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Abstract 9 

The problem of a uniform current passing through a circular cylinder submerged below an ice 10 

sheet is considered. The fluid flow is described by the linearized velocity potential theory, while 11 

the ice sheet is modeled through a thin elastic plate floating on the water surface. The Green 12 

function due to a source is first derived, which satisfies all the boundary conditions apart from that 13 

on the body surface. Through differentiating the Green function with respect to the source position, 14 

the multipoles are obtained. This allows the disturbed velocity potential to be constructed in the 15 

form of an infinite series with unknown coefficients which are obtained from the boundary 16 

condition. The result shows that there is a critical Froude number which depends on the physical 17 

properties of the ice sheet. Below this number there will be no flexural waves propagating to 18 

infinity and above this number there will be two waves, one on each side of the body. When the 19 

depth based Froude number is larger than 1, there will always be a wave at far upstream of the 20 

body. This is similar to those noticed in the related problem and is different from that in the free 21 

surface problem without ice sheet. Various results are provided, including the properties of the 22 

dispersion equation, resistance and lift, ice sheet deflection, and their physical features are 23 

discussed. 24 

Keywords: ice sheet deflection; uniform current; circular cylinder; critical Froude number; 25 

resistance and lift 26 

1. Introduction 27 

There have been an increasing interest in making use of the new shipping route through the 28 

Arctic as well as the resource extraction. This makes it more imperative to achieve a better 29 

understanding of the nature of fluid/structure/ice interactions. In some cases, the ice may be 30 
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distributed in water in many small blocks/pieces, or in the form of a large iceberg. In other cases, 1 

the ice has a very large horizontal extent, which in many practical considerations can be treated as 2 

infinity. The present work considers a problem in the latter case, in which a body is submerged 3 

below an ice sheet of infinite extent and its interaction with an incoming current.  4 

Generally, a large ice sheet can be modelled as a thin elastic plate, which has been verified 5 

through the field observations (Robin, 1963) and experiments (Squire et al., 1988). Together with 6 

the linearized velocity potential theory for fluid flow, a large volume of work has been undertaken 7 

for the interactions of surface gravity wave with the floating ice sheet in the context of 8 

geophysical science. Fox and Squire (1990) considered wave interaction with an ice sheet of 9 

semi-infinite extent, while Meylan and Squire (1994) studied an ice sheet of finite extent. For 10 

propagation of flexural gravity wave through the ice sheet with varying physical properties, part of 11 

the wave energy would be reflected. Squire and Dixon (2001b) considered diffraction problem by 12 

change of ice thickness, while Chung and Linton (2005) considered polynyas or free surface 13 

confined between ice sheets. Through applying the matched eigenfunction expansions (MEE) 14 

(Fox and Squire, 1990), Barrett and Squire (1996) solved the problem of wave propagation 15 

through ice sheet with a crack for finite water depth. Later, by using the Green function, Squire 16 

and Dixon (2000) obtained the solution for a similar problem in the infinite water depth, and then 17 

extended the solution procedure to the multiple cracks (Squire and Dixon, 2001a). The problem in 18 

Squire and Dixon (2000) was divided into the symmetric and anti-symmetric parts, which were 19 

solved by Evans and Porter (2003). Later, the same authors also derived the solutions for the wave 20 

interaction with multiple straight cracks of infinite length (Porter and Evans, 2006) and finite 21 

length (Porter and Evans, 2007).  22 

For practical considerations in engineering, it is also important to include the structure into 23 

fluid/ice sheet interaction. Das and Mandal (2006) used the multipole expansion method (Ursell, 24 

1949) and obtained the solution for wave interaction with a circular cylinder submerged below an 25 

ice sheet of infinite extent, while Liu and Li (2016) derived the solution for a semi-circular 26 

cylinder on the flat seabed. Li et al. (2017b) solved the problem for a circular cylinder undergoing 27 

large amplitude oscillations, in which the body surface boundary condition was satisfied on its 28 

exact position based on the procedure of Wu (1993), and therefore the nonlinear effect of the body 29 

motion was included. For the wave interaction with a cylinder submerged below the water surface 30 

covered by a semi-infinite ice sheet, Sturova (2014) derived the Green function in a series form 31 

based on the method of MEE. This procedure was then extended to solve the problem of wave 32 

interactions with a cylinder submerged below a polynya or an ice floe (Sturova, 2015b). The 33 

Green function for the case with the water surface covered by an ice floe could be also obtained 34 
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through the Wiener-Hopf technique, as has been done by Tkacheva (2015). For a body floating on 1 

a polynya, Ren et al. (2016) studied the interaction of waves with a floating rectangle in a polynya 2 

and the analytical solution was obtained through MEE. It was found that compared with the free 3 

surface case the hydrodynamic coefficients were a highly oscillatory function of the wave 4 

frequency. By combining the eigenfunction expansions in the ice covered region and boundary 5 

integral equation in open water region, Li et al. (2018a) used the hybrid method and solved the 6 

problem numerically. Based on the wide spacing approximation, the problem could be also solved 7 

based on the solutions for floating body without the ice and for polynya without the body, and 8 

some explicit formulas could be derived to reveal mechanism of the oscillatory behaviours of the 9 

results, as has been done in Li et al. (2017a). For ice sheet with a crack, Sturova (2015a) solved 10 

the problem of the wave interactions with a submerged cylinder, through the method similar to 11 

that in Sturova (2014). Li et al. (2018c) derived the Green function for an ice sheet with a crack in 12 

an integral form. The multipoles were further derived through which the analytical solution for a 13 

circular cylinder was obtained. This procedure obtaining the Green function for a single crack was 14 

later extended to obtain the Green function for ice sheet with multiple cracks, and it was used to 15 

get the numerical solution for a submerged cylinder of arbitrary shape through the boundary 16 

element method (Li et al., 2018b).  17 

In the work above, the incoming flow is a propagating wave and the problem is to find its 18 

diffraction, as well as the wave radiation by the oscillation of the body in response to the wave 19 

excitation. In this work, we shall consider the problem of uniform current passing through a 20 

circular cylinder submerged below an infinitely extended ice sheet. The problem will be steady 21 

instead of periodic as in the work mentioned above. This leads to a different boundary condition 22 

on the ice sheet and therefore the Green function and subsequently the multipoles have to be 23 

reconstructed. From the solution, the nature of the steady progressing wave away from the body 24 

can be established. In particular, a critical speed exists below which no wave will propagate to 25 

infinity, as in the related problem of a vehicle or pressure moving with constant speed on the ice 26 

sheet (Takizawa, 1985, 1988). For the linear free surface problem, it is well known that when the 27 

depth based Froude number is larger than 1, no wave will exist away from the body. However, for 28 

the ice sheet problem, wave will exist at far upstream under such a condition, which makes the 29 

current problem quite different. It may be noticed that there have already been some studies using 30 

singularities to model a submerged body moving below the ice sheet. Savin and Savin (2012) for 31 

example used a dipole to approximate a circular cylinder, while Sturova (2013) obtained the 32 

solution for a submerged sphere through the multipole expansions (Wu, 1995).  33 

The rest of the paper is organized as follows. In section 2, the linearized velocity potential flow 34 
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problem for the uniform current interaction with a cylinder submerged below the ice sheet of 1 

infinite extent is described. The corresponding Green function due to a single source is derived in 2 

section 3.1 through Fourier transform. In section 3.2, the multipoles are obtained through 3 

differentiating the Green function with respect to the source position, and through which the 4 

solution for the circular cylinder is written in a series expansion. Various numerical results are 5 

presented in section 4, and conclusions are drawn in section 5.  6 

2. Mathematical Model  7 

The interaction problem of a uniform current with a circular cylinder submerged below an ice 8 

sheet is considered, as sketched in figure 1. The homogeneous ice sheet of density i  and 9 

thickness h  floating on water of density w  is assumed to be infinitely extended. To describe 10 

the ice deflection and fluid flow, a Cartesian coordinate system O xz  is introduced, with the 11 

x-axis being on the calm water surface and opposite to the direction of the uniform current, and 12 

z-axis pointing vertically upwards. The water has finite depth at z H  , and the centre of the 13 

circular cylinder with radius a  is at 0 0( , )x z . 14 

 15 
Fig. 1. Definition of the coordinate system and sketch of the problem. 16 

Denoting   as the small vertical deflection of the ice sheet, then its flexural motion can be 17 

described through the well-established thin elastic plate model (Squire, 2011), or  18 
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velocity potential   as  1 

 ( )U x    ,  (2) 2 

where   is the disturbed velocity potential by the cylinder. The conservation of mass requires 3 

that   should satisfy the Laplace equation  4 

 2 2 2 2 2/ / 0x z         ,  (3) 5 

throughout the fluid  . Assuming that there is no gap between the ice sheet IS  and the water 6 

upper surface, then the kinematic condition requires the fluid particle velocity in the normal 7 

direction of the ice sheet equal to that of the ice deflection, i.e.  8 

 ( )U U
t x z

   
 

  
 ( 0z  ),  (4) 9 

where the higher order terms have been dropped. p  in (1) should be the difference between the 10 

water pressure and atmospheric pressure. Through the Bernoulli’s equation, we have  11 

 21 1
( )

2 2wp g U
t

    


   


   ( z  ). (5) 12 

where g  is the acceleration due to gravity. Substituting (2) and (5) into (1), and ignoring the 13 

higher order terms, we have the dynamic condition at IS  as  14 
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We may combine the boundary conditions in (4) and (6), and obtain the boundary condition for   16 

as  17 
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Here, when the problem becomes steady in the uniform current, the temporal derivatives of both 19 

  and   should be equal to zero. Equation (7) can be further given as  20 

 2
2

4 2

4
0( )w wL g U

xx z

   
  

 



 ( 0z  ).  (8) 21 

It may be noticed that (8) is different from that in Squire et al. (1996) by a term of 22 

2 3 2/U zm x   . In fact, they considered the problem of a load moving with constant speed U  23 

on the ice sheet. It was solved in the system moving with the load, or the load was not moving but 24 

the ice sheet and water were moving with speed U . As a result, due to the curvature of the ice 25 

sheet, its horizontal speed created a vertical acceleration 2 2 2/U x  , which led to an additional 26 

term 2 3 2/mU z x    in (8). Here, the cylinder is stationary and so is the ice sheet, and only the 27 

water is moving towards cylinder with speed U . Therefore this term does not appear. For the 28 

steady problem, (4) becomes 29 
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or with (9) considered 4 
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On the body surface HS , the impermeable condition can be written as  6 

 xn
n





, (12) 7 

where ( , )x zn n n


 is the unit normal vector pointing out of the fluid domain. Similarly, on the 8 

flat seabed BS , the impermeable condition gives  9 

 0
z





 ( x    , z H  ). (13) 10 

The radiation condition far away from the body can be expressed as  11 

 ( , )x
x

zw








 as x   , (14) 12 

where ( , )w x z  correspond to the wavy functions oscillating with x  at x    respectively, 13 

depending on whether the group velocity of the wave is larger or smaller than the current speed 14 

U .  15 

3. Solution Procedures  16 

3.1. The Green function  17 

The Green function 0 0( , ; ),G x z x z  represents the velocity potential at the field point ( , )p x y  18 

due to a source at point 0 0 )( ,q x z . This means that it should satisfy the following governing 19 

equation  20 

 2
0 02 ( ) ( )G x x z z     , (15) 21 

together with the boundary conditions in (8), (13) and (14). Here, ( )x  is the Dirac delta 22 

function. Applying the Fourier transform  23 

 ie d
1

2
kxG xG


 


  , (16) 24 

to (15), we have  25 

 0

2
i2

02

( , )
( , ) ( )e kxG k z

k G k z z z
z

 
   



 .  (17) 26 

The solution to (17) together with the boundary condition in (13) can be written as  27 
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where   and   are two unknown functions of k  to be found, 0max( , )z z z  , 2 

0min( , )z z z  , and 3 

 ( , ) cosh[ ( )]Z z k k z H  .  (19) 4 

Integrating (17) with respect to z  from 0z  to 0z , then substituting (18) into the obtained result, 5 

we have  6 

 sinh( ) cosh( ) 1k kH kH    .  (20) 7 

We then apply the Fourier transform to the boundary condition in (8) on the ice sheet, and have  8 

 4 2 2( ) 0w w

G
Lk g U k G

z
 

 



  .  (21) 9 

Substituting (18) into (21), and invoking (20), we have  10 
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where 12 

 4 2 2( , ) ( ) tanh( )w wK U k Lk g k kH U k   .  (23) 13 

Substituting (22) into (18), we have  14 
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Performing the inverse Fourier transform  16 
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with 1r  as the distance between p  and q , and 2r  as the distance between p  and the mirror 21 

image of q  about the flat seabed z H  , we can obtain  22 
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where  24 

 4 2 2( , ) ( )w wP U k Lk g k U k  ,  (29) 25 

It ought to be pointed out that a constant has been added into the integrand of (28) to remove the 26 

high order singularity at 0k  . This will not affect the physics of the problem as the equations for 27 
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G  all involve spatial derivatives.  1 

We notice that when 0h   or 0L  , G  in (28) will become equation (13.46) of 2 

Wehausen and Laitone (1960) for free surface. We further notice that the integrand in (28) is 3 

singular at ( , ) 0mK U k  , where , ,1m M   include all the positive real roots. Here, M  could 4 

be 0 , 1 or 2  depending on the Froude number, which will be discussed later. The way to deal 5 

with the singularities will be based on the radiation condition. To do that, we may use (Wehausen 6 

and Laitone, 1960) 7 

 0i ( )
0

0

( )
lim e d i ( )
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where the integral is in Cauchy principle value integration sense, and 0a bk k k  . To satisfy the 9 

radiation condition in (14), we add the minus or plus term of the integration at x   10 

accordingly. Thus we have  11 
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where 1m    ( 1m   ) if the group velocity of the wave component of mk  is smaller (larger) 13 

than U , and the superscript ( )n  in ( , )K U k  indicates the n-th partial derivative with respect to 14 

the variable k . It should be noticed that the integral in (31) is in Cauchy principle value 15 

integration sense. 16 

3.2. Multipole expansion for a submerged circular cylinder 17 

We may obtain the velocity potential due to multipoles or singularity of higher orders by 18 

differentiating (31) with respect to the source position. Thus, the boundary conditions satisfied by 19 

G  will be still satisfied. Similar to Wu (1998), we have  20 

 
i

1

e
( ) ln( )

n
n

n
D r

r



  ,  (32) 21 
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As G  is a real function, ( )nD  and ( )nD  will lead to a pair of conjugates. Applying (33) to 24 

(31), and noticing that 0 0( )exp( i ) 0kzD kx     and 0 0( )exp( i ) 0kzD kx   , we have  25 
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Using equation (34), we can write the disturbed velocity potential   in form of multipole 4 

expansion as  5 
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Then   satisfies the same boundary conditions as nf  automatically, or satisfies all the 7 

boundary conditions apart from that on the body surface, which are to be used to determine the 8 

unknown coefficients nA . Substituting (36) into (12), we have  9 
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We may use  11 
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to write   in the polar coordinate system as  13 
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where  15 
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Invoking (37) and the orthogonality of trigonometric function, we can obtain 1 
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for 1,2,l   , where 1l  is the Kronecker delta function. This equation can be solved by 3 

separating the real and imaginary parts, or by taking the conjugate and obtaining another set of 4 

equations.  5 

After the disturbed velocity potential   is solved, we can obtain the hydrodynamic pressure in 6 

the fluid domain through the Bernoulli equation (5) or  7 

 21
[ ( ) ( ) 1]

2 wp U x x        . (45) 8 

Here, it may be noticed that by following the argument of Wu (1991), although the higher order 9 

terms can be ignored in the upper surface condition, they may be retained near the body surface as 10 

the local disturbance may not be small. The resistance RF  and lift LF  of the cylinder can be 11 

obtained through integrating the pressure over the cylinder surface or  12 

 ii ( e ) dr aR L aF F p
 






       ,  (46) 13 

The gradient in (45) can be taken in the polar coordinate system. From the boundary condition on 14 

the body surface, we have  15 
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Equation (39) provides  17 
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Similar to Wu and Eatock Taylor (1987a), substituting (44) into (48) we have  19 
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Substituting (47) and (49) into (45), then the results into (46), and noticing that 21 
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we can obtain  23 
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Through (11) we can also obtain the ice deflection  . By using  25 
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we have  27 
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  (55) 5 

4. Numerical Results  6 

The typical values of the parameters of the ice sheet are given as (Sturova, 2015b) 7 

 5GPaE  , 0.3  , 3922.5kg / mi  , 1mh  . (56) 8 

Unless otherwise stated, the calculations will be carried out with the parameters given in (56). In 9 

the following text, all the numerical results are provided in the dimensionless form, based on the 10 

combinations of the radius of the cylinder a , density of water 31025kg / mw  , and 11 

acceleration due to gravity 29.80m / sg  . 12 

4.1. Properties of the purely positive real root of the dispersion equation 13 

From the expression of the Green function G  in (31), we can see that the wave due to a single 14 

source will be very much related to the purely positive real root of the dispersion equation. To 15 

carry out analysis, we may rewrite ( , ) 0K U k   as  16 

 
2

4

ˆtanh( )
ˆ ˆ 1

k

k D

n

k

F



,  (57) 17 

where k̂ kH , 4/ ( )wD L gH , and /Fn U gH  is the water depth Froude number. We 18 

may denote the left and right hand sides of (57) respectively by ˆ( )dL k  and ˆ( )dR k . We notice 19 

that ˆ( )dR k  decays much faster than ˆ( )dL k  as k̂   . This means at sufficiently large k̂ , 20 

ˆ ˆ( ) ( )d dR k L k . Thus, when there exists a 0k̂  at which 0 0
ˆ ˆ( ) ( )d dR k L k , equation (57) will 21 

definitely have at least one solution. For this reason, we let 0
ˆ 0k   in (57). In such a case when 22 

1Fn  , the equation will always have at least one solution. For 1Fn  , equation (57) should 23 

have either at least two solutions, which means that ˆ( )dL k  and ˆ( )dR k  intersect twice, or no 24 

solution, which means they do not intersect. A special case of the former is that the two solutions 25 

merge into one, and ˆ( )dL k  and ˆ( )dR k  are tangential to each other when they intersect. This is 26 

shown graphically in figure 2. From the figure, it can be seen that there is a critical Froude number 27 
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cFn , below which equation (57) will have no solution or there will be no waves at x   . At 1 

cFn Fn , ˆ( )dL k  and ˆ( )dR k  should satisfy equation (57) and at the same point their derivatives 2 

should be the same, or  3 

 
32 2

2 24

ˆ ˆ ˆ ˆsech ( ) tanh( ) 4

1)ˆ ˆ(

k k k Dk

k D

n

k

F




  .  (58) 4 

Invoking (57), we may rewrite (58) as  5 

 8 42 2 224ˆ ˆ ˆ(2 3 ) (1 ) 0D k D kF kn Fn Fn     .  (59) 6 

Equations (57) and (59) can be solved through the Newton iteration method, to obtain cFn  and 7 

the associated wave number ˆ
ck , which provides 0.7869cFn   and ˆ 1.9707ck   for the 8 

parameters given in (56). The variation of the root ˆ
mk  ( 1, 2m  ) with respect to the Froude 9 

number Fn  can be more clearly seen in figure 3 which plots ˆ
mk  together with the result for 10 

0h   corresponding to the free surface. 11 

In order to determine the sign of m  in (31), we should compute the group velocity of the 12 

wave component for ˆ
mk , or  13 
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.  (60) 14 

The term in square brackets of (60) corresponds to (58). This indicates that when it is negative 15 

(positive) at ˆ ˆ
m ck k  ( ˆ ˆ

m ck k ), the group velocity ˆ( , )g mc Fn k Fn  ( ˆ( , )g mc Fn k Fn ), we 16 

should have 1m    ( 1m   ) and the wave of ˆ
mk  will be at x    ( x   ) respectively. 17 

This is the case when 1cFn Fn  . At cFn Fn , there will be no wave propagating to the far 18 

field, or only when the speed is larger than a critical value, far field wave can be generated. As in 19 

the cases discussed by Takizawa (1988) and Squire et al. (1996) for a moving load on an infinitely 20 

extended ice sheet, a critical speed exists, below which there will be no propagating wave, while 21 

above which wave may exist both upstream and downstream, depending on its group velocity.  22 

 23 
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Fig. 2. Curves for ˆ( )dL k  and ˆ( )dR k  in equation (57) against k̂ , at different Froude number Fn . Solid 1 

line: ˆ( )dR k  with 1.1Fn  ; dashed line: ˆ( )dR k  with 0.7869cFn Fn  ; dash-dotted line: ˆ( )dR k  with 2 

0.5Fn  ; dotted line: ˆ( )dR k  with 0.9Fn  ; solid line with open circles: ˆ( )dL k . ( 1a  , 8H  , 0.2h  , 3 

72.9319L  ) 4 

 5 
Fig. 3. Purely positive real root ˆ

mk  of the dispersion equation ( , ) 0K U k   against Fn . Solid line: 1̂k  6 

( gc Fn ); dashed line: 2k̂  ( gc Fn ); dash-dotted line: k̂  for open water. ( 1a  , 8H  , 0.2h  , 7 

72.9319L  ) 8 

4.2. Resistance and lift  9 

We consider the interaction problem of the uniform current with a circular cylinder submerged 10 

below the ice sheet. To conduct numerical computations, the infinite summation in (44) is 11 

truncated at a finite number or n N . Convergence study is first carried out with respect to N  12 

through the resistance RF  and lift LF  against the Froude number Fn . The computed results are 13 

shown in figure 4, together with the results for open water or 0h  . It can be seen from the figure 14 

that there is no visible difference between the results obtained by 6N   and 12N  , indicating 15 

that the convergence has been achieved. Therefore, in the following computed results 6N   is 16 

taken, unless otherwise specified. From figure 4 (a) we can see that when cFn Fn , RF  is zero, 17 

and there is no wave far away from the body as there is no purely positive real root of the 18 

dispersion equation or 0M   in (31). From the formulation in section 3, when 0M  , the 19 

functions 1( )F n , 2 ( )F n  and 3( )F n  in (41) to (43) are all real, which means that 1( , )J n l  and 20 

2 ( , )J n l  in (40) are both real. This together with (44) indicates that all nA  are imaginary 21 

numbers or the right hand side of (51) is a real number, leading to 0RF  . However, LF  is still 22 

nonzero. For the open water case, 1Fn   is the critical Froude number. Beyond this 0RF  , 23 

which is well known for the linearized free surface problem.  24 
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 1 

 2 
Fig. 4. Resistance (a) and lift (b) of a circular cylinder submerged below an ice sheet against Fn  at different N . 3 

Solid lines: results with 6N  ; dashed lines: results with 12N  . ( 1a  , 0 0( , ) (0, 2)x z   , 8H  , 0.2h  , 4 

72.9319L  )  5 

In figure 5, we show the variations of the resistance and lift against Fn  at five different ice 6 

thicknesses h , i.e. 0h  , 0.002 , 0.02 , 0.1  and 0.2 . It can be seen from this figure that 7 

when the ice thickness tends to zero or 0h  , the result for ice sheet will tend to that for open 8 

water, as reflected by the result for 0.002h   marked by the open circles. This is not unexpected. 9 

From (8) we have that when 0h   or 3( ) 0L O h  , the condition on the ice sheet will tend 10 

to that for open water, and the same boundary conditions will lead to the same results. At the same 11 

time 0cFn  . As the ice thickness h  increases, the difference between the results with ice 12 

sheet and those for open water becomes obvious. For the resistance, from figure 5 (a), we can see 13 

that there are two critical values of Fn  at which a sudden change of RF  will happen. These two 14 

critical points are respectively at the critical Froude number or cFn Fn  and 1Fn  , at which 15 

there will be a sudden change of the wave system in the far field, or the number of wave 16 

components in the far field will change from 0  to 2  in the former, and from 2  to 1 in the 17 

latter. Also, it can be seen from figure 5 (a) that when cFn Fn , the resistance with the ice sheet 18 

is generally larger than that for open water, and it increases with the ice thickness h . Another 19 

feature of the resistance with ice sheet is that unlike the open water case, even when 1Fn  , RF  20 

is not zero, due to the fact that there is always a wave in front of the cylinder. As Fn  increases, 21 
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RF  increases. However, it is not expected to continue when Fn  is sufficiently large. In fact from 1 

(57), we have 2 1/3/ )ˆ (k n DF  at very large Fn . As k̂   , the imaginary part of both 2 

2 ( )F n  and 3( )F n  will tend to zero, and therefore the resistance will eventually tend to zero as 3 

Fn   . For the lift LF , it can be seen from figure 5 (b) that LF  will first increase with Fn . 4 

It will reach a large peak before cFn Fn , e.g. respectively at Fn  0.335 , 0.605 , 0.775  for 5 

h  0.02 , 0.10 , 0.20  with cFn  0.3376 , 0.6168 , 0.7869 , and then drop rapidly and 6 

become mainly negative. It is interesting to see here that the peak happens before cFn  not at 7 

cFn . This is similar to the problem of a body advancing at forward speed U  in a free surface 8 

wave with frequency  . There is a critical point at / 1 / 4U g   . However, the peak of the 9 

hydrodynamic coefficient occurs before 1 / 4   (Grue and Palm, 1985; Wu and Eatock Taylor, 10 

1987b). At 1 / 4  , the results are finite (Mo and Palm, 1987). As Fn  further increases it will 11 

have a jump at 1Fn  , but remain negative.  12 

 13 

 14 
Fig. 5. Resistance (a) and lift (b) of a circular cylinder submerged below an ice sheet at different ice thickness h . 15 

Solid lines: 0.002h  ; dashed lines: 0.02h  ; dash-dotted lines: 0.1h  ; dotted lines: 0.2h  ; open circles: 16 

0h  . ( 1a  , 0 0( , ) (0, 2)x z   , 8H  , 72.9319L  ) 17 

Computations are then carried out to investigate the effect of the water depth H . For infinite 18 

water depth or H   , the dispersion equation (23) provides 19 

 4 2
w wLk g U k  .  (61) 20 

Similar to the finite water depth, there exists a critical speed cU , below which no waves will exist 21 
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at the far field. At cU U , the right hand side and left hand side of (61) should be tangential to 1 

each other, or  2 

 3 24 c w cLk U .  (62) 3 

This together with (61) provides that  4 
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25
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
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L


 ,  (63) 5 

which is consistent with (5.5) of Squire et al. (1996). If we use the wavelength 2 / ck  as the 6 

length scale, the critical Froude number will be 2 / 3cFn 


. When cU U  there will be two 7 

purely positive real roots 1k  and 2k  of (61), while when cU U  there will be no root. It 8 

should be noted that 1k  and 2k  will always exist, unlike the finite what depth where 2k  9 

disappears when the depth based Froude number is larger than 1. 10 

In figure 6, we show the resistance and lift against the body submergence based Froude number 11 

0/Fn U gz   at three different H , i.e. H  8 , 12  and 16  together with infinite water 12 

depth. It can be seen from this figure that the effect of H  on submergence based cFn  is small 13 

overall and the jump of the result occurs almost at the same location. In fact, when ck H  is 14 

relatively large, where ck  is from (63), tanh( ) 1ck H   may be used. Thus cFn  can be obtained 15 

from the cU  in (63) with infinite water depth. However, the jump at depth based 1Fn   occurs 16 

at different submergence based Fn  as shown in the figure, and this Fn  increases with H  and 17 

tends to infinity as H   . It is interesting to see that the resistance is not too much affected by 18 

H  apart from in the region near depth based 1Fn  . For the lift, some difference is manly at 19 

cFn .  20 

 21 
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 1 
Fig. 6. Resistance (a) and lift (b) of a circular cylinder submerged below an ice sheet against submergence based 2 

Fn  at different H . Solid lines: H   ; dashed lines: 8H  ; dash-dotted lines: 12H  ; dotted lines: 3 

16H  . ( 1a  , 0 0( , ) (0, 2)x z   , 0.2h  , 72.9319L  ) 4 

4.3. Deflection of the ice sheet 5 

Computations are also carried out for the ice deflection   at different Froude number Fn . In 6 

figure 7 we show ( )x  plotted for cFn Fn . It can be seen that there will be no wave 7 

propagating to infinity for all the four cases calculated. As can be observed, ( )x  is symmetric 8 

about 0x x  due to fact that the last term, or the sine term, in (31) no longer exists at cFn Fn . 9 

When Fn  increases, the magnitude of the deflection above the cylinder increases. However, it 10 

remains to be a trough and reaches a very large value at 0.775Fn   before 0.7869cFn  , 11 

which means that the gap between the ice sheet and cylinder will become very small. The large 12 

deflection of the ice sheet corresponds to the large lift, which can be seen in figure 5(b). As Fn  13 

further increase, the deflection above the cylinder drops rapidly and will become a peak as 14 

cFn Fn . Correspondingly, there is a rapid drop of the lift force. The ice deflection ( )x  15 

within 1cFn Fn   is shown in figure 8. It can be observed that in such a case both sides of the 16 

body will have waves. Generally, the downstream ice deflection is larger than that in the upstream, 17 

which is more obvious for a larger Fn . As Fn  approaches 1 , 2k  tends to zero and its 18 

corresponding wavelength tends to infinity. In figure 9, ( )x  is plotted against x  for 1Fn  . 19 

In such a case the longer wave at downstream disappears, but the shorter wave is still at upstream 20 

and its wavelength reduces as Fn  increases. All these are consistent with the discussions in 21 

section 4.1 on the wave system in the far field through the dispersion equation. 22 
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 1 
Fig. 7. Ice deflection ( )x  at different Froude number below cFn . Solid line: 0.600Fn  ; dashed line: 2 

0.700Fn  ; dash-dotted line: 0.775Fn  ; dotted line: 0.786Fn  . ( 1a  , 0 0( , ) (0, 2)x z   , 8H  , 0.2h  , 3 

72.9319L  , 0.7869cFn  )  4 

 5 
Fig. 8. Ice deflection ( )x  within the range of 1cFn Fn  . Solid line: 0.787Fn  ; dashed line: 0.887Fn  ; 6 

dash-dotted line: 0.987Fn  ; dotted line: 0.999Fn  . ( 1a  , 0 0( , ) (0, 2)x z   , 8H  , 0.2h  , 7 

72.9319L  , 0.7869cFn  )  8 

 9 
Fig. 9. Ice deflection ( )x  for 1 Fn . Solid line: 1.001Fn  ; dashed line: 1.015Fn  ; dash-dotted line: 10 

1.030Fn  ; dotted line: 1.090Fn  . ( 1a  , 0 0( , ) (0, 2)x z   , 8H  , 0.2h  , 72.9319L  , 0.7869cFn  )  11 

5. Conclusions 12 

The problem of a uniform current interacting with a circular cylinder submerged below an ice 13 

sheet of infinite extent has been solved. The ice sheet is modelled by a thin elastic plate floating on 14 
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the water surface, and the fluid flow is described through the linearized velocity potential theory. 1 

The Green function satisfying all the boundary conditions apart from that on the body surface is 2 

derived by Fourier transform, through which the potentials due to multipoles are further obtained.  3 

From the dispersion equation of finite water depth, it is found that there is a critical water depth 4 

Froude number cFn  which depends on the properties of the ice sheet. When cFn Fn  there 5 

will be no wave; when 1cFn Fn   there will be two waves, and the one with group velocity 6 

larger than current speed will travel at upstream, while the one with smaller group velocity will 7 

travel downstream. When 1Fn  , the downstream wave will disappear, while the upstream wave 8 

will be still there. This is similar to that noticed in related problem and different from that for open 9 

water. When the water depth tends to infinity, similar critical current speed also exists. However 10 

beyond the critical speed, there will be always two waves, one on each side of the body.  11 

The results for ice sheet with different thicknesses show that the resistance generally increases 12 

with the ice thickness within the range calculated. The resistance will increase rapidly from zero 13 

when Fn  becomes from cFn Fn  to cFn Fn . While the lift increases with Fn  and will 14 

reach a large peak before cFn . As Fn  further increases, the lift drops rapidly to a normal level 15 

and is mainly negative. Another rapid change of the resistance and lift occurs at 1Fn  .   16 

The curve of the ice deflection shows that when cFn Fn  the deflection is confined near to 17 

the cylinder and is symmetric. The deflection above the cylinder is a trough and its magnitude 18 

increases with Fn . It will reach a large value before cFn , and after that it will drops rapidly and 19 

even to become a peak. When cFn Fn , the ice sheet on both sides of the cylinder will be in a 20 

wave form towards to infinity, and generally the magnitude of the deflection in the downstream is 21 

larger than that in the upstream. As 1Fn  , the deflection in the far downstream disappears while 22 

that in the upstream still exists.  23 

The solution procedure can be further extended to the ice sheet with imperfections, e.g. fully 24 

detached or connected cracks. The Green function can also be used with the boundary element 25 

method for a body with arbitrary shape on the basis of the velocity potential flow theory. 26 
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