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ABSTRACT. EIT is a non-linear ill-posed inverse problem which requires so-
phisticated regularisation techniques to achieve good results. In this paper we
consider the use of structural information in the form of edge directions coming
from an auxiliary image of the same object being reconstructed. In order to
allow for cases where the auxiliary image does not provide complete informa-
tion we consider in addition a sparsity regularization for the edges appearing in
the EIT image. The combination of these approaches is conveniently described
through the parallel level sets approach. We present an overview of previous
methods for structural regularisation and then provide a variational setting for
our approach and explain the numerical implementation. We present results
on simulations and experimental data for different cases with accurate and in-
accurate prior information. The results demonstrate that the structural prior
information improves the reconstruction accuracy, even in cases when there
is reasonable uncertainty in the prior about the location of the edges or only
partial edge information is available.

1. Introduction. Consider the forward problem
(1) Ymeas = A(f)+nv

where ymeas € Y = RM is a discrete set of observations, f € X is an image in a
solution space X, A : X — Y is the forward operator mapping from solution space
to data space and n € Y is measurement noise. Image reconstruction consists of
recovering an estimate of f from Ymeas, i-.6. in solving the inverse problem (1).
Within this general class of problems we may identify image processing problems
such as denoising, deblurring, in-painting and super-resolution, wherein the spaces
X DY are discrete sets of pixels, and tomographic problems wherein X is a function
space and A is a continuous-discrete operator that may be weakly or strongly ill-
posed, and either linear or non-linear.
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A general approach to such inverse problems is a regularised output-least-squares
scheme whereby the estimate is the solution to an optimisation problem

(2) fo = argmin{@(f) = [ueas — A)|[E-r + ()

with ' being the covariance matrix of the measurement noise and ¥(f) a regular-
isation functional that may be formally considered as the negative logarithm of a
prior probability density model for f, and o > 0 the regularisation parameter. Note
that the form of (2) assumes that the noise n is modelled as zero mean Gaussian
n ~ N(0,T). Many different forms of regularisation have been considered in the
literature. A topic of high interest is the use of priors based on sparsity assump-
tions; in particular priors that promote images with a sparse description of their
edges have played a significant role in many areas of image reconstruction. Sepa-
rately, there exists a class of priors assuming the availability of an auxiliary image
p and where some assumptions are made about the correlation of the two images,
for example in terms of similar structural and/or statistical information. Recently,
we reviewed some strategies for the combination of these approaches to define a
sparsity promoting prior that takes into account the edge information of both the
image f that is being reconstructed, and the auxiliary reference image p [18]. In
that paper we applied this idea to the problem of image reconstruction for Positron
Emission Tomography (PET) using a co-registered anatomical image, acquired with
Magnetic Resonance Imaging (MRI), as the auxiliary image and a novel idea for an
edge- promoting prior using a parallel level sets strategy where structural similarity
of two images is measured by differences in the alignment of the level sets of the
images. The core of the method is an anisotropic regularization functional ¥(f)
which promotes alignment of the level sets of the unknown image f with the level
sets of the reference image p. In particular, ¥(f) is designed so that it poses small
penalty for changes in f perpendicular to level sets where the reference image p
exhibits large changes (e.g., organ boundaries). In this paper we investigate the
application of this prior to Electrical Impedance Tomography (EIT), a non-linear,
severely ill-posed reconstruction problem.

Whereas in this paper our motivation is to investigate both the feasibility and
usefullness of incorporating structural information as a particular regularisation
scheme, we note that, in general, the concept of multi-modality imaging is of in-
creasing interest, because different modalities provide complementary information
regarding the patient being studied. In particular, the availability of e.g. an MRI
or CT image does not obviate the usefullness of also having an EIT image, be-
cause the latter provides information on physical parameters (specifically, electrical
conductivity) which the standard modalities cannot provide.

In EIT the problem is to reconstruct an interior conductivity from knowledge of
full or partial Cauchy data on the boundary (i.e. the Dirichlet-to- Neumann map).
In general this problem is known to possess a logarithmic-type stability [1, 35]
since high spatial-frequency components in the interior are increasingly strongly
damped in the forward mapping from interior conductivity to boundary voltage
measurements. It is this fact that gives rise to the intrinsically low-resolution of re-
constructed EIT images. The role of regularisation is to introduce prior knowledge
on the distribution of possible solutions which is formally stated in the Bayesian
framework. In particular, a prior which emphasises the conductivity image to have
well defined edges whose location is consistent with a known or partially known
geometric structure is the main aim of this work. This is motivated by ongoing
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efforts for development of EIT based bedside monitoring of brain stroke and lung
function in emergency care [21, 2, 16, 34]. In both of these applications, the pa-
tient specific anatomy (head or chest) is usually available from a CT scan that has
been taken for diagnosis before admission to the emergency care where the bedside
monitoring takes place, and our hypothesis is that utilizing the CT information in
the EIT reconstruction in a suitable way could yield significant improvement in the
accuracy of the EIT based imaging.

In practice, edge information might be obtained for example using edge-detection
algorithms on the auxiliary image p. Since in general such algorithms may be subject
to error, it is important to consider the effect of inaccurate edge location information
on the performance of our methods. Also, in cases when there is uncertainty about
the location of the boundaries, one could potentially utilize a spatial weighting
model in the parallel level set regularization that accounts for uncertainty in the
locations of the edges in the prior. Such a weighting model could be constructed,
for example, using anatomical atlases when patient specific CT is not available or
deliberate blurring of the available anatomical reference image to account for motion
of the boundaries. We will consider simple examples of incorrect edge location and
uncertain edge information in the numerical examples.

1.1. Related work. In this paper, we investigate utilization of structural prior into
EIT using the parallel level set strategy where structural similarity is measured by
differences in the alignment of the level sets of the images. However, structural
priors can be formulated in variety of ways and find use in many settings. We will
briefly review other application domains and options for how to include a-priori
structural information.

1.1.1. Application domains. Over the years there have been many different areas
where structural regularisation has been applied. The dominant domain for struc-
tural priors has been medical imaging. Since the early 1990’s [32] high resolution
anatomical knowledge—obtained either from MRI or computer assisted tomogra-
phy (CT)—has been incorporated into the reconstruction of a low resolution func-
tional image, in particular in PET and Single Photon Emission Computed To-
mography (SPECT), and it still continues to be an active area of research, e.g.
[10, 43, 25, 4, 18]. This application domain has gained more interest recently with
the advent of combined PET-MRI [15]. Next to nuclear medicine, similar tech-
niques have been used to exploit the predicted correlation between different tissue
contrasts in MRI, e.g. [17] and in functional MRI and contrast enhanced dynamic
MRI [38]. In [6] MRI is used for construction of structurally guided regularization
for magnetic particle imaging (MPI). In [2] structural prior information is exploited
in the EIT Dbar reconstruction method. Beside the dominant field of medical imag-
ing we would also like to point to two other areas which have been often overlooked
in terms of structural priors: remote sensing and image processing.

Remote sensing often deals with images that are of high spectral resolution but
have limited spatial resolution. When a panchromatic image with high spatial reso-
lution is available, these two images can be fused to create an image of high spectral
and high spatial resolution. In remote sensing this technique is often referred to as
pansharpening and can be achieved with structural priors, e.g. [5, 36, 20, 12] and
references therein.

Structural priors have also been used in image processing despite the fact that
there is usually no a priori structural information available. Instead, in an iterative

INVERSE PROBLEMS AND IMAGING VOLUME 13, No. 2 (2019), XX—XX



4 VILLE KOLEHMAINEN, MATTHIAS J. EHRHARDT AND SIMON ARRIDGE

process, the structure of an image is estimated and the image is restored. This
technique has been applied to estimate a spatially varying regularization parameter
field, e.g. for total variation [40, 22, 29, 33] and total generalized variation [11], or
anisotropic structures [23, 33, 19].

All these application fields have in common that the forward operator is modeled
linearly; in contrast, in the EIT setting of this paper we are facing a non-linear
inverse problem.

1.1.2. Types of structure. Structural priors come in a variety of forms. Most of the
earlier works on structural priors are isotropic, meaning that only the location—
rather than the direction—of structure has been taken into account. This is mostly
achieved by spatially varying weights, e.g. [40, 3, 22, 29, 33, 17, 11], but can also
be achieved in a joint/vectorial total variation fashion [18].

More information can be extracted by anisotropic structures. While the isotropic
priors typically depend only on the local magnitude of the gradient of the prior
image, the anisotropic models also take into account the alignment of the edges.
The anisotropy can be defined globally [7] or spatially varying [27, 5, 28, 23, 33, 17,
18, 19, 12] as in this contribution. A common way of modelling anisotropy is by a
spatially varying vector- or matrix-field that defines preferred directions. Positive
correlation of structure can be incorporated with Bregman distances [5, 28] and
general correlation with projections [27, 5, 23, 33, 17, 18, 19, 12]. Anisotropic priors
are found to be more effective in applications, see e.g. [17], thus we solely focus on
these in this study.

Some of the structural priors are defined in a discrete setting as Markov random
fields where it is difficult to make the distinction between isotropic and anisotropic
structures [32, 10].

1.1.3. Algorithms for structural reqularisation. Most of the aforementioned priors
are generalizations of total variation and as such can make use of all the algorithms
that handle normal total variation. For instance, gradient based algorithms can be
used if the problem has been smoothed, e.g. [23, 18], fast gradient projection on the
dual problem [8] has been used in [17] and primal- dual algorithms [13] in [33, 19].
As state-of-the-art primal-dual or proximal methods are not directly applicable
to our non-linear (and thus non-convex) setting, we focus here on gradient based
algorithms for smooth objectives and use smooth approximations of non-smooth
functionals.

1.2. Organization of the paper. The rest of the paper is organised as follows:
in section 2 we derive a notation for variational regularisation based on the gradi-
ent of the unknown with structural information, and we derive the Euler-Lagrange
operator in terms of a second order PDE of diffusion type. This allows us to relate
regularisation to various well-known diffusive flows as used in image enhancement
methods. In section 3 we discuss the EIT problem and explain the numerical im-
plementation of the structured regularisation for EIT using the parallel level sets
approach. In section 4 we present results from simulations and experimental data
from a laboratory setup. In section 5 we give conclusions.

2. Variational regularisation. A classical way to approach the optimisation
problem (2) is through variational methods applied to the functional ®(f) whose
first variation defines a direction of steepest descent

(3) O(f +h) = @(f) + ®'(f)Hh + O(|h]).
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Since ® is defined as the sum of a data fit term and a penalty term, we can con-
sider their first variation forms separately, which leads to the concept of variational
reqularisation. Therefore in this section we first review some existing variational
regularisation schemes and their corresponding derivatives in section 2.1, before
considering how they are modified in the presence of structural prior information in
section 2.2. Finally in section 2.3 we combine these with the data fit term to obtain
an overall nonlinear reconstruction scheme.

2.1. Image regularisation and diffusive flow. We restrict our discussion to
regularisation functionals of the form

(4) U(f) = / SV dr,

wherein a local mapping ¥ : R — R modifies the weighting of the local image
gradient V f. The corresponding first variation
V(IVS
) v =-v- (L) vr = o
IV £l
leads to an Euler-Lagrange equation that defines a PDE of diffusion type for image
flow
of
6 L _v.
() L=V wV
where the local diffusivity function & = ' (||V f||)/ ||V f| controls the flow of inten-
sity between pixels. This can equivalently be stated in terms of the Euler-Lagrange
operator £ as defined in (5),
of _

™) o = L)

Indeed different choices of the mapping v give rise to different scale spaces f(x,t)
under the evolution (7). Some commonly used choices for ¢, with the resulting form
of k, are given in table 1. Note that, apart from the (non-smooth) total variation
function, these priors are chosen so that x € [0,1] which simplifies the analysis of
the stability of (7). Furthermore in table 1 we introduced the threshold value T
to explain the smoothing of the mapping ¥ in terms of the dimensionless quantity
IVf]l/T: T indicates the transition from edges arising from noise, and those from
true structure in the image, with the expectation that x — 1 below the threshold
and (7) tends to an isotropic blurring with a local Gaussian kernel.

2.2. Incorporating structural information with parallel level sets. A sem-
inal paper demonstrating the use of structural prior information by “parallel level
sets” was [27]. In that paper the 1%*-order Tikhonov scheme for ¥ was used (i.e.
using ¥ (t) = 3t%) in (4) with a fixed (symmetric) tensor field B(p) (or B for short),
incorporating structure from an auxiliary reference image p, used to modify the
metric of the local norm

®) W) =5 [ 1915 ar.

In a nutshell, the tensor B can be chosen such that structures (represented by level
sets) in f and p are favoured to be aligned (or parallel), thus coining this method
“parallel level sets”. Such a tensor B is for instance given in terms of the local
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TABLE 1. Examples of ¢ for different regularisation schemes in
variational form. 1 is the mapping which defines the penalty for
the gradient magnitude in (4) and k is the corresponding local
diffusivity function in (6).

¥(t) r(t)
1%t-order Tikhonov % 1
TV ¢ 1
Smoothed TV T +12)F 12 T2 412
Perona-Malik (1) T; log (1 + %—22) T2 (% + TQ)_1
Perona-Malik (2) r {1 —exp (—%—i)} exp (—}2)

Tt - L z ift>T
Huber % 1 else

e 0 if ¢ >T
Tukey . 23 22

gauge coordinates ; normal, and 7 tangent to the level sets of p, with B diagonal
in the rotated system

- o i a7 [ cos® —sinf _ (7 O
B = RAR", R—[Vﬂ/ﬂ—(sine cos )’ A_<0 1>.

Here A is an anisotropy matrix controlling the relative flow normal and tangent to
the level sets of p and 0 < v < 1 is an edge indicator function tending to zero as
[IVp|| = oo. The diffusive flow resulting from the first variation of (8) is

of

(9) E:V-RARTVf:@A?f:—L‘(f)f,

where V = RTV = (52, a%‘)T is the gradient operator in the local gauge coor-
dinates. Note that this flow reduces to isotropic heat flow if p is locally flat, i.e.
v=1.

With this notation we can write
(10) B=1-(1—-7)o.0f =pyof 4007 = RART = LL",
with L = RA'/2? and (8) can also be written

1 1 1 ~ -
) wh =g (19 =5 [ Vs ar =5 [ 19 a9ar.

To combine this approach with the sparsity concept, we generalise (11) to

(12) U(f) = /Q@b(HLTVfH)dr,
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whose Euler-Lagrange operator can be defined as

iy oy (CUETVEDY
(13) \I/(f)— \V4 L( HLTVfH L Vf,
o e (VUM gy
14 VoA ( P >A Vi=LUf
K

As we will see in the results section, if ¥ is chosen to be TV-like, this scheme reduces
to total variation (or a smoothed approximation thereof) for the regularisation of
f when p is flat. In the results section, we consider structured regularization using
the smoothed TV functional (see table 1), i.e., choosing 9 (t) = TVt2 + T2 — T?,
leading to

(15) (f) :AT\/||LVf||2+T2—T2dr.

2.3. Regularised reconstruction. We are now ready to introduce the structured
regularisation into the problem (2). Putting the form into (8) into (2) and using a
numerical implementation of the lagged Gauss—Newton algorithm [42], leads to an
iterative scheme of the form:

(16) £ = ;O s (A, Ay taln] (A" (e — AG)) —aLn ]

where A, : X — Y is the Fréchet derivative of the forward operator at ),
(A2)* : Y = X its adjoint, £, = L£(f,) the Euler-Lagrange operator at f(™ and
s(") is a step length parameter obtained from a line search algorithm which finds an
optimal step length along the current search direction by solving a 1D minization
problem [9, 37].

3. EIT. In the following we take the particular notation f — o to indicate that
we consider the image to be a map of electrical conductivity.

3.1. Forward model of EIT. Let Q be a bounded domain in R¢ (d = 2, 3) with
smooth boundary 992. In an EIT experiment, a set of N, contact electrodes are
attached on the boundary 99 of Q. A set of electric currents, called current pat-
terns, are injected via the electrodes into the body 2 and corresponding voltages
are measured using the same electrodes. We model these measurements with the
complete electrode model [14, 39]

(17) V-(o(r)Vu(r)) =0, reQ
(18) u(r) + zeo (1) 837;;:2) =Up, r€ep, £=1,.. Ny
(19) / J(T)Z%i;) dS=1,, £=1,..,Ng
Ney
(20) o(r) ?;;2 =0, red\|Je

(=1

where r € Q is the spatial coordinate, o(r) is the conductivity, u(r) is the elec-
tric potential inside , U, and I, are the potential and current at electrode ey,
respectively, z, is the contact impedance between the electrode e, and the body £2,
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and vgq denotes the outward unit normal vector on the boundary 9. The charge
conservation law and the fixing of the zero potential are implied by

Ney Nei
(21) =0, Y U=0o.
=1 =1

The existence and uniqueness of the solution of the model (17-21) was proven
and its variational form derived in [39].

We use a finite element method (FEM) for solving numerically the forward prob-
lem (17-21). In the FEM approximation, the domain 2 is divided into M, disjoint
elements joined at M, vertex nodes. The potential v and electrode potentials
U € RN gatisfying the variational form [39] of (17-21) are approximated as

M,
(22) u(r) = 3 atu(r).

Ne1
(23) U= Z bj’U)j 5
j=1

where the functions ¢; are the piece-wise linear nodal basis functions of the finite
element mesh and vectors w; € RMe! are chosen such that condition (21) holds.

In this study, the conductivity o(r) is approximated as a piecewise constant func-
tion on a grid of regular square pixels €2 C Uszl G}, leading to an approximation

N
(24) o(r) =3 orxe, (r).
k=1

with NV pixels within or partially intersecting {2 and where x is the characteristic
function taking value 1 on all points in the set of its argument. The pixel values
of the conductivity are concatenated into a vector o = (o1,...,0n5)T € RV, Using
these approximations and the FEM implementation described in [41], the numerical
forward solution for each current injection is obtained by solving a (M, + Ng —1) X
(M, + Ne — 1) system of equations.

Let V() denote the voltage measurements corresponding to the ¢th current pat-
tern 1) and U®) (o) denote the respective FEM based forward solution. Let the
EIT experiment consist of K current injections. We denote the measurement vector
and forward model for the whole EIT experiment by ymeas = (VD ..., VIENT ¢
RENet and A(o) = (UM (a),...,UE) (o))" € RENa The Fréchet derivative of
A(o) is found by solving the adjoint problem to (17-21) for u* and forming the
inner product (Vuj,GyVu;) for j = 1,...,Ne, i = 1,...,K, k =1,...,N, for
more details see [26].

The measurement noise in EIT experiments is commonly modeled as additive
noise as in (1) with block-diagonal covariance matrix T'.

3.2. Numerical implementation of structured regularization. The EIT re-
constructions were computed by minimizing a regularized (weighted) least squares
(LS) functional of the form (2) with an added positivity constraint, i.e.

_ : _ 2
(25) o = argmin{ [ymeas — A(0) -1 + a¥(o) }.
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The minimization was carried out using an implementation of the Lagged Gauss-

Newton optimization method (16), where the line search was implemented using a

bounded minimization algorithm such that positivity of the conductivity is enforced.
Two different choices of the regularization functional were considered;

SH;  structured smoothness regularization [27], U(o) given by (11).
STV  structured (smoothed) TV regularization, ¥(o) given by (15).

In both cases, the tensor field B(p) was of the form (10), where 7, and « were
selected as

o0 if [Vp(r)lf =0
(26) VL= { Vp(r)/||Vp(r)| otherfvise
27) y(r) = exp (= Vp(r)|*/T;)

with the parameter 7, > 0. We want to remark that these choices lead to a
continuous tensor field B(p), in the sense that limy,o B(p) = I.

In the discretization of the regularization functional, the gradient of the con-
ductivity was approximated using a forward differencing scheme Vo, = [~ (oy, —
ok,0, — op) T where [ is the distance between the center points of the neighboring
pixels and o}, and o, are the values of the conductivity in the neighbor pixels of pixel
k in the (forward) horizontal and vertical directions. The gradient of the reference
image p was approximated by forward differences as well.

In all cases the original reference image p was in finer resolution than the N-pixel
representation (24) used for the conductivity. Thus, the reference image was mapped
to the same piecewise constant pixel basis that is used for o before evaluation of
Vp.

4. Results. In this section, the structured regularisation is evaluated using simu-
lated data and experimental EIT data from a laboratory setup.

In each test case, reconstructions with conventional (no structure) regularisation
were computed as a reference for the structured regularisation. This was obtained
by setting p = const., leading to B = I. The reconstructions with the structured
regularisation were computed using both correct edge information and partial edge
information. The correct edge information refers to a case where the reference
image contains correct edge information in the sense that Vo, and Vp are parallel
everywhere in the domain €, but the signs and/or values of Voue and Vp may
be different. The partial edge information refers to a case where the edges in ogyye
and p are partially different, or a case with uncertainty about the location of the
boundaries. Specially, the partial edge information that is used in the simulated
test cases has the following features:

(Case 1). Both the conductivity o and the reference image p have one inclusion in
a location where the other image is constant. This could be considered as
an example of a case with one organ that has contrast only in conductivity
and one organ that has contrast only in the reference image. This example
is important to demonstrate that the structural prior does not promote false
information.

(Case 2). The inclusions in the partial edge information are in the correct location
and roughly of correct size but their topology is incorrect. This case can be
considered as an example of where the resolution of the auxiliary image p is
at a different scale to the conductivity o.
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(Case 3). The partial edge information model simulates a case with uncertainty on
the locations of the edges. The uncertainty in the locations is modelled by
using a piecewise constant weighting function  which gives equal weighting
over the area where the boundaries are expected to be. The results include
a study on how the magnitude of the uncertainty in the locations affect the
reconstruction quality.

(Case 4). Similar to Case 3 with the exception that the true conductivity contains
one nested inclusion which is not present in the reference image p. The case
can be viewed as a simplistic example of imaging the lungs in a case where
one of the lungs contain an anomaly that is not present in the prior.

The regularisation parameter o was selected experimentally. For simulated test
cases the selection was carried out by computing the mean of the relative Lo error

(28) Err(o) = M7
||O—trueH

where P is an interpolation mapping which maps the reconstructed conductivity to
the same grid as the true conductivity, with different values of o over 20 realizations
of data ymeas for the first test case in figure 1, and then selecting o which gave the
smallest reconstruction error for the conventional (no structure) case p = const.
This procedure resulted to values of a = 5 for the SH; regularisation and o = 0.5
for the STV regularisation. The same fixed values of a were then used in all the
simulations with all the different choices of reference image p. This choice was made
so that the results for the conventional (no structure) regularisation, which is shown
as reference for the structured regularisation, would be optimal.

The values of a for the experimental test case were selected manually based on
the conventional (no structure) regularisation, and then the same fixed values were
used with all the different choices of p. For the SH; regularisation the value was
a = 25 and for the STV regularisation o = 2.

4.1. Simulated data. The domain €2 in the simulations was a circle with radius
14 cm with Ng = 16 equispaced, 26 mm wide electrodes located on the boundary
0f). For the simulation of the measurement data, the domain 2 was divided into a
mesh of 44 006 triangular FEM elements with 22 820 nodes. The number of regular
pixels for the representation of the true target conductivity e was N = 13677.
The data was simulated using a pairwise current injection paradigm using 15 cur-
rent patterns such that electrode e; was the source in each current pattern and
electrode e14; (t = 1,...,15) the sink. For each current pattern, voltages were
recorded between pairs of neighboring electrodes, leading to 240 voltage measure-
ments for each test case. The electrode contact impedances were set to zp = 0.001 in
the simulations and were treated as known parameters in the computation of the re-
constructions. Zero mean Gaussian white noise with standard deviation o, = 10~*
was added to the simulated voltages. With this choice of o, the signal-to-noise
ratio (SNR) in the simulated voltage measurements were in the range from 68 dB
to 70 dB, and the ratio of o, divided by the absolute values of the noiseless voltages
were in the range from 0.01 % to 1.1 %, representing noise statistics that are similar
to measurements with practical EIT systems, e.g. the KIT 4 EIT system [31].

In the computation of the reconstructions, the domain 2 was divided into M, =
29932 triangular FEM elements with M;, = 15207 nodes for approximation of v and
N = 6357 rectangular pixels for the representation of the unknown conductivity.
Thus, the unknown in the inverse problem was o € R%357,
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TABLE 2. Reconstruction errors (28) for the simulated test cases
for varying regularizations (SHy, STV) and reference images (no
structure, correct, partial). Cases 1-4 refer to reconstructions in the
figures 1, 3, 4 and 6 respectively. Errors are given in percentages.

SH; STV
case no structure correct partial no structure correct partial
1 12.3 3.6 8.6 8.8 3.9 4.9
2 15.6 5.6 10.9 13.8 3.3 10.1
3 10.6 3.5 6.5 8.0 2.4 4.9
4 15.3 11.5 12.9 14.3 11.1 12.7

The results for the first test case are shown in figure 1. The image on the top in
the first column shows the true target conductivity o¢pye. The second column shows
results using conventional (no structure) regularisation (p = 1), the third column
shows results using structured regularisation using correct edge information and the
fourth column results using partial edge information, where the reference image p
contains two inclusions, one correctly located and one incorrectly located. The first
row in the figure shows the reference images p and the second row the respective
weighting functions v, given by eq. (27) with TI? = 0.1. The third row shows the
reconstructions using the SH; regularisation and the fourth row the reconstructions
using the STV regularisation. The reconstruction errors are tabulated in table 2.

Figure 2 shows the standard deviations of the reconstructed conductivity with
respect the bias of the reconstructed conductivity with different values of the reg-
ularisation parameter « for the test case in figure 1. The left image shows the
curves for the mean conductivity in the area of the true inclusion in the top of the
target conductivity oue and the right image for the area of the inclusion on the
bottom right in the target conductivity. The biases and standard deviations were
estimated by computing the reconstructions over an ensemble of 20 independent re-
alizations of the measurement data. The value of « varied in the range [0.1 20] for
the SH; regularisation and in the range [0.01 10] for the STV regularisation. The
triangle denotes the point corresponding to the smallest value of « in the curves.

As can be seen from figures 1, 2 and table 2, the structured regularisation im-
proves the accuracy over the conventional (no structure) regularisation for both
smoothness and TV regularisation. When the correct edge information is used,
the reconstructions with both regularisation functionals are very similar, but the
STV regularisation yields slightly smaller reconstruction error than SH; regularisa-
tion. When no edge information or partial edge information is used, the STV regu-
larisation leads to more accurate reconstruction than the SH; regularisation—this
however can be expected in a case of a piece wise regular target conductivity such
as the case considered here. While the inclusion which is on the bottom left in
the reference image p but not in oyue, can be seen as a very weak shadow in
the SH; reconstruction using the partial edge information, it is not present in the
STV reconstruction using the partial edge information. Also, another notable dif-
ference between the SH; and STV regularisation in the partial edge information
case is that the STV leads to significantly better recovery of inclusion on the bot-
tom right which is missing from the reference image p. The biases and standard
deviations in figure 2 indicate that the structured regularisation leads to more accu-
rate reconstruction of the case in figure 1 than conventional regularisation with any
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Otrue p(r) (no structure)  p(r) (correct) p(r) (partial)
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FIGURE 1. Numerical experiment (Case 1). Rows top to bottom:
otrue and reference images p(r) (top row), weighting function ~(r)
(second row), reconstructions using SH; regularisation (third row)
and STV regularisation (fourth row).

value of a. When starting from the biases with the smallest «, the biases decrease
in the beginning until reaching a range of suitable values of a. This behavior can be
attributed to the fact that the initial o values are too small (under regularisation),
leading to a situation where the modelling (discretization) errors cause artifacts
to the reconstructed conductivity. When going to (too) large values of «, the bi-
ases start increasing (too much regularisation). This behavior is especially evident
for the conventional (no structure) regularisation (blue line) where the estimates
approach asymptotically zero as the value of « increases. For the structured reg-
ularisation, the bias increases more slowly due to different asymptotical behavior
which can be explained, loosely speaking, by the different structure of the subset
where U(f) is (essentially) zero. However, the structured regularisation has, for all
values of «, smaller than or equal error compared to the conventional regularisation,
both for correct and partial edge information.

Figure 3 shows results for the second test case. All the estimates were com-
puted similarly as in the first test case. The reconstruction errors are tabulated
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FIGURE 2. Plot of standard deviation with respect to bias of the
reconstructed conductivity with different values of the regularisa-
tion parameter « for the simulation in figure 1. The left image
shows the curves for the mean conductivity in the area of the true
inclusion on the top in opye, and the image on the right for the
inclusion on the bottom right. The triangle denotes the point cor-
responding to the smallest value of « in the curves.

in Table 2. The first column shows the true target conductivity, which contains
one large inclusion on the left and two side by side circular inclusions on the right.
The reconstructions with the conventional (no structure) regularisation are shown
in the second column. A notable feature in the conventional reconstructions is that
the side by side circular inclusions on the right are reconstructed as one large in-
clusion with both the SH; and STV models. This indicates that the side by side
circular inclusions cannot be resolved with the given EIT measurement when using
conventional SH; or STV regularisation models. The reconstructions with struc-
tured regularisation using correct edge information are shown in the third column.
Similarly as in the first test case, the structured regularization with correct edge in-
formation improves the reconstructions significantly compared to the conventional
models. The structured SH; and STV reconstructions are visually similar but the
STV yields smaller reconstruction error than the SH; regularisation. The fourth
column shows the results using incorrect edge information. While in the first test
case the partial edge information contained one correctly and one incorrectly located
inclusion, here the situation is somewhat more challening; the prior shapes are in
correct location and of roughly correct size but their topology is incorrect. As can
be seen, the incorrect edge information leads here to distortion of the reconstructed
conductivity towards the incorrect prior shapes. However, the reconstructions show
an increase of the conductivity near the interface of the two circular prior shapes
on the left in the area where the true inclusion and the prior shape are different.
Similarly, a decrease of conductivity is seen on the right in the area where the true
circular inclusions and the prior shape are different. These changes reflect local
inconsistency of the prior shapes and they are more evident for the STV regularisa-
tion than the SH; model. Table 2 shows that the reconstruction errors are smaller

INVERSE PROBLEMS AND IMAGING VOLUME 13, No. 2 (2019), XX—XX



14 VILLE KOLEHMAINEN, MATTHIAS J. EHRHARDT AND SIMON ARRIDGE
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FIGURE 3. Numerical experiment (Case 2). Rows top to bottom:
otrue and reference images p(r) (top row), weighting function ~(r)
(second row), reconstructions using SH; regularisation (third row)
and STV regularisation (fourth row).

in both cases with incorrect edge information compared to the conventional (no
structure) regularisation. These results suggest that the structured regularisation
with incorrect edge information can improve over the conventional model also in
cases where the prior shape errors are at the level of measurement resolution power.

Figure 4 shows reconstructions for the third test case. The reconstructions with
the conventional (no structure) regularisation (p = 1) and the structured regular-
isation with correct edge information were computed similarly as in the first and
second test case. However, the partial edge information was here constructed to
simulate a case with uncertainty about the location of the edges. In practice, such
a case could occur, for example, when the reference image p would be based on a
probabilistic boundary model derived from an anatomical atlas, or the edge loca-
tion information would be deliberately blurred to account for uncertainty due to
movement of the organs, such as the heart and lungs. Here the partial information
was constructed by using a smooth reference image (top right in figure 4), which
has an approximately linear contrast change over an uncertainty strip where the
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boundary is expected to be. The smooth reference image was obtained by blurring
the correct reference image using an averaging disk filter. To make the weighting
of an edge equivalent all over the uncertainty strip, the weighting function in the
partial edge information was, instead of using (27), defined as

_ [ 107 when |[Vp(r)|| > ¢
(29) () = { 1 otherwise

where ¢ is an edge threshold parameter, which in this study was selected manually
with value p = 0.03. Figure 5 shows the reconstructions with the partial edge infor-
mation with increasing degree of uncertainty about the location of the edges. The
smoothing of the reference image increases to the right, which is seen as widening
of the uncertainty strip (in this case, simply the part of domain where ||[Vp|| > o).
The reconstruction errors for the SH; regularisation vary from 8.1 % to 9.8 % from
the left to the right in figure 5 (10.6 % for the conventional regularisation using flat
p). For the STV regularisation, the reconstruction error changes from 6.3 % to 7.3
% from the left to the right in figure 5 (8.0 % for the conventional regularisation).

Figure 6 shows results for the fourth test case. The reconstruction errors are
tabulated in Table 2. The test case is otherwise the same as Case 3 in Figure 4 with
the exception that the true target conductivity oy contains a high conducting
inclusion inside the larger, low conducting inclusion on the right. The reference
images p(r) and weighting functions «(r) are exactly the same as the ones used in
figure 4. This simulation can be considered as a simplistic example of imaging of
the lungs where the right lung has an conducting anomaly that is not present in
the prior image p(r). The reconstructed images show that the anomaly inside the
low conducting inclusion is detected more clearly when structured regularization is
employed, especially when using the STV regularization.

The results in figures 4-6 suggest that the structured regularisation can improve
the accuracy over conventional (no structure) regularisation even when there is quite
large uncertainty in the prior about the exact location or shape of the edges.

The reconstruction times with the structured prior were slightly shorter com-
pared to conventional (no structure) reconstructions for both, the SH; and STV,
regularizations. As an example, while the reconstruction time for the SH; without
the structural prior in Case 3 was 1392 s, the reconstruction time of SH; with the
correct prior was 1358 s. The corresponding reconstruction times for the STV reg-
ularization were 1617 s without the prior and 1330 s with the prior. All these
computation times are based on the same implementation of Gauss—Newton algo-
rithm using Matlab on a regular desktop computer, and as such, the computation
times are indicative only. However, they do suggest that the use of structured
regularization leads to a slight decrease in the computation time compared to the
corresponding conventional regularization.

4.2. Experimental data. The experimental data was measured from a vertically
symmetric measurement tank €2, see figure 7. The cross-sectional shape of the mea-
surement tank was extracted from a CT image of the chest of an adult male. Sixteen
equally spaced stainless steel electrodes were attached on the boundary 9€) of the
tank. The height of the tank ©Q was 5 cm. To construct the true conductivity o,
heart and lung shaped inclusions were made of agar and placed in the measurement
tank filled with saline. The inclusions were constructed using vertically symmetric
moulds. The conductivity of the lung target was approximately 25 % of the con-
ductivity of the saline and the conductivity of the heart target was approximately
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FIGURE 4. Numerical experiment (Case 3). Rows top to bottom:
otrue and reference images p(r) (top row), weighting function ~(r)
(second row), reconstructions using SH; regularisation (third row)
and STV regularisation (fourth row).

100 % higher compared to the saline. We remark that the reconstructions with the
experimental data are only qualitative in the sense that they are computed using
2D models from data that is acquired from a translationally symmetric 3D target.

The measurements were carried out with the KIT 4 measurement system [31].
Sixteen adjacent current patterns were used and the voltages differences between
the adjacent electrodes were used as measurements, leading to 256 voltage mea-
surements. The amplitude of the injected currents was 5 mA with frequency 10
kHz.

For the estimation of measurement error statistics, 40 000 realizations of the data
were measured. The distribution of the measurement noise conformed well with a
zero mean Gaussian model. The covariances I'c j, were formed as sample averages
for each of the k = 1,...,16 current patterns separately. In KIT 4, different cur-
rent patterns use partially different circuit boards and have different switch states,
which may result in different measurement error covariances for different current
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FIGURE 5. Numerical experiment (Case 3): Reconstructions with
increasing uncertainty about the edge location in the partial edge
information. Rows top to bottom: oy and reference images
p(r) (top row), weighting function v(r) (second row), reconstruc-
tions using SH; regularisation (third row) and STV regularisation
(fourth row).

patterns. Significant external low frequency sources were not present, and the se-
rial autocorrelation was verified to essentially vanish after the zeroth lag. Thus,
the errors in the demodulated voltages could be modelled as mutually independent
between current patterns and the overall covariance I'. was constructed as a block
diagonal matrix,

I'. = BlockDiag(T'e1,. .., ¢ 16)

The standard deviations (diag(T.))/? of the noise were in the range from 0.01 % to
2.64 % of the mean of the measured voltages and the signal to noise ratio (SNR) was
65.52 dB. The structure of (essentially) non-zero elements in the estimates I ; was
tridiagonal, implying that the voltage difference measurements between adjacent
electrode pairs that involve electrode ¢ are correlated.
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FIGURE 6. Numerical experiment (Case 4). Rows top to bottom:
otrue and reference images p(r) (top row), weighting function ~(r)
(second row), reconstructions using SH; regularisation (third row)
and STV regularisation (fourth row).

The reconstructions were computed using a 2D FEM model. The chest shaped
2D domain ) was divided to M, = 29000 triangular elements with M, = 15233
nodes for approximation of the potential © and to N = 6 187 square pixels for the

representation of the conductivity, leading to unknown o € R'%7 in the inverse
problem.
The electrode contact impedances z = (z1, . ..,216) " € R6 were estimated before

the actual reconstruction by solving a least-squares problem

(30) (G’o, ) = a‘rgaog%)lg>0{”ymeas - U(007 Z)||12"*1}
where oy € R is a homogeneous conductivity value. The non-linear least-squares
problem was minimized using the Gauss—Newton method equipped with a line
search algorithm. The line search was implemented using bounded minimization
such that positivity conditions are enforced. Similar least-squares approaches for
estimation of contact impedances have been proposed in [24, 30].
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FIGURE 7. Physical experiment. Top section: Photograph of the
target and the reference images p(r). The second row shows
the weighting functions ~(r). Bottom section: Reconstructions.
SH; regularisation (third row), STV regularisation (fourth row).
(Color scales of the reconstructions are arbitrary in the sense that
they are reconstructed 2D values from 3D data)

The reconstructed conductivities are shown in figure 7. The top row shows a
photograph of the experiment and the reference images p(r). The reference image
for the correct edge prior in the third column was obtained by finding boundaries of
the agar targets from the photograph of the experiment. The units of the reference
image are arbitrary. The reference image for the partial prior in the fourth column
was obtained by blurring the reference image of the correct prior using an averaging
disk filter. The second row shows the weighting functions «(r), which in the correct
prior case was obtained by (27) and in the partial prior case by (29). The third
row shows the reconstructions using the SH; regularisation and the fourth row the
reconstructions using the STV regularisation.
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The results with the experimental data conform qualitatively to the findings of
the numerical simulations—the use of structured regularisation leads to significant
improvement over the conventional (no structure) regularisation, even in the case
of the partial edge information which has reasonably wide uncertainty about the
location of the edges.

We remark that the simulated test cases and the experimental test case used dif-
ferent current injections. However, the findings between the different methods were
qualitatively similar with both current injections, exemplifying that the proposed
approach is not tied to a particular choice of the measurement protocol.

5. Discussion & conclusions. In this paper, we studied incorporation of struc-
tural prior information into the electrical impedance tomography problem from an
auxiliary reference image using the parallel level sets approach. The approach is
based on (general) variational regularisation and it uses a symmetric tensor field for
construction of anisotropic weighting for the gradient of the unknown conductivity,
given the auxiliary reference image. In this study, we implemented numerically the
structured regularisation for quadratic smoothness regularisation and sparsity pro-
moting (smoothed) TV regularisation, and computed reconstructions by minimizing
regularised weighted least-squares functional using a lagged Gauss—Newton method.
The approach was tested using simulated data and experimental EIT data from a
laboratory setup. The results were computed using correct edge information in the
prior and partial edge information and compared to the conventional (no struc-
ture) regularisation. In the cases studied, the structured regularisation improved
the reconstruction accuracy compared to conventional regularisation. Also, in all
the cases the structured TV regularisation gave smaller reconstruction errors than
the structured smoothness regularisation. While the differences were quite small in
the case of correct edge information, they were more pronounced in cases of par-
tial edge information. Further, the structured regularisation was found to improve
over the conventional regularisation for both regularisation models even in cases of
reasonable uncertainty about the locations of the edges in the prior—this finding
is compelling in medical applications, where the structural information could be
deliberately blurred to account for organ movement and body deformations, or the
model could be constructed based on statistical atlases in the first place. One inter-
esting possibility for constructing the prior in lung monitoring applications could
be to use cardiac gated CT and ECG data for estimating the extent of uncertainty
in the boundary locations.

In this study the approach was tested using 2D models. The extension to 3D,
however, is straightforward. Here the sparsity promoting TV regularisation was
based on the smoothed TV functional and the estimates were computed using gra-
dient based optimisation. An extension to non-smooth optimization algorithms
with non-linear forward operator is non-trivial and will be a subject of future work.
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