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Abstract

There has been fantastic progress in solving GPCR crystal structures. However, the 

ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited 

by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection 

and molecular mechanics approaches cannot explain the full complexity of molecular 

interactions.  Quantum Mechanics approaches (QM) are often too computationally expensive, 

but the Fragment Molecular Orbital (FMO) method offers an excellent solution that combines 

accuracy, speed and the ability to reveal key interactions that would otherwise be hard to 

detect. Integration of GPCR crystallography or homology modelling with FMO reveals 

atomistic details of the individual contributions of each residue and water molecule towards 

ligand binding, including an analysis of their chemical nature.
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Introduction

G-protein coupled receptor (GPCR) - ligand interactions are fundamental to almost all 

processes occurring in living organisms and as such it is perhaps unsurprising that they are 

the targets of about 40% of all prescribed drugs [1].  What is surprising is that these drugs only 

target around 50 of the 800 known GPCRs [2].  Thus, there is huge potential in terms of the 

number of new therapeutic targets within this family [1,2].  Further progress in GPCR drug 

discovery is highly dependent on the availability of the protein structural information and an 

understanding of the interactions between the receptors and small molecule drug candidates 

[3]. 

Recent breakthroughs in structural biology have resulted in the solution of over 260 

structures of GPCR-ligand complexes comprising more than 50 unique GPCRs [4] 

(http://gpcrdb.org/structure/statistics [5] or https://zhanglab.ccmb.med.umich.edu/GPCR-

EXP/. However, the analysis of molecular interactions in the atomic-resolution structures is 

usually performed either by ‘visual inspection’ or with simple molecular mechanics (MM) 

models that cannot accurately explain the full complexity of those interactions [6] or their 

chemical nature.  In many cases, the mechanisms by which a particular ligand interacts with 

its receptor remain unclear, making rationalization of affinity measurements challenging.

Recently, several notable reports have been published [6-9] that emphasized the 

crucial role of a large number of ‘non-obvious’ interactions in receptor-ligand binding. These 

include CH/ [10,11], halogen/ [12], cation/ [13] and non-classical hydrogen bonds [14], 

which are typically not properly parameterized in currently available force fields (FF) [8].  

Furthermore, the role of hydrophobic interactions is vital for biomolecular recognition but there 

is still no reliable non-QM predictive method for its quantification [6]. Historically, hydrophobic 

interactions have been accounted for with terms that are delocalized, typically in the form of 

either a shape complementarity term or solvation/entropy penalty. Such approaches are useful 

http://gpcrdb.org/structure/statistics
https://zhanglab.ccmb.med.umich.edu/GPCR-EXP/
https://zhanglab.ccmb.med.umich.edu/GPCR-EXP/
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for providing an overall estimation of the contribution to the affinity, but do not readily provide 

spatial decomposition that can be integrated into a design strategy for the development of 

future compounds. Visual inspection of the interactions formed between two neighboring 

aromatic moieties taking into account their geometries [15,16] and substitutions [17] is usually 

quite subjective. The strength of these interactions can be evaluated [18] with quantum 

mechanical methods, which are considered to be a reliable approach for the exploration of 

receptor-ligand interactions [19,20] and an improvement over dispersion potentials in FF.  

However, despite their many advantages, traditional QM methods are generally not feasible 

for large biological systems due to their high computational cost [21]. This drawback can be 

addressed using low scaling QM approaches like the fragment molecular orbital method 

[11,20,22,23] as well as others [21,24]

The fragment molecular orbital approach

FMO offers a considerable computational speed-up over traditional QM methods [25]. One of 

the key features of the FMO approach is the provision of a list of the interactions formed 

between a receptor and a ligand. Quantification of the strength of these interactions and a 

characterisation of their chemical nature is provided [21]. Such information is essential for 

medicinal chemists to be able to execute a rational approach to compound modification in 

order to increase favourable interactions.  Furthermore, an understanding of the regions of the 

binding site that have the most prominent contributions is likely to be useful in understanding 

the origins of functional efficacy.

FMO involves partitioning the system into smaller pieces called fragments (Figure 1). 

For example, in receptors, each residue can be represented as a fragment. Similarly, the 

ligand can be represented by a single or multiple fragments as necessary. The FMO pair 

interaction energy (PIE) between any two fragments is a sum of four terms: electrostatics, 

exchange-repulsion, charge transfer and dispersion. It is calculated using pair interaction 

energy decomposition analysis (PIEDA) [26]. The electrostatic and charge transfer terms are 
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important in salt-bridges, hydrogen bonds and polar interactions, whilst the dispersion term 

can be considered to be more hydrophobic in nature.  The exchange-repulsion term describes 

the steric repulsion between electrons [21] that prevents atoms from collapsing into each 

other. 

By performing QM calculations on fragments, one can achieve a high level of accuracy 

with very high efficiency. Several QM packages, including GAMESS [27], ABINIT-MP [28] and 

PAICS [29], contain modules for performing FMO calculations.

Figure 1: Workflow for PIEDA calculations and details on each of the PIE terms that are 
computed [21]. The electrostatic component arises from the Coulomb interaction between 
polarised charge distributions of fragments.  The exchange-repulsion term is derived from the 
interaction between fragments situated in close proximity and is always repulsive; it is due to 
the Pauli repulsion and is related to the overlap of two occupied orbitals. The charge transfer 
term arises from the interaction between occupied orbitals of a donor and unoccupied orbitals 
of an acceptor. The dispersion term arises from the interaction between instantaneous dipole 
moments of two fragments. It is obtained in PIEDA from the correlation energy of electrons. 
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The key difference between FMO and MM methods is the fact that FMO takes into account 

polarization and charge transfer [11,30]. The description of electrostatics in most force fields 

is based on static charges that neglect polarization and in systems such as proteins this is an 

approximation to the actual state. Van-der-Waals forces, despite being generally well 

parameterized, are not capable of detecting the directional nature of the dispersion terms 

involving halogens [31].  Reported examples [32] comparing FMO and MM, have shown that 

the FMO method clearly outperformed FF-based scoring functions and demonstrated a high 

correlation with experimentally measured values of protein-ligand affinity [32,33]. It is no longer 

necessary to compromise in performing detailed analysis of protein-ligand structures using 

MM/FF when a similar analysis can be done with FMO that is reasonably quick [34]. A typical 

FMO calculation on a suitably truncated ligand-receptor complex takes approximately 4h on a 

cluster with 36 CPU cores. This time can be reduced to a matter of seconds when FMO is 

combined with the DFTB method [34]. 

 According to our previous report [32] FMO demonstrated that it can produce accurate 

results even for crystal structures with low (> 3.0Å) resolution. This suggests that FMO can 

even be applied to homology models [35,36].

Exploring GPCR ligand interactions with FMO

In our recent report [32] we described how FMO has been applied to the analysis of 

18 GPCR-ligand crystal structures representing different branches of the GPCR genome. This 

work revealed key and consensus interactions that are involved in receptor-ligand binding and 

that were previously omitted from structure-based descriptions. These included hydrophobic 

interactions, non-classical hydrogen bonds and the involvement of backbone atoms. It was 

revealed that in many cases electrostatic and hydrophobic contributions to the receptor-ligand 

binding energy have equal magnitudes. We were also able to demonstrate general trends in 

ligand binding. For example, residues in positions 3.32, 3.33, 6.48, 6.51, 6.52, 7.39 and 7.43 
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(according to the Ballesteros and Weinstein numbering scheme [37,38]), located on helices 3, 

6 and 7, frequently make considerable contributions to receptor-ligand binding [32]. The 

residues in positions 3.33, 6.48, 6.51, 6.52 and 7.43 form interactions with mainly hydrophobic 

character while the residues in positions 3.32 and 7.39 form mainly electrostatic interactions. 

These observations were in agreement with site-directed mutagenesis data and previous 

reports [39] that residues in these positions frequently make contact with diverse ligands 

across nearly all class A GPCRs. Residues in other positions were less frequently involved, 

only forming interactions with specific ligands [39]. These key positions in helices 3, 6 and 7 

form a consensus core of the ligand-binding pocket, even though the amino acids present 

therein are not conserved (average identity < 41%). Variation in the amino acids occupying 

the topologically equivalent positions contributes to ligand specificity across different GPCRs. 

FMO and its application to GPCR structure-based drug design

FMO can be a highly useful tool for rational structure-based drug design (SBDD) 

[40,41] as it provides an accurate and comprehensive list of strong, weak and repulsive 

interactions between a ligand and its surrounding residues. Such information is highly 

instructive in rational SBDD for guiding modifications such as scaffold replacement/scaffold 

hopping, linking (specifically in the case of fragment-based drug discovery [33]), extension of 

chemical moieties to form stronger or new interactions with the protein or alterations to remove 

repulsions [40,42]. 

To illustrate the typical results obtained through FMO we performed calculations on 

the complex between the human β2-adrenergic receptor (β2AR) and the inverse agonist 

Carazolol (PDB entry 2RH1, Figure 2a), and between β2AR and the agonist BI-167107 (PDB 

entry 4LDE, Figure 2b). We consider any interaction with an absolute PIE greater than or equal 

to 3.0 kcal/mol to be significant [43]. A comparison of the interactions formed by these two 

ligands with β2AR is shown in Figure 2c. FMO indicated that the two molecules shared six 
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interactions, four of which were more strongly implicated in the agonist binding and two were 

stronger in the binding of the inverse agonist.

Figure 2. FMO calculations for two β2AR-ligand complexes. Residues are numbered 
according to the Ballesteros Weinstein indexing scheme where ecl stands for extracellular 
loop. (a) Inverse agonist Carazolol (PDB entry 2RH1 [44]) (b) Agonist BI-167107 (PDB entry 
4LDE [45]). The carbon atoms of the ligands are shown in light orange and the receptor 
residues are colored according to the PIE values calculated by FMO. Nitrogen atoms are 
shown in blue, oxygen in red, sulfur in yellow and chlorine in light green. The classical 
hydrogen bonds between the receptor and the ligand are marked as yellow dashed line. The 
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left-hand plots show the total PIE for the residues whilst those on the right show the PIEDA of 
these interactions. PIE terms: electrostatics, dispersion, charge-transfer and exchange-
repulsion are color coded yellow, blue, red and green, respectively.  (c) Shared interactions 
between the Carazolol and BI-167107-β2AR complexes. In this case, Carazolol is show in light 
blue and BI-167107 in salmon pink, with the residues interacting more strongly with Carazolol 
shown on a white to light blue spectrum and the residues interacting more strongly with BI-
167107 on a white to red spectrum. EInt = PIEBI-167107 – PIECarazolol.

FMO can also be applied to the analysis of ligand-water-protein networks [46], to 

distinguish between energetically favourable and unfavourable water molecules. This enables 

the rational design of ligands to interact with or displace certain waters. As previously 

demonstrated [32], significant correlation between protein-ligand affinities and FMO energy 

terms [33] suggests that they can be efficiently used as descriptors in QSAR modelling to 

predict the binding affinities of new molecules.  

In our experience, application of the FMO method in the hit-to-lead and lead 

optimization stages of drug discovery is a highly valuable approach for the design, evaluation 

and filtering of targets for synthesis or for analysis of structure–activity relationship (SAR) 

[40,47]. The FMO approach can be particularly useful for in depth analysis of crystal-structures 

and discerning the exact chemical nature of particular interactions between a receptor and a 

ligand.  

There are ongoing efforts to improve the quality of FMO predictions in a number of 

ways, including (i) analysis of solute-solvent interactions using the solvation model density 

combined with the fragment molecular orbital method [48], (ii) empirical corrections and pair 

interaction energies in the fragment molecular orbital method [49] and (iii) pair interaction 

energy decomposition analysis for density functional theory and density functional tight-

binding with an evaluation of energy fluctuations in molecular dynamics [50]. 
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FMO drug-design consortium (FMODD) and FMO database (FMO-DB)

We anticipate that the FMO approach will be used to provide further insights into 

protein-ligand and protein-protein interactions, with a view to rationally designing novel 

therapeutic compounds. To achieve these goals and to make FMO even more applicable to 

structural analysis and drug discovery it is very beneficial to combine the research efforts of 

the academic and industrial sectors, as has been demonstrated by CompBioMed 

(https://www.compbiomed.eu/) and the FMO drug-design consortium (FMODD). FMODD 

(http://eniac.scitec.kobe-u.ac.jp/fmodd, the English site is currently under construction) is an 

industry-academia-government collaborative consortium originally established in Japan by 

Prof Kaori Fukuzawa (Hoshi University), Prof Shigenori Tanaka (Kobe University) and Dr 

Teruki Honma (RIKEN).  FMODD is focused on the development and use of FMO-based 

computational methods for drug discovery, such as the auto-FMO protocol [51]. 

The FMODD collaborative endeavor has also resulted in the generation of an FMO 

database (FMO-DB). FMO-DB contains FMO results (including PIEDA) for >1,000 protein-

ligand complexes extracted from the Protein Data Bank. FMO-DB 

(http://drugdesign.riken.jp/FMODB) is scheduled to be publicly available from March 2019 with 

a user-friendly interface for search and analysis. An example entry from FMO-DB is shown in 

Figure 3.  

https://www.compbiomed.eu/
http://eniac.scitec.kobe-u.ac.jp/fmodd
http://drugdesign.riken.jp/FMODB
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Figure 3. Example screenshot of the FMO-DB interface showing a calculation for the crystal 
structure of the human β2-adrenergic receptor bound to Carazolol (PDB entry 2RH1)

The FMODD collaboration and its FMO-DB provide a good example of how 

collaboration between researchers can lead to the development of new FMO applications and 

generate a knowledge base for the benefit of everyone, preventing duplication of effort and 

making research more efficient. Application of the FMO-DB to the characterization of GPCR-

ligand interactions will enable researchers to characterise the individual contributions that 

receptor residues and water molecules make towards ligand binding for their GPCR of interest, 

greatly improving the prospects of expanding the number of GPCRs used as therapeutic 

targets in the future.

Conclusions

The FMO approach has a proven record in the deep analysis of crystal-structures and 

in characterizing the interactions between receptors and ligands [32].  FMO brings the power 
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of general ab initio QM approaches to molecular biochemical research: the calculations are 

reasonably easy to set up and can be performed on moderate PC clusters within an 

acceptable time scale. FMO provides insights into the chemical nature of interactions that are 

normally difficult to detect with non QM methods. FMO analysis can result in two considerable 

benefits: (a) complex QM theories are condensed into four simple and intuitively clear 

quantities, and (b) calculations become much faster than traditional QM approaches.  This 

information can be used to understand the chemical nature of existing receptor-ligand 

complexes, which in turn can be used to guide mutagenesis experiments or to help optimize 

ligands in ways that were previously not considered [43,47]. There are increasing effort to 

extend the application of FMO to structural optimization, protein-protein interactions, 

molecular dynamics simulations [52] and many others.
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