
Submitted 3 June 2018
Accepted 6 August 2018
Published 10 September 2018

Corresponding author
Lazaros G. Papageorgiou,
l.papageorgiou@ucl.ac.uk

Academic editor
Marian Gheorghe

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.161

Copyright
2018 Triantafyllidis and Papageorgiou

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An integrated platform for intuitive
mathematical programming modeling
using LaTeX
Charalampos P. Triantafyllidis1,2 and Lazaros G. Papageorgiou1

1Centre for Process Systems Engineering, Department of Chemical Engineering, University College London,
London, United Kingdom

2 Smith School of Enterprise and the Environment, University of Oxford, Oxford, United Kingdom

ABSTRACT
This paper presents a novel prototype platform that uses the same LaTeX mark-up
language, commonly used to typeset mathematical content, as an input language for
modeling optimization problems of various classes. The platform converts the LaTeX
model into a formal Algebraic Modeling Language (AML) representation based on
Pyomo through a parsing engine written in Python and solves by either via NEOS
server or locally installed solvers, using a friendly Graphical User Interface (GUI).
The distinct advantages of our approach can be summarized in (i) simplification and
speed-up of the model design and development process (ii) non-commercial character
(iii) cross-platform support (iv) easier typo and logic error detection in the description
of the models and (v) minimization of working knowledge of programming and AMLs
to perform mathematical programming modeling. Overall, this is a presentation of a
complete workable scheme on using LaTeX for mathematical programming modeling
which assists in furthering our ability to reproduce and replicate scientific work.

Subjects Optimization Theory and Computation, Scientific Computing and Simulation,
Programming Languages, Software Engineering
Keywords Pyomo, Python, Algebraic Modeling Languages, Mathematical programming,
Optimization, LaTeX

INTRODUCTION
Mathematical modeling constitutes a rigorous way of inexpensively simulating complex
systems’ behavior in order to gain further understanding about the underlying mechanisms
and trade-offs. By exploiting mathematical modeling techniques, one may manipulate the
system under analysis so as to guarantee its optimal and robust operation.

The dominant computing tool to assist in modeling is the Algebraic Modeling
Languages (AMLs) (Kallrath, 2004). AMLs have been very successful in enabling a
transparent development of different types of models, easily distributable among
peers and described with clarity, effectiveness and precision. Software suites such as
AIMMS (Bisschop & Roelofs, 2011), GAMS IDE (McCarl et al., 2013), JuMP (Dunning,
Huchette & Lubin, 2017) as the modeling library in Julia (Lubin & Dunning, 2015),
Pyomo (http://www.Pyomo.org/) (Hart et al., 2017; Hart, Watson & Woodruff, 2011) for
modeling in Python (https://www.python.org/), (Rossum, 1995) and AMPL (Fourer, Gay
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Figure 1 The levels of abstraction in modeling; from natural language to extracting the optimal solu-
tion via computational resources.

Full-size DOI: 10.7717/peerjcs.161/fig-1

& Kernighan, 1993) are the most popular and widely used in both academia and industry.
AMLs usually incorporate the following features:
• a strict and specific syntax for the mathematical notation to describe the models;
• solver interfaces, the bridge between mathematics and what the solver can understand
in terms of structural demands;
• a series of available optimization solvers for as many classes of problems as supported
(LP, MILP, MINLP etc.) with the associated functional interfaces implemented;
• explicit data file formats and implementation of the respective import/export
mechanisms.

AMLs provide a level of abstraction, which is higher than the direct approach of
generating amodel using a programming language. The different levels in the design process
of a model are depicted in Fig. 1. Extending an AML (or even the entire modeling design
process) can be done in the following twoways:we can either simplify the present framework
(vertical abstraction) or extend the embedded functionality (horizontal abstraction) (Jackson,
2012). The layers of abstraction between the conception and the semantics of amathematical
model and its computational implementation may not necessarily be thin. This means that
while eventually the aim of the presented platform has the same purpose as an AML that is
to generate and solve models, simplification of the required syntax to describe the model is
associated with higher complexity. Thus, in order to relax the syntactical requirements, we
have to be able to process the same model with limited information (for instance, we do
not declare index sets and parameters in the platform). This limited declaration of model
components elevates the amount of processing that the platform has to conduct in order
to provide equivalent formulations of the input.
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A systems approach,MOSAIC (Erik et al., 2017), has been developed based on aMathML
representationusing LaTeX extracts, which has been appliedmainly to chemical engineering
models. Both frameworks can be facilitated online, with the proposed framework built
on Django while MOSAIC on Java. It can be noted that our platform can also be run
off-line (locally). A key difference between the two is that in the proposed framework
the user does not explicitly define indices, parameters and dynamic sets as those are
identified automatically from the platform, by filtering them out from the variable list
given at the bottom of the input .tex model. In the proposed platform the user can capture
the entire optimization model in a single .tex file and use this directly as an input to
the platform as opposed of using LaTeX extracts for generating equations in MOSAIC.
Similarly though, both platforms are framing the use of LaTeX built-in commands for the
specific environment to better capture errors and provide more consistency. Finally, the
proposed platform exports the generated optimization model in Pyomo whereas the ability
to export in many other formats is given in the MOSAIC environment.

Our work expands upon two axes: (i) the programming paradigm introduced by Donald
E. Knuth (Knuth, 1984) on Literate Programming and (ii) the notions of reproducible
and replicable research, the fundamental basis of scientific analysis. Literate Programming
focuses on generating programs based on logical flow and thinking rather than being limited
by the imposing syntactical constraints of a programming language. In essence, we employ
a simple mark-up language, LaTeX, to describe a problem (mathematical programming
model) and then in turn produce compilable code (Pyomo abstract model) which can
be used outside of the presented prototype platform’s framework. Reproducibility and
the ability to replicate scientific analysis is crucial and challenging to achieve. As software
tools become the vessel to unravel the computational complexity of decision-making,
developing open-source software is not necessarily sufficient; the ability for the averagely
versed developer to reproduce and replicate scientific work is very important to effectively
deliver impact (Leek & Peng, 2015; Nature Methods Editorial Board, 2014). To quote the
COIN-OR Foundation (https://www.coin-or.org/), Science evolves when previous results
can be easily replicated.

In the endeavor of simplifying the syntactical requirements imposed by AMLs we have
developed a prototype platform. This new framework is materializing a level of modeling
design that is higher than the AMLs in terms of vertical abstraction. It therefore strengthens
the ability to reproduce and replicate optimization models across literature for further
analysis by reducing the demands in working knowledge of AMLs or coding. The key
capability is that it parses LaTeX formulations of mathematical programs (optimization
problems) directly into Pyomo abstract models. The framework then combines the
produced abstract model with data provided in the AMPL .dat format (containing
parameters and sets) to produce a concrete model. This capability is provided through
a graphical interface which accepts LaTeX input and AMPL data files, parses a Pyomo
model, solves with a selected solver (CPLEX, GLPK, or the NEOS server), and returns the
optimal solution if feasible, as the output. The aim is not to substitute but to establish a
link between those using a higher level of abstraction. Therefore, the platform does not
eliminate the use of an AML or the advantages emanating from it.
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This is a complete prototype workable scheme to address how LaTeX could be used
as an input language to perform mathematical programming modeling, and currently
supports Linear Programming (LP), Mixed-Integer Linear Programming (MILP) as well
as Mixed-Integer Quadratic Programming (MIQP) formulations. Linear Optimization
(Bertsimas & Tsitsiklis, 1997; Williams, 1999) has proven to be an invaluable tool for
decision support. The corpus of models invented for linear optimization over the past
decades and for a multitude of domains has been consistently increasing. It can be easily
demonstrated with examples in Machine Learning, Operations Research and Management
Science, Physics, Information Security, Environmental Modeling and Systems Biology
among many others (Yang et al., 2016; Tanveer, 2015; Silva et al., 2016; Sitek & Wikarek,
2015; Liu & Papageorgiou, 2018; Triantafyllidis et al., 2018; Cohen et al., 2017; Romeijn et
al., 2006; Mitsos et al., 2009; Melas et al., 2013; Kratica, Dugošija & Savić, 2014; Mouha et
al., 2012).

This paper is organized as follows: in ‘Functionality’, we describe the current functionality
supported by the platform at this prototype stage. In ‘Parser - Execution Engine’, we
present the implementation details of the parser. ‘An illustrative parsing example’ provides
a description of an illustrative example. A discussion follows in ‘Discussion’. Some
concluding remarks are drawn in ‘Conclusion’. Examples of optimization models that
were reproduced from scientific papers as well as their corresponding LaTeX formulations
and Pyomo models can be found in the Supplemental Information 1.

FUNCTIONALITY
The set of rules that are admissible to formulate models in this platform are formal
LaTeX commands and they do not represent in-house modifications. We assume that
the model will be in the typical format that optimization programs commonly appear in
scientific journals. Therefore, the model must contain the following three main parts and
with respect to the correct order as well:
1. the objective function to be optimized (either maximized or minimized);
2. the (sets of) constraints, or else the relationships between the decision variables and

coefficients, right-hand side (RHS);
3. the decision variables and their domain space.
We used the programming environment of Python coupled with its modeling library,

namely Pyomo. Similar approaches in terms of software selection have been presented for
Differential and Algebraic Equations (DAE) modeling and optimization in (Nicholson et
al., 2018;Nikolić, 2016). By combining Python and Pyomo we have the ability to transform
a simplified representation of a mathematical model initially written in LaTeX into a
formal AML formulation and eventually optimize it. In other words, the platform reads
LaTeX code and thenwrites Pyomo abstract models or the code generates code. The resulting
.py file is usable outside of the platform’s frame, thus not making the binding and usage
of these two necessary after conversion. The main components that we employed for this
purpose are the following:
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Figure 2 The simplified Graphical User Interface (GUI). The GUI contains the basic but fundamental options to use the platform, such as model
input, solver selection and solution extraction.

Full-size DOI: 10.7717/peerjcs.161/fig-2

• Front-end: HTML, JavaScript, MathJax (https://www.mathjax.org/) and Google
Polymer (https://www.polymer-project.org/);
• Back-end: Python with Django (https://www.djangoproject.com/) and Pyomo.

In order to increase the effectiveness and user-friendliness of the platform, a Graphical-
User Interface (GUI) based on HTML, JavaScript (front-end) and Django as the web-
framework (back-end) has been implemented, as shown in Fig. 2. The user-input is
facilitated mainly via Polymer objects (https://www.polymer-project.org/). As the main
feature of the platform is to allow modeling in LaTeX language, we used MathJax as the
rendering engine. In this way, the user can see the compiled version of the input model.
All of these components form a single suite that works across different computational
environments. The front-end is plain but incorporates the necessary functionality for input
and output, as well as some solver options. The role of the back-end is to establish the
communication between the GUI and the parser with the functions therein. In this way the
inputs are being processed inside Python in the background, and the user simply witnesses
a seamless working environment without having to understand the black-box parser in
detail.
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The main components of the GUI are:

• Abstract model input : The input of the LaTeX model, either directly inside the Polymer
input text-box or via file upload (a .tex containing the required source LaTeX code)
• Data files: The input of the data set which follows the abstract definition of the model
via uploading the AMPL-format (.dat ) data file
• Solver options: An array of solver - related options such as:
1. NEOS server job using CPLEX
2. Solve the relaxed LP (if MILP)
3. Select GPLK (built-in) as the optimization solver
4. Select CPLEX (if available) as the optimization solver (currently set to default)

The following is an example of a LaTeX formulated optimization problemwhich is ready
to use with the platform; the well-known Traveling Salesman Problem (TSP) (Applegate et
al., 2007):

minimize
∑
i,j:i6=j

(di,jxi,j)

subject to : ∑
j:i6=j

(xi,j)= 1 ∀i

∑
i:i6=j

(xi,j)= 1 ∀j

ui−uj+nxi,j ≤ n−1 ∀i≥ 2,j ≤ |j|−1,i 6= j
u∈Z,x ∈ {0,1}

and the raw LaTeX code used to generate this was:

\ t e x t { minimize } \ sum \ l i m i t s _ { i , j : i \ neq j }^ { } ( d_ { i , j } x_ { i , j } ) \ \
\ t e x t { s u b j e c t to : } \ \
\ sum \ l i m i t s _ { j : i \ neq j }^ { } ( x_ { i , j } ) = 1 \ quad \ quad \ f o r a l l i \ \
\ sum \ l i m i t s _ { i : i \ neq j }^ { } ( x_ { i , j } ) = 1 \ quad \ quad \ f o r a l l j \ \
u_ { i } − u_ { j } + nx_ { i , j } \ l e q n − 1 \ quad \ quad \ f o r a l l i \ geq 2 , j \ l e q | j |−1 , i

\ neq j \ \
u \ in \ mathbb Z , x \ in \ { 0 , 1 \ } \ \

which is the input for the platform. The user can either input this code directly inside
the Google polymer text box or via a pre-made .tex file which can be uploaded in the
corresponding field of the GUI. Either way, the MathJax Engine then renders LaTeX
appropriately so the user can see the resulting compiled model live. Subject to syntax-
errors, the MathJax engine might or might not render the model eventually, as naturally
expected. Empty lines or spaces do not play a role, as well as commented-out lines using
the standard notation (the percentage symbol %). The model file always begins with the
objective function sense, the function itself, and then the sets of constraints follow, with
the variables and their respective type at the end of the file.
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Figure 3 The overall flow of the implementation. From user input to solving the optimization problem or simply exporting the equivalent Pyomo
model file.

Full-size DOI: 10.7717/peerjcs.161/fig-3

PARSER—EXECUTION ENGINE
As parser we define the part of the code (a collection of Python functions) in the back-end
side of the platform which is responsible for translating the model written in LaTeX to
Pyomo, the modeling component of the Python programming language. In order to
effectively translate the user model input from LaTeX, we need an array of programming
functions to carry out the conversion consistently since preserving the equivalence of the
two is implied. The aim of the implementation is to provide minimum loss of generality
in the ability to express mathematical notation for different modeling needs.

A detailed description of the implemented scheme is given in Fig. 3. A modular design
of different functions implemented in Python and the established communication of
those (exchanging input and output-processed data) form the basic implementation
concept. This type of design allows the developers to add functionality in a more clear and
effective way. For instance, to upgrade the parser and support Mixed Integer Quadratic
Programming (MIQP) problems, an update only to the parsing function assigned to
convert the optimization objective function is required.

Once the .tex model file and the .dat AMPL formatted data file are given, the platform
then starts processing the model. The conversion starts by reading the variables of
the model and their respective types, and then follows with component identification
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(locating the occurrence of the variables in each constraint) and their inter-relationships
(multiplication, division, summation etc.). Additionally, any summation and constraint
conditional indexing schemes will be processed separately. Constraint-by-constraint the
parser gradually builds the .py Pyomo abstract model file. It then merges through Pyomo
the model with its data set and calls the selected solver for optimization.

Pre-processing
A significant amount of pre-processing takes place prior of parsing. The minimum and
essential is to first tidy up the input; that is, clear empty lines and spaces, as well as reserved
(by the platform) keywords that the user can include but do not play any role in functional
parsing (such as the \quad command). The platform also supports the use of Greek
letters. For instance, if a parameter is declared as α the platform identifies the symbol,
removes the backslash and expects to find alpha in the data-file. This takes place also in the
pre-processing stage.

The user can also opt-out selectively the constraints by putting regular comments in
LaTeX, with the insertion of the percentage symbol (%) in the beginning of each expression.
Once done, we attempt to simplify some types of mathematical expressions in order to
be able to better process them later on. More specifically, we have two main functions
that handle fractions and common factor (distributive expressions) simplifications. For
example:

AiBj
Di

is then converted to: (AiBj)/Di

and

β(α+1) is converted as expected to: βα+β

when handling fractions, the user can employ the frac environment to generate them; the
parser in the background always though processes the analytic form (the same applies with
the distributive form of multiplications), no matter if the initial input was done using the
frac environment.

This keeps the basic component identification functions intact, since their input is
transformed first to the acceptable analytical format. Instead of transforming the parsing
functions, we transform the input in the acceptable format. However, the user does not lose
either functionality or flexibility, as this takes place in the background. To put it simply,
either the user inputs the analytic form of an expression or the compact, the parser is still
able to function correctly.

To frame the capabilities of the parser, we will now describe how the user can define
optimization models in the platform with a given example and the successful parsing to
Pyomo. The parser first attempts to split the model into its three major distinct parts:

• the objective function
• the sets of constraints
• the types of the variables defined

These three parts are in a way independent but interconnected as well.
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Processing variables
The parser first attempts to read the variables and their respective domain space (type). The
platform is case sensitive since it is based on Pyomo. The processing is done using string
manipulation functions, therefore the use of regular expressions in Python was essential and
effective.

Reasonably, the focus was on consistency and reliability, rather computational
performance mainly due to the lightweight workload of the processing demands in general.
In order to do that, the parser uses keywords as identifiers while scanning from the top to
the bottom of the manually curated .tex file which contains the abstract model in LaTeX.
For the three respective different parts mentioned earlier, the corresponding identifiers are:
1. Objective function: {minimize, maximize}
2. Sets of constraints: {\leq, \geq, =}
3. Variables and their types: {\mathbb , {0,1}}
This helps separate the processing into sections. Each section is analyzed and passes the

information in Pyomo syntax in the .py output model file. Variable types can appear in the
following way:

• \in \mathbb R
for Real numbers (∈R)
• \in \mathbb R_+
for non-negative Real numbers (∈R+)
• \in \mathbb R_{*}^{+}
for positive Real numbers (∈R+

∗
)

• \in \{0,1\}
for binary variables (∈ {0,1})
• \in \mathbb Z
for integers (∈Z)
• \in \mathbb Z_+
for non-negative integers (∈Z+)
• \in \mathbb Z_{*}^{+}
for positive integers (∈Z+

∗
)

In order to avoid confusion between lowercase and uppercase, the identifiers are
converted to uppercase prior of comparison. Upon locating these keywords, the parser
separates the processing and starts calling the corresponding functions. Once the variables
and their types are processed (expected to be found at the bottom of the mathematical
definition of the model), the parser then creates a list of strings for the names of the
variables. This is one of the crucial structures of the parser and utilized alongside the entire
run-time of the conversion process. A list of the same length, which holds the types of
each respective variable, is also created. The platform in general uses Python lists to store
information about variables, index sets, parameters, scalars etc.

Decomposing constraints and objective function expressions
Our approach for understanding the inter-mathematical relationships between the
variables and the parameters relied on exploiting the fundamental characteristics of
Linear Programming:
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Figure 4 A simple constraint having its components (partially) decomposed and therefore identified;
summations, operators, scalars and numerical quantities.

Full-size DOI: 10.7717/peerjcs.161/fig-4

• Proportionality
• Additivity
• Divisibility

Thesemathematical relationships can help us understand the structure of the expressions
and how to decompose them. By decomposition we define the fragmentation of each
mathematical expression at each line of the .tex input model file into the corresponding
variables, parameters, summations etc. so as we can process the given information
accordingly. A simple graphical example is given in Fig. 4.

The decomposition with the regular expressions is naturally done via the strings of the
possible operators found, that is: addition, subtraction, division (+,−,/), since the asterisk
to denote multiplication (∗ or ·) is usually omitted in the way we describe the mathematical
expressions (e.g., we write ax to describe coefficient a being multiplied by variable x). In
some cases however it is imperative to use the asterisk to decompose a multiplication.
For example, say Ds is a parameter and s is also a variable in the same model. There is
no possible way to tell whether the expression Ds actually means D*s or if it is about a
new parameter altogether, since the parameters are not explicitly defined in the model
definition (as in AMLs). Adding to that the fact that for the scalars there is no associated
underscore character to identify the parameter as those are not associated with index sets,
the task is even more challenging. Therefore, we should write D*s if D is a scalar. As for
parameters with index sets, for exampleDsisi causes no confusion for the parser because the
decomposition based on the underscore character clearly reveals two separate components.
In this way, the platform also identifies new parameters. This means that since we know,
for instance, that s is a variable but Ds is not, we can dynamically identify Ds on the fly (as
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we scan the current constraint) as being a parameter which is evidently multiplied with
variable s, both having index set i associated with them. However, we need to pay attention
on components appearing iteratively in different or in the same sets of constraints; did we
have the component already appearing previously in the model again? In that case we do
not have to declare it again in the Pyomo model as a new quantity, as that would cause a
modeling error.

By declaration we mean the real-time execution of a Python command that creates the
associated terms inside the Pyomo abstract objected-oriented (OO) model. For instance
if a set i is identified, the string model.i= Set (dimen= 1) is first written inside the text
version of the Pyomo model file, and then on-the-fly executed independently inside the
already parsing Python function using the exec command. The execution commands run
in a sequential manner. All the different possible cases of relationships between parameters
and variables are dynamically identified, and the parser keeps track of the local (per
constraint) and global (per model) list of parameters identified while scanning the model
in dynamically growing lists.

Dynamic identification of the parameters and index sets is one of the elegant features of
the platform, since inmostAlgebraicModeling Languages (AMLs) the user explicitly defines
the model parameters one-by-one. In our case, this is done in an intelligent automated
manner. Another important aspect of the decomposition process is the identification of the
constraint type (<=,=,>=), since the position of the operator is crucial to separate the
left and the right hand side of the constraint. This is handled by an independent function.
Decomposition also helps identify Quadratic terms. By automatic conversion of the caret
symbol to ∗∗ (as this is one of the ways to denote power of a variable in Pyomo language)
the split function carefully transfers this information intact to the Pyomo model.

Summations and conditional indexing
Summation terms need to be enclosed inside parentheses (···), even with a single
component. This accelerates identification of the summation terms with clarity and
consistency. Summations are in a way very different than processing a simplified
mathematical expression in the sense that we impose restrictions on how a summation can
be used. First of all, the corresponding function to process summations tries to identify how
many summation expressions exist in each constraint at a time. Their respective indexing
expressions are extracted and then sent back to the index identification functions to be
processed. The assignment of conditional indexing with the corresponding summation
is carefully managed. Then, the summation commands for the Pyomo model file are
gradually built. Summations can be expressed in the following form, and two different
fields can be utilized to exploit conditional indexing (upper and lower brackets):

\ sum \ l i m i t s _ { p : X_ {n , p } = 1}^{}(1− sb_ {p , k } )

which then compiles to:
∑

p:Xn,p=1(1− sbp,k)
This means that the summation will be executed for all values of p, (that is for p= 1 : |p|)

but only whenXn,p= 1 at the same time. If we want to usemultiple and stacked summations
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(double, triple etc.) we can express them in the same way by adding the indexes for which
the summation will be generated, as for example:

\ sum \ l i m i t s _ { i , j } ^ { } ( X_ { i , j } )

which then compiles to:
∑

i,j(Xi,j)
and will run for the full cardinality of sets i,j. Dynamic (sparse) sets imposed on constraints
can be expressed as:

X_{ i , j } = Y_ { i , j } \ f o r a l l ( i , j ) \ i n C \ \

which then compiles to: Xi,j =Yi,j ∀(i,j)∈C
This means that the constraint is being generated only for those values of (i,j) which belong
to the dynamic set C . In order to achieve proper and precise processing of summations
and conditional indexing, we have built two separate functions assigned for the respective
tasks. Since specific conditional indexing schemes can take place both for the generation
of an entire constraint or just simply for a summation inside a constraint, two different
sub-functions process this portion of information. This is done using the \forall command
at the end of each constraint, which changes how the indexes are being generated for the
vertical expansion of the constraints from a specific index set. Concerning summations it
is done with the bottom bracket information for horizontal expansion, as we previously
saw, for instance, with p :Xn,p= 1.

A series of challenges arise when processing summations. For instance, which
components are inside a summation symbol? A variable that might appear in two different
summations at the same constraint can cause confusion. Thus, using a binary list for the
full length of variables and parameters present in a constraint we identify the terms which
belong to each specific summation. This binary list gets re-initialized for each different
summation expression. From the lower bracket of each summation symbol, the parser is
expecting to understand the indexes for which the summation is being generated. This is
done by either simply stating the indexes in a plain way (for instance a,b) or if a more
complex expression is used, the for-loop indexes for the summations are found before the
colon symbol (:).

Constraint indexing
At the end of each constraint, the parser identifies the ‘‘ ∀’’’ (\forall) symbol which then
helps understand forwhich indexes the constraints are being sequentially generated (vertical
expansion). For instance, ∀(i,j)∈C makes sure that the constraint is not generated for all
combinations of index sets i,j, but only the ones appearing in the sparse set C . The sparse
sets are being registered also on the fly, if found either inside summation indexing brackets
or in the constraint general indexing (after the ∀ symbol) by using the keywords \in, \notin.
The simplest form of constraint indexing is for instance:∑
j:i6=j

(xi,j)= 1 ∀i,

where the constraint is vertically expanding for all elements of set i and the summation is
running for all those values of set j such that i is not equal to j. More advanced cases of
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constraint conditional indexing are also identified, as long as each expression is separated
with the previous one by using a comma. For example in:

∀i< |i|,j ≥ i+1

we see each different expression separated so the parser can process the corresponding
indexing. Three different functions handle identification on constraint- level and the input
for the general function that combines these three, accepts as input the whole expression.
We process each component (split by commas) iteratively by these three functions:
1. to identify left part (before the operator/reserved keyword/command),
2. the operator and
3. the right-hand part.
For example, in i< |i|, the left part is set i, the operator is < and the right-hand part is

the cardinality of set i. In this way, by adding a new operator in the acceptable operators list
inside the code, we allow expansion of supported expressions in a straightforward manner.

AN ILLUSTRATIVE PARSING EXAMPLE
Let us now follow the sequential steps that the parser takes to convert a simple example.
Consider the well-known transportation problem:

minimize
∑
i,j

(ci,jxi,j)

subject to: ∑
j

(xi,j)≤ ai ∀i∑
i

(xi,j)≥ bj ∀j

x ∈R+

We will now provide in-depth analysis of how each of the main three parts in the model
can be processed.

Variables
The parser first attempts to locate the line of the .tex model file that contains the variable
symbols and their respective domains. This is done by trying to identify any of the previously
presented reserved keywords specifically for this section. The parser reaches the bottom
line by identifying the keyword mathbbR_+ in this case. Commas can separate variables
belonging to the same domain, and the corresponding parsing function splits the collections
of variables of the same domain and processes them separately.

In this case, the parser identifies the domain and then rewinds back inside the string
expression to find the variable symbols. It finds no commas, thus we collect only one
variable with the symbol x . The platform then builds two Python lists with the name of the
variables found and their respective types.
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Objective function
The parser then reads the optimization sense (by locating the objective function expression
using the keywords, in this caseminimize) and tries to identify any involved variables in the
objective function. In a different scenario, where not all of the model variables are present
in the objective function, a routine identifies one-by-one all the remaining variables and
their associated index sets in the block of the given constraint sets.

The parser first attempts to locate any summation symbols. Since this is successful, the
contained expression is extracted as c{i,j}x{i,j}, by locating the parentheses bounds (). In
case of multiple summations, or multiple expressions inside the parentheses, we process
them separately. The bounds of the summation symbol (the lower and upper brackets)
respectively will be analyzed separately. In this case, the upper one is empty, so the lower
one contains all the indexes for which the summation has to scale. Separated by commas, a
simple extraction gives i,j to be used for the Pyomo for-loop in the expression. There is no
colon identified inside the lower bracket of the summation, thus no further identification
of conditional indexing is required.

A split function is then applied on the extracted mathematical expression c_{i,j}x_{i,j}
to begin identification of the involved terms. Since there are no operators (∗,+,−,/)
we have a list containing only one item; the combined expression. It follows that the
underscore characters are used to frame the names of the respective components. It is
easy to split on these characters and then create a list to store the pairs of the indexes for
each component. Thus, a sub-routine detects the case of having more than just one term
in the summation-extracted expression. In this example, c is automatically identified as
a parameter because of its associated index set which was identified with the underscore
character and since it does not belong to the list of variables.

The global list of parameters is then updated by adding c , as well as the parameters
for the current constraint/objective expression. This helps us clarify which parameters are
present in each constraint as well as the set of parameters (unique) for the model thus far,
as scanning goes on. Once the parameter c and variable x are identified and registered
with their respective index sets, we proceed to read the constraint sets. The parser creates
expressions as the ones shown below for this kind of operations:
model . i = S e t ( dimen=1) \ \
model . j = S e t ( dimen=1) \ \
model . c = Param (model . i , model . j , i n i t i a l i z e = 0) \ \
model . x = Var ( model . i , model . j , domain=NonNega t i v eRea l s ) \ \

Since the objective function summation symbol was correctly identified with the
respective indexes, the following code is generated and executed:
de f o b j _ e x p r e s s i o n ( model ) :

model . F = sum(model . c [ i , j ]∗model . x [ i , j ] f o r i i n model . i f o r j i n model . j )
r e t u r n model . F

model . OBJ = Ob j e c t i v e ( r u l e =ob j _ e x p r e s s i o n , s e n s e = minimize )

Constraints
Since the constraints sets are very similar, for shortness we will only analyze the first one.
The parser first locates the constraint type by finding either of the following operators
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≤,≥,=. It then splits the constraint in two parts, left and right across this operator. This
is done to carefully identify the position of the constraint type operator for placement into
the Pyomo constraint expression later on.

The first component the parser gives is the terms identified raw in the expression
([′x ′i,j,

′a′i]). Parameter a is identified on the fly and since x is already registered as a variable
and the parser proceeds to only register the new parameter by generating the following
Pyomo expressions:

model . a = Param (model . i , i n i t i a l i z e = 0)

The platform successfully identifies which terms belong to the summation and which do
not and separates them carefully. Eventually the ∀ symbol gives the list of indexes for
which the constraints are being generated. This portion of information in the structure of
a Pyomo constraint definition goes in replacing X in the following piece of code:

de f a x b _ c o n s t r a i n t _ r u l e _ 1 (model , X) :

and the full resulting function is:

de f a x b _ c o n s t r a i n t _ r u l e _ 1 (model , i ) :
model . C_1= sum(model . x [ i , j ] f o r j i n model . j ) <= model . a [ i ]
r e t u r n model . C_1

model . AxbCons t r a in t_1=Con s t r a i n t ( model . i , r u l e = a x b _ c o n s t r a i n t _ r u l e _ 1 )

DISCUSSION
Developing a parser that would be able to understand almost every different way of writing
mathematical models using LaTeX is nearly impossible; however, even by framing the way
the user could write down the models, there are some challenges to overcome. For instance,
the naming policy for the variables and parameters. One would assume that these would
cause no problems but usually this happens because even in formal modeling languages, the
user states the names and the types of every component of the problem. Starting from the
sense of the objective function, to the names and the types of the variables and parameters
as well as their respective sizes and the names of the index sets, everything is explicitly
defined. This is not the case though in this platform; the parser recognizes the parameters
and index sets with no prior given information. This in turn imposes trade-offs in the way
we write the mathematical notation. For instance, multiple index sets have to be separated
by commas as in xi,j instead of writing xij .

On the other hand, using symbolic representation of the models in LaTeX can enable
the user quickly identify errors in the description of the model, the involved variables,
parameters or their mathematical relationships therein. This as opposed trying to debug
models that have been developed directly in a programming language or in an AML, which
would make the detection of such errors or typos more challenging.

By scanning a constraint, the parser quickly identifies as mentioned the associated
variables. In many cases parameters and variables might have multiple occurrences in
the same constraint. This creates a challenging environment to locate the relationships
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of the parameters and the variables since they appear in multiple locations inside the
string expressions and in different ways. On top of this, the name of a parameter can
cause identification problems because it might be a sub/super set of the name of another
parameter, e.g., parameter AB, and parameter ABC. Therefore naming conflicts are carefully
resolved by the platform by meticulously identifying the exact location and occurrences of
each term.

The CPU time required for each step in the modeling process of the platform
(conversion from LaTeX to Pyomo, Pyomo model generation, Solver) can be found in the
Supplementary Information. It can be noted that the parser is the least consuming step,
which clearly demonstrates the efficiency of the platform. The Pyomomodel generation and
solver (CPLEX in our measurements) steps and their associated CPU-time are completely
outside of the parser’s control. However, it is essential to get an idea of how these timings
compare to each other with the addition of this extra higher level of abstraction in the
beginning of the modeling process.

Challenges also arise in locating which of the terms appearing in a constraint belong to
summations, and to which summations; especially when items have multiple occurrences
inside a constraint, there needs to be a unique identification so as to include a parameter
(or a variable) inside a specific summation or not. We addressed this with the previously
introduced binary lists. Then, for each of those summation symbols, the items activated
(1) are included in the summation or not (0) and the list is generated for each different
summation within the expression.

Additionally, another challenge constitutes the extension of the platform to support
nonlinear terms, where each term itself can be a combination of various operators and
mathematical functions.

Finally, it is worth mentioning that the amount of lines/characters to represent a model
in LaTeX in comparison with the equivalent model in Pyomo is substantially smaller. In
this respect, the platform accelerates the modeling development process.

CONCLUSIONS
We presented a platform for rapid model generation using LaTeX as the input language for
mathematical programming, starting with the classes of LP, MILP andMIQP. The platform
is based on Python and parses the input to Pyomo to successfully solve the underlying
optimization problems. It uses a simple GUI to facilitate model and data input based on
Django as the web-framework. The user can exploit locally installed solvers or redirect to
NEOS server. This prototype platform delivers transparency and clarity, speedup of the
model design and development process (by significantly reducing the required characters
to type the input models) and abstracts the syntax from programming languages and
AMLs. It therefore delivers reproducibility and the ability to replicate scientific work
in an effective manner from an audience not necessarily versed in coding. Future work
could possibly involve expansion to support nonlinear terms as well as differential and
algebraic equations, sanity checking and error catching on input, the ability to embed
explanatory comments in the input model file which would transfer to the target AML,
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extending the functionality concerning bounds on the variables as well as adding further
support to built-in LaTeX commands (such as \left []) which would capture more complex
mathematical relationships.
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