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1 Abstract

2 Glucagon-like peptide 1 receptors (GLP-1R) are expressed in the lateral septum (LS) of 

3 rats and mice, and we have published that endogenous LS GLP-1 affects feeding and 

4 motivation for food in rats. Here we asked if these effects are also observed in mice. In separate 

5 dose-response studies using male C57Bl6J mice, intra-LS GLP-1 or the GLP-1R antagonist 

6 Exendin 9 (Ex9) was delivered shortly before dark onset, at doses subthreshold for effect when 

7 injected intracerebroventricularly (icv). Intra-LS GLP-1 significantly suppressed chow intake 

8 early in the dark phase and tended to reduce overnight intake. However, blockade of LS GLP-

9 1R with Ex9 had no effect on ad libitum dark onset chow intake. We then asked if LS GLP-1R 

10 blockade blunts nutrient preload-induced intake suppression. Mice were trained to consume 

11 Ensure immediately before dark onset, which suppressed subsequent chow intake, and intra-LS 

12 Ex9 attenuated that preload-induced intake suppression. We also found that restraint stress 

13 robustly activates hindbrain GLP-1-producing neurons, and that LS GLP-1R blockade 

14 attenuates 30-min restraint stress-induced hypophagia in mice. Furthermore, we have reported 

15 that in the rat, GLP-1R in the dorsal subregion of the LS (dLS) affect motivation for food. We 

16 examined this in food-restricted mice responding for sucrose pellets on a progressive ratio (PR) 

17 schedule. Intra-dLS GLP-1R stimulation significantly suppressed, and Ex9 significantly 

18 increased, operant responding, and the Ex9 effect remained after mice returned to ad libitum 

19 conditions. Similarly, we found that stimulation of dLS GLP-1 suppressed licking for sucrose and 

20 conversely, Ex9 increased licking under ad libitum feeding conditions. Together, our data 

21 suggest that endogenous activation of LS GLP-1R plays a role in feeding in mice under some 

22 but not all conditions, and that these receptors strongly influence motivation for food. 
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27 1. Introduction 

28 It is well established that central glucagon-like peptide 1 (GLP-1) plays a significant role 

29 in the control of feeding behavior [1–3]. Hindbrain GLP-1-producing (PPG) neurons project 

30 widely throughout the brain to many regions that express GLP-1 receptors (GLP-1R) [4–6]. Most 

31 research on the role of central GLP-1 in behavior has focused on its contribution to food intake 

32 control [7–10]. GLP-1 neurons are activated by feeding-relevant signals, such as the satiation 

33 signal cholecystokinin (CCK) and vagus nerve stimulation, and many studies have 

34 demonstrated that stimulation of GLP-1R in numerous brain regions suppresses food intake [9–

35 12]. The results of a number of loss of function studies in which GLP-1R are blocked or their 

36 expression is reduced suggest that central GLP-1 is important for the physiologic control of 

37 energy balance [10,13–19]. Moreover, the central GLP-1 system appears to be involved in 

38 behavioral and endocrine stress responses [20–23]. GLP-1 neurons are potently activated by 

39 acute stress, and intracerebroventricular administration of a GLP-1R antagonist can block 

40 restraint stress-induced hypophagia in rats [2,24].  In studies using mice lacking GLP-1Rs in the 

41 paraventricular nucleus (PVN) of the hypothalamus, Ghosal and colleagues demonstrated that 

42 these receptors contribute to neuroendocrine and sympathetic nervous system responses to 

43 acute and chronic stress in addition to anxiety-like behavior [22]. 

44 Recently, our lab has focused on the role of lateral septum (LS) GLP-1R in feeding 

45 behavior in rats. In a series of studies, we demonstrated that pharmacologic stimulation of LS 

46 GLP-1R suppresses feeding, while blockade of these receptors significantly increases intake of 

47 a variety of foods, including chow, high-fat diet, sucrose solution, and corn oil emulsion; these 

48 results suggest that endogenous GLP-1 signaling in the LS plays a physiologic role in limiting 

49 food intake. We also reported that endogenous stimulation of GLP-1R in the dorsal subregion of 

50 the LS (dLS), in particular, influences motivation for food in rats [13]. Because the LS has a 

51 known role in stress responses [25,26], we investigated the contribution of LS GLP-1R. We 
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52 reported that in rats, intra-dLS pretreatment with low-dose GLP-1R antagonist attenuated 

53 restraint stress-induced hypophagia [27]. 

54 Much of the research described above was conducted in rats, and the work that has 

55 been done in mice reveals some similarities and several notable species differences. For 

56 example, one study found that GLP-1R antagonism blocks aversive effects of LiCl in rats, but 

57 not mice, suggesting that GLP-1 is not required for mediating the effects of visceral illness in 

58 mice [28]. There are also known differences in the ability of GLP-1 neurons to detect leptin. In 

59 mice ~100% of GLP-1 neurons are directly responsive to leptin, whereas GLP-1 neurons show 

60 no response to leptin in the rat [29]. Moreover, a recent study using mice demonstrated that loss 

61 of central GLP-1 via selective ablation of NTS PPG neurons had no significant effect on ad 

62 libitum chow intake, body weight, or glucose tolerance. It was only when mice experienced a 

63 homeostatic challenge (i.e. restraint stress or nutrient preload) that PPG neurons appeared to 

64 be necessary for feeding control [11]. In contrast, data from studies using rats suggest that 

65 endogenous GLP-1 does in fact contribute to the normal control of feeding and glucose control 

66 [10,30,31]. In rats, both pharmacologic blockade or knockdown of GLP-1R in specific brain 

67 regions has been shown to increase ad libitum chow intake, and NTS GLP-1 mRNA knockdown 

68 also led to increased food intake and body weight [7,10]. 

69 These findings highlight the danger of assuming that findings in one animal model 

70 generalize across species.  As our laboratory began to utilize mice, we undertook studies to 

71 determine whether LS GLP-1R play a role in the control of feeding behavior in mice as we have 

72 previously shown they do in the rat. Based on published anatomic data from transgenic mice 

73 expressing YFP in GLP-1 neurons, and others expressing RFP in GLP-1R neurons, there does 

74 appear to be a significant GLP-1 neuron projection to the LS and a large population of GLP-1-

75 responsive neurons in this nucleus in the mouse [5,6,14,32]. Therefore, we hypothesized that 

76 LS GLP-R stimulation and blockade would have similar effects in the mouse as in the rat.  

77
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78 2. Methods 

79 2.1. Subjects: Naïve male and female C57Bl6J mice (Jackson Laboratories) or 

80 transgenic mice (described in 2.6. Study 3) were maintained individually in temperature-

81 controlled vivariums on a 12:12-h light-dark cycle in plastic cages. Mice had ad libitum access to 

82 distilled water and chow (Purina 5001), except where otherwise noted. All experimental 

83 procedures were approved by the Florida State University Institutional Animal Care and Use 

84 Committee and conformed to the standard of the Guide for the Care and Use of Laboratory 

85 Animals (National Research Council, 1996).

86 2.2. Surgery: Mice were implanted with unilateral or bilateral 26 G guide cannulas 

87 (Plastics One, Roanoke, VA) under 2-4% isoflurane delivered at a rate of 1 l/min. Unilateral 

88 cannulas were implanted in the lateral ventricle using the following coordinates: 1.0 mm lateral 

89 to midline, 0.5 mm posterior to bregma, and 2.0 mm ventral to the skull surface. Due to 

90 cannulations being carried out by different surgeons, LS injection coordinates differed slightly 

91 between experiments. For GLP-1 and Ex9 dose-response experiments the coordinates for 

92 unilateral cannulas were: 0.26 mm lateral to midline, 1.0 mm rostral to bregma, and 2.0 mm 

93 ventral to the skull surface. For blockade of stress-induced hypophagia with intra-LS Ex9, 

94 unilateral cannulas targeting the dorsal subdivision of the LS (dLS) were implanted using the 

95 following coordinates: 0.26 mm lateral to midline, 0.35 mm rostral to bregma, and 1.6 mm 

96 ventral to the skull surface. For the progressive ratio and licking microstructure experiments, 

97 mice were implanted with bilateral cannulas targeting the dLS with the following coordinates: 0.3 

98 mm lateral to midline, 0.8 mm rostral to bregma, and 1.6 mm ventral to the skull surface. In all 

99 cases injectors (33G) extended 1.5 mm below the end of the guide cannulas to target the LS or 

100 dLS. Correct placement of cannulas within the LS and dLS was verified histologically following 

101 behavioral experiments. Injection sites within the boundaries of the LS or dLS were considered 

102 correct, and only data from mice with accurate placements were included in analyses (71% hit 

103 rate) (Fig 1).
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104 2.3. General methods for behavioral experiments: Before the start of testing, mice were 

105 habituated to all experimental procedures. For habituation to unilateral intra-LS injection 

106 procedures, mice received an intra-LS infusion of 0.5 μl sterile 0.9% saline. For habituation to 

107 bilateral intra-dLS injection procedures, mice received a 0.25 μl injection of sterile 0.9% saline, 

108 delivered to each hemisphere, for a total volume of 0.5 μl distributed across the two dLS sites; 

109 injections into each hemisphere were given simultaneously. For both unilateral and bilateral 

110 infusions, injectors were then left in place for an additional minute before removal. Body weights 

111 were recorded daily, and all drug treatments were separated by a minimum of 48 h.

112 2.4. Study 1: effects of LS GLP-1R stimulation or blockade on chow intake

113 Using within-subjects, counterbalanced designs, we determined the effect of LS GLP-1R 

114 stimulation or blockade on chow intake. Doses of GLP-1 and Ex9 (American Peptide, Vista, CA) 

115 were selected based on previously unpublished preliminary data (see Table 1) determining that 

116 they were below threshold for an effect on feeding when delivered to the lateral ventricle (LV). 

117 This dose range for GLP-1 is also supported by a recent publication in which 3rd ventricle 

118 treatment effects were assessed [33]. In the GLP-1 dose response study, mice (n = 6 males, 

119 mean body weight 25±0.1 g) received intra-LS injections of saline vehicle or GLP-1 (0.3 and 1.0 

120 μg) in 0.5 μl of saline 45 min prior to dark onset, at which point chow was returned and 

121 subsequent intake was measured. Using the same design, in the Ex9 dose response, mice (n = 

122 9 males, mean body weight 23±0.11 g) received LS injection of saline vehicle or Ex9 (3 and 10 

123 μg) in 0.5 μl of saline. Injection conditions in each study were separated by 48-72 h, with all 

124 mice receiving all conditions. 

125 2.5. Study 2: effects of LS GLP-1R blockade on nutrient preload-induced intake 

126 suppression

127 GLP-1 neurons are known to be activated by large meals, and so in attempt to increase 

128 endogenous GLP-1 stimulation of the LS GLP-1R population, we trained a subset of the mice 

129 from the Ex9 dose response study (n=7 males, mean body weight 23±0.61 g) to consume a 
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130 large meal of chocolate Ensure 15 min prior to dark onset. After 20 days of training, mice 

131 consumed 2.27 ± 0.08 grams of ensure. On experiment days mice received intra-LS injections 

132 of either saline vehicle or Ex9 (3 and 10 μg) in 0.5 μl of saline 30 min prior to dark onset, and 

133 then were given access to ensure for the 15 min just before lights out, at which point chow was 

134 returned and subsequent intake was measured. Injection conditions in each study were 

135 separated by 48-72 h, with all mice receiving all conditions

136 2.6. Study 3: effect of restraint stress on c-Fos responses of hindbrain PPG neurons  

137 Here we utilized transgenic mice (n=6 males; n=3 females) that express the yellow 

138 fluorescent protein reporter (YFP) variant Venus [34] under the control of the glucagon promotor 

139 (mGLU-124 line) [35], on a C57Bl/6 background. The presence of YFP identifies 

140 preproglucagon (PPG), and therefore identifies GLP-1-producing neurons [36]. On the day of 

141 the experiment, chow was removed from mice 1 h prior to restraint stress or no stress 

142 conditions. Mice (n=3 males; n=2 females, mean body weight 24±1.87 g) were restrained for 30 

143 min (Res) in a rodent restraint cone and then returned to their home cages for 60 min prior to 

144 perfusion. During this same time period, for the no stress condition (no Res), mice (n=3 males; 

145 n=1 females, mean body weight 23±1.92 g) were left undisturbed in their home cages. All mice 

146 were deeply anesthetized and transcardially perfused with 10mM PBS followed by 4% 

147 paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA). Brains were removed, sunk in 

148 30% sucrose, and then frozen in isopentane on dry ice. Coronal cryostat sections (20 µm) 

149 through the caudal brainstem were slide-mounted and stored at -80⁰ C to await 

150 immunohistochemical processing. 

151 Anatomically matched sections from each mouse that included the AP to the caudal NTS 

152 (cNTS) in the brainstem were selected for c-Fos and YFP staining. For immunohistochemical 

153 processing, primary and secondary antisera were diluted in phosphate buffer saline containing 

154 0.2% Triton X-100 and 5% normal donkey serum. Slide-mounted sections were washed with 

155 10m Mphosphate buffered saline (PBS) at room temperature and incubated overnight at room 
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156 temperature with rabbit anti-c-Fos primary antibody (Cell Signaling Technology; catalog # 2250) 

157 at 1:1000 and chicken anti-GFP for YFP (Abcam; catalog # ab13970) at 1:5000. Slides were 

158 then washed in 10 mM PBS, followed by a 2-h incubation at room temperature with donkey anti-

159 rabbit IgG-Cy5 antibody (Jackson ImmunoResearch; catalog # 711-175-152) used at a 1:500 

160 dilution and donkey anti-chicken IgG-Cy3 antibody (Jackson ImmunoResearch; catalog # 703-

161 165-155) used at a 1:1000 dilution. Slides were washed in 10 mM PBS, then coverslipped using 

162 Aqua Polymount (Polysciences, Inc., Warrington, PA) mounting media. 

163 From each mouse, we assessed a series of 12-14 alternating sections through the cNTS 

164 ~8.24 mm through 7.32 mm posterior to bregma [37]. Slides were examined with an Olympus 

165 BX41 fluorescence microscope and monochromatic digital images were acquired with a Retiga 

166 EXI Aqua camera and Q-Capture software (Hunt Optics). Adobe Photoshop CS4 was used to 

167 adjust contrast, add color, and merge images of cFos and GFP immunoreactivity. GFP-labeled 

168 cells and c-Fos-like immunoreactivity were counted by eye. We then calculated the average 

169 number of GFP- labeled cells and c-Fos-positive cell nuclei per section across all sections taken 

170 from the cNTS and reticular formation (RF). 

171            2.7. Study 4: effects of dLS GLP-1R blockade on stress-induced hypophagia 

172 In the rat, we have previously reported that GLP-1R blockade in the dorsal subregion of 

173 the LS (dLS) significantly attenuates stress-induced hypophagia [27]. Here, we utilized a mixed-

174 model design to assess the feeding response to stress in intra-dLS saline and Ex9-treated mice. 

175 This design was utilized so that each animal was exposed to stress only once. dLS-cannulated 

176 mice were infused with either saline vehicle (n=5 males, mean body weight 25±0.5 g) or 10 µg 

177 Ex9 in 0.5 μl of saline (n=7 males, mean body weight 25±0.6 g). Fifteen mins later, the mice 

178 were restrained for 30 min (Res) and then returned to their home cages at dark onset or left 

179 undisturbed in their home cages (no Res) for the no stress condition. At dark onset, chow was 

180 returned, and subsequent intake was measured. Brain injections were separated by 48-72 h

181 2.8. Study 5: effects of dLS GLP-1R stimulation or blockade on operant responding
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182 We have previously reported that in the rat, GLP-1R blockade in the dLS, but not 

183 elsewhere in the LS, increases motivation for food [13]. Therefore, mice (n=4 males; n=7 

184 females, mean body weight 21±0.82 g) with cannulas targeting the dLS were trained to lever 

185 press for 20-mg sucrose pellets (TestDiet, Richmond, IN) on a progressive ratio schedule, 

186 where an increasing number of operant responses is required for each successive 

187 reinforcement. Here we used a within-subjects, counterbalanced design to determine the effect 

188 of dLS GLP-1R stimulation or blockade on operant responding. Training was conducted in 

189 operant conditioning chambers (Coulbourn Instruments, Allentown, PA). During training and 

190 initial testing, mice were maintained at 85% of their ad libitum body weights. Two levers were 

191 present in each chamber; presses on the active lever were reinforced, whereas inactive lever 

192 presses were not reinforced. For all training and testing sessions, a cue light was illuminated 

193 above the active lever and there was a 5-s timeout after each reinforcement. The positions of 

194 the active and inactive levers were counterbalanced across subjects. 

195 Mice were initially trained on a fixed ratio one schedule (FR1), where each response 

196 resulted in delivery of one sucrose pellet. FR1 training was conducted for 7 days. Next, mice 

197 were moved to a FR3 schedule where three responses were required to achieve one sucrose 

198 pellet for 7 days; then mice were moved to a FR5 schedule where five responses were required 

199 to achieve one sucrose pellet for 10 days. The daily fixed ratio training sessions were all 1 h in 

200 duration. After this training, all mice were switched to a progressive ratio (PR) schedule that 

201 followed the algorithm of Richardson and Roberts [38]: 1, 2, 4, 6, 9, 12, 16, 20, 28, 36, 48, 

202 etc.,… lever presses for reinforcement. PR sessions ended when the mice failed to press the 

203 active lever for 20 min, with a maximum duration of 45 minutes. Mice were then returned to 

204 home cages and given their daily chow ration with ad libitum water access. Experimentation 

205 began after 12 days of PR training, at which point mice showed stable responding. On testing 

206 days, mice (still maintained at 85% of their ad libitum body weight) received bilateral intra-dLS 

207 injection of saline vehicle, GLP-1 (1.0 μg), or Ex9 (10 μg) 45 min before the start of the PR 
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208 session. The dose of drug was evenly divided between the two hemispheres (i.e., 0.5 μg in 0.25 

209 μl of saline on each side for 1.0 μg GLP-1).

210 After mice had received all three conditions, presented in counterbalanced order, ad 

211 libitum chow was returned on the home cages. Mice (n=3 males; n=7 females, mean body 

212 weight 21±0.91 g) were given one week to replete during which they continued to receive PR 

213 sessions. We then tested PR responding under ad libitum feeding conditions. On test days, 

214 bilateral dLS injections of saline vehicle or Ex9 (10 μg) were made 45 min before the PR 

215 session.  

216 2.9. Study 6: effects of dLS GLP-1R stimulation or blockade on meal patterns and licking 

217 microstructure for sucrose

218 Utilizing a within-subjects, counterbalanced design, we determined the effect of dLS 

219 GLP-1R stimulation or blockade on meal patterns and licking microstructure for sucrose. All 

220 training and testing sessions were conducted in custom built lickometers. Each lickometer was 

221 equipped with a recessed drinking spout located 2 cm above the grid floor. Licks were detected 

222 as the tongue makes contact with the spout, completing a circuit allowing the computer to 

223 record the time of each lick. All licks were recorded in the software control program for later 

224 analysis. Licking data were then analyzed by a custom macro. A meal was defined as at least 

225 three licks, and the criterion for the end of a meal was a pause of 300 or more seconds [39]. 

226 Intermeal interval was defined as the time between the last lick of one meal and the first lick of 

227 the next. A licking burst, within each meal, was defined as series of licks separated by an 

228 interlick interval (ILI) of <1 s [39]. Variables obtained from the custom macro included meal 

229 duration, burst duration, within-meal burst number, mean number of licks per burst, and number 

230 of licks in the first minute of the meal, size, and average interburst interval. Within-burst interlick 

231 interval was calculated as an average of interlick intervals below 250 ms, because this captures 

232 more than 95% of interlick intervals [40]. 
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233 All mice (n=20 males, mean body weight 26±0.43 g) were initially water-deprived (~20 h) 

234 and placed in lickometers for 30 min on four consecutive days to acquaint them to licking for 

235 fluid (dH20) at a stainless steel spout. Water bottles were returned on the home cages ~30 min 

236 after the fourth and final dH20 session. After one day to replete in the home cage, chow was 

237 removed for the second phase of training. Mice were gradually reduced to 85% of their ad 

238 libitum body weights by rationing their daily chow. For the remainder of the training and testing 

239 sessions, mice had ad libitum access to 0.25 M sucrose for 120 min in the lickometer chambers. 

240 No other food or water was present in the test chamber. Daily training continued for 12 days. On 

241 day 13 mice were habituated to bilateral intra- dLS injection procedures; mice received a 0.25 μl 

242 injection of sterile 0.9% saline delivered to each hemisphere, for a total volume of 0.5 μl 

243 distributed across the two dLS sites. Injections into each hemisphere were given 

244 simultaneously. 

245 After habituation to injection procedures, we then began testing under food restriction 

246 (85% ad libitum body weight). On experiment days, mice received an injection of saline vehicle, 

247 GLP-1 (1.0 μg) or Ex9 (10 µg) 30 min prior to the test session. The total dose of both GLP-1 and 

248 Ex9 was evenly divided between the two hemispheres (i.e. 0.5 μg GLP-1 or 5 μg Ex9 on each 

249 side). All mice received all conditions in counterbalanced order with treatments separated by at 

250 least 48 h. On days that mice did not receive a brain injection, they still had daily 120-min 

251 lickometer sessions. After the test sessions, mice were returned to their home cages and given 

252 their daily chow ration. 

253  After mice had received all conditions, presented in counterbalanced order, ad libitum 

254 chow was returned on the home cages. Mice were given one week to replete during which they 

255 continued to receive daily 120-min lickometer sessions. We then tested under ad libitum feeding 

256 conditions. On experimental test days, mice received bilateral dLS injections of saline vehicle, 

257 GLP-1 (1.0 μg), or Ex9 (10 µg) 30 min prior to the test session. 

258 Statistical Analysis 
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259 Data are reported as mean ± SE. Statistical analyses were conducted using IBM SPSS 

260 Statistics 22, and figures were prepared using Graphpad Prism 6 and Adobe Photoshop CS6. 

261 Effects were evaluated by t-test or within-subjects one-way ANOVA where appropriate and 

262 post-hoc comparisons were adjusted using Holm-Bonferroni. Effects intra-LS Ex9 on stress-

263 induced hypophagia were evaluated using two-way mixed-model ANOVA and Holm-Bonferroni 

264 for multiple comparisons test. P values of <0.05 were taken as significant. 

265 3. Results

266 3.1. Study 1: effects of LS GLP-1R stimulation or blockade on chow intake.

267 We first assessed whether GLP-1 in the LS is able to reduce chow intake in mice with 

268 intra-LS injections of GLP-1, at doses subthreshold for effect when delivered to the lateral 

269 ventricle. GLP-1 significantly reduced feeding at 1h [F(3,15) = 6.14, p<0.05], 2h [F(3,15) = 

270 12.68, p<0.0001], and 4h [F(3,15) = 17.78, p<0.0001]  with a significant dose-dependent effect 

271 at 4h, 0.1 µg vs. 1.0 µg GLP [t(5) = 4.0, p<0.005];   (Fig 2). Despite a main effect of GLP-1 on 

272 overnight intake measured at 20 h after dark onset [F(3,15) = 4.50, p<0.05], there were no 

273 differences between conditions in pairwise comparisons (Fig 2). There were no effects on body 

274 weight. 

275 In contrast, despite a trend toward reduced feeding after Ex9, pairwise comparisons 

276 between vehicle and each dose of Ex9 revealed no significant differences at any time point (Fig 

277 3A), nor was body weight affected.

278 3.2. Study 2: effects of LS GLP-1R blockade on nutrient preload-induced intake 

279 suppression 

280 In contrast with the previous study’s results, blockade of LS GLP-1R with Ex9 

281 significantly increased chow intake at 4h after dark onset [F(2,12) = 5.43, p<0.05] in mice that 

282 had consumed a large meal of chocolate Ensure as a preload (Fig 3B). There were no effects 

283 on body weight, and there were also no effects on the amount of Ensure consumed.  

284 3.3. Study 3: effect of restraint stress on c-Fos responses of hindbrain PPG neurons  

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672



285 Neurons positive for GFP were observed throughout the cNTS. c-Fos-positive cells were 

286 found throughout the cNTS and co-localized with numerous GFP-labeled cells (Fig 4). 

287 Throughout the cNTS we counted 21.3±3.1 (no Res) and 16.5±2.9 (Res) GFP-labeled cells per 

288 section (not significantly different). We counted significantly more c-Fos-positive cell nuclei per 

289 section [t(7)=22.23, p<0.00001] throughout the cNTS in the mice that were stressed: 23.7± 2.4 

290 (no Res) and 82.4±1.9 (Res). In the NTS, there were significantly more double labeled cells 

291 (both GFP and c-Fos-positive) in mice that were stressed [t(7)=4.74, p<0.01]: 3.8±0.9 (no Res) 

292 and 12.6±1.7 (Res). GFP-labeled neurons and c-Fos-positive cell nuclei were also observed in 

293 the reticular formation (RF). In the RF, there was no difference in the number of identified GFP-

294 labeled cells per section: 10.0±2.1 (no Res) and 9.0±1.2 (Res). We counted significantly more c-

295 Fos-positive cell nuclei per section in the RF in the mice that were stressed [t(7)=5.51, p<0.001]: 

296 28.5± 5.9 (no Res) and 82.9±8.7 (Res). In the RF, there were significantly more double labeled 

297 cells (both GFP and c-Fos-positive) in mice that were stressed [t(7)=5.41, p<0.001]:1.5± 0.5 (no 

298 Res) and 7.3±0.9 (Res). Overall, we found significantly more GFP-labeled cells were c-Fos-

299 positive after restraint stress in both the cNTS [t(7)=9.87, p<0.0001] and the RF [t(7)=12.58, 

300 p<0.0001] (Fig 4F). 

301 3.4. Study 4: effects of LS GLP-1R blockade on stress-induced hypophagia

302 Having established that GLP-1R activation within the LS suppresses feeding and acute 

303 restraint stress activates PPG neurons, we assessed whether endogenous release of GLP-1 

304 into the LS contributes to stress-induced hypophagia by blocking GLP-1Rs in the LS prior to 

305 exposure to acute restraint stress. Two-way mixed-model ANOVA revealed a main effect of 

306 stress at 1h [F(1,10) = 9.36, p<0.05], 2h [F(1,10) = 14.52, p<0.01], and 4h [F(1,10) = 29.65, 

307 p<0.0001] post-dark onset. At both 2h and 4h, pairwise comparisons demonstrated that 30 min 

308 of restraint stress significantly suppressed chow intake after both intra-dLS saline and Ex9 

309 treatment (p’s<0.05) (Fig 5). At the 4h timepoint, mice in the Ex9 stressed condition ate 

310 significantly more than the saline-infused mice in the stressed condition at this timepoint 
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311 (p<0.01) (Fig 5). For overnight chow intake (21h), two-way mixed-model ANOVA revealed a 

312 significant stress x drug interaction [F(1,10) = 6.94, p<0.05]. While acute stress significantly 

313 suppressed food intake in the saline group (p<0.01), there was no effect of stress in the Ex9 

314 group (Fig 5). 

315 3.5. Study 5: effects of dLS GLP-1R stimulation or blockade on operant responding

316 Whether stimulation or blockade of GLP-1R in the dLS is able to affect motivation for 

317 food reward was assessed with bilateral intra-LS injections of GLP-1 or Ex9 in mice trained on a 

318 PR schedule, where an increasing number of operant responses is required for each successive 

319 reinforcement. When mice were maintained at 85% of their ad libitum body weight, there was a 

320 significant main effect of drug on active lever presses [F(2,20) = 11.22, p<0.001], breakpoint 

321 [F(2,20) = 10.73, p<0.001], and reinforcers earned [F(2,20) = 25.97, p<0.001]. GLP-1 potently 

322 suppressed, whereas LS Ex9 significantly increased each of these measures (p’s<0.05) (Fig 

323 6A-C). Under ad libitum feeding conditions, bilateral dLS Ex9 significantly increased reinforcers 

324 [t(9)=2.25, p<0.05] earned and tended to increase active lever presses (p=0.10) and breakpoint 

325 (p=0.07) (Fig 6D-F). 

326 3.6. Study 6: effects of LS GLP-1R stimulation or blockade on meal patterns and licking 

327 microstructure for sucrose

328 When mice were consuming 0.25 M sucrose under food restriction, there was a main 

329 effect of drug for both total number of licks during the 120-min session [F(2,36) = 9.69, p<0.01] 

330 and the size of the 1st meal [F(2,36) = 8.21, p<0.01], and planned comparisons revealed that 

331 bilateral dLS GLP-1 significantly suppressed these measures (p’s<0.01) (Fig 7A and Fig 7C). 

332 There was a main effect of drug for the number of meals consumed during the session [F(2,36) 

333 = 8.21, p<0.01], average burst duration (s) during the 1st meal [F(2,36) = 11.86, p<0.001], and 

334 for average burst size for the 1st meal (licks/burst) [F(2,36) = 9.94, p<0.001], and planned 

335 comparisons revealed that GLP-1 significantly increased all of these variables (p’s<0.01) (Fig 

336 7B and Table 2). In food restricted mice, drug treatment significantly influenced duration of the 
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337 1st meal (meal duration (min) [F(2,36) = 4.26, p<0.05],  burst number [F(2,36) = 22.09, 

338 p<0.0001], average ingestion rate (licks/min) [F(2,36) = 6.59, p<0.01], and 1st min lick rate  

339 [F(2,36) = 76.40, p<0.0001] (Table 2). Planned comparisons revealed that intra-dLS GLP-1 

340 suppressed each of these variables (p’s<0.05). In contrast, pairwise comparisons between 

341 vehicle and Ex9 revealed no significant differences on any of these variables. There was a main 

342 effect of drug on average within-burst interlick interval (ILI) [F(2,36) = 6.04, p<0.05] (Table 2). 

343 For the food-deprived conditions, the data file for intra-dLS GLP-1 treatment for one mouse was 

344 corrupted, thus data from only 19 of the 20 mice could be used for analysis. 

345 Under ad libitum feeding conditions, there was a main effect of drug on total session 

346 licks [F(2, 38) = 25.05, p<0.0001]; planned comparisons revealed that GLP-1 potently 

347 suppressed total session licks and conversely Ex9 increased total licks (p’s<0.05) (Fig 7D). 

348 Over the course of the 2 h session, mice were able to take several meals. The first meal was 

349 the primary meal, with all subsequent meals being much smaller (Fig 7F). Drug treatment 

350 significantly influenced 1st meal size [F(2, 38) = 14.53, p<0.0001]; after LS GLP-1, the 1st meal 

351 was significantly suppressed and Ex9 significantly increased 1st meal size (p’s<0.05) (Fig 7F). 

352 Only 13 of 20 mice took a 2nd meal following both saline and GLP-1 treatments, and 9 took a 2nd 

353 meal after Ex9 conditions. After saline, 9 mice took a 3rd meal; following GLP-1, 7 mice took a 

354 3rd meal, and after Ex9, only 5 mice took a 3rd meal. These additional meals were not taken by 

355 enough mice to allow statistical analysis. Average number of meals taken during the session 

356 was not affected by GLP-1 or Ex9 (Fig. 7E). Because the 1st meal was the only meal that 

357 included all mice, we focused our licking microstructure analysis on this meal. There was no 

358 difference in 1st meal duration (min) following drug treatments (Fig 8A). There was a main effect 

359 of drug treatment on 1st min lick rate [F(2, 38) = 12.36, p<0.001]; planned comparisons revealed 

360 that mice licked significantly less in the 1st minute of the session after stimulation of LS GLP-1R 

361 (p<0.05) (Fig 8B). During the 1st meal, there was a significant main effect of drug on burst 

362 number [F(2, 38) = 6.85, p<0.01]; mice took significantly fewer bursts after LS GLP-1 and more 
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363 bursts after Ex9 (p’s<0.05) (Fig 8C).  Drug treatment also significantly influenced ingestion rate 

364 (licks/min) [F(2, 38) = 13.17, p<0.001] (Fig 8D). Planned comparisons revealed that bilateral 

365 dLS GLP-1 significantly suppressed average ingestion rate (licks/min) during meal 1 (p<0.05), 

366 but Ex9 did not affect this measure (Fig 8D). There was no difference in burst size (licks/burst) 

367 (Fig 8E), burst duration (s) (Fig 8F), or average within-burst interlick interval (ILI) during the 1st 

368 meal (Sal: 149.7±2.47, GLP-1: 147.9±1.69, Ex9: 145.3±1.76) after drug treatment. There were 

369 no effects on body weight.

370 4. Discussion 

371 Our behavioral data provide direct evidence that LS GLP-1R are involved in coordinating 

372 feeding behavior in mice. Pharmacological activation of LS GLP-1R, at doses that were 

373 ineffective when delivered to the LV, potently reduced chow intake. Surprisingly, intra-LS 

374 injection of LV-subthreshold doses of the GLP-1R antagonist Ex9 did not affect ad libitum chow 

375 intake, suggesting that in mice, normal, ad libitum feeding is not controlled by endogenous GLP-

376 1 in the LS. Yet our findings demonstrate that endogenous release of GLP-1 into the LS does in 

377 fact play a role in suppressing chow intake after large meals and following restraint stress in 

378 mice. Furthermore, our data also show that endogenous dLS GLP-1R stimulation suppresses 

379 motivation and licking for sucrose. While we have previously demonstrated that LS GLP-1 plays 

380 a role in the control of feeding behavior in rats, this is the first demonstration for a role for this 

381 pathway in feeding behavior in mice. Overall our data suggest a similar role for LS GLP-1 in rats 

382 and mice, however, we do find important species differences.       

383 We predicted an increase in chow intake following LS GLP-1R blockade, based on what 

384 we have previously seen in the rat, but here we found that in the mouse, Ex9 did not affect dark 

385 onset ad libitum chow intake at any timepoint. This lack of effect led us to hypothesize that 

386 under normal conditions of ad libitum chow feeding, the GLP-1 neuronal input to the LS is not 

387 sufficiently activated to cause substantial endogenous GLP-1R stimulation that our Ex9 injection 

388 would block. To explore this possibility, we trained mice to consume a large nutrient preload, 
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389 expected to activate GLP-1 neurons and promote the release of endogenous GLP-1 in the LS at 

390 the time of our drug manipulation. Under these conditions, blockade of LS GLP-1 receptors did 

391 significantly increase chow intake, suggesting that endogenous GLP-1 in this brain area acts to 

392 suppress feeding following a large meal.

393 Acute restraint stress is known to activate GLP-1 neurons in rats, and food intake is 

394 significantly suppressed after that stressor [2,27].  Consistent with those findings, our data here 

395 show that in mice, PPG neurons are potently activated in response to 30 minutes of restraint 

396 stress; the majority of PPG cells within both the cNTS and RF were activated after restraint 

397 stress in mice. Previous studies using mice have demonstrated that GLP-1R in both the PVN 

398 and the bed nucleus of the stria terminalis (BNST) are critical for a number of physiological 

399 responses to stress [14,22]. Here, we found that blockade of dLS GLP-1R attenuated the 

400 suppression of chow intake following restraint stress in mice, consistent with our previous 

401 results in rats [27]. Together, our behavioral findings suggest that the GLP-1 pathway to the LS 

402 is activated both by large meals and by stress, and that endogenous GLP-1 in the LS acts to 

403 suppress feeding after either stimulus. Our findings here are consistent with our recent report in 

404 which we found that selective ablation of NTS PPG neurons in mice had no effect on ab libitum 

405 chow intake. However, following a large meal, both ablation or acute inhibition of PPG neurons 

406 increased food intake [11]. Furthermore, we demonstrated that stress-induced hypophagia 

407 requires PPG neurons, suggesting that in mice, PPG neurons play a role in suppressing feeding 

408 after a large meal and following restraint stress [11].  

409 The LS was identified in Olds and Milner’s classic studies as an important site for 

410 motivation, [41] and in the rat, we have shown that GLP-1R in the dorsal subregion of the LS 

411 affect motivation for food [13]. We asked if the same is true for mice and found that 

412 pharmacologic activation of dLS GLP-1R potently suppressed active lever presses, breakpoint, 

413 and reinforcers earned in the operant responding progressive ratio task, whereas blockade of 

414 these receptors significantly increased performance on these measures. We found that both the 
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415 agonist and antagonist effects on motivation for sucrose were still evident, though smaller in 

416 magnitude when mice were maintained on ad libitum chow access relative to when they were 

417 tested under chronic food restriction conditions. Together these findings suggest that 

418 endogenous GLP-1R activity in the dLS plays a significant role in motivation for food in mice.

419 We previously reported that in the rat, endogenous GLP-1 in the LS suppresses intake 

420 of 0.25 M sucrose solution [13]. To examine in what manner dLS GLP-1R affect sucrose intake 

421 in mice, we asked how pharmacologic stimulation or blockade of these receptors influences 

422 meal patterns and licking microstructure for sucrose. Conducting meal pattern analyses can 

423 offer insight into the behavioral mechanisms of the feeding effects of exogenous and 

424 endogenous GLP-1 in the LS. Total intake is the product of the number of meals taken and the 

425 size of those meals, and GLP-1 and Ex9 in the LS could be acting on either or both of those 

426 variables. Under chronic food restriction, GLP-1 potently suppressed total session licks, 

427 whereas there was no effect of Ex9. The lack of effect following dLS Ex9 is unsurprising 

428 because in this food-restricted state, mice were emitting over 8000 licks in the session after 

429 saline treatment, and it seems unlikely that Ex9 could increase licking above this already 

430 elevated baseline. We next asked if dLS GLP-1R stimulation or blockade would influence meal 

431 patterns and licking for sucrose after mice were returned to ad libitum feeding conditions. Again, 

432 we found that dLS GLP-1 significantly suppressed total session licks, and in this experiment, 

433 during which baseline licking was reduced compared with licking under chronic food restriction 

434 conditions, we found that Ex9 significantly increased total licks. Over the course of the 2-h 

435 session, mice usually took several meals. Whether food restricted or maintained on ad libitum 

436 chow, the first sucrose meal is the primary and largest meal, with all subsequent meals being 

437 much smaller. In the experiment conducted during food restriction, dLS GLP-1 reduced first 

438 meal size, and increased the number of meals taken in the session, which may be an attempt by 

439 hungry mice to compensate for the reduced size of the first meal. In the experiment conducted 

440 under ad libitum conditions, dLS GLP-1 suppressed and, conversely, Ex9 significantly increased 
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441 first meal size. Here, neither drug treatment influenced meal frequency. These findings support 

442 the hypothesis that the dLS GLP-1R population plays a physiologic role in promoting satiation 

443 under these experimental conditions. Here mice were consuming a large amount of sucrose in a 

444 short session, which likely promotes the release of endogenous GLP-1, much like the Ensure 

445 nutrient preload we used in the dark phase chow intake experiment. 

446 Detailed examination of the pattern of licking within the first meal provides further 

447 information about how dLS GLP-1R stimulation and blockade influence sucrose intake. Because 

448 the first meal was the primary meal and the only meal that included all mice, we focused our 

449 microstructural analyses on this meal for both food restricted and ad libitum feeding conditions. 

450 The initial lick rate (1st min lick rate) reflects the pre-ingestive evaluation of the tastant, as it is 

451 typically greater for more palatable solutions (i.e., higher concentrations of sucrose) and occurs 

452 prior to the accumulation of nutrients in the gut [39,42]. Here we found that under both restricted 

453 and fed feeding states, mice licked significantly less in the 1st minute of meal 1 after stimulation 

454 of dLS GLP-1R while Ex9 had no effect on this variable. Burst size represents the average 

455 number of licks occurring within each burst of licking and is also thought to reflect palatability of 

456 the ingested tastant, but this was not affected by either drug when mice had ad libitum chow 

457 access, while GLP-1 increased burst size under food restriction. Licking burst number, or the 

458 frequency of initiation of a new bout of licking, is often taken to reflect the potency of post-

459 ingestive negative feedback [39,40]. Here we found that during the 1st meal, mice took 

460 significantly fewer bursts following dLS GLP-1 under both feeding conditions. When mice had 

461 ad libitum chow access, they took significantly more bursts after Ex9. Because LS GLP-1’s 

462 effects were evident during the 1st min of meal 1 and the reduction in sucrose intake during the 

463 1st meal was primarily due to reduction in burst number, it is possible that GLP-1R stimulation 

464 suppresses sucrose intake by reducing the motivational value (i.e. palatability) as well as by 

465 enhancing post-ingestive negative feedback signals that act to suppress licking behavior. A 

466 suppression in motivation would be consistent with the effects observed in the progressive ratio 
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467 experiments. On the contrary, Ex9 had no effect early in the meal, suggesting that endogenous 

468 LS GLP-1R stimulation likely does not influence palatability. Nonetheless, blockade of LS GLP-

469 1R increased sucrose intake, primarily due to an increase in burst number, suggesting that Ex9 

470 may increase meal size by attenuating post-ingestive negative feedback signals that would 

471 normally suppress licking during the first meal. This finding is consistent with our data that 

472 endogenous GLP-1 in the LS acts to suppress feeding after a large meal. 

473 The lack of LS Ex9 effect on ad libitum dark phase chow intake seems inconsistent with 

474 the significant effects of LS Ex9 on licking for sucrose solution and lever pressing for sucrose in 

475 the PR task. It is possible that endogenous GLP-1 in the LS plays a more significant role in 

476 feeding for sucrose or for highly palatable food than for standard chow. However, we suggest 

477 that our demonstration that LS Ex9 could increase chow intake after restraint stress or nutrient 

478 preload renders this explanation less likely. Other differences in the test paradigm likely play a 

479 role. In the licking and PR experiments, mice received extensive training in non-home cage test 

480 chambers, and these conditioned eating situations, which also involved reward and palatability, 

481 may promote GLP-1 release in the LS to an extent that daily dark phase onset does not. Further 

482 research will be required to fully understand the conditions under which endogenous GLP-1 is 

483 most relevant.  

484 In conclusion, our behavioral data show that exogenous GLP-1 in the LS suppresses 

485 feeding in mice, similar to its effects in rats. However, in striking contrast with the rat data, we 

486 found that endogenous GLP-1 in the LS does not seem to contribute to normal dark cycle ad 

487 libitum chow intake in mice [13].  Instead, we see an effect of LS GLP-1R blockade under other 

488 circumstances: after a large nutrient load, after restraint stress, and when mice are licking or 

489 lever-pressing for sucrose. These data provide a useful foundation for continuing to examine 

490 this pathway using mouse models and suggest that while endogenous GLP-1 action in the LS 

491 influences feeding in both species, the conditions under which these effects are most robust 

492 differs between mice and rats.
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652 Figure Captions

653 Figure 1. Representative diagram of LS injection placements based on the atlas of Franklin and 

654 Paxinos [37]. Additional subjects’ injection sites were identified in similar locations at points 

655 between the anterior-posterior levels displayed here. Carets (^) represent LS placements, while 

656 circles represent dorsal LS (dLS) placements. The photomicrograph inset shows a 

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512



657 representative injection site. CC = corpus callosum; LV = lateral ventricle; dLS = dorsal lateral 

658 septum.

659  Figure 2. Cumulative chow intake after intra-LS injection of GLP-1 is reduced during the first 4 

660 h of the dark phase. Significant effects of intra-LS GLP-1 were seen at 1, 2  and 4 h, *p<0.05 

661 relative to vehicle, $p<0.005 relative to 0.1 µg GLP-1. All data are shown as mean ± SEM. n=6. 

662 Figure 3. A: Cumulative chow intake is not affected by intra-LS injection of Ex9, n=9. B: After 

663 mice (n=7) consumed a large meal of chocolate Ensure, blockade of LS GLP-1R with Ex9 

664 significantly increased chow intake at 4 hr after dark onset, *p<0.05. All data are shown as 

665 mean ± SEM. 

666 Figure 4. Effect of stress on c-Fos induction in hindbrain PPG neurons. Representative images 

667 of c-Fos induction responses in unstressed (A and D. No Res) and 30-min restraint stressed (B, 

668 C, and E. Res) YFP-PPG (mGLU-124 line) mice. C. Higher magnification image taken from the 

669 area inside the white box in panel B.  F. Significantly more GFP-labeled PPG cells were c-Fos-

670 positive after acute restraint stress in both the cNTS and RF relative to the no stress condition, 

671 *p<0.0001. Data are shown as mean ± SEM. n=4 No Res, n=5 Res.  

672 Figure 5.  At 2 and 4 h post-dark onset, restraint stress (Res) significantly suppressed 

673 cumulative intake regardless of intra-LS treatment (*p<0.01 versus respective no stress 

674 condition; $p<0.05 relative to saline + Res mice). At 21 h, Ex9 treatment significantly attenuated 

675 the effect of stress-induced hypophagia. (#p<0.05 stress x drug interaction). Stress significantly 

676 suppressed 21 h intake relative to the saline no stress condition, *p < 0.01. All data are shown 

677 as mean ± SEM. n=5 Saline, n=7 Ex9 (10 µg).  

678 Figure 6. In mice (n=4 male, n=7 female) maintained at 85% of ad libitum body weight, Bilateral 

679 dLS GLP-1 injection potently suppressed active lever presses (A), breakpoint (B), and 

680 reinforcers earned (B). Whereas LS Ex9 significantly increased each of these measures, 

681 *p<0.05. Under ad libitum feeding conditions, intra-dLS Ex9 significantly increased reinforcers 
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682 earned (F) (*p<0.05) and tended to increase active lever presses (D) and breakpoint (E), 

683 ^p=0.10, +p=0.07. All data are shown as mean ± SEM.  

684  Figure 7. In food restricted mice (n=19), intra-dLS GLP-1 significantly suppressed both total 

685 session licks (A) and the size of the 1st meal (C) while increasing meal number (B), *p<0.05. 

686 Under food restriction, 2 of 19 mice in the saline condition, 8 of 19 after GLP-1, and 3 of 19 mice 

687 following Ex9 took a second meal of 2 or more bursts; there were no mice that took a third meal 

688 after saline, while 3 of 19 after GLP-1 and 2 of 19 mice following Ex9 took a third meal. In ad 

689 libitum fed mice (n=20), GLP-1 potently suppressed total session licks (D) and 1st meal size (F) 

690 and conversely Ex9 increased both of these variables; there was no effect on meal frequency 

691 (E). When fed ad libitum, 13 of 20 mice in the saline condition, 13 of 20 after GLP-1, and 9 of 20 

692 mice following Ex9 took a second meal of 2 or more bursts; there were 9 of 20 mice that took a 

693 third meal after saline, while 7 of 20 after GLP-1 and 5 of 19 following Ex9 took a third meal, 

694 *p<0.05. All data are shown as mean ± SEM.  

695 Figure 8. In ad libitum fed mice (n=20), meal duration was not affected by drug treatment (A). 

696 Intra-dLS GLP-1 suppressed lick rate during the first minute of the meal (B). Burst number was 

697 significantly suppressed after GLP-1 and increased after Ex9 (C). Ingestion rate was 

698 significantly decreased following dLS GLP-1 (D). There was no effect of drug treatment on burst 

699 size (E) or burst duration (F)., *p<0.05. All data are shown as mean ± SEM.  
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Table 1: Chow intake after LV injections of GLP-1 or Ex9

These pilot studies were within-subjects counterbalanced design performed male mice (n = 6) in 
the manner described for Study 1. Repeated measures 1-way ANOVA showed no effects.

GLP-1 (μg): 0 0.1 0.3 1

2-h chow intake 
mean (SEM)

0.71 (0.07) 0.60 (0.13) 0.62 (0.15) 0.55 (0.15)

Ex9 (μg): 0 3 10 30

2-h chow intake 
mean (SEM)

0.070 (0.14) 0.80 (0.20) 0.64 (0.11) 0.54 (0.13)



Variable Saline GLP-1 Ex9

Burst duration (s) 4.8 (0.68) 6.6 (0.94) 4.6 (0.58)

Burst size (licks/burst) 32.3 (4.58) 40.3 (5.57) 29.6 (3.87)

Meal duration (min) 110.9 (4.76) 91.5 (8.39) 112.5 (3.52)

Burst number 324.2 (44.10) 212.8 (46.05) 362.2 (49.05)

Ingestion rate (licks/min) 75.3 (5.18) 63.4 (5.52) 74.2 (3.59)

1st min lick rate 266.8 (11.90) 127.6 (15.81) 269.1 (11.31)

Average within-burst ILI 144.6 (1.31) 150.9 (2.34) 150.0 (2.25)

Table 2. Licking variables measured when determining the effects of dLS 
GLP-1R stimulation or blockade on licking for sucrose in mice maintained 
at 85% of ad lib body weight. Bolded values are significantly different from 
the saline condition (p < 0.05).


