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Abstract—In this work, we propose a Deep Learning (DL)
based solution to the problem of routing traffic flows in computer
networks. Routing decisions can be made in different ways
depending on the desired objective and, based on that objective
function, optimal solutions can be computed using a variety
of techniques, e.g. with mixed integer linear programming.
However, determining these solutions requires solving complex
optimization problems and, thus, cannot be typically done at
runtime. Instead, heuristics for these problems are often created
but designing them is non-trivial in many cases. The routing
framework proposed here presents an alternative to the design
of heuristics, whilst still achieving good performance. This is
done by building a DL model trained on the optimal decisions
over flows from known traffic demands. To evaluate our solution,
we focused on the problem of network congestion, even though
a wide range of alternative objectives could be fitted into this
framework. We ran experiments using two publicly available
datasets of networks with real traffic demands and showed that
our solution achieves close-to-optimal network congestion values.

I. INTRODUCTION

In computer networks, the task of modelling and controlling
network traffic to optimize network performance has been
extensively studied, and many algorithms and solutions have
been proposed. This task, called Traffic Engineering (TE), can
be undertaken in different ways and with distinct purposes. A
typical use case is to optimize network congestion [1], [2], [3],
a problem that can be caused by a disproportionate amount of
traffic going through a small set of the available paths between
a source and a destination. Congestion can be due to several
reasons, e.g, a routing protocol that always chooses the shortest
path. This may lead to a less reliable service as overloaded
equipment fails to handle traffic correctly. Other examples of
TE applications exist, such as energy consumption minimiza-
tion [4], [5] e.g. finding a routing solution minimizing the
number of active links in order to save energy with minimal
impact on the network performance.

Frequently, the solutions proposed by the community define
an objective function and model an optimization problem that
can be solved with methods such as (Mixed) Integer Linear
Programming (MILP). However, in many cases the problem
is proven to be too complex to solve in a reasonable amount
of time [1], [6]. This is especially problematic with online
algorithms, those that determine paths at runtime rather than
planning them beforehand, since routing requires decisions
to be taken in very short amounts of time. Because of that,
researchers often have to design heuristics that optimize the
same objective function, a task that is not trivial.

With applications to a number of different fields, including
Computer Networks [7], [8], [9], Machine Learning (ML)
models such as Deep Neural Networks (DNN) can be a
suitable tool to address TE. This comes from their ability to
generalize from previously seen examples and, once trained,
take a relatively short time to process new inputs.

The idea we propose in this paper is an alternative to the
design of heuristics by replacing them with a DL model trained
in a supervised fashion. The training samples, consisting of
traffic flows, are obtained by collecting or simulating traffic in
a network. After that, the paths from source to destination,
which are the training labels, are obtained by setting an
objective function and solving the underlying optimization
problem using MILP. It should be noted that although solving
the MILP problem may take several seconds, or longer, this is
feasible during the off-line training phase of the DNN. Having
a trained model, it is then possible to query it in a relatively
short time (compared to solving an optimization problem),
and so determining paths as flows arrive, effectively being an
online TE mechanism. The advantage of this approach is that,
by not having to design a heuristic for each objective desired,
a network operator has the flexibility to easily implement a
wide range of objectives.

The proposal of using Supervised Learning (SL) techniques
as a tool for TE is not new. Previous work include SL models
to forecast future traffic [10] and use those predictions with
conventional optimization methods. Furthermore, there has
been also research on SL models to directly learn paths [11],
[12]. While in [11], the authors proposed a routing strategy
in a decentralized setting where each node in the network
trains a model for each destination and the output is the next
hop, [12] is more similar to our work, presenting the idea
of building centralized models that use knowledge from the
whole network as inputs and output full paths from source
to destination; however, they train a different model for each
source and destination pair in the network. Furthermore, their
evaluation consists of generating traffic, choosing a heuristic
to obtain paths, training the model and testing how the trained
system performs against that heuristic.

Below, we summarize the differences from previous work
and our contributions:

1) We propose a flexible SL-based framework that learns
paths directly from optimal MILP solutions and trains a
single model incorporating all source-destination pairs.
Furthermore, we propose a post-processing algorithm
that ensures the validity of the paths obtained.
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Fig. 1: Example of shortest path routing.

2) We evaluate the flexibility of this kind of approach by
testing it with two different objective functions.

3) Finally, we use datasets generated from real traffic
obtained from real networks [13], [14].

The rest of this work is organized as follows. In Section
IT we give an overview of routing in the Internet. In Section
IIT we review and discuss prior work on using ML in the
computer networking field, especially for TE. We explain our
model in Section IV. In Section V the methodology of the
experiments is explained, including how the data was obtained
and generated. In Section VI we report and discuss our results.
Finally, in Section VII we present our conclusions.

II. ROUTING IN THE INTERNET
A. Routing policy

Devices that are connected in a network and want to
communicate with each other must follow a series of rules
and protocols. For instance, communications in the Internet are
done according to the Internet protocol suite, that includes the
Transmission Control Protocol (TCP) and the Internet Protocol
{p).

One of the challenges that these protocols address is what
should be the path taken by traffic from its source to the
destination. This is the routing problem, and in the cases where
more than one path between source and destination exists, this
decision must follow some criteria. A simple one would be
to make traffic go through the least number of intermediate
nodes, as shown in Figure 1.

More generally, routing can be done according to a specific
objective or metric, such as minimizing delay or congestion,
which can be determined with TE. In all these cases, there
is an optimal solution that can be determined using some
mathematical tool such as linear programming. In practice,
however, a network is expected to be dynamic and optimal
solutions change frequently. In the case of congestion, for
example, new traffic that enters the network uses resources
and influences how future traffic should be routed. Therefore,
to constantly route according to the optimal solution, the
algorithm would also have to be constantly re-run. In a real-
world scenario that could be prohibitively expensive. So, what
is done instead is to design a heuristic that can be run with
greater speed, but that does not give guarantees of optimality.
In the Open Shortest Path First (OSPF) [15] protocol, widely
used in real networks, this can be implemented by adapting
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Fig. 2: Example of MLU routing.

the link weights accordingly and running an algorithm such
Dijkstra’s shortest path [1]. An illustration of how TE affects
routing can be seen in Figure 2, where the chosen path from
Source 1 to Destination is not the shortest one but the one that
minimizes congestion.

Our proposed solution is to train a DL model on these
optimal solutions so that the routes provided lead close to
optimal networks states without having to design any heuristic.
In this work, we focus on two congestion metrics, maximum
link utilization (MLU) and the one proposed by Fortz [1], but
this could have wider applications with alternative objective
functions, e.g. energy consumption minimization or other
Quality of Service (QoS) metrics such as network latency.

B. Network flow

Information in networks can generally be seen as being
transmitted by packets. In TCP/IP networks packets have,
among other properties, a destination IP address. Standard
routing protocols, such as OSPF, look at packets individu-
ally and take their decisions solely based on the destination
address. This type of routing, destination-based, routes any
packet that has the same destination address along the same
path, regardless of other properties, such as source address or
TCP ports.

Additionally, there is the notion of flow, which is a set of
packets that share some properties. These properties could
be, for instance, the 4-tuple composed by the source and
destination IP address and TCP port. The concept of routing
can also be applied to flows such that each packet of a flow
goes through the same path. This gives a much more granular
control over routing, as packets that have e.g. the same source
and destination, but differ on TCP ports can have different
routes. For example, video or web applications between the
same source and destination might have distinct requirements
and, thus, benefit from going through different paths. In this
work, we assume packets are already aggregated and consider
routing based on flows, i.e. all packets of the same flow will
be routed through the same paths.

III. RELATED WORK

The application of ML to Computer Networks is not cen-
tered in one topic, rather it covers a wide range of problems.
For instance, ML has been used to improve networks security
addressing issues such as intrusion detection [7] or attacks on
Internet of Things networks [16]. As an example, in [9] an



ML model is trained on examples of malicious and benign
connections to detect Distributed Denial of Service (DDOS)
attacks. A different area where ML can contribute is energy
efficiency in data centers, where there are many variables to
control. The work done in [8] shows that an ML model can
predict power usage effectiveness (PUE) by leveraging data
collected in a setting where many monitoring mechanisms are
present.

In terms of network routing and TE, the proposed solutions
can be categorized by their approach.

A. Reinforcement Learning (RL)

In general, RL-based routing models the problem as se-
quence of routing decisions, where the reward is based on
a network performance metric, e.g delay or congestion. The
algorithm presented in [17], Q-routing, based on the known
Q-learning [18], trains an RL agent in a router to react
to the dynamics of networks, e.g increasing network load.
Interestingly, they show it works better than some standard
routing protocols, even though it is done in a distributed
fashion where each agent only receives local information.
Also, RL has been used to route traffic in networks where
energy efficiency [19] or stability [20] are considered. In [10],
RL is used to learn a routing policy with a reward that depends
on the optimal solutions. This is done in a centralized way,
unlike [17].

B. Supervised Learning (SL)

SL approaches to routing seem to be less prevalent when
compared to RL. Nevertheless, there has been some recent
work in this topic. Before suggesting an RL approach, [10]
proposes an SL-based solution. Instead of directly addressing
routing, it predicts future traffic and then optimizes the routing
plan with respect to the predicted values. However, simulation
results show that this approach might be ineffective.

Furthermore, in [21] they make the case for intelligent
routing and propose a Deep Learning (DL) based solution as
a use case. Later, they propose in [11] a decentralized DL-
based routing system that outputs the next hop in the path.
Therefore, each node in the network trains a different model
for each possible destination that it can send traffic to. On the
other hand, the value of the input is the same for all models
and consists of the traffic measurements made by each node in
the network. These are periodically propagated by the nodes
in order to keep the models synchronized. They conclude that
their system has a better performance in terms of signalling,
throughput and delay than OSPF.

Another routing system using SL, that shows promising
results, is presented in [12] which, like the framework we
propose here, assumes a central controller that gathers in-
formation from the whole network and uses it as inputs to
a ML model. The framework trains a separate model for
each source-destination pair, unlike ours where a single model
incorporating all source-destination pairs is trained. Compared
to previous work, a difference our system brings is the way
it deals with the output. Instead of directly interpreting the

output as a path, we employ a post-processing mechanism
that ensures path correctness. That way we avoid issues such
as non existent paths or loops.

In terms of evaluation, [11] trains the models with paths
from a standard protocol, whereas [12] uses the solutions
provided by a heuristic to a congestion optimization problem.
In contrast, we train our models with paths directly obtained
from the optimization algorithm. Furthermore, we test our
framework with two different objective functions to evaluate
its flexibility.

IV. ML BASED ROUTING

A. Problem formulation

We address the problem of finding the best path for a given
sequence of flows, each arriving at the network at a given time
point (discrete), in a way that optimizes an objective function
defined along a period in time (e.g. minimizing network
congestion). Although many different objective functions may
fit this framework, in the current work, we have addressed the
minimization of network congestion, measured by different
metrics.

In this work, two objective functions were used, both aiming
to minimize the network congestion: the classical maximum
link utilization (MLU) and the congestion measure proposed
by Fortz and Thorup in their seminal paper [1]. Although
the purpose is to route individual flows, this problem can
be considered a variant of the general routing problem. The
network is defined as a directed graph G = (V, E), where V
represents a set of nodes, while E represents links connecting
them. Each link e has a capacity, defined as c(e) defining the
amount of traffic it can accommodate, and from this the link
utilization u(e) may be calculated by dividing the load passing
through the link, I(e), by c(e).

In this case, the traffic to route is defined by a se-
quence of flows F, each represented as a tuple f; =
(toa;, si,d;, b;, dur;), where f; is the i-th flow in the sequence,
toa; is its time of arrival, s; and d; its source and destination
nodes, b; its requested bandwidth, and dur; its predicted
duration. When a flow f; arrives at the network, the controller
needs to define a path pj, consisting of a list of links from
FE leading from s; to d;. Here we assume single-path, i.e.
the whole set of packets belonging to this flow will follow the
same path. During the lifetime of f;, from toa; to toa; + dur;,
this flow is active and its bandwidth b; is added to the
loads of all links in p;. Thus, when performing a simulation
considering a network GG and a sequence of flows F, it is
possible to calculate the link utilization for all links at all time
steps ¢ = 1,...,|F|, and from those to calculate a metric of
congestion, also at each point.

Here, we consider two metrics: maximum link utilization
(MLU), consisting of the largest value of u(e), for e € E,
or the one proposed by Fortz et al. [1] taking into account
all links in the network. The latter is defined by a cost ®
which is the sum of the cost function ®.(u(e)) for each link
e € E. This is a convex piecewise linear penalty function,
shown in Figure 3, that has relatively low growth for small link
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Fig. 3: Fortz link cost function [1].

utilizations, but increases more quickly with the utilization as
it approaches unity, and when u(e) goes above 110% grows
with a very large derivative. This congestion measure, named
®*, can be normalized, taking into account overall demands
and the shortest paths between sources and destinations. This
normalized version has a lower bound of 1, and will be used
in this work. Notice that, if all link utilizations are equal to 1,
the value of the normalized congestion is 10.67.

B. Model description

We address the previous routing problem by using a frame-
work based on Supervised Learning (SL) models to determine
the best path for each flow. The proposed routing system
consists of two components: a deep neural network (DNN)
to determine the path and a post-processing routing algorithm
to build a valid path from the DNN’s outputs.

a) Input: The SL model, in our case a DNN, determines
the route of each flow, given a set of features characterizing
the flow and the current network state. In SL, we are interested
in using a set of [N examples consisting of input-output pairs
{(xi,y:)}¥, to create a model f(x) = y that can accurately
predict the value of an output vector y* given an input x*.
In our case, each input is the concatenation of the features
of the flow (namely its source, destination and the predicted
bandwidth) and the current network state (represented by the
link utilization vector, with u(e) for all links in the network)
at the time the flow arrives. For practical purposes, we use
one hot encoding [22] for the source and destination nodes,
and bandwidth is normalized to the range [0,1].

b) Output: The ground truth for each flow is its op-
timal path according to the objective function being used.
In this work, to find these optimal paths, we formulate a
Mixed Integer Linear Program (MILP) that minimizes the
selected objective function, either the MLU or the Fortz et
al. congestion measure. For the latter, the linear programming
formulation is fully described in [1]. The MILP solution for
a flow will depend not only on the flow properties - source,
destination and required bandwidth - but also on the link loads
l(e) with e € E, which will determine the available capacity
of each link (the original subtracted by the load imposed by
previous flows active in the network).

So, we solve a MILP problem for each flow and obtain
the optimal path. This allows to calculate the link utilization
induced by those paths along time, as well as to compute the

defined objective functions. Notice that the solutions provided
by MILP are locally optimal, since they provide the optimal
allocation of the flow given the active flows at that time.
However, this does not guarantee optimal congestion as new
flows arrive, since we do not re-optimize the paths for flows
already in the network, and thus does not guarantee optimal
mean or median congestion measures across the period of
observation.

In this context, knowing a flow’s duration is only useful to
keep track of active flows in the network, necessary to update
the available link capacities. We assume that available link
capacities in each point are known, and flow durations are not
used by the MILP. Thus, the input to the DNN does not include
duration, as it would possibly add noise without providing
additional information.

We represent the path p; for a flow f; as an indicator vector
of E. Thus, p;; € p; is 1 if flow f; is routed through the k-th
link in E, and 0 otherwise, for k = 1,...|E|. These binary
vectors of size |E| will be the desired outputs for the DNN.

c) Deep Neural Networks: As mentioned before, the ML
model selected in our work was a Deep Neural Network, which
has as inputs the flow features and link utilizations (as defined
above), and outputs a value for each link. This defines the input
and output layers, whose sizes will be 2 x [V| + 1+ |E| and
|E|, respectively.

The architecture chosen was a fully connected (dense)
neural network, with the ReLu activation function used in all
neurons of the hidden layers and the sigmoid function used
in the output layer. The DNN was trained using either the
Adam [23] or the RMSProp algorithms, optimizing the binary
cross entropy loss function. To avoid overfitting, we employed
a dropout [24] mechanism.

To choose the best model for each dataset, we performed a
hyperparameter optimization through a grid search procedure,
trying different configurations regarding the topology, the
training algorithm, the number of epochs in training, the
dropout rate and use of early stopping. For each configuration,
we checked the performance of the network by testing it on
a validation set, and selected the model which minimizes the
congestion metric in the validation set.

d) Post-Processing Algorithm: A simple way to convert
the output of the DNN into a path would be to apply a thresh-
old (e.g. 0.5) to each output unit adding the corresponding link
to the path if its value was above the threshold. However, this
might easily lead to invalid paths. Therefore, to ensure that a
valid path is obtained, we apply a post processing algorithm
on the neural network outputs. Two alternatives were tried,
including the use of Dijkstra shortest path algorithm, where
link weights were set according to the inverse of the DNN’s
output. This allows to get valid paths that take into account
the DNN'’s preference since the chosen path is more likely to
go through links with higher DNN output values, thus lower
link weights.

An alternative that more directly takes into account the
DNN’s outputs is the use of a greedy heuristic, where we
start by the source node of the flow, and follow the outgoing



Fig. 4: GEANT topology [27].

link of that node with the highest output from the DNN. This
process is repeated until the destination node is reached (and a
valid path obtained) or we get stuck into a cycle. In this latter
case, we resort to the Dijsktra algorithm, as described in the
previous paragraph, to obtain a valid path.

After training a DNN as stated above, it can be used to route
a sequence of flows F', computing the paths for each flow using
its output post-processed by the previous algorithms. The pro-
cess is similar to the one described for MILP above, processing
each flow in the order of arrival, calculating the path, updating
the network state (link utilizations) and calculating the target
objective functions (MLU or Fortz).

V. METHODOLOGY
A. Topology and Traffic Matrices

To perform a representative evaluation of our method, a real
world scenario was needed. That meant having information
about a known network, including its topology and the link
capacities. In addition to that, it was also required to know
the traffic going over that network in a certain period of time.
Specifically, in terms of traffic we were interested in obtaining
a temporal sequence of flows with known source, destination,
bandwidth, duration and time of arrival. However, to the best
of our knowledge, no such set of flow data and its underlying
topology is publicly available. Either the datasets have a real
sequence of flows, but no information about the topology is
given [25] or the topology is given, but not the information
about individual traffic flows [26].

However, there are some datasets with topology and aggre-
gated information about traffic. The information comes in the
form of a | N| x | N| Traffic Matrix (TM) for which the element
in row ¢ and column j represents the total amount of traffic
(or average bandwidth) in a certain period of time between
nodes ¢ and j.

B. Dataset

For the evaluation of this work we used two datasets:
one with the topology and TMs from the GEANT network
[14] and another with the same information from the Abilene
network [13]. The GEANT (illustrated in Figure 4) network
dataset makes available its network topology including infor-
mation about the link capacities. Moreover, it includes 11460
TMs, each corresponding to a period of 15 minutes totalling
4 months of observations.

The Abilene (Figure 5) dataset follows offers similar infor-
mation with the difference that each TM refers to a period
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Fig. 5: Abilene topology [27].
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Fig. 6: Two possible sequences of flows that can be obtained
from 34 Mb traffic volume between two nodes.

of 5 minutes. It contains 48096 TMs in a period equivalent
to 167 days (although not continuous, as there are some days
when no measurements were made).

Given that in a TM only aggregated information is available,
some assumptions had to be made to generate a sequence
of flows. This is because different sequences of flows, when
combined, can translate to the same TM. This problem is
illustrated in Figure 6, where each blue rectangle represents
a flow with width and height proportional to duration and
bandwidth, respectively. In that example, it is known that the
volume of traffic between two nodes is 34 Mb, however no
information about individual flows is provided. Two possible
options, out of an infinite number of them, are shown in each
plot.

In this way, we assumed the number of flows and the distri-
butions for the total traffic, duration and arrival time of each
flow. Furthermore, to create a larger and more representative
dataset we combined sequential TMs to obtain a dataset with
a period of one day, 96 (15 minutes TMs) for the GEANT
network and 288 (5 minutes TMs) for the Abilene network. To
have independent train, validation and test datasets we picked
3 different sets of 96 consecutive TMs such that they were
from different days but the same day of the week.

For each TM, the flow generation procedure works as
follows. We iterate over all possible pairs of source and
destination where the traffic demand is greater than zero. For
each source-destination pair (s,d), we take the value ¢4
from the TM and calculate K 4, the number of flows that
should exist between s and d. To determine K, 4, we first
calculate the number of flows per TM, obtained by dividing the
desired size for the dataset (an input to the procedure) by the
number of TMs, and then find K 4 by the proportion of traffic
between s and d, t g, relative to the whole TM, > 5"t 4.
Notice that because the number of flows must be a positive



TABLE I: Summary of network and flow generation parame-
ters.

GEANT Abilene
V| 22 12
|E| 72 30
Nr. Flows 96000 96000
Nr. TM 96 288
Time per TM (s) 900 300

s,d

Traffic Volume (Mb) N (et Led KT

d
Flow Duration (s) N(60,12)
Flow Arrival (s) U (tem, tem +900)  U(tem, tem + 300)

integer, rounding computations may lead to an actual number
of flows that is different than the one input to the procedure.
Next, Ky 4 samples tr¥ , k € [1, K] of traffic volume are
drawn from a Gaussian distribution such that they add up to
tsq . After that, the time of arrival toa’; 4 and the duration
dur(’jﬁ 4 are respectively sampled from a Uniform and Gaussian
trf.d
du;’: d
each flow has the form fﬁd = (s,d, b’;d, toals‘“‘)d7 durf’d) being
stored by order of arrival.

The procedure is then repeated for the next TM and the time
of arrival distribution is shifted by the TM period. Therefore,
all the flows generated from a given TM, tm, have a time of
arrival between an initial time for that window, t,,,, and t4,,,+P
with the TM period P being 900 or 300 seconds depending
on the network.

The link utilization, that together with the flows form the
input, and the paths, the ground truth, are determined together.
The procedure works by obtaining the optimal path for a flow,
updating the link utilization and using that for the next flow.
At this stage, we created two different sets of optimal paths,
one optimized for MLU and another for the Fortz metrics.

Finally, as a simple baseline, we computed the routing based
on shortest paths (SP), for each flow. The calculation of these
paths did not take congestion into account, rather it looked for
the least possible number of hops. We chose this baseline as
SP is the most widely used routing algorithm in the Internet
and any suggested improvements or advances in routing should
be compared to it.

In Table I, a summary of the network and features of the
datasets is shown, where Nr. Flows is the desired size for
each dataset. The actual sizes of the datasets are detailed in
Table II. Note that the flows for the MLU and Fortz are the
same, so the number of samples in both datasets is identical.
Furthermore, we scaled up the Abilene traffic volume by 10
times as it was too low relative to the link capacities, thus
making the problem more challenging and allowing a better
comparison of the performance between MILP, DNN and SP.

and

distributions. Finally, the bandwidth b’; 4 1s set as

C. Experimental methodology

More than aiming for path prediction accuracy, the evalu-
ation done in this work was focused on how our proposed
solution compared to the optimal solution in terms of the

TABLE II: Train, validation and test set sizes for both net-
works.

GEANT  Abilene

Train 82402 79043
Validation 81877 78006
Test 82943 77296

TABLE III: Hyperparameter used in grid search optimization

Parameter Values

Configuration
1 hidden layer
2 hidden layers

[20], [100], [500]
[20,100], [100,100], [500,200], [500,250]

Epochs 2, 5, 10, 50, 100
Early Stop 5,10
Dropout Rate 0, 0.2

Optimization Algorithm Adam, RMSProp

metric being optimized. In practice, after routing each flow we
measured the link utilization and computed the MLU or Fortz
metrics over time. To compare different models we aggregated
them by calculating the mean in the case of MLU, and the
median for Fortz measure (since the penalties in this case are
best viewed in log scale).

We performed a hyperparameter optimization by repeat-
edly training DNNs with different hyperparameters, in a grid
search, considering the set of values for each parameter shown
in Table III). For each, we evaluated the MLU of Fortz metrics
in the validation set and present here the results that the model
with best validation performance had on the test set.

VI. RESULTS AND DISCUSSION
A. Results

The results of our experiments over the test set flows are
shown in Figures 7 and 8 and aggregated in Table IV.

In the GEANT network, the aggregated scores of the DNN
models are close to those obtained by MILP. In terms of MLU,
we can observe that it is only 1.08% higher and it does an
even better job at optimizing Fortz as the difference drops to
0.44%. On the other hand, in line with our expectations, the
performance of the SP is much worse than that of the DNN for
both metrics, reporting an average MLU and a median Fortz
that were 41.93% and 27.95% higher than MILP, respectively.

Even more interesting is the performance of our proposed
approach in the Abilene network dataset. The results show
that it outperforms the MILP induced paths by showing better
average MLU by 0.96%, and median Fortz score by 1.92%.
Note that, when the network state is the same, the performance

TABLE IV: Overall results for network congestion.

Dataset  Objective =~ MILP DNN (A) SP (A)

GEANT MLU 0.830  0.839 (+1.08%) 1.178 (+41.93%)
Fortz 1.145 1.150 (+0.44%)  1.465 (+27.95%)

Abilene  MLU 0.521 0.516 (-0.96%)  0.862 (+65.45%)
Fortz 1.201 1.178 (-1.92%)  1.359 (+13.16%)
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Fig. 7: Congestion measures for GEANT dataset.

of the MILP solution is always at least as good as the DNN
one. However, because we are optimizing locally, flow by flow,
the network state at each flow is not necessarily the same. For
example, if a flow f is routed through path pyyp by MILP and
path ppnn by the DNN and if pyip # ppan, then the network
state will be different when the next flow arrives. Because
the DNN in our experiments did not show 100% accuracy,
thus providing different paths than MILP for some flows, it
is possible that its performance is better than MILP at certain
points. This may occur since the DNN training may capture
regularities in traffic and optimize its behaviour towards this,
in a certain sense forecasting the next flows when routing the
current one.

A more dynamic perspective is provided by Figures 7 and 8§,
where we show the moving average of the congestion metrics
over the simulated time of 1 day (86400 seconds). Each line
corresponds to a different approach and the reason for plotting
a moving average, rather than the actual values, is because it
would not be possible to compare the approaches given the
high number of points and consequent overlapping between
lines.

Figure 7a shows the MLU results in the GEANT network
and it is possible to see the two lines of DNN and MILP
having similar shape. Although the SP approach is normally
relatively near the other two, it is interesting to observe the
period around second 30000 where it gets values almost
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Fig. 8: Congestion measures for Abilene dataset.

four times worse then its mean. This is possibly due to the
existence of a high volume of traffic between two nodes whose
shortest path is of relatively low capacity and serves as a good
illustration of network congestion when no TE is done. A
similar interpretation can be done for the Fortz experiments,
in Figure 7b, while the difference here from SP to the other two
is even more pronounced. A log scale was used for plotting
those results as it seemed more appropriate given the Fortz
link cost function exponential nature in the domain shown in
Figure 3.

Similar remarks can be made about the plots in Figure 8.
These show that, in the Abilene network, the SP performs
consistently worse than MILP and DNN, both for MLU and
Fortz. It is also possible to see that the performance of the
DNN and MILP, across the time period, was similar for the
two objective functions.

B. Discussion

With a good performance across two objective functions
and two networks, the results show that a DL-based system
could replace the design of heuristics without compromising
congestion. To change from one objective function to the other,
we simply reformulated the MILP and ran the same pipeline.
The most time consuming task of this procedure was the
hyperparameter optimization, which can be easily automated.

With typical network equipment, the implementation of
such solution would be very challenging as it lacks the



required computational resources. However, recent changes
to the paradigm of networks have been occurring with the
popularization of Software Defined Networking (SDN) [28].
One of the novelties of SDN is that the control plane of
a network is done by a central controller which can be an
intelligent device. This controller can have a global view of
the network and the capacity to issue commands to any other
device in the network.

Regarding protocol overhead, we require that routers period-
ically send to the network (and the controller) the status of the
link loads. We do not require this to be very accurate and since
there is good evidence that load does not change significantly
in 10 minute intervals [29], this overhead is negligible.

VII. CONCLUSIONS AND FURTHER WORK

We presented a novel routing framework that allows to
replace heuristics for Traffic Engineering with Deep Learning
models and evaluated it with datasets based on real traffic. Our
results show that the same ML framework can achieve quasi-
optimal performance with two different objectives functions.

Future work will address research on methods that include
memory (e.g. Long Short-Term Memory (LSTM) networks),
seeking to overcome the need to input network utilization.
Additionally, we will research on Reinforcement Learning
as a way to learn without explicit training data, just from
rewards from the objective functions. Moreover, we want to
explore what can be done with a trained model when the
topology of the network changes, i.e, how resilient is it if the
post-processing algorithm is updated accordingly. Finally, we
will evaluate different objective functions, incorporating, for
instance, delay requirements or energy consumption metrics.
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