
Journal of Structural Biology 199 (2017) 12–26
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/ locate/y jsbi
Improved metrics for comparing structures of macromolecular
assemblies determined by 3D electron-microscopy
http://dx.doi.org/10.1016/j.jsb.2017.05.007
1047-8477/� 2017 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding authors.
E-mail addresses: m.topf@cryst.bbk.ac.uk (M. Topf), martyn.winn@stfc.ac.uk

(M. Winn).
Agnel Praveen Joseph a,b, Ingvar Lagerstedt c,d, Ardan Patwardhan c, Maya Topf a,⇑, Martyn Winn b,⇑
a Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
b Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
cEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
dComputational Chemistry and Cheminformatics, Lilly UK, Windlesham GU20 6PH, United Kingdom
a r t i c l e i n f o

Article history:
Received 15 October 2016
Received in revised form 19 May 2017
Accepted 23 May 2017
Available online 25 May 2017

Keywords:
3D electron cryo-microscopy
Integrative modelling
Scoring functions
Macromolecular assemblies
Density fitting
a b s t r a c t

Recent developments in 3-dimensional electron microcopy (3D-EM) techniques and a concomitant drive
to look at complex molecular structures, have led to a rapid increase in the amount of volume data avail-
able for biomolecules. This creates a demand for better methods to analyse the data, including improved
scores for comparison, classification and integration of data at different resolutions. To this end, we
developed and evaluated a set of scoring functions that compare 3D-EM volumes. To test our scores
we used a benchmark set of volume alignments derived from the Electron Microscopy Data Bank. We find
that the performance of different scores vary with the map-type, resolution and the extent of overlap
between volumes. Importantly, adding the overlap information to the local scoring functions can signif-
icantly improve their precision and accuracy in a range of resolutions. A combined score involving the
local mutual information and overlap (LMI_OV) performs best overall, irrespective of the map category,
resolution or the extent of overlap, and we recommend this score for general use. The local mutual infor-
mation score itself is found to be more discriminatory than cross-correlation coefficient for intermediate-
to-low resolution maps or when the map size and density distribution differ significantly. For comparing
map surfaces, we implemented two filters to detect the surface points, including one based on the ‘extent
of surface exposure’. We show that scores that compare surfaces are useful at low resolutions and for
maps with evident surface features. All the scores discussed are implemented in TEMPy (http://tempy.
ismb.lon.ac.uk/).
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

A major leap in structure characterization of large bio-
molecular machines and cellular components has been brought
in by biophysical techniques like electron microscopy (EM) and
tomography (ET) (Bai et al., 2013; Kuhlbrandt, 2014; Milne et al.,
2013), which result in 3D volume representations of the structure.
The Electron Microscopy Data Bank (EMDB) (http://emdb-empiar.
org) currently holds over 4000 volume reconstructions from EM
and ET, and the number of entries has doubled in the last four years
due to increasing interest and development of better image recon-
struction methods and direct electron detectors (Kuhlbrandt,
2014).
Rapid increase in the amount of EM/ET data necessitates ways
to categorize and compare them. Comparison of 3D-EM recon-
structions (volume alignment) is useful to categorize existing data
and annotate new volume depositions. Conformational changes
involved in specific biological systems can also be studied by com-
paring densities that represent different functional states.

The resolution of the 3D-EM data is often insufficient to provide
atomic details of the macromolecular structure. Hence, atomic
models of components are usually fitted into volumes to obtain
an atomic representation of the structure (Villa and Lasker,
2014). Fitting atomic components into a target density is usually
dealt with as a problem of volume alignment by first filtering the
atomic model (probe) to the resolution of the target density before
comparison (Chacon and Wriggers, 2002; Roseman, 2000;
Rossmann, 2000; Topf and Sali, 2005; Volkmann and Hanein,
1999). Given an accurate placement derived from rigid-body align-
ment (rigid fitting), further refinement of the model can be applied
locally by sampling conformations that improve the fit with the
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target density (flexible fitting) (Topf et al., 2008; Trabuco et al.,
2008; Wang and Schroder, 2012).

The available approaches for fitting or volume alignment are
either using a map density based 6D grid search or a coarse-
grained representation of volumes to reduce the search space.
Exhaustive 6D search of the density grid does not suffer from den-
sity approximations or coarse graining but is relatively slow. To
reduce the computational cost, either the rotational search is accel-
erated using spherical harmonics transforms (Garzon et al., 2007)
or a Fast Fourier Transform (FFT) is employed to rapidly scan the
translations (Chacón and Wriggers, 2002; Roseman, 2000;
Wriggers, 2012). Random (Goddard et al., 2007) or stochastic sam-
pling (Topf and Sali, 2005) of the search space can also reduce com-
putation time but is more effective when the probe and target
volumes do not have a large difference in size. Cross-correlation
coefficient (CCC) between the search and target map densities is
typically the metric used in these methods to optimize the fit.

Methods relying on coarse-grained representation of volumes
are faster but the accuracy largely depends on the efficiency of fea-
ture approximation. The molecular shape can be encoded with a
set of feature points (Birmanns and Wriggers, 2007; Woetzel
et al., 2011; Wriggers, 2012), even in the absence of interior den-
sity features. A least square fit starting from triplet points from fea-
ture sets (similar to geometric hashing) corresponding to probe
and target, is performed to obtain the alignment. The sets of fea-
ture points are then compared using RMSD metric and the fit opti-
mized using CCC score. Another approach based on vector
quantization, represented density maps as alpha shapes that
approximates the map geometry and topology (De-Alarcón et al.,
2002). Volume densities are also described using 3D Zernike
moments (Esquivel-Rodriguez and Kihara, 2012) and the Euclidean
distance of the coefficients is computed to calculate the similarity
of two volumes. Common features or substructures can be also
derived using rotationally invariant local density gradient descrip-
tors (Saha and Morais, 2012; Saha et al., 2010). The histograms of
these local density gradient vectors are matched to compare the
local density and the alignment is performed by matching graphs
that representing the feature points.

GMfit (Kawabata, 2008) relies upon a representation of the map
density in terms of a Gaussian Mixture Model (GMM), which is a
linear combination of a certain number of 3D anisotropic Gaussian
Distribution Functions (GDFs). A score based on the overlap of two
Gaussian mixtures is optimized to obtain the alignment. The num-
ber of GDFs controls the description of the map; a larger number
generates a more detailed density function. There are several ways
to obtain initial configurations in the 6D search to align two GMMs.
These include random sampling, segmentation-based or symmet-
ric fitting, or by matching principal axes, followed by a local steep-
est descent optimization. The main computational cost is for the
optimization of GDFs to generate the GMM while the comparison
of Gaussian mixtures is usually carried out in seconds.

Apart from the alignment methodology, resolution, conforma-
tional differences and the extent of noise in the density maps also
influence the efficiency of volume comparisons. A major factor that
determines the selection of correct orientations in the search space
is the accuracy of metric used to score the alignments (Farabella
et al., 2015; Henderson et al., 2012; Schneidman-Duhovny et al.,
2012; Volkmann and Hanein, 1999). It becomes necessary to eval-
uate and re-rank the proposed solutions using different scoring
functions depending on the level of details in the volume recon-
struction. Vasishtan and Topf (Vasishtan and Topf, 2011) presents
an account of several scoring functions to evaluate the quality of
alignment between two volumes, using either the density distribu-
tion of the volume or the shape of the surface of the density distri-
bution contoured at a certain value or both. TEMPy is a Python
toolkit for volume and model processing and assessment in which
these scoring functions as well as additional ones are implemented
(Farabella et al., 2015). Dugan and Altman assessed different scores
for evaluating the match between a model and a surface envelope
(Dugan and Altman, 2004). They proposed a metric favouring atom
inclusion in the density while penalizing those lying outside the
envelope. A similar score is used to evaluate fitted models associ-
ated with 3D-EM data depositions in EMDB (Lagerstedt et al.,
2013).

In the context of the BioMedBridges project (Field et al., 2013),
we have developed a pipeline for comparison of volumes to catego-
rize and annotate existing volume data (PDBeShape; to be pub-
lished). The precision and accuracy of scoring functions has been
a major bottleneck in the assessment of solutions proposed by dif-
ferent volume comparison methods in this project. We therefore
evaluated different scoring functions for their ability to distinguish
correct volume alignments. We gathered a benchmark set of pair-
wise alignments of experimental 3D-EM reconstructions from the
EMDB, using superposition of associated fitted coordinate models
to provide a ground truth fit. We used GMfit (Kawabata, 2008) as
the volume alignment method as it is relatively fast and a poten-
tially useful method for volume database searches. For each pair
of volumes, the set of alignments generated by GMfit were scored
using different metrics and the metrics were then evaluated based
on the similarity of the alignments with the reference fit. We tested
potential improvements and normalization of the scoring functions
discussed in (Vasishtan and Topf, 2011). We could characterise dif-
ferent scoring functions in terms of the class and resolution of the
volumes involved, and the extent and nature of the overlap.
2. Methods

2.1. Dataset preparation

All 904 density maps (volumes) in the EMDB with correspond-
ing fitted coordinate models in the PDB (as of April 2016) were
considered. 50 maps each were chosen randomly from two major
categories, ribosomes and viruses, and 30 maps for the categories
of chaperones and other sample types; structure superposition of
fitted atomic coordinates corresponding to maps in each category
was carried out using MMalign (Mukherjee and Zhang, 2009) in
order to define the ground truth alignments. For each alignment,
MMalign calculates the TMscore which is a normalized score for
evaluating the quality of superposition of atomic models, indepen-
dent of the length of protein chains (Zhang and Skolnick, 2004,
2005). Alignments with TMscore >0.4 (Xu and Zhang, 2010) were
chosen and the transformation leading to superposition was used
to transform the corresponding maps with respect to each other.
However, even when the TMscore was good, the alignment of cor-
responding volumes could be non-optimal or incorrect due to fit-
ting errors associated with one or both of the models and/or
ambiguity in fitting at intermediate-low resolutions. We manually
inspected the generated map-to-map alignments to remove those
without correct matching orientations and selected a final refer-
ence set of 28 alignments (ribosome: 7, virus: 8, chaperones: 6
and various: 7) covering different resolutions and map types
(Table 1). Examples of a reference alignment from each of the
major categories are shown in Fig. S1. The 7 map-pairs not involv-
ing ribosomes, viruses or chaperones, includes two gamma secre-
tase, one TRPV1 channel, one ryanodine receptor, one ATPase
(Type-V) and two RNA polymerase pairs. For our category-based
analysis of alignments, we included these 7 additional map pairs
together with the 6 chaperone pairs in the category ‘others’.

We next used GMfit (Kawabata, 2008) to generate 100 align-
ments for each map pair in the reference set (Fig. 1A), in order to
provide a distribution of scores in each case. Generally, the larger



Table 1
Dataset used for evaluating scoring functions. The EMDB IDs of the volumes aligned, their associated fitted PDBs (PDB1 and PDB2), sample category, their resolutions (resn1 and
resn2) and the number of Gaussian functions used for each map (gmm1 and gmm2), are given. The fraction of overlapping region from the reference map alignment with respect
to the size of each map, is given in the last column. GS: Gamma secretase, RPII: RNA polymerase II, RPIII: RNA polymerase III, RyR: Ryanodine receptor.

EMD1 EMD2 PDB1 PDB2 Category Resn1 Resn2 gmm1 gmm2 Fractional overlap (m1, m2)

5247 5250 3izk 3izn Other (chap) 4.9 6.4 32 16 0.61, 0.67
5247 5138 3izk 3j03 Other (chap) 4.9 4.8 122 104 0.67, 0.65
2001 1202 4aau 2cgt Other (chap) 8.5 8.2 7 8 0.56, 0.53
2326 1202 3zq0 2cgt Other (chap) 9.2 8.2 9 8 0.65, 0.73
2325 2326 3zpz 3zq0 Other (chap) 8.9 9.2 12 9 0.71, 0.85
5140 5248 3iyf 3izl Other (chap) 8.0 6.2 11 12 0.31, 0.38
6455 5777 5an8 3j5r Other (TRPV1) 3.8 4.2 33 45 0.84, 0.58
3240 2677 5fn5 3upc Other (GS) 4.3 4.5 25 43 0.52, 0.86
2677 3061 4upc 5a63 Other (GS) 4.5 3.3 43 9 0.24, 0.87
2785 3218 4v1n 5flm Other (RPlI) 7.8 3.4 23 41 0.60, 0.82
2786 3178 4v1o 5fj8 Other (RPIII) 9.7 3.9 23 23 0.36, 0.62
2752 2807 4uwe 3j8h Other (RyR) 8.5 3.8 29 125 0.91, 0.46
8016 6284 5gar 3j9t Other (ATPase) 6.4 6.9 11 10 0.44, 0.52
1302 1366 2o0f 1pn6 Ribosome 15.5 12.8 39 14 0.70, 0.69
1248 1067 1zo1 1s1h Ribosome 13.8 11.7 10 16 0.72, 0.50
6456 5326 3jbn 3j0l Ribosome 6.7 9.8 23 59 0.84, 0.36
2763 1895 3j81 4a2i Ribosome 4.0 16.5 31 6 0.41, 0.74
1056 1895 1qzc 4a2i Ribosome 9 16.5 19 6 0.20, 0.56
1345 5591 2p8z 3j38 Ribosome 8.9 6 15 110 0.77, 0.63
3049 2763 3jaq 3j81 Ribosome 6.0 4.0 27 31 0.66, 0.82
1182 1114 2c8i 1z7z Virus 16 8 49 84 0.71, 0.90
5466 5122 3j23 3iyc Virus 9.2 10 59 30 0.73, 0.73
5117 5268 3iya 3j05 Virus 22 7 72 74 0.24, 0.77
5710 2397 3j48 4c0u Virus 5.5 10 60 72 0.48, 0.49
1058 5122 1upn 3iyc Virus 18 10 126 30 0.37, 0.74
2436 1562 4c10 3epd Virus 13 9 149 108 0.84, 0.43
5466 2397 3j23 4c0u Virus 9.2 10 59 72 0.61, 0.52
6243 5888 3j9f 3jbc Virus 9.0 6.5 153 82 0.54, 0.95
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the number of Gaussians used to represent a volume, the more fea-
tures can be abstracted and the better is the description of the den-
sity. The number of Gaussians used to approximate a map was
inferred from the number of segments found by Segger (Pintilie
et al., 2010). Segger (implemented in Chimera (Pettersen et al.,
2004)) is widely used for segmenting volumes to identify compo-
nent shapes in the volume density. An initial application of the
watershed algorithm is followed by iterative scale-space filtering
and grouping resulting in larger and fewer segments.

In our implementation, we terminated the grouping when the
observed number of segments falls below an expected number.
We calculated the lower limit for the approximate number of seg-
ments expected from the volume by estimating the theoretical
protein volume corresponding to 100 amino acids (Harpaz et al.,
1994) and scaling it by a factor of map resolution
SV ¼ ð100 � 110 � 1:21Þ � r ð1Þ

Here, SV is the effective volume of a segment in Å3, scaled by the
resolution r (in Å) of the map. 110 Da was used as the average
molecular weight of each amino acid and 1.21 Å3/Da is the factor
obtained by considering an average partial specific volume of
�0.73 cm3/g, for proteins. Dividing the total molecular volume by
this scaled segment volume gives the number of segments
expected, with the Segger procedure terminating at the next itera-
tion at some number lower than this. The latter was then taken as
the number of Gaussians to be used in GMfit. The theoretical vol-
ume is scaled by the map resolution r so that a lower resolution
map is represented by fewer Gaussians compared to a higher res-
olution map. In practice, we also imposed a minimum number of
segments of 3 and a maximum number of 240. The selected num-
ber of Gaussians for each volume in the test dataset is given in
Table 1. To match volumes abstracted by different Gaussian mix-
tures, the random search protocol in GMfit was used, followed by
a steepest descent local optimization (Kawabata, 2008).
As explained below, score calculations require assignment of an
appropriate contour level for the volumes so that the density
beyond this level can be considered as background noise. We
determined contour density threshold based on the volume corre-
sponding to the molecular weight of the macromolecule. For EMDB
entries the molecular weights details provided by the authors may
not be accurate or may not account for all components in the
sample. Hence, we also considered the author-suggested contour
level, and calculated the molecular volume from that. If the
contour calculated from the estimated molecular weight falls
below the background peak or above 5*sigma (where sigma is
the standard deviation of density values, calculated with the back-
ground peak as mean), then the author-suggested contour value is
used instead. If the author-suggested level also fails the sanity
check, then 1.5*sigma above the background peak is used. Also, if
the contour level based on the molecular weight (as submitted to
EMDB) differed significantly from the contour suggested by the
authors (>3 sigma), the latter was used. The selected contour levels
were manually verified. Next, we low-pass filtered the maps to the
lower resolution of the two, using TEMPy (Farabella et al., 2015)
and the grid spacing was set to 1/4 of that resolution (van
Zundert et al., 2017). The transformation proposed by GMfit for
each fit was applied to the maps, followed by the calculation of dif-
ferent scores. The accuracies of different scoring functions (below)
were then assessed using these proposed alignments with respect
to the reference alignment. All the scores, band-pass filters and
grid resampling functions are implemented in TEMPy (Farabella
et al., 2015).

The following scores were selected based on their performance
in previous tests on a simulated map dataset (Vasishtan and Topf,
2011) and the differences in the features they score, e.g. the voxel
density values, binned densities, map surface features, surface den-
sity gradients, extent of overlap etc. Potential modifications and
improvements to these scores (see below) were also tested in this
analysis.



Fig. 1. (A) Work flow of volume comparison with GMfit and assessment of alignment poses using different scoring functions. Reference alignment and one of the best fits
generated by GMfit for the comparison of two partial yeast preinitiation complex maps (EMD-3049 and EMD-2763), are also added as examples. (B) Mean filter applied on
binary mask of contoured volumes to identify surface exposed points. Applying a mean filter on a binary mask of contoured volume result in voxel values between 0 and 1.0,
more exposed points close to 0 and the core voxels close to 1.0. A slice through such a filtered volume is shown with voxel values colored in the rainbow range with red
indicating maximum exposure and blue, maximum burial. (B.i) 15.5 Å cryo-EM map of E-coli 70S ribosomal release complex bound to RF3 (EMD-1302). (B.ii) 12.8 Å map of
EF-G bound E-coli 70S Release Complex in the presence of Puromycin and GTP (EMD-1366). (B.iii) 18 Å map of echovirus type 12 bound to decay accelerating factor (EMD-
1058) and (B.iv) 10 Å map of human poliovirus 1 RNA-releasing intermediate (EMD-5122).
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2.2. Density-based scores

The following scores consider the voxel density values for calcu-
lations. Local score calculations are carried out over all voxels that
are within the contour of both maps, i.e. the overlap region.

The global Cross Correlation (CCC) was calculated as:

CCC ¼
Pðx� �xÞðy� �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx� �xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy� �yÞ2
q ð2Þ

where x and y are density values in each voxel in the two volumes
being compared and �x and �y are the respective mean densities. The
Local Cross Correlation (SCCC) is calculated as:
SCCC ¼
Pðx� �xÞðy� �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx� �xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy� �yÞ2
q ð3Þ

where the summation is limited to the set of voxels in the region of
overlap. To make it less sensitive to the local differences in the
shape of density distributions and the location of the mean
(Joseph et al., 2016), another local score implemented in TEMPy,
Segment based Manders’ Overlap Coefficient, was calculated as the
product moment without deviation from mean (as also used in
Chimera):

SMOC ¼
PðxyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðyÞ2
q ð4Þ
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The local nature of the score calculation is similar to the
segment-based cross-correlation score (Farabella et al., 2015).

Another score that performed well in previous tests on
simulated maps, and works on a coarser representation of density
(in terms of density bins), is the mutual information (MI) score
(Shatsky et al., 2009; Vasishtan and Topf, 2011). It quantifies the
extent of register between the density bins from the two maps.

The Local Mutual Information (LMI) was calculated in a way sim-
ilar to that described in (Farabella et al., 2015), for the region of
overlap. The volume density was divided into a certain number
of bins calculated using Sturges rule (Sturges, 1926)) as

k ¼ ½1þ log2n� ð5Þ

where k is the number of bins and n is the number of voxels in the
overlapping region. For this test dataset, the number of bins k usu-
ally stayed close to 20, corresponding to a typical overlap region of
803 voxels. The marginal entropies HX and HY for the two aligned
maps were calculated as:

HX ¼ �
Xkx
x¼1

px � log2ðpxÞ ð6Þ

HY ¼ �
Xky

y¼1

py � log2ðpyÞ ð7Þ

where px and py are the probabilities of occurrence of the
corresponding bins (x and y) in the sample and kx and ky are the
number of bins into which the volume densities were divided.
The joint entropy of aligned bins from the two volumes was
calculated as:

HXY ¼ �
Xkx
x¼1

Xky

y¼1

pxy � log2ðpxyÞ ð8Þ

where pxy is the probability of finding the pair of bins x, y in the
aligned set of bins from the two volumes.

The Mutual Information score was then calculated as:

MI ¼ HX þ HY � HXY ð9Þ
It captures the statistical relationship between the two binned

densities based on their joint entropy. The joint entropy is mini-
mized when there is a one-to-one mapping between the bins.

A decrease in overlap between volumes reduces the statistical
power of estimated probabilities. Normalised Mutual Information
(NMI) (Studholme et al., 1999) was designed to make the global
Mutual Information score less variant to changes in the extent of
overlap:

NMI ¼ ðHX þ HY Þ=HXY ð10Þ
2.3. Surface-based scores

Using a given contour level, the surface points of a volume can
be picked in different ways. Various surface definitions were
tested:

a) Based on a density threshold (T). All voxel points whose den-
sity lie in a given range are selected as surface points
(Vasishtan and Topf, 2011). In this study, we used contour
level ±10% sigma as the density range.

b) All points on the contour surface (A). On a contoured volume
filled with zeros outside the surface, the set of voxels with
at least one zero in the immediate neighbourhood are con-
sidered as surface points. The face, edge and corner contacts
were considered while searching the neighbourhood.
c) Mean filter for identifying extent of exposure (M). Based on the
chosen contour level, a binary mask is generated from the
density map with ones inside and zeros outside the contour.
Every voxel value within the contour is then replaced with
the mean of mask values over three orthogonal windows
of length 21 voxels, lying along the map axes and centred
on the point of interest. We chose this window size because
we deal with large volumes (size > 1003 voxels) and a larger
window enables calculation of the extent of exposure/burial
based on a larger neighbourhood. As a result, highly exposed
voxels surrounded by more exterior points get a low value
compared to those on grooves or in pockets (Fig. 1B). All
voxels with values less than 0.3 were then selected as sur-
face points. This provides a simple way to extract the surface
and compare aligned volumes based on the extent of surface
exposure.

The following scores rely on surface definitions to calculate
similarity.

The Chamfer Distance is used for pattern matching in video
tracking, and is calculated as the average Euclidean distance
between nearest surface points taken from two volumes (Chen
et al., 2007; Vasishtan and Topf, 2011). We calculated the Chamfer
Distance for surface points identified using the three methods
described above, giving the scores CDT, CDA and CDM.

For atomic structures, the Global Distance Test (GDT) score is
computed as a weighted percentage of Ca atom pairs in a given
distance range (Zemla, 2003; Zemla et al., 2007). GDT has been
widely accepted as a measure for the quality of superposition of
two coordinate sets representing protein structures, and this score
is used to evaluate computational models in the CASP (Critical
Assessment of protein Structure Prediction) experiments (Read
and Chavali, 2007). Here, by analogy to the GDT, we calculate an
additional score based on the Chamfer distance as a weighted
mean of the fraction of surface point pairs within a certain dis-
tance. For a set of equi-spaced distance limits D(i) (a maximum dis-
tance divided into k equal bins), the CDGDT score is given by

CDGDT ¼

Xk

i¼1

½ðk� iþ 1Þ � Pi�

k�ðkþ 1Þ=2 ð11Þ

where Pi is the fraction of nearest point pairs within the distance
limit D(i).

A maximum distance threshold of 30 Å was used, and the near-
est neighbour distances were placed into k = 30 bins of width 1.0 Å.

The weight for the ith bin is ðk�iþ1Þ
k�ðkþ1Þ=2 such that the weight falls lin-

early with increasing distance, dropping to zero for nearest neigh-
bour distances greater than the maximum distance threshold. We
calculated CDGDT using all three surface definitions described
above: CDTGDT, CDMGDT and CDAGDT, respectively.

The Normal Vector score was calculated as the average angle
between the normal vectors at aligned surface points (Ceulemans
and Russell, 2004; Vasishtan and Topf, 2011), normalized as:

NV ¼ 1
ðn�pÞ

Xn

i¼1

Nx
i

!
�Ny

i

!

ðjNx
i

!
jjNy

i

!
jÞ

ð12Þ

where n is the number of surface points of the target volume, Nx
i

!

and Ny
i

!
are normal vectors of density gradients calculated at these

points i for the two maps x and y. The score varies from 0 for per-
fectly aligned and parallel surfaces, up to the worst score of 1.

We calculated the Normal Vector score using all three surface
definitions: NVT, NVM and NVA respectively.
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2.4. Overlap-based scores

The final score relies on quantifying the overlapping regions
between the two maps irrespective of the density values inside
the contour. The Overlap score (OVR) is calculated as the fraction
of overlapping voxels within the iso-contour threshold with
respect to the smaller of the two volumes.

2.5. Measures for evaluating scores

To compare different scores, we used them to evaluate each of
the 100 fits generated by GMfit for a pair of maps. The distance
of each of these 100 fits from the reference alignment was mea-
sured using the Arc Length corresponding to the Component Place-
ment Score (CPS) (Pandurangan et al., 2014; Zhang et al., 2010):
ALCPS � 2prh/360, where r is the translation vector and h is the
angle corresponding to the difference in transformations between
the reference and current fit. For symmetric maps, the symmetry
operations were considered while calculating this metric. The log-
arithm (log10) of ALCPS was used for the following analyses and
plots.

To determine the ability of a score to distinguish alignment
poses that are close to the reference alignment from those farther
from it, we measured the ALCPS values for each alignment from
GMfit. We considered a certain ALCPS threshold: alignments were
considered as ‘‘correct” if the associated ALCPS is better than the
threshold. For each score being tested, alignments with a score
greater than a score threshold are considered positives and the rest
as negatives. The true positive rate (TPR) is the fraction of correct
alignments that are recovered as positives. Similarly, the false pos-
itive rate (FPR) is the fraction of incorrect alignments that are
reported as positives. The true and false positive rates are mea-
sured as a function of the score threshold, for each score being
tested. Receiver Operating Characteristic (ROC) curves which plot
the TPR against the FPR as the score threshold is varied, were gen-
erated for each of the scores and for each map pair in the test data-
set. The mean Area Under Curve (AUC) of all ROC curves in the test
dataset was calculated, with larger values indicating a clean sepa-
ration of true positives from false positives. AUC values reflect here
the ability of a score to discriminate between correct and incorrect
alignments. However, when the number of incorrect fits is signifi-
cantly higher than the number of correct fits (or vice versa), the dif-
ferences in the TPR between two scores will appear more dominant
compared to that of the FPRs (or vice versa) (Davis and Goadrich,
2006). The ROC curves and the AUC values can be biased in such
cases. Hence, we also calculated the fraction of true positives (cor-
rect fits) among the reported positives, which is the precision of
each score.

We calculated accuracy and precision at different score thresh-
olds and report the precision at the score threshold associated with
the maximum accuracy (threshold at which a better separation of
correct (true) and incorrect (false) fits is observed). For a given
score and at a selected score threshold, the accuracy is calculated
as:

ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ ð13Þ
while the precision is calculated as:

TP=ðTP þ FPÞ ð14Þ
where TP, FP, TN and FN refers to the number of true positives, false
positives, true negatives and false negatives. Higher AUC and preci-
sion reflect fewer false positives and false negatives.

The above statistical measures were based on an assumed
ALCPS threshold distinguishing correct from incorrect fits, which
provides the ground truth for assessing individual scores. We have
also varied the ALCPS threshold in order to make the criterion for a
correct alignment more or less strict.
3. Results and discussion

We first designed an automated way to determine the number
of Gaussian density functions (GDFs) to be used in GMfit based on
the number of segments that can be identified from the volume
density (see Methods). This is required as GMfit is sensitive to
the number of GDFs included in the Gaussian mixture model
(GMM) approximating the volume density (Kawabata, 2008). With
the resulting GMMs, we used GMfit to generate 100 volume align-
ments for each map pair in the test dataset. The best alignment
(closest to reference as judged by the ALCPS value) was in the
top 20 fits from GMfit, for 25 out of 28 map pairs. In one case,
the best alignment is not ranked highly by GMfit, suggesting that
the GMMs used might not be optimal. In the other three cases,
GMfit failed to generate any optimal or near optimal alignment
in the top 100 solutions. Only the reference alignment obtained
from superposition of fitted models is considered reliable in these
cases. For the majority of map pairs we obtain a few fits or a cluster
of fits from GMfit which are close to the reference (low ALCPS),
separated from a cluster of alignments representing bad fits (high
ALCPS) (e.g. see Fig. S2). For viral maps and the category ‘others’,
symmetry related fits were often found among the correct set of
fits.

Using the distribution of fits from GMfit and the resultant ROC
curves, we evaluated the ability of different scores to discriminate
between true and false positives. We computed Area Under the
Curve (AUC) of each score at different levels of required similarity
to the reference alignment, as set by the ALCPS threshold (Fig. 2A).
As the fit moves farther from the reference, the log10(ALCPS) values
go from negative to positive. Similar orientations were usually
observed for poses with log10(ALCPS) up to around 0.0 ± 0.5
(Fig. S2), i.e. small rotations and translations from the reference.
For example, log10(ALCPS) � 0.0 roughly corresponds to a shift of
6 Å with a rotation of 10�, or a shift of 10 Å with a rotation of 6�.
There is some variation in the performance of the scores with the
choice of ALCPS threshold, depending also on the structural cate-
gory. Hence we considered log10(ALCPS) thresholds specific for
each category such that the threshold distinguishes the cluster of
correct orientations for most of the fits in that category. We used
threshold values of 0.82, �0.50 and �0.40 for ribosomes, viruses
and the category ‘others’, involving chaperones, respectively. The
AUC shows different trends in each category, as the threshold is
loosened (Fig. 2A). For ribosomes and viral maps, as the fits with
correct orientation moved away from the reference fit, the AUC
dropped initially before raising (Fig. 2A). This is largely due to
the fact that at intermediate to low resolutions, an ensemble of
similar orientations typically has comparable scores (Farabella
et al., 2015; Goulet et al., 2014; Lukoyanova et al., 2015). On the
other hand, the precision of scores generally improves for all struc-
tural classes as the criterion for a good fit is weakened (Fig. S3).
Nevertheless, in general our conclusions about the relative merits
of different scores are independent of the ALCPS threshold used.
3.1. Differences in density distribution and composition

For viral maps, the global NMI score has better AUC values and
precision than the global CCC score. LMI was also better than CCC/
SCCC/SMOC scores for viral map alignments. The comparison of
viral maps often involves significant compositional differences
due to DNA/RNA packaging (e.g. the empty human enterovirus
71 (EMD-2436) vs the RNA-containing human poliovirus 3 (EMD-
1562)) and/or decorations of the viral envelope (e.g. the immature



Fig. 2. Panel A gives the average AUC of selected scores for the ribosomes, viruses and the category ‘others’ (involving chaperone structures), as a function of the ALCPS
threshold used to identify correct alignments. The average AUC was calculated based on ROC curves from the test dataset, with larger values implying better discrimination
between correct and incorrect fits. Larger values of log10(ALCPS) reflect a relaxed criterion for a correct fit. For most of the viral map alignments (except 3 cases: EMD-5466 vs
EMD-2397, EMD-1182 vs EMD-1114 and EMD-5466 vs EMD-5122), none of the fits among the 100 GMfit solutions (including incorrect fits), had ALCPS score > 1.0. Hence the
plots for viral maps are restricted to a maximum ALCPS threshold of 0.5. Panel B shows examples of ROC curves taken from the three structural categories, calculated using
selected threshold for log10(ALCPS) for each category (ribosomes: 0.82, viruses: �0.5, ‘others’: �0.4). OVR: Overlap score, LMI: Local mutual information, NMI: Normalized
mutual information, SCCC: Local cross correlation, SMOC: Local cross correlation about zero.
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Dengue virus (EMD-5117) vs Dengue virus serotype 1 complexed
with HMAb (EMD-5268)) (Figs. 2B and 3). For these and a few
other viral map comparisons in the test dataset only a part of
one map or parts of both maps were comparable reflecting partial
overlap (Table 1). Hence a local score such as LMI is expected to be
better in such cases, due to the fact that the non-overlapping
regions had significant differences.

For the alignment between human enterovirus 71 (EMD-2436)
(Plevka et al., 2014) and human poliovirus 3 (EMD-1562) (Zhang
et al., 2008), two maps for which the density distributions are



Fig. 3. Alignment of 13 Å map of human enterovirus 71 in complex with antibody E19 (EMD-2436) and 9 Å map of human poliovirus 3 (EMD-1562). (A.i) shows the SMOC
scores of top 100 GMfit alignments with respect to deviation from reference alignment in terms of ALCPS scores, while (A.ii) and (A.iii) shows the cross section of the two viral
maps EMD-2436 and EMD-1562 colored in rainbow based on the density values, red indicating low density and blue, high density. (B.i) SCCC scores of top 100 GMfit
alignments with respect to deviation from reference alignment in terms of ALCPS scores. (B.ii) and (B.iii) region of overlap of the reference alignment of the maps, with the
mean difference of density values colored in rainbow, red highlighting the minimum (negative) and blue, maximum (positive).
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not comparable, the AUC of SCCC was significantly higher than that
of SMOC (Figs. 2B and 3). Poliovirus is structurally similar to other
enteroviruses, with a non-enveloped icosahedral protein coat
encapsulating an RNA genome. The enteroviral volume core is
empty compared to the high-density core of the polioviral map
(Fig. 3A.ii & iii) and the capsids have similar diameters. The surface
protrusions involving relatively lower density values are important
in differentiating the correct alignment from the rest. Mean differ-
ence in the region of overlap helped to match these low-density
surface features (both negative after mean difference) with a raise
in score (Fig. 3B.ii & iii). Equivalent minimal densities however
have a relatively lower contribution to SMOC, which involves pro-
duct of absolute densities.

3.2. Differences in surfaces

The two new filters applied for surface envelope detection (sur-
face definition M and A, see Methods) significantly improved AUC
of surface-based scores, compared to those used previously which
were based on a contour threshold range (surface definition T)
(Farabella et al., 2015; Vasishtan and Topf, 2011) (Table 2). The
selection of surface points in a range of contour thresholds (defini-
tion T) is affected by the relative spatial variation of density levels
at the surface. Considering all points on the iso-contour surface
touching at least one exterior voxel (surface definition A) generally
resulted in a better performance than the other surface envelope
definitions (Fig. 4, Table 2).

The normalization of CD scores based on GDT-like weights
improved their AUC values and precision, especially in the case
of ribosomal and ‘others’ (Table 2, Figs. 4 & S3). The normalized
CDAgdt and CDMgdt scores had the best AUC and accuracies for
ribosomes, when compared to all the other scores (Table 2). Ribo-
somes have unique and discernible surface features when com-
pared to viral maps and those belonging to the category ‘others’.
Fig. S4B gives examples of cases from each category where the
AUC of CD scores were comparable or better than other scores with
good performance in each category. For example, in the case of
viral map fit EMD-1058 (18 Å map of echovirus type 12 bound to
a protein decay-accelerating factor (CD 55)) vs EMD-5122 (10 Å
map of human poliovirus 1 RNA-releasing intermediate), the per-
formance of CDMgdt score better than other scores except LMI,
which also had a similar ROC curve. Though the echovirus is pack-
aged, the maps have similar exposed surface features represented
by viral proteins VP1 and VP3 (Fig. 1B and S4B). The CDMgdt score
was effective in distinguishing alignments base on these exposed
surface features (Fig. 1B).

In the selected dataset, there are many cases in the viral and
chaperone map pairs where both outer and inner surfaces have sig-
nificant differences due to nucleic acid packaging (e.g. EMD-2436
vs EMD-1562, EMD-5466 vs EMD-2397, EMD-1058 vs EMD-5122
etc), substrate binding (e.g. EMD-2325 vs EMD-2326) and confor-
mational changes (e.g. EMD-5140 vs EMD-5248). NVA, which is
calculated by comparing gradient normals at all surface points,
has generally higher AUC and precision for viral maps (Table 2,
Fig. 4 & S3), comparable to the best density-based scores. As the
score works based on density gradient vectors, it is less affected
by the differences in the location of selected surface voxels in com-
parison to the CD scores. Fig. S5 gives a few examples where the
maps being compared have significant conformational differences.
Even in these difficult cases of alignment, the surface based score
NVA, is useful in discriminating the correct alignments from the
rest.



Table 2
For the three map categories, the average AUC value, accuracy and precision of each score, are given. These were calculated at log10(ALCPS) thresholds selected for each category
(ribosomes: 0.82, viruses: �0.5, others: �0.4). The scores which are better discriminatory and/or have higher precision, are in bold. OVR: Overlap score, LMI: Local mutual
information, NMI: Normalized mutual information, SCCC: Local cross correlation, SMOC: Local cross correlation about zero. The combined scores with OVR are indicated with the ‘
+OV’ tag. CDT: Surface distance score on points selected based on a density threshold range. CDM: Surface distance score on points selected using mean filter (to identify more
exposed regions), CDA: Surface distance score on all points at an iso-contour level, CDTgdt, CDMgdt & CDAgdt scores are normalized variants of CDT, CDM & CDA (see Methods),
NVT: Normal vector score on surface points selected from a density threshold range, NVM: Normal vector score on surface points identified by mean filter on binary mask, NVA:
Normal vector score on all points at an iso-contour level.

Scores Ribosome Virus Others

AUC Accuracy Precision AUC Accuracy Precision AUC Accuracy Precision

OVR 0.974 0.990 0.991 0.939 0.971 0.872 0.978 0.977 0.895
SMOC 0.931 0.957 0.979 0.707 0.933 0.705 0.964 0.969 0.970
SCCC 0.983 0.980 0.997 0.727 0.936 0.705 0.946 0.969 0.969
CCC 0.973 0.990 0.991 0.843 0.945 0.802 0.917 0.969 0.834
LMI 0.901 0.923 0.941 0.887 0.979 0.848 0.948 0.970 0.894
NMI 0.969 0.989 0.991 0.881 0.946 0.830 0.972 0.976 0.909
CDT 0.931 0.976 0.914 0.685 0.929 0.458 0.875 0.952 0.629
CDM 0.954 0.991 0.920 0.801 0.970 0.436 0.856 0.962 0.649
CDA 0.967 0.990 0.991 0.821 0.976 0.717 0.854 0.970 0.700
NVT 0.960 0.979 0.990 0.861 0.948 0.719 0.974 0.973 0.827
NVM 0.978 0.984 0.984 0.701 0.939 0.643 0.882 0.962 0.667
NVA 0.914 0.983 0.990 0.922 0.959 0.870 0.911 0.970 0.837
CDTgdt 0.921 0.971 0.833 0.741 0.935 0.461 0.875 0.952 0.629
CDMgdt 0.983 0.994 0.992 0.643 0.968 0.372 0.881 0.968 0.657
CDAgdt 0.969 0.990 0.991 0.860 0.976 0.748 0.935 0.971 0.690
SMOC + OV 0.976 0.989 0.991 0.852 0.942 0.710 0.976 0.976 0.976
SCCC + OV 0.982 0.990 0.991 0.854 0.961 0.736 0.974 0.975 0.970
LMI + OV 0.969 0.989 0.991 0.931 0.975 0.855 0.976 0.975 0.969
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3.3. Local vs global density-based scores

Local cross correlation (SCCC) was introduced to avoid the influ-
ence of non-overlapping density in the calculations and quite a few
developments that followed used this score (Roseman, 2000;
Trabuco et al., 2008; Velazquez-Muriel et al., 2005). This is espe-
cially relevant in the case of subunit matching where the density
of other components contribute to global score calculations. Local
score calculations do not suffer from these limitations but they
do not account for the extent of overlap. In other words, a small
overlapping segment can have a better correlation score than a rel-
atively larger overlap. An example is shown in Fig. S2, for the align-
ment of viral maps: Enterovirus 71 empty capsid (EMD-5466) and
Enterovirus 71 in complex with a neutralizing antibody E18 (EMD-
2397). Some of the incorrect fits with minimal overlap get higher
SCCC scores compared to correct orientations (log10(ALCPS)
< �1.0) with higher overlap. In terms of precision, SCCC was best
for ribosomes and was among the top few scores for the group,
‘others’. (Table 2, Fig. S3).
3.4. Addition of overlap information to local scores

Generally, the fraction of overlap (OVR) score was good at dis-
criminating between good and bad alignments across all structural
categories, as judged by the AUC (Fig. 2), but had relatively lower
precision (higher false positives) for the category ‘others’ including
chaperones (Table 2). OVR score by itself is a good measure to dis-
criminate correct alignments but is independent of voxel density
values. Especially in case of subunit alignments or in the absence
of significant surface features, one encounters solutions where
most or all have large overlap with the target volume and hence
OVR is less discriminatory in this context. An example from our
dataset is the alignment of two ribosomal reconstructions: the par-
tial yeast 48S preinitiation complex (EMD-2763) and E-coli 30S
subunit in complex with the YjeQ biogenesis factor (EMD-1895).
The reference alignment scored lower than the bad fits by OVR
metric (Fig. S2). SCCC, however, picks the reference fit with the
best score. Also, in theory, two different but similarly-sized sub-
volumes will fit with the same overlap score at a specific region
of the target map. Hence a combination of correlation score with
the overlap information could be more suitable. We calculated
combined scores after scaling OVR relative to other scores (e.g.
SCCC) by applying scale and shift factors as:

Scale factor ¼ median absolute dev iation of SCCC
median absolute dev iation of OVR

Shift factor ¼ ðmedian of SCCCÞ � ðmedian of OVRÞ
The OVR score was first scaled and then shifted by a shift factor.

OVR norm ¼ ðOVR � scale factorÞ þ shift factor

The combined score is the average of scaled and shifted OVR
(OVRnorm) and SCCC/SMOC/LMI.

Inclusion of OVR information to the local scores (SCCC + OV,
SMOC + OV and LMI + OV) improved the AUC significantly for all
the three categories (Table 2, Fig. 4). These scores had comparable
or better AUC and precision values than the best scores in each cat-
egory (Table 2). LMI + OV (LMI_OV in the Fig. 4) had better preci-
sion than the other two correlation-based scores, especially in
the case of viral maps. Fig. S4 gives examples of cases from each
category with the performance of different scores highlighted by
ROC curves.

The combined scores were better than most other scores when
the maps overlap partially (Fig. 5). Overall, the LMI + OV score had
the best AUC for cases where only part of the maps match (<60%
overlap) (Fig. 5A). In terms of precision, LMI + OV was also among
the best scores (Fig. 5B). As mentioned above, global scores are as
effective when major portions of the maps overlap (Fig. 5A&B).

3.5. Performance at different resolution ranges

Analysis of different scores for their performance with maps at
different resolution ranges (Fig. 6), shows that at resolutions better
than 6 Å, all the density-based scores and OVR has similar AUC and
precision (Fig. 6). At intermediate and low resolutions, the scores
involving combination of SCCC, SMOC or LMI and OVR scores,
had better AUC and precision than other scores. LMI + OV score
(LMI_OV in the figure) was slightly better at low resolutions com-



Fig. 4. Performance of density and surface based scores in each category. For ribosomal, viral and the ‘others’ (including chaperones) categories, the AUC, accuracy and
precision of density (left) and surface based (right) scores are plotted. The AUC, accuracy and precision values are calculated at log10(ALCPS) thresholds selected for each
category (ribosomes: 0.82, viruses: �0.5, ‘others’: �0.4). OVR: Overlap score, LMI: Local mutual information, NMI: Normalized mutual information, SCCC: Local cross
correlation, SMOC: Local cross correlation about zero. The combined scores with OVR are indicated with the ‘_OV’ tag. CDT: Surface distance score on points selected based on
a density threshold range. CDM: Surface distance score on points selected using mean filter (to identify more exposed regions), CDA: Surface distance score on all points at an
iso-contour level, CDMgdt & CDAgdt scores are normalized variants of CDM & CDA (see Methods), NVM: Normal vector score on surface points identified by mean filter on
binary mask, NVA: Normal vector score on all points at an iso-contour level.
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pared to the combined scores involving SCCC or SMOC. This is lar-
gely due to the fact that the MI scores use a coarser or binned rep-
resentation of density, which is useful at these resolutions. Among
the surface-based scores, NVA was better overall at both high (bet-
ter than 6 Å) and intermediate resolutions (6–12 Å). CDAgdt score
was better discriminatory at resolutions worse than 12 Å, apart
from the combined scores.
3.6. Performance when fitting atomic components to maps
representing a larger complex

We also tested the performance of different scores for
discriminating the reference and near-optimal fits from incorrect
fits when fitting a component of the complex represented by
the map. We selected 5 cases spanning different resolutions



Fig. 5. AUC and precision of scores vs deviation from the reference alignment. The figure shows (A) AUC values and (B) precision of density based scores and their
combinations with OVR score for cases where the minimal percent of overlap (out of the two maps) in the reference alignment is <40%, between 40 and 60% and >60%. (C)
Scores vs ALCPS (log10 scale) for an example: EMD-5466 vs EMD-2397, highlighting improvement in discriminating true and false alignments with the addition of overlap
information. Fits with ‘correct’ orientations are below log10(ALCPS) �0.5. OVR: Overlap score, LMI: Local mutual information, NMI: Normalized mutual information, SCCC:
Local cross correlation, SMOC: Local cross correlation about zero. The combined scores with OVR are indicated with the ‘_OV’ tag. CDT: Surface distance score on points
selected based on a density threshold range, CDM: Surface distance score on points selected using mean filter (to identify more exposed regions), CDA: Surface distance score
on all points at an iso-contour level, CDMgdt & CDAgdt scores are normalized variants of CDM & CDA (see Methods), NVM: Normal vector score on surface points identified by
mean filter on binary mask, NVA: Normal vector score on all points at an iso-contour level.
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(Table S1). The fitted model associated with the map (in PDB) was
considered as the reference fit and the component was fitted in the
map using GMfit. While assessing the solutions from GMfit, we
observed trends similar to that of the whole-map alignments
where the density based scores were better at higher resolutions
and the surface-based scores were more discriminatory at low res-
olutions (Fig. 7). Only in the case EMD-5940 vs PDB 1rs9, where the
crystal structure of nitric oxide synthase heme domains (dimer)
were fitted into the low resolution (23 Å) map of calmodulin bound
dimeric nitric oxide synthase, the density based scores failed and
only the surface scores identified the correct fit (Yokom et al.,
2014) (Fig. 7). The density-based and combined scores were less
discriminatory at this resolution. LMI + OV was better across reso-
lutions when compared to SCCC + OV (e.g. EMD-5610 vs 4chwB in
Fig. 7). As mentioned above, a simple OVR score is not effective as a
general metric for cases of partial fits (e.g. EMD-5940 vs 1rs9,
EMD-5610 vs 3j3rD).
3.7. Computational speed

All the scoring functions tested in this study (new scores and
the improvements from our previous studies (Farabella et al.,
2015; Vasishtan and Topf, 2011)) can be used to rank a set of align-
ments generated by any density fitting method, and are suitable for
comparing either two volumes or an atomic model and a volume at
any resolution. They are all implemented in TEMPy (http://tempy.
ismb.lon.ac.uk/). When applied to maps of size 300 � 300 � 300
using a single processor, the calculation takes: �0.5 s for LMI
+ OV (combined score) and CD (surface-based), �0.9 s for NVA
(surface-based), and �0.05 for SCCC + OV (local density-based).
The longer run-time of LMI + OV score can be attributed partly to
the time for generation of binned density maps and calculation
of frequencies, and also to the current Pythonic implementation.
We plan to re-implement this metric in C, which will improve
the speed of calculations.
4. Summary and recommendations

As part of a volume-matching pipeline that we have been devel-
oping for 3D-EM data, we have tested various approaches to score
alignments obtained from volume matching programs. We demon-
strate that the performance of the different scoring functions varies
depending on the shape and density composition of the assemblies
represented by the map, the resolution and the extent of similarity
or overlap.

Overall, our results (summarised in Fig. 8) show that combined
scores are more effective as a general measure than the standard
CCC, which is not the best discriminator across all resolutions or
for partial overlaps. A combined score involving local mutual infor-
mation and fraction of overlap (LMI_OV in the figure) is the best
performing score in terms of AUC and precision across resolutions,
map types and extents of overlap. We therefore recommend LMI_OV
as the preferred scoring function for general use, while other scores
may be useful for studies focused on particular cases.

http://tempy.ismb.lon.ac.uk/
http://tempy.ismb.lon.ac.uk/


Fig. 6. Performance of density and surface based scores at different resolution ranges. The AUC, accuracy and precision of density (left) and surface based (right) scores are
plotted for maps of resolutions (lower of the two maps) better than 6 Å, 6–12 Å and worse than 12 Å (5, 11 and 8 cases respectively). The AUC and precision values are
calculated at log10(ALCPS) thresholds selected for each category (ribosomes: 0.82, viruses: �0.5, chaperones: �0.4). OVR: Overlap score, LMI: Local mutual information, NMI:
Normalized mutual information, SCCC: Local cross correlation, SMOC: Local cross correlation about zero. The combined scores with OVR are indicated with the ‘_OV’ tag. CDT:
Surface distance score on points selected based on a density threshold range, CDM: Surface distance score on points selected using mean filter (to identify more exposed
regions), CDA: Surface distance score on all points at an iso-contour level, CDMgdt & CDAgdt scores are normalized variants of CDM & CDA (see Methods), NVM: Normal
vector score on surface points identified by mean filter on binary mask, NVA: Normal vector score on all points at an iso-contour level.
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Generally, density-based scoring functions are influenced by the
size and shape of the density distributions being compared while
surface-based scoring functions are affected mainly by the extent
of surface features and selection of contour. When comparing
maps that typically have partial overlaps and significant composi-
tional differences (e.g. viral maps), mutual information-based
scores (NMI/LMI) are more discriminatory than cross-correlation-
based scores (CCC/SCCC/SMOC). However, for ribosomal maps
and ‘others’, the local SCCC score has better precision, at high-to-
intermediate resolutions in cases where the maps overlap to a
large extent.

Surface-based scoring functions can also be useful at
intermediate-to-low resolutions. We find that surface detection
by selection of all points on the iso-contour (surface definition A)



Fig. 7. Scores vs ALCPS (log10 scale), for cases of subunit model fits in maps. In the plots, each point represents one of the 100 fits generated by GMfit, except for the dot in the
top left-hand corner which indicates the reference fit (The reference alignment is assigned a minimum log10(ALCPS) value of �2.0 for the purpose of plotting). ALCPS
measures the distance of a fit from the reference alignment, with lower values indicating better fits. See the Methods for an explanation of the different scores shown here.

Fig. 8. Summary of performance of scores in alignment groups categorized based on map-types, resolutions and fraction of overlap (minimum overlap fraction with respect
to the two map sizes). For each group (row in the matrix-plot), differences from the maximum (A) AUC and (B) precision, are plotted. The AUC and precision values are
calculated at log10(ALCPS) thresholds selected for each category (ribosomes: 0.82, viruses: �0.5, ‘others’: �0.4). Resolution (Res) is in Å. OVR: Overlap score, LMI: Local mutual
information, NMI: Normalized mutual information, SCCC: Local cross correlation, SMOC: Local cross correlation about zero. The combined scores with OVR are indicated with
the ‘_OV’ tag. CDT: Surface distance score on points selected based on a density threshold range, CDM: Surface distance score on points selected using mean filter (to identify
more exposed regions), CDA: Surface distance score on all points at an iso-contour level, CDMgdt & CDAgdt scores are normalized variants of CDM & CDA (see Methods),
NVM: Normal vector score on surface points identified by mean filter on binary mask, NVA: Normal vector score on all points at an iso-contour level.
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is generally more effective for such scores. Among these, the nor-
mal vector score (NVA) calculated based on surface density gradi-
ents, is more precise at different resolution ranges (mainly high-to-
intermediate) especially when there are significant compositional
and conformational differences (e.g. in the case of viruses and
chaperones). The Chamfer distance (CDAgdt), which is based on
distance between surface points, is better at low resolutions, where
density variation is less informative. In the future, we plan to
develop approaches to detect local surface matches (partial over-
laps) and test the performance of the surface-based scoring func-
tions on local surface regions.

In summary, we have analysed a wide variety of scoring func-
tions for comparing EM maps taken from a range of structural
classes with different shape, size and resolution. We also provided
combined metrics that include the information on the extent of
overlap between volumes. Based on our results, we recommend
the combined score LMI_OV as having the widest applicability. This
score is likely to be useful for comparing large datasets of density
maps and models and for integrative structure modelling based on
data at different resolutions.
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