterministic ones,
and language equivalence is undecidable for nondeterministic SRAs [27].

We now introduce the notions of simulation and bisimulation for SRAs, which
capture whether one SRA behaves “at least as” or “exactly as” another one.

Definition 3 ((Bi)simulation for SRAs). A simulation R on SRAs S1 and
S2 is a binary relation R on configurations such that (p1, v1)R(p2, v2) implies:

– if p1 ∈ F1 then p2 ∈ F2;
– for each transition (p1, v1)

a−→ (q1, w1) in CLTS(S1), there exists a transition
(p2, v2)

a−→ (q2, w2) in CLTS(S2) such that (q1, w1)R(q2, w2).

A simulation R is a bisimulation if R−1 is a also a simulation. We write S1 ≺ S2
(resp. S1 ∼ S2) whenever there is a simulation (resp. bisimulation) R such that
(q01, v01)R(q02, v02), where (q0i, v0i) is the initial configuration of Si, for i = 1, 2.

We say that an SRA is complete whenever for every configuration (p, v) and
a ∈ D there is a transition (p, v) a−→ (q, w) in CLTS(S). The following results
connect similarity and language inclusion.

Proposition 1. If S1 ≺ S2 then L (S1) ⊆ L (S2). If S1 and S2 are deterministic
and complete, then the other direction also holds.

It is worth noting that given a deterministic SRA we can define its completion
by adding transitions so that every value a ∈ D can be read from any state.

Remark 1. RAs and SFAs can be encoded as SRAs on the same state-space:

– An RA is encoded as an SRA with all transition guards �;
– an SFA can be encoded as an SRA with R = ∅, with each SFA transition

p
ϕ−→ q encoded as p

ϕ/∅,∅,∅−−−−−→ q. Note that the absence of registers implies that
the CLTS always has finitely many configurations.

SRAs are strictly more expressive than both RAs and SFAs. For instance, the
language {n0n1 . . . nk | n0 = nk, even(ni), ni ∈ Z, i = 1, . . . , k} of finite sequences
of even integers where the first and last one coincide, can be recognized by an
SRA, but not by an RA or by an SFA.
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Boolean Closure Properties. SRAs are closed under intersection and union.
Intersection is given by a standard product construction whereas union is
obtained by adding a new initial state that mimics the initial states of both
automata.

Proposition 2 (Closure under intersection and union). Given SRAs S1
and S2, there are SRAs S1∩S2 and S1∪S2 such that L (S1∩S2) = L (S1)∩L (S2)
and L (S1 ∪ S2) = L (S1) ∪ L (S2).

SRAs in general are not closed under complementation, because RAs are not.
However, we still have closure under complementation for a subclass of SRAs.

Proposition 3. Let S be a complete and deterministic SRA, and let S be the
SRA defined as S, except that its final states are Q\F . Then L (S) = D� \L (S).

4 Decidability Properties

In this section we will provide algorithms for checking determinism and emptiness
for an SRA, and (bi)similarity of two SRAs. Our algorithms leverage symbolic
techniques that use the finite syntax of SRAs to indirectly operate over the
underlying configuration LTS, which can be infinite.

Single-Valued Variant. To study decidability, it is convenient to restrict reg-
ister assignments to injective ones on non-empty registers, that is functions
v : R → D ∪ {�} such that v(r) = v(s) and v(r) �= � implies r = s. This is
also the approach taken for RAs in the seminal papers [17,27]. Both for RAs
and SRAs, this restriction does not affect expressivity. We say that an SRA is
single-valued if its initial assignment v0 is injective on non-empty registers. For
single-valued SRAs, we only allow two kinds of transitions:

Read transition: p
ϕ/r=

−−−→ q triggers when a ∈ �ϕ� and a is already stored in r.

Fresh transition: p
ϕ/r•
−−−→ q triggers when the input a ∈ �ϕ� and a is fresh, i.e.,

is not stored in any register. After the transition, a is stored into r.

SRAs and their single-valued variants have the same expressive power. Trans-
lating single-valued SRAs to ordinary ones is straightforward:

p
ϕ/r=

−−−→ q =⇒ p
ϕ/{r},∅,∅−−−−−−→ q p

ϕ/r•
−−−→ q =⇒ p

ϕ/∅,R,{r}−−−−−−→ q

The opposite translation requires a state-space blow up, because we need to
encode register equalities in the states.

Theorem 1. Given an SRA S with n states and r registers, there is a single-
valued SRA S′ with O(nrr) states and r+1 registers such that S ∼ S′. Moreover,
the translation preserves determinism.
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Normalization. While our techniques are inspired by analogous ones for non-
symbolic RAs, SRAs present an additional challenge: they can have arbitrary
predicates on transitions. Hence, the values that each transition can read, and
thus which configurations it can reach, depend on the history of past transitions
and their predicates. This problem emerges when checking reachability and sim-
ilarity, because a transition may be disabled by particular register values, and so
lead to unsound conclusions, a problem that does not exist in register automata.

Example 3. Consider the SRA below, defined over the BA of integers.

All predicates on transitions are satisfiable, yet L (S) = ∅. To go from 0 to 1, S
must read a value n such that div3(n) and n �= 0 and then n is stored into r. The
transition from 1 to 2 can only happen if the content of r also satisfies div5(n) and
n ∈ [0, 10]. However, there is no n satisfying div3(n)∧n �= 0∧div5(n)∧n ∈ [0, 10],
hence the transition from 1 to 2 never happens.

To handle the complexity caused by predicates, we introduce a way of normaliz-
ing an SRA to an equivalent one that stores additional information about input
predicates. We first introduce some notation and terminology.

A register abstraction θ for S, used to “keep track” of the domain of regis-
ters, is a family of predicates indexed by the registers R of S. Given a register
assignment v, we write v |= θ whenever v(r) ∈ �θr� for v(r) �= �, and θr = ⊥
otherwise. Hereafter we shall only consider “meaningful” register abstractions,
for which there is at least one assignment v such that v |= θ.

With the contextual information about register domains given by θ, we say

that a transition p
ϕ/�−−→ q ∈ Δ is enabled by θ whenever it has at least an instance

(p, v) a−→ (q, w) in CLTS(S), for all v |= θ. Enabled transitions are important when
reasoning about reachability and similarity.

Checking whether a transition has at least one realizable instance in the CLTS
is difficult in practice, especially when � = r•, because it amounts to checking
whether �ϕ� \ img(v) �= ∅, for all injective v |= θ.

To make the check for enabledness practical we will use minterms. For a set
of predicates Φ, a minterm is a minimal satisfiable Boolean combination of all
predicates that occur in Φ. Minterms are the analogue of atoms in a complete
atomic Boolean algebra. E.g. the set of predicates Φ = {x > 2, x < 5} over the
theory of linear integer arithmetic has minterms mint(Φ) = {x > 2∧x < 5, ¬x >
2 ∧ x < 5, x > 2 ∧ ¬x < 5}. Given ψ ∈ mint(Φ) and ϕ ∈ Φ, we will write ϕ � ψ
whenever ϕ appears non-negated in ψ, for instance (x > 2) � (x > 2 ∧ ¬x < 5).
A crucial property of minterms is that they do not overlap, i.e., isSat(ψ1 ∧ ψ2)
if and only if ψ1 = ψ2, for ψ1 and ψ2 minterms.

Lemma 1 (Enabledness). Let θ be a register abstraction such that θr is a

minterm, for all r ∈ R. If ϕ is a minterm, then p
ϕ/�−−→ q is enabled by θ iff:
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(1) if � = r=, then ϕ = θr; (2) if � = r•, then |�ϕ�| > E (θ, ϕ),
where E (θ, ϕ) = |{r ∈ R | θr = ϕ}| is the # of registers with values from �ϕ�.

Intuitively, (1) says that if the transition reads a symbol stored in r satisfying ϕ,
the symbol must also satisfy θr, the range of r. Because ϕ and θr are minterms,
this only happens when ϕ = θr. (2) says that the enabling condition �ϕ� \
img(v) �= ∅, for all injective v |= θ, holds if and only if there are fewer registers
storing values from ϕ than the cardinality of ϕ. That implies we can always
find a fresh element in �ϕ� to enable the transition. Registers holding values
from ϕ are exactly those r ∈ R such that θr = ϕ. Both conditions can be
effectively checked: the first one is a simple predicate-equivalence check, while the
second one amounts to checking whether ϕ holds for at least a certain number
k of distinct elements. This can be achieved by checking satisfiability of ϕ ∧
¬atom(a1) ∧ · · · ∧ ¬atom(ak−1), for a1, . . . , ak−1 distinct elements of �ϕ�.

Remark 2. Using single-valued SRAs to check enabledness might seem like a
restriction. However, if one would start from a generic SRA, the process to
check enabledness would contain an extra step: for each state p, we would have
to keep track of all possible equations among registers. In fact, register equalities
determine whether (i) register constraints of an outgoing transition are satisfi-
able; (ii) how many elements of the guard we need for the transition to happen,
analogously to condition 2 of Lemma 1. Generating such equations is the key
idea behind Theorem 1, and corresponds precisely to turning the SRA into a
single-valued one.

Given any SRA, we can use the notion of register abstraction to build an equiva-
lent normalized SRA, where (i) states keep track of how the domains of registers
change along transitions, (ii) transitions are obtained by breaking the one of the
original SRA into minterms and discarding the ones that are disabled according
to Lemma 1. In the following we write mint(S) for the minterms for the set of

predicates {ϕ | p
ϕ/�−−→ q ∈ Δ} ∪ {atom(v0(r)) | v0(r) ∈ D, r ∈ R}. Observe that

an atomic predicate always has an equivalent minterm, hence we will use atomic
predicates to define the initial register abstraction.

Definition 4 (Normalized SRA). Given an SRA S, its normalization N(S)
is the SRA (R,N(Q),N(q0), v0,N(F ),N(Δ)) where:

– N(Q) = {θ | θ is a register abstraction over mint(S)∪{⊥} }×Q; we will write
θ � q for (θ, q) ∈ N(Q).

– N(q0) = θ0 � q0, where (θ0)r = atom(v0(r)) if v0(r) ∈ D, and (θ0)r = ⊥ if
v0(r) = �;

– N(F ) = {θ � p ∈ N(Q) | p ∈ F}
– N(Δ) ={θ � p

θr/r=

−−−−→ θ � q | p
ϕ/r=

−−−→ q ∈ Δ,ϕ � θr} ∪
{θ � p

ψ/r•
−−−→ θ[r �→ ψ] � q | p

ϕ/r•
−−−→ q ∈ Δ,ϕ � ψ, |�ψ�| > E (θ, ψ)}
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The automaton N(S) enjoys the desired property: each transition from θ � p is
enabled by θ, by construction. N(S) is always finite. In fact, suppose S has n
states, m transitions and r registers. Then N(S) has at most m predicates, and
|mint(S)| is O(2m). Since the possible register abstractions are O(r2m), N(S) has
O(nr2m) states and O(mr223m) transitions.

Example 4. We now show the normalized version of Example 3. The first step is
computing the set mint(S) of minterms for S, i.e., the satisfiable Boolean combi-
nations of {atom(0), div3, [0, 10] ∧ div5, < 0∨ > 10}. For simplicity, we represent
minterms as bitvectors where a 0 component means that the corresponding pred-
icate is negated, e.g., [1, 1, 1, 0] stands for the minterm atom(0)∧ ([0, 10]∧div3)∧
div5 ∧ ¬(< 0∨ > 10). Minterms and the resulting SRA N(S) are shown below.

On each transition we show how it is broken down to minterms, and for each
state we show the register abstraction (note that state 1 becomes two states in
N(S)). The transition from 1 to 2 is not part of N(S) – this is why it is dotted. In
fact, in every register abstraction [r �→ m] reachable at state 1, the component
for the transition guard [0, 10]∧div5 in the minterm m (3rd component) is 0, i.e.,
([0, 10] ∧ div5) �� m. Intuitively, this means that r will never be assigned a value
that satisfies [0, 10]∧div5. As a consequence, the construction of Definition 4 will
not add a transition from 1 to 2.

Finally, we show that the normalized SRA behaves exactly as the original one.

Proposition 4. (p, v) ∼ (θ � p, v), for all p ∈ Q and v |= θ. Hence, S ∼ N(S).

Emptiness and Determinism. The transitions of N(S) are always enabled
by construction, therefore every path in N(S) always corresponds to a run in
CLTS(N(S)).

Lemma 2. The state θ�p is reachable in N(S) if and only if there is a reachable
configuration (θ � p, v) in CLTS(N(S)) such that v |= θ. Moreover, if (θ � p, v)
is reachable, then all configurations (θ � p,w) such that w |= θ are reachable.

Therefore, using Proposition 4, we can reduce the reachability and emptiness
problems of S to that of N(S).

Theorem 2 (Emptiness). There is an algorithm to decide reachability of any
configuration of S, hence whether L (S) = ∅.
Proof. Let (p, v) be a configuration of S. To decide whether it is reachable in
CLTS(S), we can perform a visit of N(S) from its initial state, stopping when a
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state θ � p such that v |= θ is reached. If we are just looking for a final state, we
can stop at any state such that p ∈ F . In fact, by Proposition 4, there is a run
in CLTS(S) ending in (p, v) if and only if there is a run in CLTS(N(S)) ending in
(θ � p, v) such that v |= θ. By Lemma 2, the latter holds if and only if there is a
path in N(S) ending in θ � p. This algorithm has the complexity of a standard
visit of N(S), namely O(nr2m + mr223m). ��

Now that we characterized which transitions are reachable, we define what it
means for a normalized SRA to be deterministic and we show that determinism
is preserved by the translation from SRA.

Proposition 5 (Determinism). N(S) is deterministic if and only if for all

reachable transitions p
ϕ1/�1−−−−→ q1, p

ϕ2/�2−−−−→ q2 ∈ N(Δ) the following holds: ϕ1 �= ϕ2

whenever either (1) �1 = �2 and q1 �= q2, or; (2) �1 = r•, �2 = s•, and r �= s;

One can check determinism of an SRA by looking at its normalized version.

Proposition 6. S is deterministic if and only if N(S) is deterministic.

Similarity and Bisimilarity. We now introduce a symbolic technique to
decide similarity and bisimilarity of SRAs. The basic idea is similar to sym-
bolic (bi)simulation [20,27] for RAs. Recall that RAs are SRAs whose transition
guards are all �. Given two RAs S1 and S2 a symbolic simulation between them
is defined over their state spaces Q1 and Q2, not on their configurations. For this
to work, one needs to add an extra piece of information about how registers of
the two states are related. More precisely, a symbolic simulation is a relation on
triples (p1, p2, σ), where p1 ∈ Q1, p2 ∈ Q2 and σ ⊆ R1 × R2 is a partial injective
function. This function encodes constraints between registers: (r, s) ∈ σ is an
equality constraint between r ∈ R1 and s ∈ R2, and (r, s) /∈ σ is an inequality
constraint. Intuitively, (p1, p2, σ) says that all configurations (p1, v1) and (p2, v2)
such that v1 and v2 satisfy σ – e.g., v1(r) = v2(s) whenever (r, s) ∈ σ – are in
the simulation relation (p1, v1) ≺ (p2, v2). In the following we will use v1 �� v2 to
denote the function encoding constraints among v1 and v2, explicitly: σ(r) = s
if and only if v1(r) = v2(s) and v1(r) �= �.

Definition 5 (Symbolic (bi)similarity [27]). A symbolic simulation is a rela-
tion R ⊆ Q1 ×Q1 ×P(R1 ×R2) such that if (p1, p2, σ) ∈ R, then p1 ∈ F1 implies
p2 ∈ F2, and if p1

�−→ q1 ∈ Δ1
1 then:

1. if � = r=:

(a) if r ∈ dom(σ), then there is p2
σ(r)=−−−−→ q2 ∈ Δ2 such that (q1, q2, σ) ∈ R.

(b) if r /∈ dom(σ) then there is p2
s•
−→ q2 ∈ Δ2 s.t. (q1, q2, σ[r �→ s]) ∈ R.

1 We will keep the � guard implicit for succinctness.
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2 if � = r•:
(a) for all s ∈ R2 \ img(σ), there is p2

s=

−−→ q2 ∈ Δ2 such that (q1, q2, σ[r �→
s]) ∈ R, and;

(b) there is p2
s•
−→ q2 ∈ Δ2 such that (q1, q2, σ[r �→ s]) ∈ R.

Here σ[r �→ s] stands for σ \ (σ−1(s), s) ∪ (r, s), which ensures that σ stays
injective when updated.

Given a symbolic simulation R, its inverse is defined as R−1 = {t−1 | t ∈ R},
where (p1, p2, σ)−1 = (p2, p1, σ−1). A symbolic bisimulation R is a relation such
that both R and R−1 are symbolic simulations.

Case 1 deals with cases when p1 can perform a transition that reads the register
r. If r ∈ dom(σ), meaning that r and σ(r) ∈ R2 contain the same value, then p2
must be able to read σ(r) as well. If r /∈ dom(σ), then the content of r is fresh
w.r.t. p2, so p2 must be able to read any fresh value—in particular the content
of r. Case 2 deals with the cases when p1 reads a fresh value. It ensures that p2
is able to read all possible values that are fresh for p1, be them already in some
register s – i.e., s ∈ R2 \ img(σ), case 2(a) – or fresh for p2 as well – case 2(b). In
all these cases, σ must be updated to reflect the new equalities among registers.

Keeping track of equalities among registers is enough for RAs, because the
actual content of registers does not determine the capability of a transition to
fire (RA transitions have implicit � guards). As seen in Example 3, this is no
longer the case for SRAs: a transition may or may not happen depending on the
register assignment being compatible with the transition guard.

As in the case of reachability, normalized SRAs provide the solution to this
problem. We will reduce the problem of checking (bi)similarity of S1 and S2 to
that of checking symbolic (bi)similarity on N(S1) and N(S2), with minor modifi-
cations to the definition. To do this, we need to assume that minterms for both
N(S1) and N(S2) are computed over the union of predicates of S1 and S2.

Definition 6 (N-simulation). A N-simulation on S1 and S2 is a relation R ⊆
N(Q1) × N(Q2) × P(R1 × R2), defined as in Definition 5, with the following
modifications:

(i) we require that θ1�p1
ϕ1/�1−−−−→ θ′

1�q1 ∈ N(Δ1) must be matched by transitions

θ2 � p2
ϕ2/�2−−−−→ θ′

2 � q2 ∈ N(Δ2) such that ϕ2 = ϕ1.
(ii) we modify case 2 as follows (changes are underlined):

2(a)’ for all s ∈ R2 \ img(σ) such that ϕ1 = (θ2)s, there is θ2 � p2
ϕ1/s=

−−−−→
θ′
2 � q2 ∈ N(Δ2) such that (θ′

1 � q1, θ
′
2 � q2, σ[r �→ s]) ∈ R, and;

2(b)’ if E (θ1, ϕ1) + E (θ2, ϕ1) < |�ϕ1�|, then there is θ2 � p2
ϕ1/s•
−−−−→ θ′

2 � q2 ∈
N(Δ2) such that (θ′

1 � q1, θ
′
2 � q2, σ[r �→ s]) ∈ R.

A N-bisimulation R is a relation such that both R and R−1 are N-simulations.
We write S1

N≺ S2 (resp. S1
N∼ S2) if there is a N-simulation (resp. bisimulation)

R such that (N(q01),N(q02), v01 �� v02) ∈ R.
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The intuition behind this definition is as follows. Recall that, in a normalized
SRA, transitions are defined over minterms, which cannot be further broken
down, and are mutually disjoint. Therefore two transitions can read the same
values if and only if they have the same minterm guard. Thus condition (i) makes
sure that matching transitions can read exactly the same set of values. Analo-
gously, condition (ii) restricts how a fresh transition of N(S1) must be matched
by one of N(S2): 2(a)’ only considers transitions of N(S2) reading registers s ∈ R2

such that ϕ1 = (θ2)s because, by definition of normalized SRA, θ2 � p2 has no
such transition if this condition is not met. Condition 2(b)’ amounts to requiring
a fresh transition of N(S2) that is enabled by both θ1 and θ2 (see Lemma 1), i.e.,
that can read a symbol that is fresh w.r.t. both N(S1) and N(S2).

N-simulation is sound and complete for standard simulation.

Theorem 3. S1 ≺ S2 if and only if S1
N≺ S2.

As a consequence, we can decide similarity of SRAs via their normalized versions.
N-simulation is a relation over a finite set, namely N(Q1)×N(Q2)×P(R1 ×R2),
therefore N-similarity can always be decided in finite time. We can leverage
this result to provide algorithms for checking language inclusion/equivalence for
deterministic SRAs (recall that they are undecidable for non-deterministic ones).

Theorem 4. Given two deterministic SRAs S1 and S2, there are algorithms to
decide L (S1) ⊆ L (S2) and L (S1) = L (S2).

Proof. By Proposition 1 and Theorem 3, we can decide L (S1) ⊆ L (S2) by

checking S1
N≺ S2. This can be done algorithmically by iteratively building a

relation R on triples that is an N-simulation on N(S1) and N(S2). The algorithm
initializes R with (N(q01),N(q02), v01 �� v02), as this is required to be in R

by Definition 6. Each iteration considers a candidate triple t and checks the
conditions for N-simulation. If satisfied, it adds t to R and computes the next
set of candidate triples, i.e., those which are required to belong to the simulation
relation, and adds them to the list of triples still to be processed. If not, the
algorithm returns L (S1) �⊆ L (S2). The algorithm terminates returning L (S1) ⊆
L (S2) when no triples are left to process. Determinism of S1 and S2, and hence
of N(S1) and N(S2) (by Proposition 6), ensures that computing candidate triples
is deterministic. To decide L (S1) = L (S2), at each iteration we need to check
that both t and t−1 satisfy the conditions for N-simulation.

If S1 and S2 have, respectively, n1, n2 states, m1,m2 transitions, and r1, r2
registers, the normalized versions have O(n1r12m1) and O(n2r22m2) states. Each
triple, taken from the finite set N(Q1)×N(Q2)×P(R1×R2), is processed exactly
once, so the algorithm iterates O(n1n2r1r22m1+m2+r1r2) times. ��

5 Evaluation

We have implemented SRAs in the open-source Java library SVPALib [26]. In
our implementation, constructions are computed lazily when possible (e.g., the
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normalized SRA for emptiness and (bi)similarity checks). All experiments were
performed on a machine with 3.5 GHz Intel Core i7 CPU with 16 GB of RAM
(JVM 8 GB), with a timeout value of 300 s. The goal of our evaluation is to
answer the following research questions:

Q1: Are SRAs more succinct than existing models when processing strings over
large but finite alphabets? (Sect. 5.1)

Q2: What is the performance of membership for deterministic SRAs and how
does it compare to the matching algorithm in java.util.regex? (Sect. 5.2)

Q3: Are SRA decision procedures practical? (Sect. 5.3)

Benchmarks. We focus on regular expressions with back-references, therefore
all our benchmarks operate over the Boolean algebra of Unicode characters with
interval—i.e., the set of characters is the set of all 216 UTF-16 characters and
the predicates are union of intervals (e.g., [a-zA-Z]).2 Our benchmark set con-
tains 19 SRAs that represent variants of regular expressions with back-references
obtained from the regular-expression crowd-sourcing website RegExLib [23]. The
expressions check whether inputs have, for example, matching first/last name ini-
tials or both (Name-F, Name-L and Name), correct Product Codes/Lot number
of total length n (Pr-Cn, Pr-CLn), matching XML tags (XML), and IP addresses
that match for n positions (IPn). We also create variants of the product bench-
mark presented in Sect. 2 where we vary the numbers of characters in the code
and lot number. All the SRAs are deterministic.

5.1 Succinctness of SRAs vs SFAs

In this experiment, we relate the size of SRAs over finite alphabets to the size
of the smallest equivalent SFAs. For each SRA, we construct the equivalent
SFA by equipping the state space with the values stored in the registers at each
step (this construction effectively builds the configuration LTS). Figure 2a shows
the results. As expected, SFAs tend to blow up in size when the SRA contains
multiple registers or complex register values. In cases where the register values
range over small sets (e.g., [0-9]) it is often feasible to build an SFA equivalent
to the SRA, but the construction always yields very large automata. In cases
where the registers can assume many values (e.g., 216) SFAs become prohibitively
large and do not fit in memory. To answer Q1, even for finite alphabets, it is
not feasible to compile SRAs to SFAs. Hence, SRAs are a succinct model.

5.2 Performance of Membership Checking

In this experiment, we measure the performance of SRA membership, and we
compare it with the performance of the java.util.regex matching algorithm.
2 Our experiments are over finite alphabets, but the Boolean algebra can be infinite

by taking the alphabet to be positive integers and allowing intervals to contain ∞ as
upper bound. This modification does not affect the running time of our procedures,
therefore we do not report it.
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SRA SFA
states tr reg |reg| states tr

IP2 44 46 3 10 4,013 4,312
IP3 44 46 4 10 39,113 42,112
IP4 44 46 5 10 372,113 402,112
IP6 44 46 7 10 — —
IP9 44 46 10 10 — —

Name-F 7 10 2 26 201 300
Name-L 7 10 2 26 129 180
Name 7 10 3 26 3,201 4,500
XML 12 16 4 52 — —
Pr-C2 26 28 3 216 — —
Pr-C3 28 30 4 216 — —
Pr-C4 30 32 5 216 — —
Pr-C6 34 36 7 216 — —
Pr-C9 40 42 10 216 — —
Pr-CL2 26 28 3 216 — —
Pr-CL3 28 30 4 216 — —
Pr-CL4 30 32 5 216 — —
Pr-CL6 34 36 7 216 — —
Pr-CL9 40 42 10 216 — —

(a) Size of SRAs vs SFAs. (—) denotes the
SFA didn’t fit in memory. |reg| denotes how
many different characters a register stored.

SRA S1 SRA S2 L1=∅ L1=L1 L2 ⊆ L1
Pr-C2 Pr-CL2 0.125s 0.905s 3.426s
Pr-C3 Pr-CL3 1.294s 5.558s 24.688s
Pr-C4 Pr-CL4 13.577s 55.595s —
Pr-C6 Pr-CL6 — — —
Pr-CL2 Pr-C2 1.067s 0.952s 0.889s
Pr-CL3 Pr-C3 10.998s 11.104s 11.811s
Pr-CL4 Pr-C4 — — —
Pr-CL6 Pr-C6 — — —
IP-2 IP-3 0.125s 0.408s 1.845s
IP-3 IP-4 1.288s 2.953s 21.627s
IP-4 IP-6 18.440s 42.727s —
IP-6 IP-9 — — —

(b) Performance of decision procedures.
In the table Li = L (Si), for i = 1, 2.
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Fig. 2. Experimental results.

For each benchmark, we generate inputs of length varying between approxi-
mately 100 and 108 characters and measure the time taken to check member-
ship. Figure 2c shows the results. The performance of SRA (resp. Java) is not
particularly affected by the size of the expression. Hence, the lines for different
expressions mostly overlap. As expected, for SRAs the time taken to check mem-
bership grows linearly in the size of the input (axes are log scale). Remarkably,
even though our implementation does not employ particular input processing
optimizations, it can still check membership for strings with tens of millions of
characters in less than 10 s. We have found that our implementation is more
efficient than the Java regex library, matching the same input an average of
50 times faster than java.util.regex.Matcher. java.util.regex.Matcher
seems to make use of a recursive algorithm to match back-references, which
means it does not scale well. Even when given the maximum stack size, the
JVM will return a Stack Overflow for inputs as small as 20,000 characters. Our
implementation can match such strings in less than 2 s. To answer Q2, deter-
ministic SRAs can be efficiently executed on large inputs and perform
better than the java.util.regex matching algorithm.
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5.3 Performance of Decision Procedures

In this experiment, we measure the performance of SRAs simulation and bisim-
ulation algorithms. Since all our SRAs are deterministic, these two checks cor-
respond to language equivalence and inclusion. We select pairs of benchmarks
for which the above tests are meaningful (e.g., variants of the problem discussed
at the end of Sect. 2). The results are shown in Fig. 2b. As expected, due to the
translation to single-valued SRAs, our decision procedures do not scale well in
the number of registers. This is already the case for classic register automata
and it is not a surprising result. However, our technique can still check equiva-
lence and inclusion for regular expressions that no existing tool can handle. To
answer Q3, bisimulation and simulation algorithms for SRAs only scale
to small numbers of registers.

6 Conclusions

In this paper we have presented Symbolic Register Automata, a novel class of
automata that can handle complex alphabet theories while allowing symbol com-
parisons for equality. SRAs encompass – and are strictly more powerful – than
both Register and Symbolic Automata. We have shown that they enjoy the same
closure and decidability properties of the former, despite the presence of arbi-
trary guards on transitions, which are not allowed by RAs. Via a comprehensive
set of experiments, we have concluded that SRAs are vastly more succinct than
SFAs and membership is efficient on large inputs. Decision procedures do not
scale well in the number of registers, which is already the case for basic RAs.

Related Work. RAs were first introduced in [17]. There is an extensive lit-
erature on register automata, their formal languages and decidability proper-
ties [7,13,21,22,25], including variants with global freshness [20,27] and totally
ordered data [4,14]. SRAs are based on the original model of [17], but are much
more expressive, due to the presence of guards from an arbitrary decidable
theory.

In recent work, variants over richer theories have appeared. In [9] RA over
rationals were introduced. They allow for a restricted form of linear arithmetic
among registers (RAs with arbitrary linear arithmetic subsume two-counter
automata, hence are undecidable). SRAs do not allow for operations on reg-
isters, but encompass a wider range of theories without any loss in decidability.
Moreover, [9] does not study Boolean closure properties. In [8,16], RAs allow-
ing guards over a range of theories – including (in)equality, total orders and
increments/sums – are studied. Their focus is different than ours as they are
interested primarily in active learning techniques, and several restrictions are
placed on models for the purpose of the learning process. We can also relate
SRAs with Quantified Event Automata [2], which allow for guards and assign-
ments to registers on transitions. However, in QEA guards can be arbitrary,
which could lead to several problems, e.g. undecidable equivalence.
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Symbolic automata were first introduced in [28] and many variants of them
have been proposed [12]. The one that is closer to SRAs is Symbolic Extended
Finite Automata (SEFA) [11]. SEFAs are SFAs in which transitions can read
more than one character at a time. A transition of arity k reads k symbols which
are consumed if they satisfy the predicate ϕ(x1, . . . , xk). SEFAs allow arbitrary
k-ary predicates over the input theory, which results in most problems being
undecidable (e.g., equivalence and intersection emptiness) and in the model not
being closed under Boolean operations. Even when deterministic, SEFAs are
not closed under union and intersection. In terms of expressiveness, SRAs and
SEFAs are incomparable. SRAs can only use equality, but can compare symbols
at arbitrary points in the input while SEFAs can only compare symbols within
a constant window, but using arbitrary predicates.

Several works study matching techniques for extended regular expres-
sions [3,5,18,24]. These works introduce automata models with ad-hoc features
for extended regular constructs – including back-references – but focus on effi-
cient matching, without studying closure and decidability properties. It is also
worth noting that SRAs are not limited to alphanumeric or finite alphabets.
On the negative side, SRAs cannot express capturing groups of an unbounded
length, due to the finitely many registers. This limitation is essential for
decidability.

Future Work. In [21] a polynomial algorithm for checking language equivalence
of deterministic RAs is presented. This crucially relies on closure properties of
symbolic bisimilarity, some of which are lost for SRAs. We plan to investigate
whether this algorithm can be adapted to our setting. Extending SRAs with
more complex comparison operators other than equality (e.g., a total order <)
is an interesting research question, but most extensions of the model quickly
lead to undecidability. We also plan to study active automata learning for SRAs,
building on techniques for SFAs [1], RAs [6,8,16] and nominal automata [19].
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