
On the Pragmatic Equivalence between
Representing Data and Phenomena

James Nguyen*y

Van Fraassen argues that data provide the target-end structures required by structuralist
accounts of scientific representation. But models represent phenomena not data. Van
Fraassen agrees but argues that there is no pragmatic difference between taking a scientific
model to accurately represent a physical system and accurately represent data extracted
from it. In this article I reconstruct his argument and show that it turns on the false premise
that the pragmatic content of acts of representation include doxastic commitments.

1. Introduction. Models are important units of science, and one of their
primary roles is to represent phenomena. This much is uncontroversial. How
they do so, and not unrelatedly, how they do so accurately, is not. One popu-
lar suggestion is to take models to be mathematical structures and appeal to
a morphism between models and their target systems as constituting, at least
in part, the representation relation between the two.1 An alternative sug-
gestion is to focus on accurate representation and appeal to such morphisms
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1. There are different ways of cashing out the formal details of this suggestion. Some
take mathematical structures to be set theoretic ðSuppes 1960Þ. Others prefer state-spaces
ðvan Fraassen 1980Þ or partial structures ðFrench and Ladyman 1999; Bueno and French
2011Þ. The particular morphism appealed to also varies. Isomorphism ðSuppes 1960Þ,
homomorphisms ðMundy 1986Þ, partial isomorphisms or homomorphisms ðaccompa-
nying partial structuresÞ, and isomorphic embeddings ðvan Fraassen 1980, 2008Þ have
all been suggested. The terminology used throughout this article is set theoretic, but the
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as establishing this instead. But target systems are physical phenomena and
thus are not straightforwardly the kind of things that can enter into morph-
isms.2 So the structuralist of either stripe is required to provide an account of
where the target-end structures come from.
One suggestion is that data models supply them. But as van Fraassen

ð2008Þ notes, scientific models ultimately represent—and by implication,
accurately or inaccurately represent—phenomena, not data. His response is
to argue that, for a particular individual in a given context, there is no prag-
matic difference between accurately representing the two. When using data
to locate a target system in the logical space of a scientific model, a model
user cannot doubt that the model accurately represents the target while grant-
ing that it accurately represents the data, on pain of a pragmatic contradiction.
This contradiction is akin to Moore’s paradox, stated in terms of represen-
tation rather than assertion. But the argument requires that the act of using a
data model to locate the target system in logical space induces certain prag-
matic commitments. I will argue that this is false, so the argument is unsound.
The structure of this article is as follows. In section 2 I distinguish between

two different structuralist claims. Model-target morphisms may be invoked
to establish that models represent their targets or that they represent them
accurately. I consider whether data supply the target-end structures required
by either claim. I point out that since data and phenomena are distinct, this
poses a problem for the structuralist. In section 3 I reconstruct van Fraassen’s
solution: pragmatically, in a given context, for a particular individual, there
is no difference between accurately representing the two. This reconstruc-
tion requires significant clarification regarding where van Fraassen’s argu-
ment concerns representation simpliciter and where it concerns accurate
representation. In section 4 I make explicit how the argument requires that
acts of representation induce pragmatic commitments and demonstrate this
is false. I consider and rebut possible responses to my concerns and argue
that van Fraassen’s apparent focus on providing an account of how models
represent accurately prejudges the more fundamental question: how do they
represent in the first place?

2. Representation, Accurate Representation, and Data. The distinction
between accurate representation and representation simpliciter has been ex-
plicit in the literature since at least Suárez ð2003Þ. Models can misrepresent
their targets, by attributing to them features they do not have, but still rep-
resent them. The history of science provides numerous examples. Despite
the efforts to carefully distinguish between philosophical accounts of sci-

2. Throughout this article I use the terms ‘target systems’ and ‘target phenomena’ in-
terchangeably, with no suggestion that as ‘systems’ they are thereby structured.

same points could be made in other languages ði.e., category theoryÞ. I use ‘morphism’ to
remain neutral between the invoked structure-preserving mappings.
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entific representation and accurate representation, the temptation to blur the
two remains, especially in discussions of the structuralist position. Critics
have typically taken structuralists to be committed to the claim that model-
phenomena morphisms constitute, at least in part, representational relation-
ships ðSuárez 2003; Frigg 2006Þ. But others have interpreted structuralists
as claiming that they play a role in establishing representational accuracy
ðContessa 2011Þ.3 Furthermore, it is plausible that they are supposed help ad-
dress both notions. Muller ð2011Þ suggests choosing tailor-made morphisms
on a case-by-case basis, where a weaker morphism establishes the represen-
tational relationship and a stronger one establishes representational accuracy.
Similar suggestions have been made by advocates of the partial isomorphism
approach ðBueno and French 2011Þ. Van Fraassen’s argument for the prag-
matic equivalence between taking amodel to accurately represent phenomena
and data is explicitly couched in terms that concern accuracy ðor in line with
his constructive empiricism, accurate representation of observable phenom-
enaÞ: ‘empirical adequacy’, ‘fit’, ‘match’, and so on. But as discussed below,
his argument makes use of both types of representational relationship, and
clarifying what he is concerned with, and where, is an important and often
nontrivial task.
All structuralists are faced with the problem that morphisms, by defini-

tion, only hold between mathematical objects. And many target systems,
animal populations, celestial bodies, and so on, are not structures, at least in
any obviousway. Set-theoretic structures are abstract,mathematical, entities.
Targets are physical. So the onus is on the structuralist to provide an account
of where to find the structure at the target end of the morphism. One sug-
gestion is that targets instantiate structures in the sense that individuals in a
system can be collected into a domain, and the physical relations in the sys-
tem provide extensional relations defined over it. I do not discuss this sug-
gestion here, beyond noting that van Fraassen himself describes it as the
“‘dormative virtue’ response ½which is not� only . . . merely verbal, but . . .
also hijacks a term frommathematics for unwarranted use elsewhere” ð2010,
549Þ.
An alternative is to appeal to data models as supplying the requisite target-

end structures. This approach originated in Suppes ð1962Þ and is found in
van Fraassen’s earlier work, but van Fraassen ð2008Þ provides the most fully
developed account of the role of data in the structuralist tradition and as such
is my primary interest here.

3. Even once the role played by morphisms is fixed, the extent of that role is conten-
tious. Some attempt to reduce representation to model-target morphisms ðFrench 2003,
albeit with caveatsÞ. Others, including van Fraassen, are happy to adopt a nonreductive
strategy and additionally appeal to the intentions of model users. Throughout this article
I use the term ‘structuralist’ to refer to any account that takes a model-target morphism to
be at least a necessary condition on either representation or accurate representation.
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What are datamodels? Experimentalmeasuring processes gather raw data.
These are then cleaned ðwith anomalous data rejected andmeasurement error
taken into accountÞ and usually idealized ðe.g., discrete data points may be
replaced by a continuous functionÞ. Often, although not always, the result is
a smooth curve through the data points that satisfies certain theoretical desid-
erata.4 These resulting data models can be treated as set-theoretic structures.
Assuming that the data points are numeric, the smooth curve is a function that
can be treated as a relation defined overR, orRn, or intervals thereof.5

Thus, if data models are invoked as supplying target-end structures, then
the structuralist can conclude that a scientific model represents, or accu-
rately represents, a data model only if the two are appropriately morphic.
But the following points should make us suspicious whether this suffices as
an account of scientific representation:

1. Phenomena ≠ Data: They are not the same. As van Fraassen puts
it: “phenomena are actual objects, events, and processes, while ½data
models� are the products of our independent intellectual activity”
ð2008, 259Þ. That a scientific model represents data does not straight-
forwardly establish that it represents the phenomenon from which the
data were gathered.

2. Loss of Reality: Models ðultimately at leastÞ represent phenomena.
And by implication, models ðultimately at leastÞ accurately or inac-
curately represent phenomena. This does not preclude data being rep-
resented, or accurately represented, it just requires that phenomena are
the ultimate targets of scientific representation.

These points are not new. Bogen andWoodward ð1988Þ introduced the data-
phenomena distinction, where the latter term is liberally interpreted as re-
ferring to objects, features of objects, events, processes, mechanisms, and so
on. Their example of the discovery of weak neutral currents makes explicit
that data ðe.g., bubble chamber photographs or a data model extracted from
themÞ and phenomena ðinteractions between neutrinos and bosonsÞ should
not be conflated. This is particularly pressing when we focus on representa-

4. See Harris ð2003Þ and van Fraassen ð2008, 166–68Þ, for further elaboration on this
process. Van Fraassen’s discussion throws up a terminological issue that needs regi-
menting to avoid confusion. Throughout this article I use ‘data model’ rather than van
Fraassen’s ‘surfacemodel’ to refer to the end result of the cleaning and idealizing process.
I also use ‘scientific model’ in place of van Fraassen’s ‘theoretical model’.

5. The example of numerical data is illustrative. As van Fraassen notes, the process of
creating data models is not restricted to ‘number assigning’, and the resulting structures
do not have to have R as their domain. For example, a measurement procedure may
only provide an ordinal ranking and therefore deliver a different kind of structure ð158–
60Þ. This has no bearing on the discussion below.
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tion simpliciter: our best theory of elementary particles, the so-called stan-
dard model, is about particles and their interactions, not bubble chamber
photographs. But the concern remains when transposed into the context of
accurate representation. If it is phenomena that are ultimately represented
by our scientific models, then it is those that are accurately or inaccurately
represented. Morphisms between scientific models and data can provide ev-
idence for whether this is the case, but the relation of accurate representation
is ultimately directed at phenomena.
One could argue that it is data, not phenomena, that are represented ðin

either senseÞ. But then Loss of Reality looms. Muller, in discussing Suppes’s
use of data models, pithily states a version of the objection as follows: “The
best one could say is that a data structure D seems to act as simulacrum of
the concrete actual beingB. . . . But this is not good enough. We don’t want
simulacra. We want the real thing. Come on” ð2011, 98Þ. Van Fraassen is
acutely aware of this ðhe coined the phrase ‘Loss of Reality’; 2008, 258Þ.
He states the concern as follows: “Oh, so you say that the only ‘matching’ is
between data models and theoretical ½scientific� models. Hence the theory
does not confront the observable phenomena, those things, events, and pro-
cesses out there, but only certain representations ½i.e., data models� of them”
ð258Þ. And he claims that “an empiricist account of what the sciences are
all about must absolutely answer this objection” ð258Þ.6 Without an answer,
the structural empiricist is left in the uncomfortable position, whereby it is
data, the ‘products of our independent intellectual activity’, not phenomena,
that are the ultimate targets of scientific models.
His phrasing in the quotation above suggests that he is concerned with the

question of accurate representation rather than representation simpliciter.
But this is not straightforward ðcf. Thomson-Jones 2011Þ. Van Fraassen starts
the discussion with the claim that the fundamental question to be answered is
“How can an abstract entity, such as a mathematical structure, represent
something that is not abstract, something in nature?” ð2008, 240Þ. But he
then shifts to the question of how a structure can do so accurately: “The
question how an abstract structure can represent something . . . is just this:
how, or in what sense, can such an abstract entity as a model ‘save’ or fail to
‘save’ this concrete phenomenon?” ð245Þ. And then, when presenting his
solution, he couches it in terms of ‘fit’, ‘match’, ‘empirical adequacy’ and
so on, and explicitly states: “If a model were offered to represent the phe-
nomenon, that structural relation would determine whether the model was
adequate with respect to its purpose” ð249–50, emphasis addedÞ.
As discussed above, regardless of whether he is concerned with accurate

representation, or representation simpliciter, answering Loss of Reality re-
quires an account of howmorphisms between models and data establish that

6. See Brading and Landry ð2006Þ for another discussion of this objection.
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phenomena are the ultimate targets of scientific models. For the purposes of
this article, I take van Fraassen’s solution, stated in terms of accurate rep-
resentation, at its word. I interpret his argument as an attempt to establish the
pragmatic equivalence between taking a scientific model to accurately rep-
resent a phenomenon and accurately represent ðin virtue of amorphismÞ data
extracted from it. But his argument uses, and at times equivocates between,
both representational notions, and, as I argue in section 4, this equivocation
is at least partly to blame for its eventual failure.

3. Van Fraassen’s Argument. Van Fraassen’s strategy for dealing with
Loss of Reality is to diffuse it with what he describes as a “Wittgensteinian
move” ð2008, 254Þ by invoking pragmatic features in the contexts of using
scientific models. He claims that despite the data-phenomena distinction, for
a given scientist, in a given context, there is no difference between accu-
rately representing the two. That accurately representing data is the same
as accurately representing the system that provided it is claimed to be a
“pragmatic tautology . . . ½something that is� . . . logically contingent but
undeniable nonetheless” ð259Þ. Van Fraassen’s argument for this is one of
the most significant contributions of the book, but it has not received the
attention it deserves. I can only speculate about why this is, but I suspect that
it is in part due to the considerable novelty of many of the central notions
used; in part due to the fact that the argument is spread out throughout the
book, interwoven with substantial broader discussions of representation,
measurement, and empiricism; and in part due to a style of presentation that
is often difficult to penetrate. In fact, the project of extracting a coherent po-
sition from the rich and intricate lines of thought is beset with exegetic chal-
lenges. In this section I first isolate the important notions van Fraassen in-
vokes and then reconstruct his argument. This is a necessary first step in any
critical evaluation of van Fraassen’s developed philosophical position.

3.1. Toolbox

I.Hauptsatz: “There is no representation except in the sense that some things
are used, made, or taken, to represent things as thus or so” ðvan Fraassen
2008, 23Þ. There are two important things to note about this. First, it is clearly
nonreductive, as it invokes the intentions and acts of agents. Second, it in-
volves representation-as, rather than representation-of. Van Fraassen ð16Þ ex-
plicitly refers to Goodman ð1976Þ as the source of the distinction, and follow-
ing them I assume that x is a representation-of y if and only if x denotes y.
Representation-as is stronger: x represents y as thus or so if and only if x de-
notes y and attributes certain features to y. If y has those features, then x
accurately represents y with respect to them. To use one of van Fraassen’s
examples, the proper name ‘Margaret Thatcher’ is a representation-of Mar-
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garet Thatcher, since it denotes her. But a caricature of Margaret Thatcher
also represents her as thus or so; for example, if she is depicted with horns
and a tail, then it represents her as being draconian ð2008, 13–15Þ.

II. Use of Representations: Hauptsatz makes clear that representations only
represent when they are used to do so. But in addition, certain representa-
tions have particular uses, “they are typically produced for a certain use, with
a certain purpose or goal” ðvan Fraassen 2008, 76Þ. Using maps to navigate
provides an illustrative example: “a map is designed to help one get around
in the landscape it depicts” ð76Þ. Throughout this article, I assume that the
analogous use of models is to generate predictions about their target systems.
This is supported by van Fraassen’s analogy between using a map to navi-
gate and using the Aviation Model ðAVNÞ for weather forecasting, that is, to
generate predictions about the weather ð77Þ.

III. Logical Space: Representations are associated with ‘logical spaces’. This
is a very general notion. Examples include PVT space in elementary gas
theory, phase spaces in classical mechanics, and Hilbert spaces in quantum
theory ðvan Fraassen 2008, 164Þ. Locations in PVT space are combinations
of pressure, volume, and temperature. Routes through a phase space are pos-
sible trajectories of an object, and locations in a Hilbert space are possible
quantum states of a system.

IV. Self-Location: A necessary condition on using a map to navigate, or a
model to predict, is that the user self-locate in the logical space provided. A
user “must be in some pertinent sense able to relate him or herself, his or her
current situation, to the representation” ðvan Fraassen 2008, 80Þ. In order to
navigate with a map, the users must be able to locate themselves in the terrain
depicted and associate that location with an area on the map. They distin-
guish a particular map region as representing where they are, they orient the
map to correspond to the direction they are facing, and so on. In doing so
they locate themselves with respect to the map. When it comes to scientific
models, van Fraassen claims: “Suppose now that science gives us a model
which putatively represents the world in full detail. Suppose even we believe
that this is so. Suppose we regard ourselves as knowing that it is so. Then still,
before we can go on to use that model, to make predictions and build bridges,
we must locate ourselves with respect to that model. So apparently we need
to have something in addition to what science has given us here. The extra is
the self-ascription of location” ð83Þ.

It is worth clarifying what ‘self-location’ could mean in the spaces under
consideration. Although suggested by van Fraassen’s cartographic analogy,
I presume that it does not require that the model user locate herself in logical
space. When it comes to measuring the pressure of his tire ð2008, 181Þ, what
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would it mean for van Fraassen to locate himself in PVTspace? Van Fraassen
is 100 psi? A more plausible reading of ‘self-location’ is that the model users
themselves actively locate the target system in logical space. And this pro-
ceeds in two steps. The model user first adopts a certain perspective toward
the target by taking it to be the sort of thing that can be located in the logical
space provided by the model. For example, van Fraassen takes the tire to be
the sort of object that can be located in PVT space. But although this may be
a necessary condition on using a model to generate a prediction, it is not the
condition van Fraassen has in mind when he invokes the cartographic anal-
ogy. It is not enough that a navigator is located somewhere in the terrain de-
picted; we need to delineate a specific point or at least an interval or region of
the space. This is the second step in self-location. When it comes to gener-
ating predictions using scientific models, this is done by inputting the target’s
initial and boundary conditions: “The AVN itself requires input to be run at
all, of course: namely initial conditions and lateral boundary conditions ob-
tained from operational weather centers in the relevant area. . . . The model
presents a space of possible states and their evolution over time—the input
locates the weather forecaster in that space, at the outset of the forecasting
process” ð78Þ. Self-location demands that it is not enough that the system is
in fact thereby located, but the model user must perform an act of location. To
speak loosely, the user distinguishes a region in logical space with the claim
‘that target system is there’.

V. Measurement as Location in Logical Space: “The act of measurement is
an act—performed in accordance with certain operational rules—of locating
an item in logical space” ðvan Fraassen 2008, 165Þ. And these measure-
ments deliver data models. As van Fraassen notes, the location need not be
a point but can be a region ð165Þ. This can, but does not have to, be the re-
sult of measurement imprecision. Even a perfectly precise pressure reading
p determines only a region of PVT space since there are multiple volume-
temperature pairs compatible with p.

VI. Measurement as Representation: Locating a system in logical space in-
volves representing it as thus or so. This form of representation is not estab-
lished by a morphism ðrecall van Fraassen’s worry about invoking a ‘dorma-
tive virtue’Þ. Instead, data models represent because “a measurement is a
physical interaction, set up by agents, in a way that allows them to gather in-
formation. The outcome of a measurement provides a representation of the
entity ðobject, event, processÞmeasured” ð2008, 179–80Þ. A data model rep-
resents the system measured as having the features corresponding to the re-
gion of logical space where it is thereby located. If the system has those fea-
tures, the data model is accurate.
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VII. Pragmatic Tautology: “A pragmatic tautology is a statement which is
logically contingent, but undeniable nevertheless. Similarly, a pragmatic con-
tradiction is a statement that is logically contingent, but cannot be asserted”
ðvan Fraassen 2008, 259Þ. Moore’s paradox—utterances of the form ‘P and
it is not the case that I believe that P’—is a classic example of the latter. They
are logically contingent—their form is anagent i asserting ‘P&¬BiðPÞ’,where
BiðPÞ means i believes that P—and neither conjunct semantically entails the
negation of the other ðif they did, iwould be clairvoyantÞ. Such sentences are
pragmatic contradictions because, in the context of i asserting P, i commits
herself to believing P. It is this commitment that, when combined with the
second conjunct, makes the sentence unassertable. Since van Fraassen’s ac-
count of scientific representation does not involve linguistic representation,
his argument requires generalizing from the assertablity of sentences to cer-
tain acts of representation.

With the above notions in mind, we can now turn to van Fraassen’s ar-
gument for the pragmatic equivalence between taking scientific models to
accurately represent data and phenomena. My primary interest here is not
the relationship between data and phenomena. For my current purposes I
simply grant that data represent the systems from which they were gathered
ðas per VI. Measurement as RepresentationÞ. I further grant that morphisms
play a role in establishingwhether a scientificmodel represents, accurately or
otherwise, data. I am concerned with representational relationships between
scientific models and phenomena. Representation ðaccurate or simpliciterÞ
is not a transitive relation: that a scientific modelM represents a data model
D, which in turn represents a target system T, does not establish that M
represents T ðsee Frigg 2002, 11–12; Suárez 2003, 232–33Þ. And although
accurately representing D might provide us with evidence that M is an ac-
curate representation of T, this does not establish any representational rela-
tionship between M and T. Without this, Loss of Reality remains.

3.2. The Wittgensteinian Move. Van Fraassen’s resolution to Loss of
Reality is to claim that in the context of use there is no difference between
accurately representing data and phenomena. The reasoning, which is found
in van Fraassen ð2008Þ, 254–60, is illustrated with an example. I present it
here before reconstructing the argument that underpins it. The example in
question concerns only observable features of a target system ðthe observable-
unobservable distinction is largely irrelevant in the current contextÞ. Focusing
on observables makes it clear how important the Wittgensteinian move is to
van Fraassen’s project. If he fails to establish the pragmatic equivalence with
respect to observable phenomena, then they fail to feature in his structural-
ist account of scientific representation. The result is a far more radical anti-
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realist position than has been offered previously and is a far more radical
position than I suspect van Fraassen would accept.
He begins by considering a scientist representing the growth of the deer

population in the Princeton region. The scientific model used includes as-
sumptions about environmental features: luscious gardens, the town coun-
cil’s culling instinct, its tendency to experiment with birth-control measures
for the local animal population, and so on. The data modelD is supplied by a
graph constructed from cleaned up data points gathered by field researchers
measuring samples of “values of various parameters over time” ðvan Fraassen
2008, 255Þ. Van Fraassen does not specify which parameters are measured,
but given that the theory concerns the deer population growth, I assume that
the scientist literally counts deer in representative regions throughout the
duration of the experiment. So the graph plots the number of deer against
time. The target system is the deer population itself.
The scientist has a modelM about deer population growth and argues that

M is morphic to D. Van Fraassen imagines a philosophical interlocutor, ar-
guing that although M accurately represents D, the question is whether M
accurately represents the population itself ð2008, 254Þ. The scientist show-
ing the interlocutor that it matches D does not establish this.
Van Fraassen replies that the scientist has “no leeway” to deny that the

model accurately represents the actual population without withdrawing the
graph altogether ð2008, 256Þ. According to him, the scientist should say:

Since this is my representation of the deer population growth, there is for
me no difference between the question whether ½M � fits the graph and the
question whether ½M � fits the deer population growth. If I were to opt for a
denial or even a doubt, though without withdrawing my graph, I would in
effect be offering a reply of form:

• The deer population growth in Princeton is thus or so, but the sen-
tence “The deer population growth in Princeton is thus or so” is not
true, for all I know or believe. ð256Þ

And since a scientist who replied this way would be faced with a Moorean
paradox, the scientist simply cannot doubt that the model accurately repre-
sents the target systemwhile accepting that it accurately represents the graph.
This is supposed to establish the pragmatic equivalence between the two.
That is the example; now let us work out why the scientist might be forced

into such a position. In the rest of this section I reconstruct the argument for
this conclusion in detail. I break it down into three subarguments and show
how the notions laid out in the previous subsection are used. It is important to
notice that the first two arguments—which establish that the scientist must
locate the target in the logical space of the model in order to use it at all and
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that this is done with the graph—are explicitly concerned with representa-
tion simpliciter. This accounts for the scientist’s claim that “this ½data model�
is my representation of the deer population growth” ðvan Fraassen 2008,
256Þ. The third argument then shifts to the question of accurate represen-
tation in an attempt to establish that, for that scientist, there is “no difference
between the questionwhether ½M �fits the graph and the questionwhether ½M �
fits the deer population growth” ð256Þ. The first premise in the third argu-
ment makes it explicit how van Fraassen requires that the necessary act of
representation established in the first two arguments must generate doxastic
commitments ði.e., commit the model user to certain beliefsÞ if the third ar-
gument is to generate the pragmatic equivalence.

A. The argument for self-location:

1. A scientist S is using M to represent a target system T for certain
purposes P. ðPremiseÞ

2. If S is usingM to represent a target T for purposes P, then Smust self-
locate in the logical space, L, provided by the model. ðPremiseÞ

3. S must self-locate in L. ðFrom A2 and A3Þ

M is a model of deer population growth, T is the target deer population, and
the scientist is using M to represent T for the purpose of generating a
prediction ðII. Use of RepresentationsÞ. M provides a logical space L, the
space of possible deer populations and their growth through time ðIII.
Logical SpaceÞ. A necessary condition on using M to generate a prediction
about T is self-location in L ðIV. Self-LocationÞ.

B. The argument from self-location to representation-as:

1. S self-locates in L using a data model D. ðPremise specifying A3Þ
2. If S uses D to self-locate in L, then S uses D to represent T as thus or

so ðΠÞ. ðPremiseÞ
3. S uses D to represent T as Π. ðFrom B2 and B3Þ

Argument A required that the scientist self-locate in L. In van Fraassen’s
example, this is done using a data model D, a graph of the deer population.
When S usesD to represent the target system, S locates T in the logical space
provided by themodel ðV.Measurement as LocationÞ. Locating T in a region
of L requires representing T as having the features corresponding to that re-
gion ðVI. Measurement as RepresentationÞ. Let Π be the conjunction of
predicates that corresponds to that region. This may be a region, not a point,
so these predicates are of the form ‘the magnitude of A is in region Δ’. In this
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instance A is the size of the deer population at particular times, and the size
of Δ corresponds to the potential measurement error induced by the count-
ing process and the generalization from representative samples to the
population as a whole. So when using D to locate T in logical space, the
scientist represents T as Π.

C. The argument from representation-as to the pragmatic tautology:

1. The ðpragmaticÞ content of S using D to represent T as Π includes S
believing that T is Π. ðPremiseÞ

2. If S is able to take M to accurately represent D, but not T, then S is
able to express disbelief in any proposition concerning T that S com-
mits herself to in using D to represent T. ðPremiseÞ

3. If S is able to take M to accurately represent D, but not T, then S is
able to express disbelief that T is Π. ðFrom B3, C1, and C2Þ

4. It is not the case that S is able to express disbelief that T is Π
ðwhile using D to represent TÞ, on pain of pragmatic contradiction.
ðPremiseÞ

5. It is not the case that S is able to take M to accurately represent D
but not T. ðFrom C3 and C4Þ

I return to C1 and C2 in section 4. C3 follows from B3, C1, and C2. S
represents T as Π ðB3Þ and in doing so commits herself to the belief that
T is Π ðC1Þ. This instantiates the universal quantifier in C2 delivering C3.
C4 is the instance of Moore’s paradox that van Fraassen is concerned with.
He claims that if the scientist were to accept that M accurately represents D
but not T, while using D to represent T as Π, S would be offering a reply of
in the form of Moore’s paradox ð‘the deer population is thus or so but . . .’Þ.
TakingD to represent T is analogous to asserting the first conjunct. Denying
thatM accurately represents T is analogous to asserting the second conjunct
ðVII. Pragmatic TautologyÞ. This generates the pragmatic equivalence be-
tween accurately representing T and D ðC5Þ.

4. The Argument Scrutinized. With the argument reconstructed, I now turn
to my critical discussion. My objections are as follows. First, the pragmatics
of representation do not induce doxastic commitments: acts of representa-
tion do not commit the agent doing the representing to any relevant beliefs.
So C1 is false. Second, one option available to van Fraassen is to amend C1
to the claim that S takes D to accurately represent T as Π. But this is not
supported by A and B: it would require that in order to use a scientific model
to generate a prediction, the model user must believe the inputted initial/
boundary conditions. This is false. My final objection concerns C2; I argue
that without an account of scientific representation ðirrespective of accuracyÞ,
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it is difficult to get a grip on what it would mean for S to deny that M accu-
rately represents T.

4.1. The Pragmatics of Representation. The argument has the follow-
ing macrostructure. Models are used to generate predictions about their tar-
gets, and a necessary condition on doing this is that the user locate the target
in the model’s logical space ðAÞ. This is typically done with a data model,
and when S uses a data model to locate a target system T in such a way, S
represents T as Π ðBÞ. So far so good.
C1 is vital for rest of the argument, since it is the move from S represent-

ing T asΠ to pragmatically committing herself to the belief that T isΠ that is
required to generate the pragmatic tautology. Using the data model to rep-
resent the target system is supposed to commit S to the belief that the deer
population is thus or so in a way analogous to asserting the first conjunct of
the Moorean paradox. The denial that that model accurately represents the
deer population then provides the analogy with asserting the second.
But all arguments A and B established is that S represents T as Π. And

acts of representation do not incur the same pragmatic commitments as acts
of assertion. Consider the example of representingMargaret Thatcher as dra-
conian. A caricaturist can represent Thatcher as such without committing her-
self to the belief that Thatcher is draconian. There is a vital pragmatic dif-
ference between acts of representation and assertions. If the caricaturist were
to assert that Margaret Thatcher was draconian, then she would commit her-
self to believing such. But the caricaturist does not do this; she merely rep-
resents Thatcher in such a way. The artist could have been commissioned to
draw the caricature despite having only a vague idea of who Thatcher was
and no knowledge about her time as prime minister. The artist can reasonably
draw the caricature, thereby representing Thatcher as draconian, while at the
same time remaining agnostic about her character. The same point applies to
scientific representation: S’s act of representing the target system in a certain
way does not pragmatically commit her to the belief that the target is that
way.
It pays to be careful here. My claim does not concern whether S actually

believes that T is Π; it is a conceptual point regarding the pragmatics of as-
sertion and representation. Presumably inmost cases, model users do believe
that the initial/boundary conditions used are ðat least approximatelyÞ accu-
rate. But this does not establish that an agent’s act of representing something
in a particular way commits that agent to any particular beliefs in the way
that acts of assertion do in the traditional version of Moore’s paradox. So C1
is false, S’s act of representing a target system as thus or so does not commit
S to the belief that the target is thus or so. Therefore, C is unsound.
A possible response is to invoke a weaker doxastic attitude than belief

as being incurred in representing a target system. And although this attitude
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might not deliver the Moorean paradox van Fraassen discusses, it may de-
liver a closely related pragmatic contradiction that still allows a version of
C to go through. In other contexts, van Fraassen invokes the attitude of ac-
ceptance ðMuller and van Fraassen 2008Þ. Accepting a theory, ormodel, is to
take it to be empirically adequate: to believe its observable content and to
remain agnostic about its unobservable content ðacceptance is typically
applied to scientific models, but here I am considering applying it to dataÞ.
So, what happens if, in using D to represent T as Π, S commits herself to
accepting that T is Π? Well that depends on T and Π. We can distinguish
between the observable and unobservable content of ΠðTÞ, denoted ΠðTÞO
and ΠðTÞU, respectively. If S accepts ΠðTÞ, then S commits herself to be-
lievingΠðTÞO and being agnostic aboutΠðTÞU, that is, not believingΠðTÞU
or ¬ΠðTÞU ðsee 204Þ.
For neither of these types of content will acceptance do the work required.

Regarding observable content, we are back where we started. Accepting that
Thatcher is draconian entails believing that she is. And an agent can represent
her in such a way without taking on this commitment. Regarding unob-
servable content, S accepting ΠðTÞU entails ¬BS½ΠðTÞU� and ¬BS½¬ΠðTÞU�.
But this will not generate a pragmatic contradiction when combined with
the second conjunct of van Fraassen’s instance of Moore’s paradox, that is,
¬BS½ΠðTÞ� ðeven restricted to its unobservable contentÞ.
Invoking acceptance when an agent uses a data model to represent a tar-

get does not work. But the above discussion suggests another available strat-
egy available to van Fraassen. It proceeds in two steps. First, introduce a
weaker act than assertion—call it entertaining—and assume that an act of en-
tertaining that P incurs a commitment to not believing ¬P. Again this alone
does not generate a pragmatic contradiction when combined with ¬BiðPÞ.
But it does when combined with Bið¬PÞ. The second step is to move from a
Moorean paradox of the formP&¬BiðPÞ to one of the formP&Bið¬PÞ ði.e.,
from sentences like ‘it’s raining and I don’t believe it’s raining’ to ‘it’s raining
and I believe that it’s not raining’Þ. C then becomes C0:

1. The ðpragmaticÞ content of S using D to represent T as Π includes S
not believing that it is not the case that T is Π. ðPremiseÞ

2. If S is able to take M to accurately represent D, but not T, then S is
able to express belief in the negation of any proposition concerning T
that S commits herself to in using D to represent T. ðPremiseÞ

3. If S is able to take M to accurately represent D, but not T, then S is
able to express belief that it is not the case that T is Π. ðFrom B3, C10,
and C20Þ

4. It is not the case that S is able to express belief that it is not the case
that T is Π ðwhile using D to represent TÞ, on pain of pragmatic
contradiction. ðPremiseÞ
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5. It is not the case that S is able to takeM to accurately represent D but
not T. ðFrom C30 and C40Þ

Assuming that an act of representation is an act of entertaining, in usingD
to represent T as Π, S pragmatically commits herself to not believing that it
is not the case that T is Π, that is, ¬BS½¬ΠðTÞ� ðC10Þ. Further, assume that S
denying that M accurately represents T while accepting it accurately rep-
resents D induces a commitment to believing that it is not the case that T
is Π ðC20 and C30Þ. This is a stronger commitment than assumed in C,
BS½¬ΠðTÞ� rather than ¬BS½ΠðTÞ�. Under these assumptions, if Swere to take
M to accurately represent D but not T, while at the same time using D to
represent T, she would be offering a reply with the following commitments:
‘It’s not the case that I believe that T isn’t Π and I believe that T isn’t Π’.
This would be a pragmatic contradiction.
C10 requires that in usingD to represent T asΠ, S entertain that T is Π and

therefore commit herself to not believing that T is not Π. However, the
following example shows that even this commitment is not incurred by acts
of representation. Consider a different caricaturist representing Margaret
Thatcher as draconian. This time assume that the Labour Party has com-
missioned the caricature, and the artist is a staunch Conservative. He goes
ahead and draws the picture because he is desperate for the money. In
drawing the caricature, the artist represents Thatcher as draconian, but he
certainly does not believe it. In fact, he explicitly believes that she is not
draconian to the extent that he sings her praises while drawing the carica-
ture. This makes him feel better about drawing something that goes so
strongly against his political beliefs. Now, if, in representing Thatcher as
draconian, the artist commits himself to not believing that she is not, then
his act of drawing her as such while singing the negation would be a
pragmatic contradiction. But although a strange situation, this is not the
case. Acts of representing that P do not incur the pragmatic commitment to
¬Bið¬PÞ. So C10 is false, and C0 unsound.

4.2. From Self-Location to Belief. Despite van Fraassen’s phrasing,
the above concerns suggest that argument C should not start from the
premise that S uses D to represent T as Π but rather S takes D to accurately
represent T as Π. Rather than, “Since ½D� is my representation of the deer
population growth, there is for me no difference between the question
whether ½M� fits ½D� and the question whether ½M� fits the deer population
growth” ðvan Fraassen 2008, 256Þ, the scientist should say: “Since I take
D to be an accurate representation of the deer population growth, there is
for me . . . .”
It is plausible that in taking D to accurately represent T as Π, S commits

herself to believing that T is Π. But since B3 only got us as far as repre-
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sentation, the preceding argument needs amending. Argument A stays as it
is. In order to use a model to generate a prediction, the model user must self-
locate in its logical space. B gets revised to B*:

1. S self-locates in L using a data model D. ðPremise specifying A3Þ
2. If S uses D to self-locate in L, then S takes D to accurately represent

T as Π. ðPremiseÞ
3. S takes D to accurately represent T as Π. ðFrom B2*, B3*Þ

And if this can be established, then a revised version of C, C*, runs as
follows:7

1. The ðpragmaticÞ content of S taking D to accurately represent T as Π
includes S believing that T is Π. ðPremiseÞ

2. If S is able to take M to accurately represent D, but not T, then S is
able to express disbelief in any proposition concerning T that S com-
mits herself to in taking D to accurately represent T. ðPremiseÞ

3. If S is able to take M to accurately represent D, but not T, then S is
able to express disbelief that T is Π. ðFrom B3*, C1*, and C2*Þ

4. It is not the case that S is able to express disbelief that T is Π ðwhile
usingD to represent TÞ, on pain of pragmatic contradiction. ðPremiseÞ

5. It is not the case that S is able to takeM to accurately represent D but
not T. ðFrom C3*, C4*Þ

But although C* seems plausible in isolation, the argument as a whole is
not, for B2* is false.
To seewhy, recall what self-location required. Themodel user had to adopt

a certain perspective toward the target by taking it to be the sort of thing that
could be located in the model’s logical space. She then had to delineate an
area within that space for the target. This was a necessary condition on
generating a prediction using the model. But neither of these steps commits
the agent to any beliefs. In particular, in using a data model to self-locate in
a model’s logical space, the model user does not thereby commit herself to
the data’s accuracy.
Consider again the example of the deer population. In order to use her

model to generate a prediction about its size, the scientist had to input an
initial number of, and fitness values for, the deer. The model allows the sci-
entist to make any number of predictions about the future size of the popu-
lation. If the scientist inputs a lowfitness value—imagineapro-cull council—

7. C* is a revised version of C, not C
0
, but my criticisms can be run against a revised

version of the latter as well.
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then the model will predict a small future population. If the scientist ini-
tially assumes that the deer population is too large for the region to support,
then the model will predict population decline. And so on. The scientist can
use the model to generate numerous predictions about the deer population
regardless of whether she believes these values to be accurate. All of these
inputs serve to delineate the logical space of the model, and some input is
necessary to generate a prediction about the target. But she is not required to
believe them.
Other examples abound. Some are of scientists failing to believe that the

logical space of a model is correct. Ptolemaic models can be used to gen-
erate predictions about planetary orbits without the user believing that those
planets in fact are located anywhere in the model’s logical space. State-of-
the-art global climate models contain variables that are known to describe
model processes with no direct real-world correlates. These variables—in
that context typically referred to as ‘parameters’—are loosely related to sub-
grid processes such as small-scale convection and cloud coverage. How-
ever, their values depend to a large extent on details of the particular com-
putational scheme used, rather than on the state of the world. So we have
here a case in which scientists do not believe that the logical space is cor-
rect ðat least not completely correctÞ and yet they pick values for certain var-
iables in order to make calculations ðBradley et al., forthcomingÞ. And this
is no isolated instance; one can find similar cases, for example, in economics
ðFriedman 1953Þ and population dynamics.8

The problems do not end here. Even supposing that the scientist believes
that the logical space is correct, she still need not believe that the target is
located in the region delineated by the model input. For example, represen-
tative concentration pathways ðRCPsÞ are used to locate the global climate in
the logical space of global climate models. They supply concentration tra-
jectories of the main forcing agents of climate change. One particular path-
way, RCP2.6, requires that we essentially eliminate greenhouse gas emis-
sions immediately, something that no one believes is, orwill be, the case. And
yet RCP2.6 is widely used to generate numerous predictions about the global
climate ðsee Stocker et al. 2013, esp. chap. 12Þ.
The point is that the scientists can use models to generate predictions

about target systems without adopting any epistemological position toward
the model or where the target is located in its logical space. As stressed pre-
viously, this is not to say that scientists do not believe that their data mod-
els and initial/boundary conditions are ðat least approximatelyÞ accurate. My

8. See, e.g., Weisberg and Reisman ð2008Þ who offer individual-based versions of the
Lotka-Volterra model that start from the assumption that individuals move about on a
30 � 30 toroidal lattice.
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claim is that this belief is not a necessary condition on using a model to
generate a prediction. As such it is not part of the pragmatic content of lo-
cating a target in logical space. And this is what van Fraassen requires. So,
although C* may seem plausible in isolation, it rests on B* for its support,
which in turn rests on the false premise B2*. So the argument as a whole is
unsound.

4.3. Representation and Accurate Representation. I hope by now to
have shown that van Fraassen’s argument fails. But there is a further problem
that indicates a more general issue. His argument concerns how scientific
models, as set-theoretic structures, can accurately represent physical phe-
nomena. It is worth stepping back and taking stock of what could be gained
by answering this question. If it is an attempt to establish in virtue of what a
preexisting representational relationship between the model and phenome-
non is accurate, then the question of what establishes representation sim-
pliciter remains unanswered. We still do not have an account of in virtue of
what scientific models represent their targets ðcf. Thomson-Jones 2011Þ.
This is particularly worrying given that it is plausible we should answer
this question before we investigate representational accuracy. This has been
stressed by Suárez ð2004Þ, Contessa ð2007Þ, and Frigg ð2010Þ, who all pro-
vide accounts of scientific representation before commenting on the notions
of representational accuracy that result. They all take the question of repre-
sentation as conceptually prior to accurate representation. Moreover, noth-
ing precludes them from accepting that model-data morphisms provide ev-
idence that model-phenomena representational relationships are accurate.
But if this is all van Fraassen is attempting to establish, then the whole ma-
chinery driving the pragmatic tautology becomes irrelevant.
Van Fraassen himself starts his argument by claiming that the fundamen-

tal question to be answered is “How can an abstract entity, such as a mathe-
matical structure, represent something that is not abstract, something in
nature?” ð2008, 240Þ. But his Wittgensteinian solution does not address this
question. I suspect that van Fraassen would fall back on his Hauptsatz and
claim that representation cannot be analyzed beyond this. But this does not
help when we look at C2 ðor its variantsÞ. In particular, what would it mean
for S to deny that M accurately represents T ? Van Fraassen’s phrasing sug-
gests that in doing so, S would take M to represent T but would do so
inaccurately. In this sense, the deer scientist would be effectively asserting
the second conjunct of van Fraassen’s version of Moore’s paradox ðthe sen-
tence ‘the deer population is thus or so’ is not true for all I know or believeÞ.
But this need not be the question the philosophical interlocutor asks. Rather
than asking whether the scientific model matches the phenomenon, they can
ask whether the model represents it in the first place. This is the fundamental
question after all. How can one use, make, or take a mathematical structure
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to represent something that is not abstract, something in nature?9 And if the
scientist were to doubt thatM represents T in this sense, then C ðand its var-
iantsÞwill again fail irrespective of my previous criticisms. I have established
that acts of representation failed to incur doxastic commitment. But what
about representational denial, as it occurs in C2/C20/C2*? Consider a cari-
cature that depicts David Cameron as draconian. Denying that it represents
Margaret Thatcher does not incur a commitment to believing ðor disbeliev-
ingÞ anything about Thatcher, other than that she is not the one caricatured.
That an agent incurs any doxastic commitments in the denial of representa-
tional relationships is even less plausible than his incurring them when af-
firming them.

5. Conclusion. My concern in this article is van Fraassen’s claim that for
an individual scientist, in a given context, taking a scientific model to ac-
curately represent data and the phenomenon from which the data were ex-
tracted are pragmatically equivalent. I showed that the argument as he states
it relied on the false premise that acts of representation induce doxastic com-
mitments in the way that assertions do. I considered an alternative formu-
lation of the argument that would have led to the appropriate commitments
but argued that it turned on a false premise concerning necessary conditions
on using models to generate predictions. My final objection concerned van
Fraassen’s focus on accurate representation, rather than representation sim-
pliciter. Without a clear account of the latter, one of his central premises, and
indeed the dialectical structure of his argument, fails to get off the ground.
As such, the question of target-end structure remains. Unless van Fraassen

is willing to revisit the idea that these structures are to be found ‘in theworld’,
this leaves him two options. Either give up on a structuralist account of
scientific representation or adopt a radically antirealist positionwhereby only
data are represented. The latter seems implausible. It provides an account of
science according to which models do not represent, accurately or simpli-
citer, what they are typically taken to represent: physical objects, or features
of objects, or events, or processes, or mechanisms. Instead they represent
data, abstract mathematical objects that are the product of our independent
intellectual activity. Such a position is strange when the models concern
unobservables ðe.g., the model used to predict the existence of weak neutral
currents represents bubble chamber photographs, not weak neutral currentsÞ,
but the situation is even more troubling when the model concerns observ-

9. I am not demanding what Suárez ð2015Þ calls a ‘substantive account’ of scientific rep-
resentation. The deflationary ones offered there, although they only pick out ‘platitudes’,
are enough to get a grip on the concept. And if van Fraassen’s Hauptsatz is supposed to
tell us that bare representational intentions of model users suffice to establish scientific
representation, then it falls afoul of the same problems as Callender and Cohen ð2006Þ
ðsee Frigg 2010; Toon 2010Þ.
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ables. To use van Fraassen’s example, if all that are represented are data then
the replicator model represents a graph of Princeton’s deer population, not
actual deer. Since his argument for the pragmatic equivalence fails, this seems
to me like a reductio of the claim that data, rather than phenomena, are the
targets of scientific models.
Although the conclusions of this article are largely negative, I hope it

stimulates further investigation into the pragmatics of scientific representa-
tion and the role of data in scientific representation broadly construed. Both
questions require further research.
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