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Abstract:    

INTRODUCTION: Within-person trajectories of cerebrospinal fluid (CSF) 

biomarkers in Alzheimer’s disease (AD) are not well defined.   

METHODS: We included 467 subjects from the BIOMARKAPD study with at 

least two serial CSF samples. Diagnoses were subjective cognitive decline 

(n=75), mild cognitive impairment (n=128), AD dementia (n=110) and a group of 

cognitively unimpaired subjects (n=154). We measured baseline and follow-up 

CSF levels of total tau (t-tau), phosphorylated tau (p-tau), YKL-40 and 

neurofilament light (NfL). Median CSF interval was 2.1 years.   

RESULTS: Mean CSF t-tau and p-tau levels increased 2%/year in controls 

(P<.001). In the AD group, mean t-tau levels decreased 1%/year (P<.001) and 

p-tau levels did not change. Mean NfL and YKL-40 levels increased 2%/year in 

controls (P<.001), without differences among groups. Longitudinally, only levels 

of NfL (P<.001) and YKL-40 (P<.02) increased during the study period.  

CONCLUSIONS: All four CSF biomarkers increase with age, but this effect 

deviates in AD for t-tau and p-tau.   

 

Keywords: Alzheimer, CSF, tau, amyloid, neurofilaments, inflammation, YKL-

40.  
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Highlights  

 

 In this large longitudinal multicenter CSF study mean CSF t-tau and p-

tau levels significantly increased 2% in controls with each year of 

increase at baseline age. Within the AD group, mean t-tau levels 

significantly decreased 1% and p-tau levels did not change.  

 We found a significant annual increase of NfL and YKL-40 levels of 2% 

on average in controls without differences among groups. Longitudinally, 

only levels of NfL and YKL-40 significantly increased during the study in 

all groups.     

 The pattern of change of CSF tau and NfL and YKL-40 are different in 

AD.  

 

1. Introduction 

Alzheimer’s disease (AD) is characterized by a long preclinical and prodromal 

phase that precedes the full-blown dementia syndrome. Advances in biochemical 

or imaging biomarkers during the last decades have led to a conceptual transition 

from a clinical-pathological definition of AD to a biological framework [1]. In this 

new scenario, biomarkers play a major role in the characterization of different 

disease stages in clinical practice and in clinical trials.  

Cerebrospinal fluid (CSF) biomarkers offer the possibility to detect many 

pathophysiological processes simultaneously at a relatively affordable cost. In 

AD, several studies have consistently identified a specific CSF biomarker 

signature consisting of low levels of Aβ1-42 and high levels of t-tau and p-tau 

(Aβ1-42, t-tau and p-tau named core AD biomarkers) that reflect the main 
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neuropathological hallmarks of the disease [2, 3]. CSF biomarkers in AD play a 

major role in clinical practice by increasing diagnostic accuracy and in clinical 

trials by improving selection of patients in the early disease stage, and ensuring 

adequate drug target engagement [3, 4]. Other newer CSF biomarkers have 

been investigated in AD. Neurofilament light (NfL) reflects axonal damage and 

its levels are elevated early in the disease and correlate with disease 

progression and brain atrophy [3]. Different inflammatory markers have also 

been investigated [5]. A commonly investigated marker among inflammatory 

proteins is the astrocytic protein YKL-40 [6, 7]. CSF levels of YKL-40 are 

elevated in AD and other neurodegenerative conditions such as frontotemporal 

dementia (FTD) and multiple sclerosis among others [6, 8-10].  

Although the pattern of change of these CSF markers in AD has been 

extensively described in many cross-sectional studies [5], the longitudinal 

trajectories of individual participants are controversial and models based on 

cross-sectional data have contradicted those based on longitudinal data, where 

serial CSF samples are taken from the same subject. It is particularly relevant to 

investigate neuronal injury markers in order to test whether these measures can 

be indicative of disease activity or can be used to predict progression at the 

individual level. Some studies have shown that CSF neuronal injury markers in 

symptomatic AD are longitudinally unchanged [11-14], increased [15-17] or 

decreased [18-21] along time. However, the sample size, inclusion criteria and 

follow-up period is highly variable in these studies. In addition, very few studies 

[18, 21] have investigated the pattern of longitudinal change in inflammatory 

markers in AD. In this study, we take advantage of a large multicenter study to 

investigate longitudinal CSF trajectories of two neurodegeneration markers (t-
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tau, NfL), one tau pathology-associated marker (p-tau) and the astrocytic 

marker YKL-40 across the AD continuum.    

 

2. Methods:  

2.1. Subjects   

We included 467 subjects from 13 participating centers from the multicenter 

BIOMARKAPD project (www.biomarkapd.com): CITA Alzheimer, San 

Sebastián, Spain (n=180); VU University Medical Center, Amsterdam, 

Netherlands (n=86); EDAR study (n=60); Barcelona Hospital Sant Pau (n=37); 

Mölndal (n=29); Montreal (n=19); Perugia (n=19); Copenhagen (n=14); 

Nijmegen (n=7); Montpellier (n=5); Mannheim (n=4); Coimbra (n=4); and 

Barcelona Hospital Clínic (n=3).  

The participants were cognitively unimpaired controls and patients in the AD 

continuum in whom at least two longitudinal CSF samples were available (444 

had two serial samples, 19 had three, and 4 had four samples). Baseline 

diagnoses were: cognitively unimpaired controls (HC, n=154), subjective 

cognitive decline (SCD, n=75), mild cognitive impairment (MCI, n=128), and AD 

dementia (AD, n=110). The diagnosis was made at each center according to 

published criteria [22, 23]. The diagnosis was based on the clinical syndrome 

independent of the previous determinations of CSF AD biomarkers at each 

center. Cognitively normal subjects had no previous neurologic or psychiatric 

disease and had no cognitive deficits after a formal cognitive evaluation. 

Baseline characteristics of a subset of these participants had been previously 

published [9,2-31].  

 

http://www.biomarkapd.com/
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2.1. CSF analyses 

CSF was collected at each center following international consensus 

recommendations [32]. Samples were aliquoted and stored in polypropylene 

tubes at -80°C and shipped on dry ice to the Clinical Neurochemistry Laboratory 

in Gothenburg for analysis. Most centers (11 out of 13) used 0.5 ml aliquots, 

one center used 0.25 ml aliquots and 1 center used 1.5 ml aliquots. We 

measured baseline CSF levels of amyloid-β (Aβ)1-42, Aβ1-40, Aβ1-38, and baseline 

and follow-up levels of t-tau, p-tau, YKL-40 and NfL. Biomarker concentrations 

were measured using commercial assays (MSD: Aβ1-42, Aβ1-40, Aβ1-38; Fujirebio-

Europe INNOTEST: t-tau and p-tau; R&D: YKL-40 and Uman Diagnostics: NfL). 

All CSF measurements were performed in one round of experiments using one 

batch of reagents by board-certified laboratory technicians who were blinded to 

clinical data. Baseline and follow-up samples were always measured side by 

side on the same plate. The assay repeatability was 6.5-10% for t-tau, 1.5-3.6% 

for p-tau, 3.6 - 5.2% for NfL and 3.1 - 5.2% for YKL-40.   

 

2.3. CSF classification  

In the subset of participants with MCI and AD dementia we used local values of 

CSF Aβ1-42 at baseline to stratify subjects in amyloid-positive (Aβ+) or amyloid-

negative (Aβ-). In the subset of participants with SCD and in cognitively 

unimpaired controls we used local values of CSF Aβ1-42, t-tau, and p-tau to 

classify preclinical stages of AD according to National Institute on Aging–

Alzheimer’s Association (NIA-AA) criteria [33]. Participants were classified as 

stage 0 (normal values of Aβ1-42, t-tau and p-tau), stage 1 (reduced values of 

Aβ1-42, with normal values of t-tau and p-tau), stage 2 (reduced values of Aβ1-42, 
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with high values of t-tau or p-tau) or stage 3 (stage 2 plus subtle cognitive 

decline or cognitive complaints). For the analysis, stages 2 and 3 were 

combined due to the low number of participants in each group. Subjects with 

normal Aβ1-42 and either elevated t-tau or p-tau were classified as having 

suspected non-Alzheimer’s disease pathophysiology (SNAP). 

 

2.4. APOE genotype 

APOE genotyping was performed at each site except in two centers (Perugia, 

Mannheim) in which genotypes were obtained in the Alzheimer laboratory at 

Hospital Sant Pau using previously published methods [34].  

 

2.5. Statistical analyses 

Differences in baseline age and MMSE were assessed by ANOVA and post-hoc 

Tukey Honest Significant Difference test. Differences in gender and APOE ε4 

status were assessed by Chi-square test. We used generalized linear mixed 

models for the analysis of all biomarkers. We modeled center-specific random 

intercepts, subject-specific random intercept and slope, and diagnostic-specific 

residual errors. Baseline age, time from study entry, diagnosis, APOE ε4 status 

and their interactions, together with gender and time of sample storage (time 

from collection to analysis) were included as fixed-effects. Outliers were 

detected by visual inspection of their influence on the residuals. Final models 

were determined by backward selection of effects based on their significance 

starting from those of higher order interactions. Age-centered baseline effects 

were calculated for time point 0. 
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2.6. Standard protocol approvals, registrations, and patient consents. All 

participants gave their written consent, and the local ethics committee at each 

center approved the study. 

 

3. Results  

3.1. Demographics  

We included in the study 467 participants who met the key criteria of having 

longitudinal CSF samples. The median Lumbar Puncture (LP) interval was 2.1 

years (range 0.2-6.2 years). The demographic characteristics, APOE genotype 

and baseline CSF biomarkers are shown in Table 1.  

Patients with MCI and AD were older at baseline than patients with SCD and 

controls (ANOVA F=48.3; P<.001). As expected, MMSE scores were lower in 

AD compared to the other groups, and in MCI compared to SCD and controls 

(ANOVA F=156.7; P<.001). We also found the expected differences in APOE 

ε4 frequency (Χ2=43; P<.001) between groups (Table 1).  

 

3.2. CSF biomarkers at baseline 

Baseline CSF biomarker levels differed between groups (Table 1). AD and MCI 

groups had higher levels of t-tau (P<.001), p-tau (P<.001), NfL (P<.001) and 

YKL-40 (P<.001 for AD and P=0.05 for MCI) compared to SCD and controls. In 

addition, CSF levels of Aβ1-42 and the Aβ1-42/1-40 ratio were lower in AD and MCI 

compared to SCD and controls (P<.001). No differences in Aβ1-40 levels were 

observed between groups. Levels of Aβ1-38 were 13% lower in AD compared to 

controls (P=.05) without other significant differences between groups.  
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3.3. Effect of gender and APOE genotype 

Levels of CSF NfL were 17% higher in males than females (P<.001). No other 

gender differences were found between groups. APOE ε4-negative subjects 

had 28% (95%CI 19-39%) higher Aβ1-42 levels and 27% (95%CI 20-34%) higher 

Aβ1-42/Aβ1-40 levels than APOE ε4-positive subjects (P<.001). APOE ε4-negative 

subjects also had 16% (95%CI 8-24%) lower t-tau and 13% (95%CI 6-19%) 

lower p-tau levels than APOE ε4-positive subjects (P<.001). There was no 

significant interaction effect between APOE and diagnosis. No effect of APOE 

genotype was observed for Aβ1-38, Aβ1-40, NfL or YKL-40 levels.  

 

3.4. Estimated effect of baseline age on CSF biomarkers 

We used general linear mixed models to estimate the effect of age at baseline 

on biomarker levels. Each year of baseline age was associated with a +2% 

change in mean CSF t-tau and p-tau levels in controls (P<.001, Fig. 1A-B). This 

age-associated effect was different in AD patients where levels were 1% lower 

per year of baseline age in t-tau (P<.001) and no change per year in p-tau 

levels was observed.  

Each year of baseline age was associated with +2% change in mean NFL and 

YKL-40 levels  in controls (P<.001, Fig. 1C-D) without differences between 

diagnostic groups.    

 

3.5. Longitudinal CSF changes along the AD continuum 

Next, we used general linear mixed models to estimate within-individual rates of 

change in CSF t-tau, p-tau, NfL and YKL-40 levels in the four groups. Results 
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were adjusted for baseline age, APOE ε4 status, gender and time of sample 

storage, accounting for all possible interactions. 

Total tau and p-tau  

Longitudinally, mean t-tau and p-tau levels did not change during the follow-up 

period (P=0.42 and P=0.063, respectively; Fig. 2A-B), either in the whole group 

or within any diagnostic group.  

NfL 

Longitudinally, mean NfL levels increased 4% per year during the follow-up 

period (P<.001, Fig 2C). There were no differences among diagnostic groups.  

YKL-40  

On average, controls had an increase in YKL-40 levels of 1% per year in CSF 

during the follow-up period (P=.02, Fig 2D). There were no differences among 

diagnostic groups.  

Next, we repeated the analyses but stratifying MCI and AD participants into β-

amyloid-positive (Aβ+) and β-amyloid-negative (Aβ -) according to the local 

CSF Aβ1-42 values obtained at baseline at each center using local cutoffs. 

Demographic data, APOE genotype and baseline CSF biomarkers of this 

subset (n=341) are shown in Supplementary Table 1. For this analysis we 

excluded controls with Aβ+CSF values and AD patients with Aβ- CSF values. In 

this subsample there was no significant effect of the amyloid status on within-

individual rates of change in CSF t-tau, p-tau, NfL or YKL-40 levels (Fig 3). 

 

3.6. Longitudinal CSF changes in preclinical AD  

Finally, we performed an exploratory analysis in a subset of 178 cognitively 

unimpaired subjects and patients with SCD that had available local core AD 
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CSF biomarkers. We used local cut-offs to classify these participants in 

preclinical stages 0 (n=142), 1 (n=13), 2-3 (n=6) or SNAP (n=17). Demographic 

data, APOE genotype and baseline CSF biomarkers of this subset are shown in 

Supplementary Table 2. There were expected differences in the levels of Aβ1-42, 

t-tau and p-tau at baseline consistent with the definition of preclinical stages. 

Levels of NfL were 41% (95%CI 16-72%, P<.001) higher in stage 2 and 34% 

(95%CI 14-58%; P<.001) higher in SNAP compared to those in stage 0 and 1. 

YKL-40 levels were 30% (95%CI 1-69%; P=.05) higher in stage 2 and 46% 

(95%CI 24-72%; P<.001) higher in SNAP compared to those in stage 0 and 1. 

Longitudinally, none of the biomarkers investigated showed significant changes 

within these stages (Fig 4).   

 

4. Discussion  

This is, to our knowledge, the largest study investigating longitudinal trajectories 

of CSF biomarkers along the AD continuum. We found that the CSF levels of 

tau markers did not change longitudinally over a median LP interval of 2.1 

years, while NfL levels increased in all clinical groups. All three neuronal injury 

markers and the astrocytic (YKL-40) protein investigated increased with age. 

However, the age-related effect on CSF t-tau and p-tau levels differed in 

controls from the AD group, in which lower levels were found with more 

advanced age. Therefore, the age-related pattern of tau markers in AD, but not 

NfL or YKL-40, deviates from the pattern observed in normal aging.   

Previous studies on longitudinal CSF trajectories of neuronal injury markers 

along the AD continuum yielded conflicting results with some studies [18-21] 

showing a longitudinal decrease, others [11, 12-14] showing no change and 
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some [15-17] showing an increase. The different results between studies are 

likely due to the differences in the populations included, the inclusion of 

biomarker-positive groups in some studies, and the different LP intervals. In 

addition, the inherent variability in longitudinal studies is well recognized [35]. 

The source of variability in longitudinal studies can be attributed to variability in 

between-individual and intra-individual trajectories as well as measurement 

errors in the biomarker analyses. The variability in between-individual 

trajectories can be minimized by selecting a homogeneous patient population 

and the measurement error can be reduced by using precise assays to analyze 

simultaneously all serial samples.  

In a recent work [21], there was a decrease in p-tau levels longitudinally in 

patients with symptomatic AD (P≤.0001), and a decrease in t-tau that did not 

reach statistical significance (P=.095). These findings mirror those observed in 

autosomal-dominant AD, where a similar pattern of change has been described 

[36]. Although in our study we could not detect a longitudinal change in t-tau 

and p-tau levels, the different age-associated effect in AD supports the idea of a 

change in the trajectories of tau markers in the dementia phase of AD.     

The decreases in the CSF trajectory of tau in late clinical AD could reflect a 

slowing in the neurodegeneration activity in this stage, but it could be also 

explained by the reduction in the total number of cells that contribute to the CSF 

pool (with the same activity) or an abnormal CSF clearance with disease 

progression. The pattern of tau is different from the pattern on NfL, which 

increased in all groups independently of the diagnosis. NfL is found in large-

caliber axons in the brain [37] and therefore has been proposed as a marker of 

axonal degeneration and white-matter damage in AD [38, 39]. In cross-sectional 
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studies higher levels of NfL are associated with higher risk of progression to AD 

dementia in MCI [40]. However, in this study NfL levels increased with age and 

during the follow-up period in all groups irrespective of the diagnosis. This is in 

contrast with other studies [15] in which levels of NfL decreased in MCI and AD 

patients. The reasons for this difference remain unclear at this point and 

deserve further investigation. Although there is a positive correlation between 

CSF levels of NFL and tau, evidence suggest that NfL levels provide 

information on neurodegeneration that is at least in part different from CSF tau. 

Tau is a protein predominantly expressed in cortical brain regions, and tau 

levels in CSF could be a reflection of hippocampal and cortical atrophy while 

NfL levels could be a reflection of subcortical damage [37, 41]. The different 

topographical patterns of degeneration along the course of AD could explain the 

different trajectories of both markers [41].    

YKL-40 is a protein expressed in a subset of astrocytes in the brain [7]. YKL-40 

levels in CSF are increased early in AD [6, 9, 42], and also in multiple sclerosis 

and FTD [8, 10, 43]. In this study we found that YKL-40 levels increased 

longitudinally in all groups during the study without differences between groups. 

In a recent study, YKL-40 levels also increased in controls and AD, but only 

reached significance in MCI subjects with positive amyloid Positron Emission 

Tomography (PET) [21, 44]. It is likely that the lack of biomarkers to stratify the 

MCI and AD groups in our study may explain these differences. Another study 

looked at the glial S-100B protein [45] and found that levels also increased in 

AD and DLB. The different longitudinal patterns observed in YKL-40 and tau in 

AD suggests that neurodegeneration and neuroinflammation follow different 

trajectories.   
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We found the expected baseline differences between groups, with higher levels 

of t-tau, p-tau, NfL and YKL-40 in AD and MCI compared to the other groups. 

This finding is in complete agreement with the previous literature that indicates 

that markers of neurodegeneration and astroglial activation are increased in AD 

dementia [5, 8, 9]. We also found an increase in NfL levels in men participants 

compared to women. This finding has been previously described in other CSF 

studies [41] and stresses the importance of adjusting for gender when 

investigating CSF NfL levels. Importantly, this finding has not been observed in 

studies looking at plasma NfL [46].  

 

Our findings also suggest that a 2-year period may be too short for detecting 

significant changes in neuronal injury markers in CSF during the AD disease 

course and this may help to understand the results of some studies with shorter 

follow-up periods. These findings should be considered when using these 

markers as surrogate markers for neurodegeneration in clinical trials [4]. The 

potential explanation for the discrepancy between CSF and imaging biomarkers 

has recently been discussed elsewhere [1]. It is likely that CSF reflects the 

axonal and synaptic damage intensity or “disease activity” at a given point while 

imaging techniques reflect the cumulative change and therefore correlate better 

with cognitive or functional scales.                

 

The main strengths of this study are the large sample size and the inclusion of a 

large subset of participants in the preclinical AD stages. In addition, all analyses 

were performed in a central laboratory with the same assay lots and long 

experience in CSF biomarkers.   
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The study has several limitations. First, the median LP interval was relatively 

short which limited the window to detect longitudinal changes. Second, clinical 

protocols were not harmonized among centers and therefore clinical measures 

could not be used to assess the clinical change over time. Finally, the study did 

not include data on common comorbidities, structural imaging or PET measures 

to correlate with longitudinal CSF changes.     

 

In conclusion, this study showed that the age-related pattern of tau markers in 

AD deviates from the pattern observed in normal aging, while NfL and YKL-40 

continue to increase. These findings are important for the interpretation of 

longitudinal CSF studies and for the design of clinical trials in AD.    
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Table 1. Demographics and CSF biomarker levels at baseline of the 

participants 

 

 Control SCD MCI AD P value 

N 154 75 128 110 - 

Age (Years) 58.2 (7.2) 60.9 (8.1) 67 (8.4) 68.5 (8.5) <0.001 a 

Sex 

(Females/Males) 

(%Female) 

86/68 

(55.8%) 

32/43 

(42.7%) 

49/79 

(38.3%) 

47/63 

(42.7%) 
0.026 b 

APOE 

ε4+(%)/APOE ε4- 

47 

(31.1%)/104 

14 

(19.4%)/58 

50 

(41.3%)/71 

63 

(64.9%)/34 
<0.001 c 

MMSE 28.7 (1.2) 28.5 (1.2) 27.1 (2) 22.6 (4.1) <0.001 d 

t-tau (pg/ml) 296 (136) 312 (109) 514 (362) 759 (432) <0.001 e 

p-tau (pg/ml) 42 (16) 43 (13) 66 (50) 81 (37) <0.001 e 

NfL (pg/ml) 584 (314) 646 (339) 1019 (736) 1647 (1573) <0.001 e 

YKL-40 (pg/ml) 
131606 

(49537) 

137557 

(44213) 

175993 

(74548) 

209732 

(72760) 
<0.001 e 

Aβ1-38 (pg/ml) 2439 (706) 2424 (599) 2384 (1046) 2242 (895) 0.688 e 

Aβ1-40 (pg/ml) 5428 (1453) 5465 (1268) 5632 (1988) 5703 (1864) 0.597 e 

Aβ1-42 (pg/ml) 506 (182) 491 (166) 382 (179) 316 (192) 0.006 

Aβ1-42/Aβ1-40 
0.093 

(0.017) 
0.09 (0.019) 0.07 (0.026) 

0.055 

(0.023) 
<0.001 e 

Aβ1-42/tTau 1.89 (0.64) 1.71 (0.59) 1.10 (0.76) 0.59 (0.57) <0.001 e 

 

 

Unless otherwise specified, values are expressed as mean (SD) 

Abbreviations: Aβ: amyloid-β; AD: Alzheimer’s disease; APOE: apolipoprotein E; MCI: 

Mild cognitive impairment; MMSE: MiniMental State Examination; NfL: Neurofilament 

light; SCD: subjective cognitive decline.  
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a ANOVA. TukeyHSD post-hoc: Control and SCD different from MCI and AD (p<0.001) 

b Chi-squared test. Controls different from MCI (uncorrected p=0.005) and AD 

(uncorrected p=0.048). 

c Chi-squared test. SCD different from MCI (uncorrected p=0.003). AD different from 

Control (uncorrected p<0.001), SCD (uncorrected p<0.001) and MCI (uncorrected 

p<0.001).  

d ANOVA. TukeyHSD post-hoc: Control and SCD significantly different from MCI and 

AD (p<0.001). MCI significantly different from AD (p<0.001) 

e Linear mixed-models. See text for detailed group-by-group comparisons. 
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Supplementary material   

Supplementary table 1: Demographics and CSF biomarker levels at 

baseline of the subset of participants with MCI and AD stratified as Aβ+ or 

Aβ- according to local cutoffs for Aβ1-42.  

 

 Control SCD MCI AD P value 

N 111 70 101 59  

Age (years) 57 (6.8) 60.5 (8.1) 67.2 (8.8) 66.1 (8.3) <0.001 a 

Females/Males 58 / 53 30 / 40 38 / 63 25 / 34 0.19 b 

APOE 

ε4+(%)/APOE ε4- 
26 (23.6) / 84 13 (18.8) / 56 35 (36.8) / 60 37 (66.1) / 19 <0.001 c 

Aβ positive 

(%)/Aβ negative 
0 (0) / 111 11 (15.7) / 59 51 (50.5) / 50 59 (100) / 0 <0.001 d 

MMSE 28.8 (1.1) 28.5 (1.2) 27 (2.1) 22.2 (4.1) <0.001 e 

t-tau (pg/ml) 287.9 (122.8) 309.3 (109.9) 506.1 (334.5) 837.7 (461.9) <0.001 f 

p-tau (pg/ml) 40.2 (13.7) 42.3 (13.4) 63.1 (32.4) 88.4 (40.7) <0.001 g 

NfL (pg/ml) 566.6 (292.9) 626.2 (332.7) 995.8 (709.8) 
1305.5 

(771.5) 
<0.001 h 

YKL-40 (pg/ml) 
128295.7 

(48700.6) 

134485.8 

(43166.5) 

172293.8 

(71392.5) 

201128 

(63986.2) 

<0.001 i 

 

Unless otherwise specified, values are expressed as mean (SD) 

Abbreviations: Aβ: amyloid-β; APOE: apolipoprotein E; MMSE: MiniMental State 

Examination; NfL: Neurofilament light; SCD: subjective cognitive decline.  

a ANOVA. TukeyHSD post-hoc: Control different from SCD. MCI and AD different from 

control and SCD.  

b Chi-squared test 
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c Chi-squared test. Controls and SCD different from MCI and AD. MCI different from 

AD. 

d Chi-squared test. Controls different from SCD, MCI and AD. SCD different from MCI 

and AD. MCI different from AD. 

e ANOVA. TukeyHSD post-hoc. Controls and SCD different from MCI and AD. MCI 

different from AD. 

f Linear mixed-models. t-tau: MCI (p=0.016) and AD (p<0.001) significantly different 

from controls and SCD. 

g Linear mixed-models. p-tau: MCI (p=0.017) and AD (p<0.001) significantly different 

from controls and SCD. 

h Linear mixed-models. NfL: MCI (p<0.001) and AD (p<0.001) significantly different 

from controls and SCD. 

i Linear mixed-models. YKL-40: AD (p<0.001) significantly different from controls, SCD 

and MCI. 
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Supplementary table 2. Demographics and CSF biomarker levels at 

baseline of the subset of participants classified according to preclinical 

AD stages 

 

 Stage 0 Stage 1 Stage 2 SNAP P value 

N 142 13 6 17 - 

Baseline age 

(Years) 
57 (6.6) 61.2 (8.4) 67.2 (5.8) 61.9 (5.8) <0.001 a 

Sex 

(Females/Mal

es) 

72/70 8/5 4/2 8/9 0.733 b 

APOE 

ε4+(%)/APOE 

ε4- 

28 

(19.7%)/114 
5 (38.5%)/8 4 (66.7%)/2 4 (25%)/12 0.030 c 

MMSE scores 28.7 (1.2) 28.5 (1.3) 29.2 (1.6) 28.9 (1) 0.522 d 

t-tau (pg/ml) 261 (83) 240 (110) 553 (71) 488 (67) <0.001 e 

p-tau (pg/ml) 37 (9) 33 (11) 73 (13) 64 (9) <0.001 e 

NfL (pg/ml) 532 (245) 687 (576) 736 (103) 872 (468) <0.001 e 

YKL-40 

(pg/ml) 

122614 

(41269) 

117682 

(38126) 

178503 

(35233) 

185494 

(53693) 
<0.001 e 

      

      

      

      

      

 

 

Unless otherwise specified, values are expressed as mean (SD) 
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Abbreviations: Aβ: amyloid-β; APOE: apolipoprotein E; MMSE: MiniMental State 

Examination; NfL: Neurofilament light; SCD: subjective cognitive decline.  

SNAP: Suspected non-amyloid pathology  

a ANOVA. TukeyHSD post-hoc: Stage 0 different from Stage 2 (p=0.002) and SNAP 

(p=0.023) 

b Chi-squared test 

c Chi-squared test. Stage 0 different from Stage 2 (uncorrected p=0.026) 

d ANOVA 

e Linear mixed-models. See text for detailed group-by-group comparisons. 
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Figure legends  

 

Figure 1. Estimated age-related change in biomarker levels for t-tau (A), p-tau 

(B), NfL (C) and YKL-40 (D).  

 

Figure 2. Estimated longitudinal change in biomarker levels for t-tau (A), p-tau 

(B), NfL (C) and YKL-40 (D). 

 

Figure 3. Estimated age-related change in biomarker levels for t-tau (A), p-tau 

(B), NfL (C) and YKL-40 (D) in the subset of participants stratified into Aβ+ or 

Aβ-.  

 

Figure 4. Estimated longitudinal change in biomarker levels for t-tau (A), p-tau 

(B), NfL (C) and YKL-40 (D) in participants classified according to preclinical AD 

stages. 
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