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Abstract  13 

Ground motion models (GMMs) are a key component in seismic hazard assessment and in seismic 14 

risk analysis. The consideration of both aleatory and epistemic sources of variability may have 15 

significant influence on the results and are vital because of their influence on the over- or under-16 

estimation of the final assessment of losses. Recent research has shown that the commonly used 17 

framework of weighted logic trees for the choice of GMMs is not necessarily the best suited to 18 

account for epistemic uncertainty. Recently, a simple and alternative procedure has been proposed in 19 

which a GMM suite is defined with only three representative models (lower, central and upper) 20 

derived from available median models. This alternative model is equivalent to the use of multiple 21 

models, provided the same range of epistemic uncertainty is sampled. The representative suite 22 

approach was applied to the European context for developing a Pan-European GMM for EC8 ground 23 

type B and normal or strike slip faulting style for its implementation in risk analysis of critical 24 

infrastructures Europe wide, within the framework of the European funded project INFRARISK. The 25 

proposed new Pan-European representative GMM is based on the most recent GMMs developed using 26 

the common RESORCE strong-motion database of European and Near and Middle East acceleration 27 

records. It is shown to perform well when tested against new ground-motion observations from the 28 

ESM-Engineering Strong-Motion database and even slightly better than other available GMMs. The 29 

procedure is efficient and transparent limiting the sample space to three GMMs and reducing both 30 

complexity of the modelling and computational efforts. 31 
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1. Introduction 1 

Attenuation relationships, ground motion prediction equations (GMPEs) or, in general (e.g., Mak et 2 

al., 2017) ground motion models (GMMs), represent a key component of seismic hazard analysis 3 

(SHA), whether it is performed as a single scenario, or by deterministic or probabilistic approaches 4 

(Douglas and Edwards, 2016). Hence the importance of selecting appropriate GMMs, as well as the 5 

evaluation of their associated uncertainties to be modelled in any SHA. These uncertainties represent a 6 

key source of variability in modelled ground motions, and may have significant influence on the 7 

overestimation or underestimation of expected losses in seismic risk analysis. 8 

The standard practice considers two uncertainty components (Atkinson et al. 2014; Douglas and 9 

Edwards 2016), i.e., one representing the random variability about the median predicted value 10 

(aleatory variability); and one related to lack of knowledge for giving the correct value of the median 11 

(epistemic uncertainty). There is no general agreement on the definition of either component, a clear 12 

distinction between the two being very critical to avoid mixing and/or any double-counting (Bommer 13 

et al. 2005; Bommer and Scherbaum 2008; Atkinson 2011; Atkinson et al. 2014; Stafford 2015; 14 

Douglas and Edwards 2016; Douglas 2018a).  15 

The development of new databases and GMMs over the past few years has not, apparently, 16 

contributed to decreasing uncertainty, especially regarding aleatory variability (Strasser et al 2009), 17 

although site-specific hazard has benefitted from moving from the ergodic to partial non-ergodic 18 

assumption (Douglas and Edwards 2016). The epistemic component shows relative reduction, but 19 

mostly because still most available ground-motion data used to build GMMs come from a limited 20 

range of magnitudes and distances (Douglas and Edwards 2016). The usual approach to handle 21 

epistemic uncertainty is by designing a logic tree that considers alternative GMMs and associated 22 

weights, trying to represent the distribution of possible ground motions (Bommer et al. 2005; Bommer 23 

and Scherbaum 2008; Bommer 2012; Atkinson et al. 2014; Douglas and Edwards 2016). This 24 

approach is not necessarily the best suited for modelling epistemic uncertainty in GMMs (Bommer 25 

and Scherbaum 2008; Atkinson 2011), and in most cases it could fail to capture the center, body and 26 

range of technically defensible interpretations of the available data and models (Atkinson et al. 2014), 27 

as it is required for the practical implementation of levels 3 and 4 (Kammerer and Ake 2012) of the 28 

SSHAC recommendations (SSHAC 1997) for probabilistic seismic hazard analysis (PSHA), mostly 29 

used in design and assessment of critical infrastructure (e.g., nuclear power plants among many 30 

others). 31 

An alternative approach to model epistemic uncertainty in GMMs consists in the definition of a 32 

representative suite of models, which capture the uncertainty by using one or more central models 33 

along with high and low alternatives. This so-called backbone approach (Atkinson et al 2014; Douglas 34 

2018a, 2018b) has been applied, e.g., for the 2015 national seismic hazard maps of Canada (Atkinson 35 



4 

and Adams 2013), and it is implemented in some PSHA codes (e.g., Assatourians and Atkinson 2013). 1 

The common practice includes three representative GMMs (lower, central and upper) derived from 2 

existing median models. Atkinson and Adams (2013), after several sensitivity tests, show that the 3 

three-GMM suite produce similar PSHA results to those using multiple GMPEs, provided that the 4 

same range of epistemic uncertainty is sampled. Some advantages of this approach are highlighted in 5 

Atkinson and Adams (2013) as: (a) The selection of median GMPEs to build the representative model 6 

can be carried out without applying weighting coefficients, eliminating the subjective expert-based 7 

judgement that is usually associated with the logic tree approach. Nevertheless, there is still a 8 

significant degree of judgment when considering implicitly that median ground motions should not be 9 

outside the range predicted by the selected GMPEs; (b) Values are computed for discrete combinations 10 

of magnitudes and distances, without requiring a given functional form, thus allowing for a flexible 11 

expression of the median and the epistemic uncertainties; even though the fundamental physical 12 

properties of the earthquake process are not explicit; (c) The three-GMM representative suite can be 13 

readily used as an input to probabilistic risk analysis, because the central model and the upper/lower 14 

bounds can be sampled with specified weights. Because only three possible inputs are sampled, the 15 

associated computational effort is reduced when compared to a complex logic tree with multiple 16 

choices of GMPEs.  17 

The approach has been recently discussed by Douglas (2018a, 2018b), who advocates its use 18 

showing the advantages over the classic logic trees with multiple GMPE; although he considers that 19 

the representative suite or backbone approach may provide a good model of the epistemic uncertainty 20 

just for regional SHA, and would not be completely feasible for site-specific studies in regions with 21 

very limited data. Douglas (2018a) proposes a three-set logic tree, based on the backbone approach, 22 

with three branches in each set. Scaling factors are applied to account for regional differences, and 23 

weights are updated when local data is available. The estimation of these scaling factors remains, 24 

however, a challenging task, requiring a careful balance between expert judgement and empirical 25 

analyses.  26 

 In the present study, the representative suite approach was applied to the European context for 27 

risk analysis of critical infrastructure in the framework of the European-funded project INFRARISK 28 

(www.infrarisk-fp7.eu). To this end, a selection of available GMPEs based specifically on European 29 

ground-motion databases has been performed, as detailed in Section 2. Section 3 develops the steps 30 

required to derive the three representative sub-models that account for epistemic uncertainty for EC8 31 

ground type B (CEN 2004). The issue of the quantification of aleatory variability for the developed 32 

model is addressed in Section 4, because such knowledge is essential when using the GMM in a 33 

probabilistic framework. Finally, the resulting three-GMM representative suite is compared to actual 34 

ground motion records extracted from the ESM-Engineering Strong-Motion database (Luzi et al. 2016, 35 

Lanzano et al. 2019) for evaluating its performance as a Pan-European representative model.  36 
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 1 

2. Selection of GMPEs  2 

The most recently developed GMPEs that seek to capture epistemic uncertainty using the common 3 

database of Pan-European strong-motion records RESORCE (Akkar et al 2014a) were compiled in a 4 

special issue of the Bulletin of Earthquake Engineering in 2014 (Douglas 2014). The RESORCE 5 

database results from the integration and uniform processing of European and Near and Middle East 6 

acceleration records, including some earthquake-specific studies. It consists of 5,882 multi-component 7 

accelerograms from 1,540 strong-motion stations and 1,814 earthquakes recorded between 1967 and 8 

2012 (Akkar et al. 2014a). For the derivation of our representative GMM suite we selected four of 9 

those GMPEs (Table 1), namely AK14 (Akkar et al. 2014b), BI14 (Bindi et al. 2014), BO14 (Bora et 10 

al. 2014) and DE14 (Derras et al. 2014). The selection is based on the common characteristics of their 11 

data selection criteria which allow for the development of a single model. 12 

 13 

Table 1 14 

 15 

Based on the magnitude and distance validity domains of the underlying GMPEs (Table 1), the 16 

representative GMM suite is developed for Mw between 4.0 and 7.0, and for Joyner-Boore distance, 17 

Rjb , between 1 and 200 km. Because the selected models directly use average shear-wave velocity to 18 

30 m depth, Vs,30, as a proxy to soil amplification, the GMM suite is developed for EC8 ground type B, 19 

i.e., Vs,30 between 360 and 800 m/s. Regarding focal depth, the only one of the four GMPEs that 20 

accounts for this parameter (i.e., DE14) uses an average depth of 10 km, justified by the vast majority 21 

of superficial earthquakes that compose the RESORCE database. Normal and strike-slip earthquakes 22 

are also by far the most common types of events that are present in the database (Akkar et al. 2014a), 23 

therefore the GMPEs that contain both of these styles of faulting (i.e., BI14 and DE14) are considered 24 

twice(first with normal faulting, and second with strike-slip), arriving to six GMPEs for developing 25 

the new GMM suite. For illustration purposes a subset of GM parameters, within the period range 26 

common to all models, is considered, i.e., average horizontal component of PGA and spectral 27 

acceleration, SA, at periods, T, 0.1s, 0.2s, 0.3 s, 0.5s, 1.0s and 2.0s. 28 

 29 

Fig. 1 30 

 31 

The six median GMPEs are plotted in Fig. 1, for two selected Mw magnitudes (5.0. 6.0), three 32 

ground-motion parameters (PGA, SA[0.2s], SA[2.0s]), and Vs,30 = 580 m/s (average value for EC8 33 

ground type B). They are compared to actual ground-motion records (average horizontal component) 34 
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extracted from the RESORCE database with the following criteria: normal or strike-slip faulting style, 1 

Mw within +/- 0.2 magnitude bins (Gasperini et al. 2012), focal depth between 0 and 20 km, Vs,30 in 2 

the interval [500;660[ m/s, and Joyner-Boore distance, Rjb, from 1 to 200 km. This determines a data 3 

subset of 74 values. For the RESORCE records for which Rjb is not available, the epicentral distance is 4 

converted to Joyner-Boore distance metrics using the approach given by Atkinson and Adams (2013), 5 

and the Mw-rupture length relationships from Leonard (2010). RESORCE data in Fig. 1 are 6 

represented by the geometric mean and associated standard deviation of the GM parameter computed 7 

in Rjb distance bins of width 0.4 log10 units with a 50% overlap, apart for the first bin, which is 1.0 8 

log10 units in width (these distance bins, in km, are: [1.0;10.0], [6.3;15.8], [10.0;25.1], [15.8;39.8], 9 

[25.1;63.1], [39.8;100.0], [63.1;158.5], [100;251.2]) 10 

 11 

3. Development of a Pan-European representative GMM 12 

In the present study, the proposed approach is demonstrated through the derivation of a 13 

representative GMM suite with three models (lower, central and upper) for normal or strike-slip 14 

faulting and EC8 ground type B (Vs,30 between 360 and 800 m/s), using the six selected GMPEs 15 

(Table 1 and Fig. 1). To account for the additional epistemic uncertainty introduced by the ground type 16 

definition a slight variant from the original approach by Atkinson and Adams (2013) has been 17 

adopted. Rather than fixing a reference site condition (Vs,30=760 m/s) to obtain the three representative 18 

models, a GMM accounting for the whole ground type B representative velocity range (360-800 m/s) 19 

is provided in the present study. 20 

The three representative models (lower, central and upper) of the GMM suite are obtained 21 

applying the following procedure: 22 

1. Computation of GM parameters from the six median GMPEs at three Vs,30 values – i.e., 360 23 

m/s for the upper model, 580 m/s for the central model, and 800 m/s for the lower model – 24 

and for a set of discrete combinations of magnitude and distance values (Mw 4.0 to Mw 7.0 25 

at 0.1 units intervals, and Rjb distance from 1 to 200 km at 0.1 log10 units intervals). 26 

2. The central model, 〈𝑦580〉, is computed by processing the geometric mean of the selected 27 

GMPEs evaluated for Vs,30 = 580 m/s, i.e., 〈𝑦580〉  =  (𝑦580,1 × … ×  𝑦580,6)
1/6. The upper 28 

and lower models are obtained in a similar way by their corresponding geometric mean plus 29 

one standard deviation, 〈𝑦360〉 + 𝜎, and minus one standard deviation, 〈𝑦800〉 − 𝜎, 30 

respectively. That provides an initial estimate of epistemic uncertainty.  31 

3. Standard deviation is smoothed by a triangular three-point weighted smoothing to avoid 32 

pinching effects at some distances where values could be close to each other. For example, 33 

the smoothed standard deviation at distance k is computed as follows: 34 
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  𝜎log10 𝑦,𝑘
𝑠  =  0.25 𝜎log10 𝑦,𝑘−1  +  0.5 𝜎log10 𝑦,𝑘  + 0.25 𝜎log10 𝑦,𝑘+1   (1) 1 

By this approach no specific distribution of Vs,30 is assumed within EC8 ground type B. It is just a 2 

propagation of the lack of knowledge in the interval where only upper and lower bounds are known. 3 

The resulting GMM suite, with upper and lower branches accounting for epistemic uncertainties (due 4 

to both the choice of GMPE model and the variability within the Vs,30 interval) is plotted in Fig. 2, for 5 

selected magnitudes and GM parameters.  6 

 7 

Fig. 2 8 

 9 

4. Aleatory variability 10 

4.1. Total variability 𝜎𝑡𝑜𝑡  11 

Once the epistemic uncertainty has been quantified for the proposed GMM suite, aleatory variability, 12 

𝜎𝑎𝑙𝑒, needs to be assessed as well, in order to ensure that the model is fully characterized and usable in 13 

the context of a probabilistic seismic risk analysis. Each of the underlying GMPEs considered here has 14 

a different model of aleatory variability, which makes it difficult to compute and analytically 15 

determine the aleatory variability of the developed representative GMM suite. 16 

 However, because the selected GMPEs are based on the RESORCE database, it is reasonable to 17 

use RESORCE values in order to extract the level of aleatory variability that should be attributed to 18 

the representative GMM suite. Therefore, the following procedure is implemented: 19 

1. For each of the selected RESORCE values (i.e., 1,037 values within soil type B corresponding 20 

to the criteria defined in Section 2), 𝑦𝑜𝑏𝑠,𝑖, the residual, 𝜀𝑖, with respect to the central model of 21 

the representative GMM suite, 〈𝑦580〉𝑖, is computed, as follows: 22 

 𝜀𝑖  =  log10 𝑦𝑜𝑏𝑠,𝑖   −   log10〈𝑦580〉𝑖      (2) 23 

2. Using the selected RESORCE values, an approximation of the total standard deviation, 24 

𝜎𝑡𝑜𝑡, can be computed from the vector 𝜺 of the residuals 𝜀𝑖 by: 25 

𝜎𝑡𝑜𝑡
2 = 𝑉𝑎𝑟(𝛆)                                                                                           (3) 26 

3. This total standard deviation, 𝜎𝑡𝑜𝑡, is estimated with respect to the central model of the 27 

representative GMM suite, so that it represents the global variability that cannot be 28 

explained if the aforementioned epistemic uncertainties are not taken into account. 29 

Therefore, it is possible to extract the aleatory variability, 𝜎𝑎𝑙𝑒, by using the quadratic 30 

combination of the uncertainty sources (i.e., assuming that they are independent): 31 
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𝜎𝑎𝑙𝑒
2   = 𝜎𝑡𝑜𝑡

2  − 𝜎𝑒𝑝𝑖
2         (4) 1 

where 𝜎𝑒𝑝𝑖 corresponds to the epistemic variability estimated in Section 3 (i.e., the 𝜎log10 𝑦
𝑠  2 

variable in Equation 1). 3 

From Section 3, it can be seen that the values of 𝜎𝑒𝑝𝑖 are specific to a given magnitude, distance 4 

and ground-motion parameter of interest. Conversely, the 𝜎𝑡𝑜𝑡 variability is computed from residuals 5 

over various bins of magnitudes and distance ranges, in order to guarantee enough data values to 6 

generate stable estimates of the residuals’ standard deviations. In total, nine bins are selected, resulting 7 

from the combination of three magnitude intervals (i.e., [4.0;5.0[, [5.0;6.0[ and [6.0;7.5]) and three 8 

distance intervals (i.e., [1;20[; [20;60[ and [60;200]). The results are detailed in Table 2. Following 9 

Equation 4, the aleatory variability, 𝜎𝑎𝑙𝑒, should depend on magnitude and distance, following the 10 

evolution of the epistemic uncertainty. For this reason, 𝜎𝑎𝑙𝑒 values in Table 2 are averaged over each 11 

bin’s magnitude and distance ranges. The physical meaning of this behaviour maybe that, for some 12 

combinations of magnitude and distance, the underlying GMPEs provide very different values, which 13 

has the effect of explaining a large part of the observed dispersion in the residuals.  14 

 15 

Table 2 16 

 17 

From Table 2 it follows that the aleatory part is dominating in the total variability, especially for 18 

higher magnitude ranges, thus limiting the importance of the epistemic uncertainty due to the choice of 19 

GMPEs. It should also be noted that the variability of Vs,30 within the whole soil class B is implicitly 20 

incorporated into the σepi part, due to the way the representative GMM has been built (see Section 3). 21 

However, the distinction between epistemic uncertainty and aleatory variability may be adjusted 22 

depending on whether the developed model accounts for inter-event variability (Atkinson and Adams, 23 

2013), as discussed in the following sub-section. 24 

4.2. Intra- and inter-event aleatory variability components 25 

In order to obtain a fully characterised probabilistic model, the aleatory variability, 𝜎𝑎𝑙𝑒, has to be 26 

further decomposed into its intra- and inter-event components, which are usually represented by the 27 

standard deviations 𝜎𝑖𝑛𝑡𝑟𝑎 and 𝜎𝑖𝑛𝑡𝑒𝑟. Extracting these two terms is not practical for the proposed 28 

formulation of the representative GMM suite. However, Atkinson (2011) suggests to empirically 29 

quantify the aleatory variability (intra-event term only) by simply evaluating the average data scatter 30 

around a trend line, using the following procedure: 31 

 Definition of some discrete distance bins (e.g. five logarithmically spaced bins across the 1-32 

200km range). 33 
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 Selection of earthquake events containing a large number of relevant ground-motion records 1 

(e.g., Atkinson (2011) recommends at least 30 observations per event), for which a sufficient 2 

number of observations in a given distance bin is available (e.g., at least 10). 3 

 For each event and distance bin, define a simple linear regression of the ground-motion 4 

parameter versus distance. The actual equation of this regression is not important, since the 5 

objective is not to come up with a GMM but to set up a baseline for the computation of data 6 

scatter. 7 

 Evaluation of the standard deviation of the residuals from the regression. This standard 8 

deviation can then be seen as the aleatory variability of the random scatter of the ground-9 

motion parameters. 10 

This empirically-based method only quantifies the intra-event component, 𝜎𝑖𝑛𝑡𝑟𝑎, of the aleatory 11 

variability, 𝜎𝑎𝑙𝑒, because it is obtained from ground-motion distributions within single events 12 

(Atkinson 2011). The approach has been applied to the RESORCE database, although the density of 13 

the accelerometric data in Europe is far from that of North America used in Atkinson (2011). 14 

Therefore, it was not possible to find earthquake events from RESORCE fitting all the criteria 15 

recommended above. It should be also noted that Atkinson (2011) selected ground motions recorded 16 

on any soil class, thanks to the use of a correction factor that accounts for the site amplification. In our 17 

application, only 12 RESORCE events having more than 10 observations on EC8 soil class B have 18 

been selected, as shown in Table 3. 19 

 20 

Table 3 21 

 22 

The limited number of observations per event prevents the use of distance bins, as advocated by 23 

Atkinson (2011), in order to obtain a more accurate regression line, and to limit the effect of the non-24 

linear decrease of the ground-motion values with respect to distance. Despite this data limitation, the 25 

examples in Fig. 3 show an adequate linear trend for applying the proposed approach without distance 26 

bins.  27 

 28 

Fig. 3 29 

 30 

The standard deviations of the residuals from the linear fit of each of the 12 RESORCE selected 31 

events are outlined in Table 3. It has been checked that they are not dependent on magnitude or 32 

distance range, and therefore they may be averaged for each ground-motion parameter considered. 33 

This is summarized in Table 4, where averaged sigma values obtained by applying Atkinson (2011) 34 
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approach are compared with those following the procedure described by equations 2 to 4. Aleatory 1 

variability, 𝜎𝑎𝑙𝑒, in Table 4 has been averaged for all combination of magnitude and distance only for 2 

illustration purposes. Magnitude- and distance-specific values should be used when applying the 3 

representative GMM suite. 4 

 5 

Table 4 6 

 7 

The empirical approach introduced by Atkinson (2011) assumes the inter-event component of 8 

the aleatory variability is epistemic in nature, because of uncertainty in stress drop (source) and 9 

attenuation (path) for each single event. That means aleatory variability includes only the intra-event 10 

component. This argument is especially significant when Monte Carlo approaches are applied for 11 

PSHA (e.g., Musson 1999; Hong and Goda 2006; Assatourians and Atkinson 2013; Atkinson and 12 

Goda 2013; García-Fernández et al. 2018); where ground motion is calculated for each even in a long 13 

time-span synthetic catalogue. The median GMM to be used for each earthquake is selected by 14 

random draw from available models, and then it is perturbed to represent epistemic uncertainty for that 15 

particular event by adding an increment to the median GM as a function of the distance, with random 16 

coefficients depending on the source size (or stress parameter) and the path effects (attenuation). That 17 

way, epistemic uncertainty includes inter-event variability. Douglas (2018a), although not considering 18 

this approach, includes statistical and regional uncertainty (anelastic attenuation, and stress parameter) 19 

as branches of his three-set logic tree for handling epistemic uncertainty. 20 

In this application to European GMPEs, the epistemic uncertainty is obtained by the differences 21 

between the individual median GMPEs selected, as explained in Section 3 above. Atkinson and 22 

Adams (2013) include, in addition, a delta factor function of distance that increases epistemic 23 

uncertainty to account for the binned observations. The limitation on data availability in the European-24 

Mediterranean region, as compared to North America, prevents calculating a similar delta factor; 25 

therefore, the inter-event component would not be fully captured into the estimated epistemic 26 

uncertainty. However, values in Table 4 seem to be consistent, in the sense that the estimated averaged 27 

aleatory variability, 𝜎𝑎𝑙𝑒, remains larger than the intra-event component 𝜎𝑖𝑛𝑡𝑟𝑎 that has been calculated 28 

with limited data using Aktinson (2011) method. This result shows that, provided more well-recorded 29 

earthquakes become available, a more robust model of aleatory uncertainties (i.e., including a 30 

decomposition of the intra- and inter-event terms) might be derived for the representative GMM suite. 31 

Finally, the slight difference between 𝜎𝑡𝑜𝑡 and 𝜎𝑎𝑙𝑒 in Table 4 confirms the limited impact of 32 

epistemic uncertainties in the present case, while a large part of the variability remains unexplained by 33 

the representative GMM suite. Therefore, we propose to include the inter-event component, 𝜎𝑖𝑛𝑡𝑒𝑟, of 34 

the aleatory variability as part of the epistemic bounds in our model, following the framework initially 35 
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introduced by Atkinson (2011) and Atkinson and Adams (2013). The 𝜎𝑖𝑛𝑡𝑒𝑟 component may be 1 

estimated by considering the quadratic combination of all identified sources of uncertainty: 2 

𝜎𝑡𝑜𝑡
2   = 𝜎𝑖𝑛𝑡𝑟𝑎

2 + 𝜎𝑖𝑛𝑡𝑒𝑟
2 + 𝜎𝑒𝑝𝑖

2        (5) 3 

Because we focus here on a purely data-driven approach in order to get a first estimate of the 4 

uncertainty terms of the proposed GMM suite, the following assumptions are used to compute 𝜎𝑖𝑛𝑡𝑒𝑟: 5 

 Both terms 𝜎𝑖𝑛𝑡𝑟𝑎
  and 𝜎𝑡𝑜𝑡

  are assumed to be constant over all combinations of magnitude and 6 

distance, and are estimated from the averaged values in Table 4. 7 

 The term 𝜎𝑒𝑝𝑖
  varies with magnitude and distance (see Equation 1). 8 

 9 

Fig. 4 10 

 11 

However, once the 𝜎𝑖𝑛𝑡𝑒𝑟 component has been estimated, the fully characterised probabilistic 12 

GMM suite is built by considering the dependency over magnitude and distance, i.e., the nine 13 

magnitude-distance bins in Table 2. This limitation is mostly due to the lack of data points to support a 14 

robust statistical estimation over a wide range of magnitude-distance combinations. The resulting 15 

GMM suite, along with a fully characterised probabilistic model, is then represented in Fig. 4, for 16 

selected magnitudes and GM parameters.  17 

 18 

5. Validation 19 

The potential bias of the proposed Pan-European representative GMM suite is evaluated by comparing 20 

the PGA and SA(T) predictions of the GMM suite to ground-motion values extracted from the latest 21 

version (Lanzano et al. 2019) of the ESM-Engineering Strong-Motion database (Luzi et al. 2016), 22 

which contains the most up-to-date accelerometric data from earthquakes mainly recorded in the 23 

European-Mediterranean and the Middle-East regions. This database has updated RESORCE with 24 

additional records up to 2016 and a new manual processing following Paolucci et al. (2011). Using the 25 

ESM strong-motion flat-file 2018 (Lanzano et al. 2019), 2,904 new ground-motion records have been 26 

extracted, for the time period 2012-2016, following the criteria presented in Section 2 (i.e., magnitude 27 

between 4.0 and 7.0, normal or strike-slip faulting mechanisms, focal depth less than 20 km, Joyner-28 

Boore distance between 1 and 200 km, and EC8 ground type B). The short time interval of this 29 

selection (around 4 years), makes this ESM sub-set heavily biased towards small magnitude events 30 

(mostly Mw between 4.0 and 5.0, with the largest one corresponding to Mw 6.8). However, using this 31 

ESM new data for validation, even if limited, should provide a more objective way for assessing the 32 

performance of GMMs developed using data from the RESORCE database. 33 
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The ranking approach proposed by Scherbaum et al. (2004), and applied by Drouet et al (2007) for the 1 

selection of GMPEs in the Pyrenean area is used here. It relies on the computation of the residuals Y 2 

and normalised residuals Z, with respect to the selected GMMs: 3 

𝑌 =  log10 𝑦𝑜𝑏𝑠 − log10 𝑦𝑔𝑚𝑚           (6) 4 

𝑍 =  
log10 𝑦𝑜𝑏𝑠−log10 𝑦𝑔𝑚𝑚

𝜎𝑔𝑚𝑚
            (7) 5 

As suggested by Scherbaum et al. (2004) and Drouet et al. (2007), three statistical measures are 6 

estimated for both Y and Z, namely the median, the mean and the standard deviation. Additionally, the 7 

likelihood parameter LHZ of the normalized residual Z provides a reliable measure of the goodness-of-8 

fit of a model, as it gives the likelihood of actually observing the given value, as a function of the 9 

underlying model (Scherbaum et al. 2004). The proposed likelihood parameter is expressed as follows: 10 

𝐿𝐻𝑍 =  1 − 𝑒𝑟𝑓 (
|𝑍|

√2
)            (8) 11 

where erf is the error function. Using this formulation, LHZ tends towards 1 as the residual Z tends 12 

towards 0, and decreases with increasing Z.  13 

Here we will follow the original scheme by Scherbaum et al. (2004) applying those metrics to the 14 

normalised residuals Z. In order to assess qualitatively the ability of the GMMs to match the 15 

observations dataset, the ranking system of Table 5 (Scherbaum et al. 2004) is applied. It includes 16 

three categories (A, B, C), each one requiring fulfilling the specified criteria for the four defined 17 

metrics. A model not meeting any of the criteria is classified unacceptable (class D). 18 

 19 

Table 5 20 

 21 

Values of the four performance metrics and corresponding ranking, as applied to the ESM sub-set for 22 

the different GMMs (only normal faulting version of BI14 and DE14 are included because strike-slip 23 

versions provide very similar values) and selected ground-motion parameters, are shown in Table 6, 24 

and plotted in Figure 5. 25 

 26 

Table 6 27 

 28 

Fig. 5 29 

 30 
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The developed GMM suite performs significantly well in appropriately representing observed ground 1 

motions from the ESM sub-set, when compared to the overall prediction capability of the selected 2 

GMMs (Figure 5). It also appears that the considered GMMs tend to provide a poor fit when 3 

predicting short-period parameters (e.g., PGA, SA at 0.1s and 0.2s). This effect may be due to the 4 

inadequacy of the RESORCE models to deal with low magnitude scaling at short periods. However, 5 

another comparison has been carried out with only a subset of ESM database (i.e., only events with 6 

Mw 4.5 and greater): the outcomes are very similar with the ones in Table 5 and Fig. 6, thus preventing 7 

us from concluding on this issue. 8 

Three of the GMMs (AK14, BI14 and the developed GMM suite) stand out in the ranking of Table 6 9 

to model the ESM-subset for the seven ground-motion parameters considered. Comparing the 10 

respective values of the four performance metrics (Figure 6), the new GMM suite shows, in general, a 11 

better and more stable performance predicting the ground motion observations. 12 

 13 

Fig. 6 14 

 15 

6. Conclusions 16 

This paper has demonstrated the application to a Europe wide context of the representative GMM suite 17 

approach (Atkinson 2011; Atkinson and Adams 2013; Atkinson et al 2014), which is considered a 18 

much better approach in ground-motion characterization analysis because of its flexibility and 19 

transparency (Atkinson et al 2014). Six models among the recently developed GMPEs derived from 20 

the RESORCE strong-motion database (Akkar et al 2014a; Douglas 2014) have been selected in order 21 

to develop a Pan-European GMM suite for EC8 soil class B and normal or strike-slip faulting style, 22 

built upon three representative models (lower, central and upper) that cover the VS30 interval defining 23 

EC8 soil class B.  24 

While epistemic uncertainty due to the availability of multiple GMMs is able to be properly 25 

addressed by this approach, some issues remain when quantifying the associated aleatory variability. 26 

An appealing alternative is the fully data-driven procedure suggested by Atkinson (2011) to 27 

empirically assess the aleatory variability, without double-counting uncertainty sources that may 28 

already be contained in the epistemic component. However, the relative scarcity of recorded ground-29 

motion data in Europe prevents such empirical models to be accurately constrained. Therefore, a 30 

modified data-driven approach has been proposed, based on the residuals of the RESORCE ground-31 

motion observations with respect to the central model of the developed Pan-European GMM suite. 32 

Results show that aleatory variability dominates the total variability; therefore, to obtain a fully 33 

characterized probabilistic model the aleatory variability is further decomposed into intra- and inter-34 

event components, following Atkinson (2011) empirical approach that considers the epistemic nature 35 
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of the inter-event component. Based on this assumption, the computed inter-event component is 1 

included as part of the epistemic bounds of the developed GMM suite.  2 

The new GMM suite is validated using a sub-set of the recent ESM-Engineering Strong-Motion 3 

database (Luzi et al. 2016, Lanzano et al. 2019), and compared to the selected GMPEs used in its 4 

development by applying the categorization scheme proposed by Scherbaum et al. (2004). The 5 

developed GMM suite shows its appropriateness with a better and more stable performance when it is 6 

compared to the different models and their capability for predicting ESM sub-set observed ground 7 

motions. 8 

Because the Pan-European representative GMM suite is generated for discrete magnitude-9 

distance combinations, without any functional form, it has the ability to smooth out the local 10 

discrepancies (e.g. overestimation or underestimation) that may appear when only a single GMM is 11 

considered. The novel way of obtaining the three representative models (lower, central and upper) of 12 

the GMM suite allows for considering the additional epistemic uncertainty arising for the Vs30 of the 13 

ground type. This GMM suite can be directly applied in PSHA codes handling GMMs without a given 14 

functional form, like e.g., EqHaz (Assatourians and Atkinson 2013); being especially suited for Monte 15 

Carlo-based software. Additionally, a weighting scheme can be introduced in PSHA applications to 16 

favour average (central model), low (upper model) or high (lower model) Vs30 values. By limiting the 17 

sampling space to three GMMs (upper, central, lower), the developed GMM suite allows for an easier 18 

and efficient handling of epistemic uncertainty, as compared to the widely applied logic tree approach. 19 

This results in greatly reducing both complexity of the modelling and computation efforts. Finally, the 20 

full performance of the Pan-European representative GMM suite will be further tested within a 21 

probabilistic loss assessment framework, comparing the results with a standard implementation 22 

through a GMM logic tree. 23 
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TABLE CAPTIONS 1 

Table 1 Main characteristics of the selected GMPEs: AK14 (Akkar et al. 2014b), BI14 (Bindi et al. 2 

2014), BO14 (Bora et al. 2014) and (DE14 (Derras et al. 2014). 3 

Table 2 Total variability, 𝜎𝑡𝑜𝑡, with respect to the central model of the GMM suite, and aleatory 4 

variability, 𝜎𝑎𝑙𝑒, for different ground motion parameters, averaged over selected magnitude and 5 

distance bins. Nb refers to the number of data values in each magnitude-distance bin. 6 

Table 3 Selected earthquakes for the computation of intra-event variability using the approach by 7 

Atkinson (2011). ‘No. Obs.’ is the number of relevant records that have been retrieved from the 8 

RESORCE database, for each event. ‘Sigma value’ is the standard deviation of the residuals with 9 

respect to the linear regression in Fig. 4. 10 

Table 4 Comparison of the estimated variability models for the representative GMM suite (averaged 11 

values). 12 

Table 5 Ranking criteria with respect to the four performance metrics, according to Scherbaum et al. 13 

(2004). 14 

Table 6 Values of the four performance metrics and ranking applied to the 2012-2016 subset of the 15 

ESM strong-motion flat-file 2018 (Lanzano et al. 2019), for the different GMMs and the ground-16 

motion parameters considered.  17 

 18 

19 
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FIGURE CAPTIONS 1 

Fig. 1 Selected GMPEs with Vs,30 = 580 m/s, Mw values of 5.0 and 6.0, and ground-motion 2 

parameters PGA, SA[0.2s] and SA[2.0s] (solid line = normal faulting, dashed line = strike-slip 3 

faulting). The AK14, BI14, BO14 and DE14 models (see Table 1) are represented respectively by the 4 

blue, green, red and cyan curves (dotted green and cyan curves correspond to strike-slip version of 5 

BI14 and DE14, respectively). The green dots represent records from the RESORCE database for a 6 

central Vs,30 interval of EC8 ground type B of [500;660[ m/s. The black dots and the vertical black 7 

lines correspond to the geometric mean and associated standard deviation of the RESORCE data over 8 

eight selected distance bins with a 50% overlap (see text for details). 9 

Fig. 2 Pan-European representative GMM suite. Central model (black crosses), and Upper and Lower 10 

models (red crosses). Colour dots represent records from the RESORCE database for four Vs,30 11 

intervals of EC8 ground type B (i.e., red dots for [360;500[ m/s, green dots for [500;660[ m/s, blue 12 

dots for [660;800] m/s, and open circles for unspecified Vs,30). Black dots and the vertical black lines 13 

correspond to the geometric mean and associated standard deviation of the RESORCE data over eight 14 

selected distance bins with a 50% overlap (see text for details) 15 

Fig. 3 Linear fit (solid lines) of PGA versus distance from some of the earthquakes selected from the 16 

RESORCE database. Diamonds represent records on soil class B with Vs,30 in interval for [360;500[ 17 

m/s, full dots for [500;660[ m/s, crosses for [660;800] m/s, and open circles for unspecified Vs,30. 18 

Fig. 4 Pan-European representative GMM suite. Central model (black crosses). Upper and Lower 19 

models (red crosses). Total variability, 𝜎𝑡𝑜𝑡, (blue dots). ‘Extended’ epistemic uncertainty (green dots), 20 

combining 𝜎𝑖𝑛𝑡𝑒𝑟 and 𝜎𝑒𝑝𝑖
 .(𝑖. 𝑒. , √𝜎𝑖𝑛𝑡𝑒𝑟

2 + 𝜎𝑒𝑝𝑖
2 ) 21 

Fig. 5 Values (colour open circles) of the four performance metrics, mean(Z), median(Z), std(Z) and 22 

median(LHZ) for seven ground-motion parameters and five GMMs (see text for details). The bold blue 23 

open circles correspond to the proposed GMM suite. Solid and dashed lines are included just to joint 24 

values for each GMM. 25 

Fig. 6 Comparison of the four performance metrics values for the three GMMs best classified to 26 

predict observed ground motions from the ESM sub-set, following the ranking scheme by Scherbaum 27 

et al. (2004).  28 
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 AK14 BI14 BO14 DE14 

Mw range 4.0 – 7.6 4.0 – 7.6 4.0 – 7.6 3.6 – 7.6 

Distance range 0 – 200 km 0 – 300 km 0 – 200 km 1 – 547 km 

Distance metric Repi, Rhypo, Rjb Rhypo, Rjb Rjb Rjb 

Site amplification 

model 
Vs,30 

Vs,30 or soil 
class Vs,30 Vs,30 

Style of faulting 
Normal 

Reverse 

Normal 

Reverse 

Strike-slip 

Unknown 

No distinction 
made 

Normal 

Reverse 

Strike-slip 

Model accounting 

for focal depth 
No No No Yes 

GM parameters 

PGA, SA 
[0.05,0.1,0.2,0.3,

0.5,1.0,2.0]s, 
PGV 

PGA, SA 
[0.1,0.2,0.3,0.5,
1.0,2.0]s, PGV 

PGA, SA 
[0.05,0.1,0.2,0.3,

0.5,1.0,2.0]s 

PGA, SA 
[0.05,0.1,0.2,0.3,0.5,

1.0,2.0]s, PGV 

 

Table 1 Click here to access/download;Table;table 1.docx



 Mw bin Rjb bin Nb PGA SA(0.1s) SA(0.2s) SA(0.3s) SA(0.5s) SA(1.0s) SA(2.0s) 

𝝈𝒕𝒐𝒕 [4.0-5.0[ [1;20[ 217 0.370 0.385 0.380 0.365 0.392 0.422 0.473 

 [4.0-5.0[ [20;60[ 233 0.361 0.391 0.380 0.375 0.362 0.380 0.420 

 [4.0-5.0[ [60;200] 89 0.413 0.430 0.420 0.440 0.478 0.502 0.516 

 [5.0-6.0[ [1;20[ 110 0.324 0.341 0.359 0.323 0.329 0.362 0.375 

 [5.0-6.0[ [20;60[ 122 0.285 0.328 0.312 0.298 0.324 0.349 0.363 

 [5.0-6.0[ [60;200] 152 0.326 0.356 0.350 0.324 0.336 0.367 0.417 

 [6.0-7.5] [1;20[ 23 0.223 0.301 0.223 0.267 0.253 0.240 0.281 

 [6.0-7.5] [20;60[ 41 0.242 0.288 0.288 0.246 0.300 0.320 0.391 

 [6.0-7.5] [60;200] 50 0.270 0.30 0.328 0.294 0.317 0.315 0.390 

𝝈𝒂𝒍𝒆 [4.0-5.0[ [1;20[ 217 0.360 0.366 0.359 0.349 0.376 0.415 0.467 

 [4.0-5.0[ [20;60[ 233 0.355 0.384 0.374 0.362 0.341 0.369 0.416 

 [4.0-5.0[ [60;200] 89 0.398 0.414 0.406 0.427 0.460 0.486 0.504 

 [5.0-6.0[ [1;20[ 110 0.319 0.330 0.351 0.320 0.322 0.352 0.367 

 [5.0-6.0[ [20;60[ 122 0.281 0.322 0.307 0.294 0.318 0.345 0.361 

 [5.0-6.0[ [60;200] 152 0.313 0.343 0.338 0.307 0.319 0.357 0.411 

 [6.0-7.5] [1;20[ 23 0.218 0.296 0.215 0.254 0.226 0.206 0.257 

 [6.0-7.5] [20;60[ 41 0.237 0.282 0.283 0.240 0.292 0.316 0.387 

 [6.0-7.5] [60;200] 50 0.245 0.279 0.305 0.256 0.280 0.291 0.375 
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Earthquake Date Mw No. Obs. 
Sigma value 

PGA SA(0.2s) SA(2.0s) 

Irpinia 23/11/1980 6.9 11 0.220 0.275 0.258 

- (Italy) 16/01/1981 5.2 10 0.305 0.330 0.206 

Kocaeli 17/08/1999 7.6 12 0.145 0.190 0.328 

Ano Liosia 07/09/1999 6.0 10 0.142 0.147 0.136 

Izmit (AS) 13/09/1999 5.8 14 0.302 0.272 0.338 

Izmit (AS) 11/11/1999 5.6 12 0.309 0.376 0.335 

Duzce 12/11/1999 7.1 12 0.335 0.362 0.229 

L'Aquila 06/04/2009 6.3 16 0.266 0.359 0.278 

L'Aquila (AS) 07/04/2009 5.6 13 0.328 0.364 0.268 

L'Aquila (AS) 08/04/2009 4.1 10 0.195 0.206 0.222 

Gran Sasso 09/04/2009 5.4 14 0.281 0.360 0.223 

Simav 19/05/2011 5.9 12 0.192 0.203 0.520 
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Method Sigma PGA SA(0.2s) SA(2.0s) Source 

Atkinson (2011) 𝜎𝑖𝑛𝑡𝑟𝑎 0.252 0.287 0.278 Table 3 

This paper 
𝜎𝑡𝑜𝑡 0.337 0.359 0.422 

Table 2 
𝜎𝑎𝑙𝑒 0.328 0.348 0.415 
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Rank Mean Z Median Z σZ Median LHz 

A < 0.25 < 0.25 < 1.125 > 0.4 

B < 0.50 < 0.50 < 1.250 > 0.3 

C < 0.75 < 0.75 < 1.500 > 0.2 

D UNACCEPTABLE 
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GMM Metric PGA SA(0.1) SA(0.2) SA(0.3) SA(0.5) SA(1.0) SA(2.0) 

GMM suite Mean Z 0.527 0.585 0.574 0.305 0.166 0.030 0.164 

 Median Z 0.341 0.408 0.438 0.232 0.132 0.039 0.137 

 σZ 1.227 1.289 1.193 0.896 0.972 0.829 0.720 

 Median LHz 0.409 0.388 0.418 0.545 0.514 0.580 0.627 

 Rank C C C B A A A 

AK14 Mean Z 0.692 0.625 0.531 0.419 0.239 0.010 0.180 

 Median Z 0.527 0.446 0.421 0.359 0.232 0.016 0.144 

 σZ 1.307 1.374 1.239 1.148 1.038 0.913 0.841 

 Median LHz 0.364 0.346 0.379 0.404 0.491 0.551 0.575 

 Rank C C C B A A A 

BI14 Mean Z 0.540 0.616 0.564 0.295 0.005 0.091 0.182 

 Median Z 0.366 0.422 0.396 0.208 0.022 0.093 0.166 

 σZ 1.280 1.346 1.266 1.184 1.055 0.901 0.820 

 Median LHz 0.394 0.368 0.394 0.428 0.480 0.549 0.580 

 Rank C C C B A A A 

BO14 Mean Z 0.512 0.581 0.731 0.688 0.624 0.305 0.040 

 Median Z 0.319 0.458 0.613 0.612 0.591 0.297 0.037 

 σZ 0.873 1.049 1.124 1.079 0.962 0.807 0.641 

 Median LHz 0.480 0.465 0.408 0.421 0.443 0.556 0.671 

 Rank B C C C C B A 

DE14 Mean Z 0.666 0.735 0.724 0.393 0.157 0.050 0.172 

 Median Z 0.338 0.421 0.479 0.224 0.046 0.101 0.173 

 σZ 1.614 1.676 1.520 1.423 1.249 1.073 0.911 

 Median LHz 0.340 0.315 0.349 0.371 0.411 0.471 0.532 

 Rank D D D C B A A 
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