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DISSECTING VISIBILITY GRAPH ANALYSIS: 

THE METRICS AND THEIR ROLE IN UNDERSTANDING WORKPLACE 
HUMAN BEHAVIOUR
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ABSTRACT

Visibility Graph Analysis (VGA) is one of the main methods of analysis of interior space within the
field of Space Syntax, formulated by Turner et al. (2001) by extending Benedikt’s work on isovists
and isovist fields (1979). It is a means to quantify the configuration of space as regular units which
can then be used to identify the relationship of that space to the behaviour of the humans that occupy
it. This paper is interested in the application of this method and its related metrics in workplaces, and
how it can be used to understand the behaviour of office workers. Such information can then be used
as evidence when designing new office spaces. We focus on the main tool used by the Space Syntax
community:  depthmapX  (previously  known  as  Depthmap).  There  are  25  VGA  metrics  that
depthmapX can currently calculate, a mixture of classic graph-theory metrics, metrics borrowed from
the  urban-scale  Space  Syntax  theories  and  some  VGA-specific  metrics  describing  local  spatial
properties. Some of the metrics are also derivatives, permutations and normalisations of other metrics
which provide new information in relation to the configuration of space. While some of the metrics
were described in previous research, there has never been a comprehensive understanding of all the
VGA metrics produced by depthmapX, especially the concepts, formulae and algorithms behind their
calculation. This has led researchers  to focus on small subsets of these metrics avoiding thus the
scattered and opaque nature of the theory and application. In previous research we have used VGA
extensively aiming to understand human behaviour in office spaces  but specifically only explored
those that deal with local and global visibility. This paper first describes and elaborates on the various
metrics produced by the current version of depthmapX and also outlines the theoretical considerations
for each metric and how these potentially relate to human behaviour. Using a large dataset with VGA
and observation data in office spaces we examine how these metrics relate to two kinds of behaviours:
movement  and  interaction.  We  test  how  well  each  metric  predicts  each  behaviour  using  two
aggregations, per-floor and per-metric-quantile-bin. We show that for most of the metrics tested, per-
metric-quartile-bin  works  better  than  per-floor.  The  findings  suggest  that  of  the  two  behaviours
examined, movement is best predicted, with many of the local and global metrics significant and with
high effects.  This paper contributes to the general  Space Syntax field in relation to indoor spatial
analysis, by providing a thorough description of the metrics of VGA. It also aims to highlight how and
which  of  these  metrics  can  be  used  to  specifically  understand  human  behaviour  in  workplaces.
Ultimately, such information can be used to predict this behaviour in newly designed office-spaces
and thus allow designers to inform their designs.
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1. INTRODUCTION

Quantifying the qualities and characteristics of interior space is an important part in the process of
evidence-based design. It allows both for understanding the features of these spaces but also provides
common units  of  analysis  that  human behaviour  may be studied with.  Methods to  carry  out  this
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process exist within the field of Space Syntax which, while traditionally focused on urban analysis,
has a sizeable part of the participating research community focusing on buildings and their interior
space.

There  are  currently  three  methods  available  for  such  an  analysis:  Line-based  (Axial  /  Segment
analysis) which is commonly used for cities, Convex-space analysis and Grid-based (Visibility Graph
Analysis). This paper will focus on Visibility Graph Analysis (VGA). VGA was formulated by Turner
et al. (2001) by extending earlier work on isovists and isovist fields (Benedikt, 1979). The work by
Benedikt  allowed  researchers  to  quantify  locally  visible  properties  of  space,  such  as  its  area  or
perimeter. Turner et al. introduced the concept of depth typically found in the urban scale, which
allowed for quantifying global properties of the spatial configuration such as the distance between
non-intervisible parts of the space. An implementation of this method was created in parallel in the
software application “Depthmap” (Turner, 2001).

VGA and Depthmap were extended and refined  in parallel  to allow for  different  elements  of the
spatial configuration to be quantified, and in 2011 the software was made free and open-source as
depthmapX. The application can currently calculate 25 metrics for VGA, some local and some global.
While a few of these metrics implement the original and well-known ideas from Benedikt (1979) and
Turner et al. (2001), most of them are either permutations of the original metrics or ideas that have
been implemented  but  not fully explored.  The lack of  a  consistent  manual  specific  to  VGA also
contributes to the fact that they are seldom used by other researchers.

In our previous work (Koutsolampros et al., 2015; Sailer et al.,  2016; Koutsolampros et al., 2017;
Koutsolampros et al., 2018) we focused on human behaviour in the workplace using a large dataset of
office spaces. We have also focused on the very small subset of metrics typically used by the rest of
the literature with limited success. This research has shown that a large dataset is insufficient for this
task if the methods and metrics are not updated to deal with more complexity.

With this in mind, this paper aims to provide a comprehensive review of all the metrics and how they
can be used to enhance our understanding of human behaviour. We will show how each metric relates
to two behaviours in office spaces, movement and interaction, both in the level of the floor, but also in
the context of the actual space.

The paper is structured as follows: The following chapter will expand on the origin of VGA, as well
as the various metrics, and provide details of their current implementation in depthmapX. We will
then describe how we constructed the statistical tests required to examine each metric against each
behaviour for different contexts. Finally, the paper will present the results of the statistical tests and
discuss the implications of the findings in relation to activity in office spaces.

2. LITERATURE REVIEW

Visibility Graph Analysis as it was described by Turner et al. (2001) has its roots in two previous
works: The Social Logic of Space by Hillier and Hanson (1984) and To Take Hold of Space: Isovists
and  Isovist  Fields  by  Benedikt  (1979).  Hillier  and  Hanson  dealt  with  a  quantitative  analytic
conceptualisation of space  and how that  potentially  relates  to human behaviour  when the studied
spaces are considered parts of a greater interconnected whole, for example a street within a city or a
room within a building. The authors proposed two representations, axial lines and convex spaces to
each fit streets or rooms respectively. They also suggested that their adjacencies can be treated as
edges of a graph which can then be studied to explore immediate and non-immediate relationships
between lines/rooms (treated as the nodes of the graph).

While  Hillier  and  Hanson  (1984)  did  suggest  metrics  related  to  each  node  and  its  immediate
surrounding elements (i.e. how many other lines/rooms each is connected to) they also introduced a
more ’global’ concept:  depth.  Depth is defined generally  as the effort  to get  from one point  in a
city/building to another and may be measured in euclidean distance, number of turns or change of
angle. However,  these abstract representations do not work well for indoor spaces. Axial lines are
better  suited  for  quantifying  lines  of  movement  while  convex  spaces  work  better  for  occupancy
patterns (number of people in a space). Both these representations may also abstract away important
details of the configuration and can not be reconstructed objectively (Peponis et al., 1997) (for further
discussion see: Koutsolampros et al., 2018).
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To alleviate this problem, Turner et al. (2001) suggested instead a lattice grid laid over the space
which provided a regular spatial unit and allowed for more detail in describing the configuration.
Turner  used  the  concept  of  the  isovist  from Benedikt  (1979)  to  connect  the  vertices  of  the  grid
creating thus a graph, similar to Hillier and Hanson (1984). An isovist is all the points visible from a
specific point in space. In two dimensions (in plan view) it can be thought of as a polygon as seen in
Figure 1 (b). Apart from providing a way to make the graph, isovists also allowed for the creation of
different metrics that described the space that is around a cell, such as its area or perimeter. The graph
may also be limited in visible distance when created, in which case the cells that are within the isovist
but beyond that limit will not be marked as within the visible area and thus not connected to the cell
the isovist was generated from.

Most of these ideas were incorporated in a software application called Depthmap, which Turner first
described  in  2001  (Turner,  2001).  As  the  research  progressed  Depthmap’s  capabilities  increased
(Turner, 2004; Turner, 2007b) until it was finally renamed depthmapX and released as free and open-
source by Varoudis (2012) under a GPLv2 license. As an important research tool of the Space Syntax
community Depthmap and later depthmapX implemented and slowly accumulated a large amount of
knowledge which is now available through its source code and interface.

The current version (depthmapX development team, 2017) allows the user to create a Visibility Graph
and carry out VGA, which can eventually provide up to 25 different metrics of the graph. Many of
these metrics describe properties of the graph, the isovist, or the configuration, others are permutations
and some are normalisations. Many researchers use depthmapX to carry out VGA, but, while the
functionality of the program has been described in various forms (Turner, 2001; Turner, 2004; Turner,
2007b;  Silva  and  Turner,  2010;  Al-Sayed  et  al.,  2014)  there  exists  no  comprehensive  manual
explaining what each metric does.

3. VISIBILITY GRAPH METRICS

3.1 OVERVIEW

There are 25 different metrics in total as seen in Table 1. In depthmapX they are calculated through
six different processes that act as loose groupings, i.e. 1) the properties of the isovist at every pixel,
the various relationships between all pixels specifically 2) local and 3) global visibility, 4) metric and
5)  angular  relationships  and  finally  6)  through-vision.  The  metrics  that  are  calculations  of
relationships between pixels are split in three categories depending on the kind of measurement they
employ: metric (the euclidean distance in meters), angular (the angular turn in degrees) and visual (the
number of turns). Given that the grid also functions as an undirected graph the visual metrics can be
thought of as topological distance in steps. In the special cases where the name does not denote the
type of metric (Point First/Second moment,  Through Vision) the metric will be explained in more
detail.

A search in google scholar in the form: “isovist min radial” “visibility graph” or “space syntax” or
“depthmap” shows that while all the metrics have been used in various research studies, there are clear
preferences towards specific metrics (see table 1). Connectivity featured in 365 research papers and is

Figure 1: In a sample plan (a), creating an isovists results to a polygon (b). Applying that polygon to a grid to find which cells 

are inter-visible (c) allows us to treat this as a graph (d)
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therefore the most used metric,  followed by Isovist  Area (n = 105) and  Visual Control (n = 77).
Almost half of the set of possible metrics (12) have fewer than 10 citations. The metrics that measure
the size of the isovist are the simplest and are thus used in many of the research papers that also use
the more complex ones (occlusivity,  control  etc.)  but  potentially also appear in papers  where the
global metrics are mainly used. The table also highlights the two strands of research in the field, one
dealing with the local properties of space and the other with the global ones. Visual Mean Depth, the
core metric that measures global properties of space is also used as much, or in some cases more than
its  permutations (the various Integration metrics).  This  is  potentially due to the complexities that
accompany the calculation of the Integration metrics which will be discussed later in this paper.

This paper will examine the metrics in the order seen in Table 1, from local to global. The notation
will mostly follow existing papers in the field.  1 For the graph notation the paper mainly follows
Turner et al. (2001), where it is defined as G = (V, E) where V(G) (the vertices) are the cells of the
grid that are part of the graph:

and E(G) (the edges) the pairs of mutually visible cells:

For a specific vertex the neighbourhood (the other cells that are visible from it) is defined as:

The notation for  the isovist  on the other  hand will  mostly follow Benedikt  (1979),  except  where
necessary to disambiguate from the properties of the graph. Thus, in continuous space D an isovist is
defined as the number of points visible from a generating point g:

1Where possible the equations are copied from their originating papers, but in some cases they are 
extracted from the source code or as they appear typically in graph theory

Table 1: All the metrics calculated by depthmapX
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and its boundary denoted as ∂I. The vertices of the boundary are defined as V(∂I) while the lines that
connect them E(∂I).

3.2 THE SIZE OF SPACES

Given that  an isovist  is  a polygon, the metrics  Isovist  Area and  Isovist  Perimeter measure those
properties  for  that  polygon. Note that  isovists  are  simple polygons,  thus for  every  isovist  with n
vertices on its boundary and xi, yi the coordinates of each vertex depthmapX calculates the above
using:

Isovist Area has been used to apply the theory of Prospect and Refuge to the field of space syntax
(Psathiti  and  Sailer,  2017)  by  looking  at  the  area  of  a  partial  isovist  as  prospect  and  the  total
Connectivity as refuge.

Connectivity is a metric that relates to the area of the isovist and defined as the amount of cells visible
from a specific cell. In graph theory it is known as the neighbourhood size or degree of the current
vertex:

Connectivity is typically very close to a multiple of the Isovist Area, depending on the cell size. With
smaller cell sizes, more details from the space will be taken into account making  Connectivity and
Isovist  Area closer  in  value.  The  two  may  only  differ  substantially  if,  as  mentioned  above,  the
visibility distance of the graph is restricted, for which case Connectivity follows the restriction while
the Isovist Area does not.

3.3 ISOVIST SHAPE

Isovist Compactness is a measure of the shape of the isovist, that is invariant to its area (in contrast to
perimeter).  More specifically the more an isovist approximates a disk, the higher its compactness,
approaching a maximum value of 1. This metric seems to have been developed in order to provide a
measure of simplicity of the isovist polygon (and thus the space visible). While it is referred to also as
complexity or circularity by Benedikt (1979) and convexity by Batty (2001) it originates from efforts
to measure the roundness of grains of sand (Cox, 1927). It is calculated using the formula:

where A is the Isovist Area and Π the perimeter, and it may take values from 0 (less round) to 1 (more
round).  depthmapX also provides  the metrics  Isovist  Min Radial and  Isovist  Max Radial.  These
represent the minimum and maximum distances from the generating point to the obstacles that make
up the isovist. For the maximum radial, this is simply the maximum distance in the set of all distances
from the generating point to the vertices of the boundary:

Similarly, for the minimum it is the minimum distance in the set of distances from the generating
point to the lines of the boundary.

The minimum radial can potentially be thought of as a way to judge how close a person is to a wall,
while maximum radial the longest line of sight from that point. The maximum radial has been used by
Zook (2017) to examine travelling patterns in museum spaces.
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Two metrics that relate to the shape of the isovist are Point First Moment and Point Second Moment,
as the first and second area moments of inertia of the isovist. They can be thought of as the potential
for an isovist to spin around its generating point. More elongated isovists have more potential to spin,
and that potential increases if the generating point is towards the edges of the shape. In that sense, the
two metrics can be considered the inverse of compactness. These were described by Turner (2004),
but whether they are meaningful in a context of spatial analysis was left as an open question. Despite
the fact  that  they are  stated to  describe  the isovist  they are actually  calculated  by adding up the
distances and the squares of the distances respectively from one cell to all its other visible cells:

The two moments effectively favour spaces with longer visible distances. Elongated spaces such as
corridors will thus display higher moments, especially towards their ends as well as where they meet
other corridors (see for example figure 8).

3.4 LOCAL POTENTIAL FOR EXPLORATION

A metric for identifying potentials for exploration was described by Benedikt (1979) which relates to
the perimeter of the isovist, the  Isovist Occlusivity. This metric is calculated by taking parts of the
perimeter of the isovist that are not blocked by obstacles. It is a concept referred to by Gibson (1983)
and quantified by Benedikt (1979), for pointing out potential stimuli as a person moves in areas “just
around  the  corner”.  These  potential  stimuli  can  be  either  visual  stimuli  (new  places  to  see)  or
accessible stimuli (new places to go).

The final isovist property provided by depthmapX is a metric suggested by Conroy (2001) called
’Drift’. Drift of an isovist is the vector from the generating point (g) to the centre of gravity of the
polygon (c). depthmapX provides two metrics that allow us to fully describe this vector, its magnitude
(Isovist  Drift  Magnitude)  and  its  angle  from the positive  x-axis  (Isovist  Drift  Angle).  These are
calculated in depthmapX as:

The vector will generally show the direction towards the largest parts of an isovist as these largest
paths would drag the centroid more. In this way, Conroy (2001) suggests, we might be able to identify
directions towards some minimum path from which the entire world is visible. In some cases Isovist
Drift  Magnitude works  like  the  area  moments  of  inertia  (Point  First  Moment)  as  in  elongated
rectangular spaces such as corridors its value will increase towards the edges, away from the centroid.

3.5 HIGHLIGHTING AREAS THAT ARE IMPORTANT FOR MOVEMENT

One of the newest metrics  Through Vision was described in 2007 by Turner (2007a) as a way to
pinpoint  the locations that  are  crossed-over more often and can thus be considered important  for
movement.  Through Vision can be defined as the amount of lines of visibility that pass through a
location. In more formal terms, for each cell in the grid, it is the number of times it is crossed by lines
drawn between  the  centroids  of  all  other  inter-visible  cells.  This  metric  can  be  used  to  pinpoint
locations most likely to be travelled, given that they are “in the way” to get from one position to
another. It is thus expected to relate to movement especially in spaces that have long and straight
walkable lines.
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A metric called Visual Clustering Coefficient was defined by Turner et al. (2001) as an adaptation of
the  Clustering  Coefficient  from  Small  Worlds:  The  Dynamics  of  Networks  between  Order  and
Randomness (Watts, 1999). This was expressed as the ratio of the number of cells in an isovist that
can see each other to the total possible connections that could exist between those cells (i.e. all-to-all
connections).

This metric seems to have been developed to measure convexity and compactness as it points out the
spaces where all are visible to all (coefficient is 1), but it also seems to be able to point out junctions
(low coefficient: standing on a corner where one can see two spaces but the spaces can’t see each
other).

3.6 VISIBILITY AS A MATTER OF CONTROL

There are two metrics provided by depthmapX that can be considered semi-global because instead of
capturing properties of the space that are immediate to the visual field they capture properties that
relate  to  the  immediate  space  extended by one visual  step.  These  are  Visual  Control and  Visual
Controllability.

Visual Control was first described by Turner (2001) as the VGA implementation of the ’Control’
metric described by Hillier and Hanson (1984). It is calculated by “summing the reciprocals of the
neighbourhood sizes adjoining the vertex” (Turner, 2001, p. 31.4, eq. 3).

Figure 2: Through vision. a) Lines drawn from inter-visible cells (B to C and C to B) add to Through vision for cell A. In b) cell

A has a through vision value of 56, while in c) cell A has a through vision value of 0

Figure 3: a) Clustering coefficient for every cell. b) Cell A has a value of 1 as all its visible cells can see each other, while c) 

cell B has a lower value as not all the visible pixels can see each other (i.e. A and C)
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It essentially defines whether the space visible from a cell in relation to other directly visible cells is
more (ci > 1) than what they see or less (ci < 1). Turner (2004) suggested the example of Bentham’s
panopticon where the central location can see in every cell (high control) while from within the cells
not much is visible (low control).

Visual  Controllability works  in  reverse,  showing  how  controllable  a  location  is.  This  was  also
described in the first Depthmap paper (Turner, 2001), although it was not given a name (shown as
equation 4). It is calculated as the ratio between the number of visible cells (immediate neighbours)
and the sum of all the cells visible from the immediate neighbours.

Low controllability means that a cell has a visual field that is narrower (smaller) than its neighbours
combined, while high controllability means that the cell and its neighbours have approximately the
same or equal (value of 1) visual field.

3.7 SPACE AS A GRAPH - GLOBAL POTENTIAL

Finally, depthmapX provides a set of global metrics, those that, for each cell, the values are affected
by every other cell in the set. The aspect that provides this connection is ’depth’, defined as the effort
to follow the shortest path to get from one cell to another. The concept exists in graph theory but for
VGA it  was  borrowed from Hillier  and  Hanson (1984)  by Turner  and Penn (1999)  and  adapted
accordingly. The effort required to travel the shortest path can be measured in various ways, three of
which are implemented in VGA: visual, metric and angular. Visual depth is the least amount of visual
steps (a step from a cell to any other immediately visible cell) required to reach another point in the
space. Metric and angular depths are the least amount of absolute euclidian distance or angular change
required to reach a point.

Figure 4: a) Visual Controllability. b) Cell A can see 10 cells directly and 13 through its neighbours (including cell A) thus 

having a controllability of 10/(10 + 13) = 0.43. c) Cell B can see all 22 cells and so can all the neighbours (but also including 

cell B) and thus has a controllability of 22/23 = 0.97
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For each of the different depth types depthmapX provides one metric as the average depth to get from
one cell to any other cell in the set. Visual Mean Depth is the average number of visual steps required
to reach every other cell in the system.  Metric Mean Shortest Path Distance is the average metric
distance required and Angular Mean Depth is the average amount of angular change required to reach
every other cell in the system. It should be noted that finding the shortest path and measuring that path
are not necessarily  done using the same kind of depth.  For example,  depthmapX also provides  a
related  metric  the  Metric  Mean Shortest  Path  Angle which  is  the  average  accumulated  angular
change when taking the shortest metric path to reach every cell in the set. This metric is very similar
to  Angular Mean Depth except, as evident in figures 6e and 6f, except in cases where the shortest
angular path is shorter (in accumulated angle) than the metric path (i.e. cell B in the same figure)

Also  calculated  is  a  metric  called  Metric  Mean  Straight  Line  Distance,  the  average  euclidean
distance (ignoring any obstacles) from a cell to every other cell in the system. This metric could be
useful in pinpointing the centroid of a system, but should only be used in single-floor instances, as it
may fluctuate depending on the way that floors are set along the continuous 2D space.

3.8 NORMALISING DEPTH

The main average depth used in literature is Visual Mean Depth, but as with its line-graph counterpart
(known simply as Mean Depth) its value tends to grow with the system, thus making the comparison
between systems problematic. Hillier and Hanson (1984) suggested ways to normalise Mean Depth
further so as to alleviate this problem and thus created a new concept called ’Integration’. To calculate
Integration another intermediary metric had to be calculated,  ’Relative Asymmetry’  (RA), itself a
normalisation of Mean Depth to the number of cells in the system in order to make shallow and deep
systems comparable.

As stated by Hillier and Hanson (1984, p. 108):

Figure 5: Shortest distances from cell A. a) It takes one step to reach the cells that are directly visible (in light yellow), and b) 

two steps to the rest. c) The number of steps required to reach any other cell may thus be calculated. d) Metric distance to get 

to any cell and e) the accumulated angle on the metric paths. f) Angular distance to get to every cell
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“The measure of relative asymmetry generalises [mean depth] by comparing how deep
the system is from a particular point with how deep or shallow it theoretically could be -
the least depth existing when all spaces are directly connected to the original space, and
the most when all spaces are arranged in a unilinear sequence away from the original
space, i.e. every additional space in the system adds one more level of depth”

RA was then normalised again, against the RA of the root node in an idealised system to allow for
“comparisons across systems which differ significantly in size” (Hillier and Hanson, 1984, p. 109).
The name of the final metric was coined ’Real Relative Asymmetry’ (RRA). Two idealised systems
were suggested in The Social Logic of Space a diamond graph as seen in figure 7a and a pyramid
graph. The RA values of the root node for each idealised graph were coined d-value and p-value
respectively.

Another normalisation called ’Integration Score’ was suggested by Teklenburg et al. (1993), which
can  be  calculated  in  depthmapX and appears  as  ’Integration  [Tekl]’.  Teklenburg  et  al.  aimed to
produce a normalisation that would be less dependent on the number of nodes in the system and based
on a grid map (figure 7b) and which is a complete bipartite graph (figure 7c).

Turner transferred these ideas to VGA and applied them to Visual Depth. Thus, Visual Integration
[HH] (for Hillier and Hanson) is calculated by calculating RA:

where DM is the  Visual Mean Depth and k is the number of cells in the system. The formula to
calculate the RA of the idealised diamond system (d-value) was provided by Krüger (1989) and used
as such in depthmapX:

Finally, RRA can be calculated as:

The  formula  for  the  RA of  the  pyramid  idealised  system (P-value)  required  to  calculate  Visual
Integration [P-value] has not been published but can be found in depthmapX as:

Figure 6: a) Diamond Graph, b) Axial Grid map and c) its equivalent bipartite graph (Teklenburg et al., 1993)
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and the relevant RRA:

It is worth noting that, while the literature typically considers integration to be the same as RRA,
depthmapX in fact inverses both values. Thus:

and

While  Visual  Integration [P-value] is  used  in  a  few papers,  one specifically  mentions  how it  is
calculated (Turner, 2004) and one its effects (de Arruda Campos and Fong, 2003), no published study
offers a clear explanation on how the formula in depthmapX is derived.

Finally,  the  formula  to  calculate  Visual  Integration  [Tekl] (or  Integration  Score)  is  given  by
Teklenburg et al. (1993) as:

where DT is the total depth of the system

3.9 COMPLEXITY OF TRAVEL

The last two metrics that can be calculated by depthmapX are Visual Entropy and Visual Relativised
Entropy.  Visual Entropy (or Point Depth Entropy) was also suggested by Turner (2001) in order to
capture the global complexity of a space without having to deal with its size and it is also borrowed
from the larger-scale analysis (Hillier et al., 1987). Its value for a VGA cell is essentially Shannon’s
entropy of information applied to the distribution of depths to any other cell and expressed as:

where dmax is the maximum depth from vertex vi and pd is the frequency of visual depth d from the
vertex.  Visual  Entropy for  a  cell  increases  when the  choices  ahead  (if  the  whole  space  is  to  be
traversed) are many and varied. For example a workplace where most of the desks are in separate
cellular spaces is more likely to be considered complex to traverse than an open plan office space.

Turner (2001) also suggested a normalised version of entropy called Visual Relativised Entropy that
takes into account the fact that deeper spaces will have higher entropy despite the fact that from a
specific point the options might be limited. In other words, if the number of choices available (in
regards to steps to traverse a space) are the same in a deep or shallow space, the deeper space will
present a higher Visual Entropy. To calculate Visual Relativised Entropy the probability of a specific
depth is divided by the expected frequency of locations at that depth.
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Figure 7: All metrics for case 60 for Accessibility (top) and Visibility (bottom)

4. DATA

To evaluate how well each metric corresponds to activity data we examine a dataset of office-spaces
provided by Spacelab, an architectural office and consultancy in London, UK. The sample contains 41
different  cases  (sites),  from  34  companies  across  the  UK,  compiled  from  2012  to  2017.  The
companies examined vary in size (50 to 2700 desks) and come from different  industries,  such as
Media, Advertising, Technology, Legal and Finance. They comprise a total of 159 floors with the
smallest being 28m² and the largest 4500m², though most of the sample is close to 1000m².
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There  are  two types  of  data  for  each  case:  observation  data  collected  by  participant  observation
snapshots (Vaughan, 2001) and visibility graph analysis. The observation data is collected usually
over a period of five days, every one hour for eight hours, and it contains information of where people
sit, stand, walk and interact as points on a plan. Visibility graph analysis has been carried out with the
command-line interface (CLI) version of depthmapX 0.6.0 (depthmapX development team, 2017) at a
grid of 45x45cm at both eye-level (visibility) and knee-level (accessibility).

5. METHODOLOGY

In previous work we examined this dataset from the perspective of only two metrics: Connectivity and
Visual Mean Depth. In this case we examine all metrics and how well each can help us understand
two  behaviours:  movement  and  interaction.  We  test  this  on  two  levels,  as  measurement  of  the
configuration of floors, and as measurements of the configuration of space in general.

For testing the configuration of floors we aggregate each metric per floor, by calculating the mean of
the values  of  the VGA cells  in  that  floor.  This  value is  then compared  to  the density  of  people
observed moving or interacting in that floor, controlled by the number of snapshots taken. The density
of people moving or interacting is the number of people observed moving or interacting divided by
the number of snapshots and the area of the floor. Specifically for interaction we are only considering
people interacting in groups smaller or equal to five people so as to avoid capturing extraordinary
events in which case larger groups of people may interact.

Testing for the space itself is more complex. Capturing the number of people in a 45x45cm cell results
in many empty cells, but also relies on the accurate recording of the actual positions of people. (for an
extended discussion on this topic refer to our previous work: Koutsolampros et al., 2018) Thus, to
allow for larger areas that can capture more people and do not suffer from such issues of accuracy we
create discrete bins for every metric. This process creates patches of continuous space in which the
binned metric has similar values and where numbers of people may be counted. More specifically,
binning is done with quantiles per metric across all studies. Quantiles allow for approximately equal
number of cells to be within one bin, removing the need for the counts of people to be normalised by
the area of each bin. The metric Metric Mean Straight-Line Distance is ignored, given its dependence
on the positioning of each floor in the various plans.

For both floors and bins we carried out linear regression against each activity. One observation for
each analysis is either one floor or one bin, the average value of the relevant metric and the number of
people found within that floor/bin. Given that the distribution of the density of people in the analysis
per floor is heavily skewed to the right, for these tests the natural logarithm of the activity data is
taken instead.

Finally, we tested the binning method on each site separately. This allowed us to examine whether the
results we find on the global dataset can be used on a per-site basis, and thus enable the use of this
method in predicting activities on newly designed buildings. For this test we also examined whether
external knowledge (the binning of the whole dataset) works better than re-creating the bins for each
site. We took the values of each metric to the extents that it appears in the whole site and split that into
’local’ quartiles (in contrast the ’global’ quartiles from the whole dataset). For example it might be
possible that Visual Mean Depth affects movement in a global way i.e. spaces where everything else is
two steps away on average always have a specific amount of movement, regardless of the size or
number of floors in that building. In this case, when examining a new building, it will be better to use
the known global bins, than to re-create them for that building, as relative to the available values there
(i.e. if the building is very deep on average and has no two-step average depth).

6. RESULTS

The results of the analysis per-floor are seen in figure 8 and tables 2 and 3 for accessibility and
visibility respectively.  Given that the variables are log-transformed, to get the adjusted change we
need to adjust the coefficient for each metric (cm) to get a percentage change in the activity:

For accessibility, six of the metrics show a highly significant relationship to density of movement (p-
value less than 0.01) while for interaction only three metrics are significantly related. The coefficient
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of determination (R²) is low for all apart from Visual Mean Depth (R²=0.28) and Visual Relativised
Entropy (R²=0.22).

The high effect of Visual Mean Depth shows that floors that are more segregated have fewer people
moving. This is in line with previous work by the us (Koutsolampros et al., 2018) and others (Penn et
al. 1999), and contradicts older studies that showed the opposite (Hillier and Grajewski, 1990).

More  specifically  it  seems that  as  Visual  Mean  Depth of  accessibility  of  a  floor  increases  by  1
(average step depth), movement density drops by 20.5%. The results are similar for visibility, though
the effects are less strong. For visibility (Table 3)  Metric Mean Shortest Path Angle is also highly
significant  and has  an effect  of  R²=0.21.  In  fact,  it  appears  that  as  the  accumulated  angle  of  all
traversed paths in a floor increases by one degree, there is a 42.74% reduction in movement density. A
similar effect can be observed for  Angular Mean Depth which, as stated earlier,  is very similar to
Metric Mean Shortest Path Angle.

In the case of interaction, there are fewer significant results and it appears that Visual Mean Depth is
also influential, though to a lesser degree. In this case the metric only explains 11% of the variability
for accessibility and 10% for visibility.

For completeness we also tested the overall presence (the total number of people found per floor)
against each metric, as well as the ratios of each activity against that presence. We observed that the
aforementioned metrics (Visual Mean Depth,  Metric Mean Shortest Path Angle and  Angular Mean
Depth) are also significant to varying degrees with the overall presence (the total number of people
found  per  floor)  which  may  drive  both  movement  and  interaction  We  also  observe  that  the
relationships between the movement and interaction and the metrics become insignificant when taken
as percentages of the presence. This suggests that there are factors that we have not considered in our
analysis that could potentially separate movement and interaction from the overall presence. Thus, it
appears that, for this method, these metrics are more useful in detecting the distribution of people, less
what they do.
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Figure 8: Movement (top) and interaction (bottom) density per floor and against each accessibility metric
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The following scatterplots (figure 10) and tables (4 and 5) show the results of the analysis per-bin.
The activity axis in figure 10 differs for each plot as the position and shape of the aggregating space
(and thus number of people within that  space)  fluctuates per metric.  With this method activity is
aggregated per square meter and hour. As this results in extremely small values it is multiplied by 100
(i.e. per 100 square meters) to make the effect more apparent.

Table 2: All accessibility metrics tested against movement and interaction in the analysis per-floor. Significant results are 

printed in red

Table 3: All visibility metrics tested against movement and interaction in the analysis per-floor. Significant results are printed 

in red
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Movement seems to be related to almost all the metrics, though at different levels, with the strongest
effects for the accessibility metrics.  The metrics that  measure the size of accessible space,  Isovist
Area, Connectivity, Isovist Perimeter, are highly correlated with the movement density with R²=0.90,
R²=0.89 and R²=0.98 respectively. The highest score of the Isovist Perimeter seems to be related to
the fact that it also describes the shape of the space, potentially what  Isovist Max Radial (R²=0.95)
also describes,  the longest  straight walkable lines.  Isovist  Max Radial also correlates  highly with
movement in visibility (R²=0.82) showing that the longest lines of visibility also play a part.

The metrics that  highlight potential  for  exploration (Isovist Drift  Magnitude with R²=0.96,  Isovist
Occlusivity with R²=0.99), potential for movement (Through Vision with R²=0.99) as well as Visual
Control (R²=0.82) seem to also be related to observed movement, especially in accessibility.

Visual Mean Depth is  once again a very good movement predictor for accessibility and visibility
(R²=0.92 and R²=0.94 respectively). In this case, an increase of  Visual Mean Depth by one quantile
reduces the density of people moving (number per 100m2 and hour) by 0.16.

From the three permutations of integration, the one that responds best is  Visual Integration [Tekl]
(R²=0.81) for accessibility and Visual Integration [P-value] for visibility. Finally, it appears that the
normalised version of entropy (Visual Relativised Entropy) which shows the complexity of the space
ahead for a walker is also important. More specifically, it seems that as the space ahead becomes more
complex movement decreases.

Most tests with metrics that relate to movement retain their strength even when compared to presence,
suggesting that binning overall works better.

Interaction seems to relate more to global properties of the space. The best  predictors are  Visual
Integration [P-value] (R²=0.92) and  Visual Relativised Entropy (R²=0.89) for accessibility, but also
Visual Integration [HH] (R²=0.83) for visibility. In this case the results are similar when interaction is
taken as the percentage to overall presence, with Visual Integration [P-value] (R²=0.90) and Visual
Relativised  Entropy  (R²=0.92)  holding  their  values  in  accessibility,  but  not  for  the  metrics  in
accessibility.
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Figure 9: Movement (a) and interaction (b) density per bin and against each accessibility metric. Activity measured in numbers

of people per 100 m2 and hour
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Finally, in table 6 it is shown how well the binning method works for each site. Each cell in the table
displays the percentage of sites that are significant significant (p < 0.01) for each metric and each
activity  and  have  effects  R²  > 0.2,  R²  >  0.5 or  R²  > 0.8.  These  are  tested for  Accessibility  and
Visibility, for the global quantile bins and the local quantile bins (LQ).

Table 4: All accessibility metrics tested against movement and interaction. Significant results are printed in red, and bold when

R² > 0.8

Table 5: All visibility metrics tested against movement and interaction. Significant results are printed in red, and bold when R² 

> 0.8
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Table 6: Percentages of the sites each metric is significant (p < 0.01) for each activity and has effect R² > 0.2, R² > 0.5 or R² > 

0.8. Tested for Accessibility and Visibility, for the global quantile bins and the internal quantile bins (LQ)

We can see that for movement the results are similar to the globally observed. The local metrics for
the size of the visual field, the potential for exploration, movement and and control all predict at least
20% of the result in 60-80% of the sites. Isovist Occlusivity and Isovist Perimeter predict more than
80% of the variability in nearly half the cases.

Where local quartiles are used the results are almost universally better than the global results when the
barrier for variability is set low (0.2 and 0.5). All the local metrics have slightly higher chances of
predicting 20% or 50% of the variability while those chances increase by a large margin when global
metrics are concerned. In the case of R²=0.8 the results for local quartiles seem to get worse than the
global ones.

The results for interaction are not as similar as the ones for the whole-sample analysis in tables 5 and
4. There is one result that stands out quite significantly, Visual Control which predicts the variability
of interaction higher than 20% for 95.1% of the cases, but also Isovist Min Radial which does so for
73.2% of the cases. Both these metrics were significant in the whole-sample analysis but did not have
as strong an effect as the global ones. On the other hand, the global visual metrics that were quite
significant on the large sample, here explain variability for a very small sample of the cases. Instead,
we find variability over 20% explained for almost approximately half the cases by the angular depth
metrics (Angular Mean Depth and Metric Mean Shortest Path Angle)

7. DISCUSSION

From the two methods, binning the metrics seems to work best as a tool for predicting the activities of
people  in  office  spaces.  While  in  the  literature  (for  example  in  Hillier  and  Grajewski  (1990))
aggregating by floor has been the default it is apparent here that aggregating by larger patches of
space predicts both activities better. This might be due to the fact that a floor as a whole very likely
contains high and low values of each metric which may cancel each other out in the aggregation. This
is especially true for local metrics and it becomes apparent from tables 2 and 3, where only the global
metrics have some significance. For such global metrics as Visual Mean Depth, different floors might
get different values, depending on how far they are from the central floor.

In general, for the per-floor analysis, movement was better predicted than interaction, and mainly by
global metrics. However it seems that it is actually the overall presence of people and not what they
are doing that can be predicted by these metrics, as the results in the last two columns of table 2 show.
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The results of the binning method seem much more robust. Movement was found to be well predicted
by many local and global metrics, but mainly in accessibility. Overall it seems that people are mainly
found walking in larger areas, and in areas where the potentials for movement, exploration and control
are higher. This might point to a preference for movement that is highly connected to visibility. The
metrics that relate to the size of spaces and control of the visual field potentially allow people to
survey many other people in the office. For example someone may prefer to take a certain path if it
goes through areas where other people are sitting, as it creates the potential to talk to other people. The
high  effect  of  Isovist  Min  Radial for  visibility  is  potentially  present  for  the  same  reasons.  The
appearance of more movement in more integrated spaces is potentially due to the centrality of the
configuration afforded by the relevant metrics. Reaching a centrally-located space is more is more
likely to unlock the shortest paths everywhere else.

Interaction on the other hand does not appear to be as predictable as movement, even with the binning
method. It seems to be driven mainly by visual global metrics and from those more specifically, the
various integrations. Visual Integration [P- value] seems to have a persistent effect for interaction in
both accessibility and visibility and should thus be studied further.

As is apparent  from the scatterplots of  the binning method, especially  for  interaction,  most  local
metrics show patterns that are related to the regression line but could potentially be approximated best
with curvilinear regression. This visual effect points to the existence of a process that has not been
taken into account and potentially related to the isovist.

The large number of highly effective correlated tests in binning suggests that many of the metrics
measure  similar  properties  of  the  space.  A  simple  example  is  the  high  R²  of  Isovist  Area and
Connectivity when tested against  movement  in  accessibility  (table 4),  which,  as  explained  earlier
measure almost the same property of the configuration, the amount of visible space. This might also
be  the  case  with  Isovist  Drift  Magnitude and  Isovist  Max  Radial in  the  same  table,  which  for
accessibility will rank the edges of corridors very high.

Movement seems to be the most predictable even when the analysis is carried by site. The fact that the
results are very similar to the whole-sample analysis suggests that there are universal characteristics of
spatial  configurations  that  attract  movement.  This  could  potentially  be  attributed  to  the  fact  that
movement  is  primarily  a  utilitarian  activity  and  mainly  happens  in  corridors  or  corridor-shaped
spaces, a configuration that some of the metrics were made to capture (for example Through Vision
and Isovist Max Radial for accessibility). There are though global properties of movement that are not
captured particularly well as far as each site is concerned and should potentially be studied for each
site. This is apparent from the fact that the prediction for the each site was higher when the binning
was done on a per site-basis.

The discrepancies for interaction between the whole-sample and the per-site analyses show us that this
specific  activity  should  potentially  be  studied  at  both  levels.  There  seem to  be  elements  of  the
configuration that trigger interactions that are universal  and others that depend on parameters  that
differ per site. A possible explanation could be the workplace culture of each company or the industry
that company belongs to, which might tolerate interactions in the workplace or not. It is for example
more likely that if the workplace culture frowns upon interactions close to workspaces,  then those
interactions might be moved to places that are deeper to get to (more segregated) in order to avoid
disturbing others.

Binning non-normalised global  metrics  such as  Visual  Mean Depth requires  more exploration,  as
when it is carried out across the whole range of values in a diverse dataset it can have unexpected
side-effects. As seen in Figure 11 (a), binning a metric for a multi-floor study creates high values and
separates the cells into many different groups, but in a single-floor studies (b), the binning may put the
whole floor in a single bin. This might work as the centre of a building functions as a core, while in
single-floor  instances  there  is  no  other  part  apart  from the  core  and  may thus  also  attract  more
movement

Of the permutations of  integration  presented it  has  become apparent  that  the simpler  measure  of
Visual Integration [Tekl] is a better predictor for movement than Visual Integration [HH] and Visual
Integration [P-value].
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6. CONCLUSION

In this paper we examined the origins of Visibility Graph Analysis, from the combination of ideas
from the Social Logic of Space and isovists by Turner et al. (2001), to its current implementation in
depthmapX. We identified the 25 metrics that depthmapX can generate, where they come from and
how they are calculated, as well how to potentially use each of them to understand human behaviour
in office spaces.

We tested each of the metrics across a large sample of office spaces to unearth their relationship to
two specific  human behaviours:  movement  and  interaction.  We found that  some metrics  such as
Visual  Mean  Depth play  an  important  role  for  understanding  the  effects  of  movement,  more
specifically that more segregated floors and spaces tend to attract less movement. We also found that
of the two activities movement is the easiest to predict, with many of the results applicable both to
large-scale analysis but also on a per-site level.

The research presented has a few limitations to be noted. The size and variety of the dataset creates
large variability in the analysis. This is highlighted in the tests where activity is aggregated by floor in
which the normalisation (by floor area) does not aid the prediction as much as the total number of
people is. In this case, a better normalisation metric is required to account for the effect of floor size.
This is also true for the VGA metrics, especially the ones that measure global properties of the space.
Although there have been normalisations,  they have been created for  different  contexts (typically
urban line analysis), and in our tests they usually perform worse than the raw metric. Finally, here we
have only examined each metric on its own against each activity. While this is typically the case in the
literature, it is more likely that a combination will yield better results as it will allow for taking into
account  different  properties  of  space  at  the  same  time,  each  of  which  contributes  a  part  in  the
prediction.

Thus, the next step for this analysis will specifically focus on methods using multiple variables. This
will  initially  take  the  form  of  multi-collinearity  analysis  where  the  metrics  that  truly  add  new
information will be identified and become parts of multiple-regression models to test how well they
predict activities in combination. As some activities were found to affect each other (overall presence
affects movement) they should also be tested in a multi-variate model which will take them and the
metrics into account at the same time. Eventually, the models that best predict the various activities
will be tested against newly designed plans.

This paper contributes to the current discourse in multiple ways. It collects, explains and visualises the
various VGA metrics that are currently available in depthmapX and thus has the potential to become a
useful reference for future work. We tested each metric against observational data giving explanations
for how well they predict or do not predict the activities in office spaces. We used two methods for the
comparisons to observation data, one similar to the existing ones which helps validate old results and
the other a new method that allows for more fine-grained analysis. Finally, this work is a step towards
better predicting activity in office spaces which can eventually provide designers with new tools to
allow for human-centric evidence-based design.
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