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Abstract
In the context of Born–Infeld gravity theories we report the existence of a 
regular black hole interior representing a spherically symmetric vacuum 
solution of the theory. It reduces to the Schwarzschild interior metric in the 
weak field region. In particular, there is a new length scale which is related to 
the Born–Infeld parameter λ. This endows the spacetime with an inner (i.e. 
well inside the event horizon) asymptotic region which is unattainable for 
observers. The central curvature singularity is replaced by an infinitely long 
cosmic string with constant curvature invariants related to λ. The presence 
of this limiting curvature spacetime renders the black hole timelike and null 
geodesically complete, free from the classical Schwarzschild singularity. 
The transition between the usual black hole interior and this maximum 
curvature space is achieved without introducing any kind of matter content 
nor topological changes.

Keywords: black holes, Born–Infeld, singularities

1. Introduction

The history and development of black holes physics represent one of the most intriguing and 
profound stories of modern science. Born as mere curiosities out of Einstein’s field equa-
tions during the very early days of general relativity (GR), black holes have gradually evolved 
towards more physical grounds, being today a matter of study not only in the context of 
astrophysics and cosmology, but also in analogue systems as fluid dynamics and optics [1–3]. 
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Chandrasekhar’s famous work [4] on the maximum mass of white dwarfs pointed the way to 
our present-day picture that, for bodies of too large a mass, concentrated in too small a vol-
ume, unstoppable collapse will ensue, leading to a singularity in the structure of space-time. 
The details behind this continued gravitational collapse have been worked out for the first 
time by Oppenheimer and Snyder [5] who discovered that a radial non-rotating dust cloud will 
contract indefinitely towards a point with infinite energy density and pressure. This result con-
stitutes the first example of an intrinsic strong curvature singularity within black hole physics.

Subsequent pioneering developments by Penrose and Hawking [6–8] in particular, led to 
our present understanding that the existence of some form of singularity is, in fact, a character-
istic feature of large classes of solutions of the field equations, not only the property of the final 
state of collapsing stars. In the context of spherically symmetric general relativistic solutions, 
the quest for geodesically complete spacetimes has been initiated since Bardeen [9] discov-
ered a regular black hole obeying the weak energy condition, which was influential in leading 
the direction of subsequent research. As was pointed out in [10], many of these Bardeen-like 
black holes that came after the original proposal owe their regularity to topological changes, 
which offers the possibility to obtain spaces with a maximum curvature inside the black hole 
[11–14]. This feature, of course, involves the introduction of matter fields in a rather ad hoc 
manner. Other regular black hole models were also proposed by coupling Einstein’s theory 
with nonlinear electrodynamics [15]. Nevertheless, most of these regular models constitute 
solutions of Einstein’s equations  with sources whose physical interpretation, even though 
satisfying reasonable (weak) energy conditions, are quite obscure and not related with any 
particular experimentally suggested model for the matter or electromagnetic fields, see also 
[16] for related views. Regular black hole interior solutions were also found in loop quantum 
gravity, see [17], one of the promising candidates for a theory of quantum gravity.

Nowadays, black hole physics experiences a remarkable revival not only because of the 
extraordinary observational evidence concerning the existence of these bizarre objects in the 
Universe (including the one in our galactic centre [18]), and the emission of gravitational 
waves coming from a binary black hole mergers [19], but also in relation to discussions on 
more fundamental grounds, as black hole entropy and the information loss paradox [20]. 
However, despite all these technical advances in the area, the physics close to the singularity, 
where strong curvature effects rule the fate of infalling observers, is largely unknown.

The purpose of this work is to inquire into this matter more closely by exhibiting what 
seems to be the first regular, vacuum black hole interior which appears as a solution of the 
so called Born–Infeld (BI) gravity, a theory which already has shown non singular states in 
several cosmological contexts [21]. This regular spacetime owes its geodesic completeness to 
a purely geometrical effects by virtue of the fact that gravity becomes repulsive in the strong 
field regime, and not by the inclusion of matter fields or topological changes. Throughout the 
paper, we will adopt the signature  −2, and, as usual, Latin indexes a : (0), (1), . . . refer to 
tangent-space objects while Greek µ : 0, 1, . . . denote spacetime components.

2. On Born–Infeld gravity and the Schwarzschild interior

It was known since the 1960s that the interior region of the Schwarzschild black hole can be 
viewed as a special homogeneous but anisotropic cosmological manifold M with topology 
R× R× S2. This Kantowski–Sachs (KS) equivalence [22] shows that the metric of the inter-
ior region can be written as

Class. Quantum Grav. 36 (2019) 12LT01



3

ds2 = dt2 − b2(t) dz2 − a2(t) dΩ2, (1)

where a(t) and b(t) are the scale factors depending only on the proper time and 
dΩ2 = dθ2 + sin2 θdφ2 is the line element of the two-sphere S2. The scale factors are obtained 
by solving the two independent vacuum Einstein field equations for metric (1), namely

a−2 + H2
a + 2HaHb = 0

a−2 + 3H2
a + 2Ḣa = 0,

 (2)

where Ha = ȧ/a and Hb = ḃ/b are the Hubble factors and the dot denotes differen-
tiation with respect to time. In terms of the new time function η(t) defined implicitly by 
t − t0 = a1(η + sin η cos η), the solution of the system (2) is given by

b(t) = b1 tan (η(t)) , a(t) = a1 cos2 (η(t)) . (3)

The integration constants a1 and b1 satisfy −π/2 � b1 < 0 and a1 �= 0. According to this 
view, the space-time singularity corresponds to η(t) = π/2, where the two-spheres collapse to 
a point, and the laws of physics simply cease to exist. Details of the KS interior can be found 
in [23].

Born–Infeld gravity formulated in Weitzenböck space lies within the context of f (T) grav-
ity, which can be viewed as a natural extension of Einstein GR in its absolute parallelism 
(or teleparallel) form. In general, f (T) gravitational theories are ruled by the action in four 
spacetime dimensions [27]

I =
1

16πG

∫
f (T) e d4x + Imatter, (4)

where e =
√
| det gµν | . The Weitzenböck scalar

T = Sa
µνTa

µν , (5)

is constructed quadratically from the torsion tensor Ta
µν = ∂µea

ν − ∂νea
µ by means of the 

superpotential Sa
µν

Sa
µν =

1
4
(Ta

µν − Tµν
a + Tνµ

a) +
1
2
(δa

µTσν
σ − δa

νTσµ
σ). (6)

Of course GR is contained in (4) when f (T) = T , because T = −R + 2e−1∂ν(e Tσ
σν), so 

the Weitzenböck scalar differs from the scalar curvature R in the Hilbert–Einstein action, by 
a total derivative term, see for instance [26]. The dynamical equations in f (T) theories, for 
matter coupled to the metric in the usual way, are obtained by varying action (4) with respect 
to the components of the vierbein field ea

µ

(
e−1∂µ(e Sa

µν) + eλa Tρ
µλSρµν

)
f ′

+ Sa
µν∂µTf ′′ − 1

4
eνa f = −4πGeλa Tλν ,

 (7)

where the prime means differentiation with respect to T and Tλν is the energy-momentum 
tensor coming from Imatter .

The additional degrees of freedom arising from the lack of local Lorentz invariance in the 
f (T) framework [28], pre-establish a global frame which encodes the geometry by means of a 
parallelization of the spacetime in consideration. Generally it is difficult, for a given geometri-
cal setting, to construct proper tetrad fields as no systematic construction procedure exists.
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In other words, the equations of motion (7) determine the entire tetrad field, and not only 
the ten components involved in the definition of the metric tensor gµν = ea

µeb
νηab. Nonetheless 

this tetrad grid is non-unique, because a partial local Lorentz invariance persists in f (T) 
gravity through the remnant group of symmetries [29]. It is worth mentioning that a covariant 
formulation of teleparallel gravity models has recently been proposed [30].

A set of adequate tetrads for the spacetime M with metric (1) was found in [24] in the 
context of cosmological models with additional compact dimensions. The cosmological spa-
cetime M can be foliated by Cauchy hypersurfaces with topology M3 = R× S2 by means of 
the global time function (proper time t), and a parallelization can be found for M3. Then, the 
tetrad inherits the factor structure M = R×M3, and it reads

e(t) = dt, e(z) = b(t) cos θ dz + a(t) sin2 θ dφ,

e(θ) = sinφ[b(t) sin θdz + a(t)(cotφdθ − sin θ cos θdφ)],

e(φ) = cosφ[b(t) sin θdz − a(t)(tanφdθ + sin θ cos θdφ)].

 (8)

Notice that these fields are highly non-trivial due to the topological structure of M, and they 
are all far from being simply the square root of the diagonal metric (1). Using the frame (8) 
we can compute the Weitzenböck invariant (5) which becomes

T = −2(−a−2 + H2
a)− 4HaHb, (9)

which, in the case of the Schwarzschild solution in Kantowski–Sachs form, equation  (3), 
reduces to

TKS = 4 a−2 = 4 a−2
1 cos−4(η(t)) . (10)

This is a very interesting result. Unlike in the exterior Schwarzschild geometry, TKS is every-
where non-null for a proper frame in the interior region of the black hole. This fact opens the 
door to a potential deformation of the interior spacetime [25]. In order to show that this is 
indeed the case, we proceed now to write the dynamical equations for an arbitrary vacuum 
f (T) theory using tetrad (8).

The two independent field equations are given by

f + 4f ′(H2
a + 2HaHb) = 0, (11)

f ′′HaṪ + f ′(HaHb + 2H2
a + Ḣa) +

f
4
= 0, (12)

where the former is the Friedmann-like constraint. Let us note that in the case of GR (f   =  T, 
f ′ = 1, f ′′ = 0, and using the general expression for T given in (9)), one re-obtains the KS 
equations (2).

Even though Born–Infeld like schemes for the gravitational field formulated in the (usual) 
Riemannian context can be traced back to the late 1990s [31], it was shown about a decade 
ago that Born–Infeld models in Weitzenböck space were particularly convincing at the time 
of trying to answer long standing questions of fundamental character in gravitational physics, 
as the one concerning the singularity at the origin of the Universe [21]. Similarly, more gen-
eral BI gravitational theories based on absolute parallelism were considered more recently, in 
which regular bouncing cosmological solutions where obtained by purely geometrical means, 
i.e. without invoking any sort of unconventional matter content [32]. For a recent review on 
BI-like gravitational theories, see [33]. We go back to the original f (T)-BI like proposal intro-
duced in [21], and consider the ultraviolet deformation given by
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f (T) = λ[
√

1 + 2T/λ− 1], (13)

which recovers Einstein’s gravity in regions where T/λ � 1, λ being the BI con-
stant. This BI constant has units of inverse length squared. More explicitly, we have 
f (T) = T − T2/(2λ) + O(1/λ2) which means that λ introduces the length scale |λ|−1/2 
at which local Lorentz invariance would not longer hold [34]. An additional motivation 
for the form of the function (13) is as follows, see [36]. Let us begin with the free parti-
cle Lagrangian Lp = mẋ2/2 in Newtonian mechanics. If we write its Born-Infeld analogue 
as LBI =

√
1 + Lp/(mc2)− 1 we introduce a new scale at which the theory changes. This 

Lagrangian is that of a relativistic particle. In this case, for energies much smaller that mc2 one 
recovers Newtonian mechanics.

The combination of equations (9) and (11), for the BI function (13) leads to

H2
a + 2HaHb = − 1

a2(t)

(
1 +

4
λa2(t)

)
. (14)

This expression is very enlightening. If λ = −|λ|, a static (Ha  =  0) solution exists when 
ac = 2|λ|−1/2, foretelling the evolution of the scale factor a(t) towards a critical radius ac, 
where the two-spheres of the interior metric (1) with constant t and z tend to a static con-
figuration. This has no GR anaologue when setting λ → ∞ in (14). When the scale factor 
approaches the Schwarzschild singularity as a(t) → 0, one finds T → ∞. The functional form 
of T in the BI case is easily obtained by combining (14) and (9), namely

TBI =
4

a2(t)

(
1 − 2

|λ|a2(t)

)
, (15)

which reaches the maximum value Tmax = |λ|/2 when a  =  ac.

3. The regular black hole interior

In order to get a differential equation  for the scale factor a(t), we can proceed as follows: 
beginning with equation (14) we can obtain Hb as a function of a(t) and Ha. With this informa-
tion and the Friedmann-like equation (11), we can substitute into (12) using the BI function 
(13) and the Weitzenböck invariant (15). After some algebra we obtain

[
1 − 4

|λ|a2

][ 1
a2

(
1 − 4

|λ|a2

)
+ 3H2

a + 2Ḣa

]
− 16H2

a

|λ|a2 = 0. (16)

Note that if Ha  =  0, the equation leads to the critical value of the scale factor, a  =  ac. This is 
the behavior we are expecting instead of the Schwarzschild singularity.

Equation (16) can be seen as a first order ODE in the Hubble parameter or a second order 
ODE in the scale factor. Alternatively, one can rewrite this equation as a pair of first order 
ODEs in the variables Ha and a which then allows us to use qualitative techniques to under-
stand the dynamics of this system. The resulting phase space diagram is shown in figure 1 and 
demonstrates quite nicely the physical properties of this modified Schwarzschild solution.

For small a one observes a divergent positive ‘acceleration’ Ḣa which pushes the trajecto-
ries away from the ȧ-axis, making a  =  0 unattainable from a dynamical systems point of view, 
see the subsequent discussion. Moreover, the system contains a critical point with coordinates 
(a, Ha) = (ac, 0) which replaces the classical Schwarzschild singularity. In stark contrast to 
the BI modified model, we note that all trajectories are attracted by the singular centre in the 
case of GR, i.e. |λ| → ∞ or ac → 0 (see figure 1 bottom panel).

Class. Quantum Grav. 36 (2019) 12LT01
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The nature of the hypersurface defined by a  =  ac can be examined by looking at equa-
tion (16) in the vicinity of this critical point. In order to do this, we will put a(t) = ac(1 + εF(t)) 
and keep terms of the lowest order in ε, while assuring a domain where F(t) is bounded. We 
obtain

4ε2(a−2
c F2 − Ḟ2 + FF̈) +O(ε3) = 0. (17)

The solution of this equation is simply

F(t) = A exp
(
− t2

2a2
c
+ B t

)
, (18)

where A, B are integration constants. The functions F and Ḟ  tend to zero asymptotically in 
both directions of time. We can proceed now to obtain b(t) with the help of (14), namely

log |b(t)| = −1
2

∫ [a2 − a2
c

a4Ha
+ Ha

]
dt, (19)

which, in terms of F(t) gives

log |b(t)| = − 1
a2

c

∫
F
Ḟ

dt. (20)

With the form of F(t) obtained in (18), the other scale factor is

b(t) = b0(t − B a2
c). (21)

The constant B controls the origin of time, so we can safely set B  =  0. At the end, the metric 
near ac at the lowest order is

ds2 = dt2 − b2
0 t2dz2 − a2

c(1 + 2A e−t2/2a2
c )dΩ2, (22)

where we have redefined εA → A. An inspection of the curvature scalars reveals

R = − 2
a2

c
+ ξ1, R(2) =

2
a4

c
+ ξ2, K =

4
a4

c
+ ξ3 (23)

where R(2) = RµνRµν, K = Rα
µνρRα

µνρ and ξi = ξi(A, t) i = 1, 2, 3 are functions which tend 
to zero as t → ±∞ for all A. As a matter of fact, at the critical point the metric reads, by set-
ting A  =  0

ds2 = dt2 − b2
0 t2dz2 − a2

cdΩ2, (24)

and the invariants are all constant, proportional to λ or λ2 depending on the case. The two 
dimensional (t, z) part of (24) is just Minkowski space in Milne-like coordinates. For b0 �= 0, 
the use of the conformal time t̃ = b−1

0 log(t) and a change to Rindler coordinates (T , X)

T = exp(b0 t̃) cosh(b0z), X = exp(b0 t̃) sinh(b0z),

allows us to put the metric at ac in the form

ds2 = dT2 − dX2 − a2
cdΩ2. (25)

This metric has been found previously in [35] and corresponds to the interior of an infinitely long 
(in the z-direction) cosmic string with energy momentum tensor T ν

µ = diag(ρ,−pz,−pθ,−pφ) 
with pθ = pφ = 0, ρ = −pz, where the energy density is related to the critical radius accord-
ing to

Class. Quantum Grav. 36 (2019) 12LT01
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ρ =
1

8πa2
c
=

|λ|
32πG

. (26)

Due to (25) being a static metric, no vestiges remain of the cosmological character of the 
spacetime characterizing the region a(t) �= ac. On dynamical grounds, the observer approach-
ing ac will experience a spacetime with bounded curvature scalars which, however, will be not 
attainable in finite proper time. As he/she approaches ac, the surrounding universe turns into 
a static spacetime with constant positive energy density proportional to the BI constant λ and 
a negative pressure along the z-direction. It is worth to emphasise that the energy density and 

Figure 1. Top panel: phase space of equation (16) when viewed as a system of ODEs in 
the two variables Ha and a. The parameter λ was set as |λ| = 9. The dot represents the 
critical point ac. Bottom panel: phase space of equation (16) in the limit |λ| → ∞ which 
corresponds to standard GR. Note the inversion of the arrows near a  =  0, in contrast to 
the top panel.

Class. Quantum Grav. 36 (2019) 12LT01
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pressure so obtained come from the effective (geometrical) energy-momentum tensor, and not 
from the introduction of any explicit matter fields through Imatter .

If we view the additional terms in the field equations as matter, then we see that this matter 
satisfies the condition ρ+ pz = 0, which implies that the weak and strong energy conditions 
are not violated. The parameter λ bounds the curvature scalars of the black hole interior, in 
such a way that the Markov’s ‘limiting curvature hypothesis’ [11–14] is dynamically and 
naturally implemented, without invoking junction conditions which are necessary in order to 
match topologically different spaces.

4. Final comments

Even though metric (25) is unreachable for infalling observers, it is fair to ask what is the 
structure of the space beyond that asymptotic assembly space, defined by the interior string 
metric. The region a  <  ac is causally disconnected from the spacetime accessible to observers 
in free fall. In order to study this region we assume a to be small in equation (16), so that it 
takes the simple form

Ḣa = −7
2

H2
a +

2
|λ|a4 . (27)

It follows immediately that the effect of the Born–Infeld term is opposite to that of GR. This 
explains the inversion of the trajectories near a  =  0 in figure  1. One sees that the central 
Schwarzschild singularity is replaced by a singular repulsive centre which is not part of the 
manifold. The new term dominates for small a thereby forcing the sign of Ḣa to be positive. 
As we approach the centre we are pushed away from it with larger and larger acceleration. 
The solution of (27) is given by a(t) = a0t1/2 with a4

0 = 16/(3|λ|). Note that the units of a0 
are such that a(t) is dimensionless, recall that ac itself has units of length. This means a2

0 has 
units of inverse length, consistent with the result. One verifies that b(t) = b0t1/2 is a solution 
of (14) at the same order, here b0 is a constant of integration. The resulting metric near the 
centre is similar to the radiation dominated solution in flat FLRW cosmology and contains a 
strong curvature singularity at t  =  0. However, in the present context this singularity becomes 
repulsive and cannot be reached. Trajectories getting close to a  =  0 will repelled and will 
eventually approach the assembly space.

The results here obtained seem to suggest that the usual view of impending and inevitable 
destruction at the centre of the black hole should possibly be changed in favor of a rather more 
balance kind of reality.
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