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Abstract 14 
 15 
Biodiversity continues to decline under the effect of multiple human pressures. We give a brief 16 
overview of the main pressures on biodiversity, before focusing on the two that have a predominant 17 
effect: land-use and climate change. We discuss how interactions between land-use and climate 18 
change in terrestrial systems are likely to have greater impacts than expected when only considering 19 
these pressures in isolation. Understanding biodiversity changes is complicated by the fact that such 20 
changes are likely to be uneven among different geographic regions and species. We review the 21 
evidence for variation in terrestrial biodiversity changes, relating differences among species to key 22 
ecological characteristics, and explaining how disproportionate impacts on certain species are 23 
leading to a spatial homogenisation of ecological communities. Finally, we explain how the overall 24 
losses and homogenisation of biodiversity, and the larger impacts upon certain types of species, are 25 
likely to lead to strong negative consequences for the functioning of ecosystems, and consequently 26 
for human well-being. 27 
 28 

Introduction 29 
 30 
The latest Living Planet Report estimates that vertebrate populations have declined by 60% since 31 
1970 [1]. Despite significant increases in conservation efforts over the last decade, anthropogenic 32 
pressures on biodiversity continue to increase [2]. As a result, few of the latest set of internationally 33 
agreed targets (the Convention on Biological Diversity’s Aichi 2020 targets) are likely to be achieved 34 
[2]. The continued global loss of biodiversity has important consequences for humans. Species 35 
support critical ecosystem functions [3], which in turn provide services essential to human well-36 
being such as water purification, flood protection, disease regulation and pollination [4]. 37 

The present era is characterised by increasingly rapid changes to human and natural systems, 38 
in what has been termed the “Great Acceleration” [5]. Indeed, many scientists argue that we now 39 
exist in a new geological era dominated by human actions ‒ the Anthropocene [6]. Two particularly 40 
significant changes involve the ever-increasing amount of the land surface used for human activities, 41 
and the rising concentration of greenhouse gases in the atmosphere, leading to climate change [5]. 42 
The resulting profound impacts on biodiversity [7,8] are expected to accelerate in the coming 43 
decades [9]. Effects on biodiversity may be greater than previously thought, as the pressures from 44 
land use and climate are likely to interact [10]. Furthermore, evidence suggests that biodiversity 45 
responses to changes in climate and land use are uneven, with variation among species and 46 
geographical regions [9,11,12]. Interactive effects and uneven responses are likely to lead to 47 
unanticipated outcomes for biodiversity, ecosystem functions and, ultimately, human well-being. 48 

Although we rely on biodiversity for supporting key ecosystem functions and services, much of 49 
human progress has come through activities that directly impact ecological communities, in 50 
particular our use of the land to build homes and grow food. Conservation efforts may therefore 51 
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have an immediate cost for human food production [13,14], although the future resilience of natural 52 
and agricultural systems likely depends on biodiversity being maintained [15]. Understanding the 53 
complex synergies and trade-offs between human activities and biodiversity [14], especially in light 54 
of the interactive and uneven responses of biodiversity to human activities, requires a major 55 
advance in the underpinning science. One promising avenue is the development of robust predictive 56 
models that can improve our understanding and drive more informed policy choices [16]. The 57 
development of the United Nations Sustainable Development Goals [17] has emphasised the need to 58 
balance biodiversity conservation and human well-being in national decision-making. 59 

Evidence of the likely impacts of land-use and climate change is accumulating but remains 60 
patchy. Important gaps in our knowledge include: 1) how these two major pressures on biodiversity 61 
may interact; 2) whether the strength of their effects varies among species and locations; and 3) the 62 
consequences of uneven biodiversity changes for ecosystem functioning and human well-being 63 
(Figure 1). In this review, we synthesise the recent literature on land-use and climate impacts, 64 
focusing on broad-scale analyses of terrestrial systems, discussing the mechanisms that may drive 65 
important but under-studied interactions between these two drivers of change. We highlight the 66 
unevenness in biodiversity responses, with certain geographical regions and species being 67 
disproportionately sensitive, leading to a large-scale spatial homogenisation of ecological 68 
communities. Finally, we discuss how the complex and uneven responses of biodiversity to land-use 69 
and climate change are likely to impact the critical ecosystem functions and services on which the 70 
natural world and human well-being rely.  Although we primarily focus on terrestrial systems, both 71 
land-use and climate change are also major threats to freshwater and coastal marine systems [18–72 
20]. 73 
 74 



 75 
Figure 1. Framework relating the effects of land-use, climate change and their interaction to uneven 76 
biodiversity changes, and the effect of such biodiversity changes on ecosystem functioning, services and 77 
human well-being. Evidence suggests that tropical regions, and species that are rare, sedentary, slow-breeding 78 
and specialised on particular habitats and diets are consistently most impacted by land-use and climate change 79 
(see main text). A result of the same species being most impacted by both pressures is that certain species are 80 
doing particularly well in an era of global environmental change (such as pigeons in cities and farmland; A), 81 
while many others are declining (for example, the bramble cay melomys – B – went extinct as a result of 82 
climate-driven habitat loss [21]). Biodiversity changes have a substantial impact on the functioning of 83 
ecosystems, and the provision of ecosystem services on which human well-being relies. Two facets of 84 
biodiversity change that have been highlighted as having an important effect on human well-being are the 85 
large declines in pollinators, such as bumblebees (C), and increasing populations of certain species, such as 86 
flying foxes (D) that carry numerous human diseases. All images used here are published under Creative 87 
Commons licenses and were not altered in any way from the original form. A) Author: Charles J. Sharp; 88 
License: CC Attribution-Share Alike 4.0 International; Source: https://bit.ly/2ssbjWu. B) Author: Ian Bell, EHP, 89 
State of Queensland; License: CC Attribution 3.0 Australia; Attribution: State of Queensland; Source: 90 
https://bit.ly/2W1Czsy. C) Author: Ivar Leidus; License: CC Attribution-Share Alike 4.0 International; Source: 91 
https://bit.ly/2Df72vD. D) Author: Charles J Sharp; License: CC Attribution-ShareAlike 4.0 International; Source: 92 
https://bit.ly/2VYfA1j. 93 
 94 

Pressures on biodiversity 95 
 96 
The most important direct pressures on terrestrial biodiversity are habitat loss and degradation 97 
(driven mainly by human land use), climate change, invasive species, overexploitation, and pollution 98 
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[22,23]. Among these pressures, land-use and climate change are particularly significant. Habitat loss 99 
and degradation have been identified as major threats to a large proportion of IUCN Red List 100 
assessed species [22,23]. In contrast, a much smaller proportion of species are currently considered 101 
to be threatened directly by climate change [22–25]. This is probably because habitat loss is a rapid 102 
and easy-to-assess driver of species loss, whereas climate change is a more cryptic long-term driver 103 
[25]. However, the pressure of climate change on biodiversity is likely to increase rapidly in the 104 
future [9,26,27]. Already, greater declines in mammal and bird abundances have been observed in 105 
areas where mean temperature has increased more rapidly [28].  106 

Land-use change, principally to grow food and provide settlements for humans, has altered 107 
natural landscapes substantially [29]. At a local scale, land-use changes cause reductions of species 108 
richness by around 75%  and of organism abundance by 40% in human-impacted compared to 109 
undisturbed habitats [7,30]. As a result of the high proportion of the land surface that is used by 110 
humans, it is estimated that the average ecological community has lost somewhere between 13% 111 
and 25% of its naturally occurring species [7,31]. Habitat degradation without significant loss of 112 
vegetation cover can also have negative impacts on biodiversity. For example, some Amazonian 113 
forests may have lost around half of their conservation value due to anthropogenic disturbance such 114 
as selective logging and wildfires [32]. In addition to effects on local ecosystems, land-use change 115 
also causes homogenisation of biodiversity across space, leading to ecological communities 116 
becoming more similar to one another [12,33,34]. 117 

Climate change has affected biodiversity via range shifts, local extinctions and phenological 118 
changes. Species are moving their ranges poleward at a rate of 16.9 km per decade, and to higher 119 
elevations at a rate of 11 m per decade [35]. Effects on phenological patterns [8] have included 120 
global changes in leaf phenology [36], a later end to the vegetation growing season [37], and 121 
changes in migration patterns in birds [38,39]. However, the effect of climate change on species is 122 
mixed, with both winners and losers [40–42], and the numbers of species inhabiting some regions is 123 
predicted to increase [43]. 124 

With the human population set to reach 9 billion by 2050, pressure on biodiversity due to 125 
climate change and human land use will increase [7,9,44]. Global projections have suggested that 126 
the average ecological community could lose as many as 38% of its species as a result of combined 127 
land-use and climate impacts under current trajectories [9]. Future expansion of land use alone is 128 
expected to cause a 17% loss of species from the average community under business-as-usual, while 129 
projections for the Amazon and Afrotropical regions have predicted a 30% decline in species 130 
abundance [45]. The effects of climate change will accelerate in the near future, and are predicted to 131 
exceed the impacts of land-use change by the middle of this century [9]. Under business-as-usual 132 
trends, climate change is predicted to cause more than half of species to lose over half of their range 133 
area by 2100 [26]. In contrast, fewer than 10% of species are expected to lose more than half of 134 
their range area if international commitments (such as under the Paris climate agreement) are 135 
honoured [26]. 136 
 137 

Interactions between land-use and climate change 138 
 139 
The consequences of pressures on biodiversity may be complicated if the effects of those pressures 140 
interact with one another [10,46]. In comparison to the additive effect of multiple pressures (where 141 
the effects of each pressure are combined assuming independence), interactions can result in either 142 
greater (synergistic) or reduced (antagonistic) effects on biodiversity [10,47]. Land-use and climate 143 
change have been found to interact in multiple ways [48–51]. The mechanisms are more likely to 144 
lead to synergistic than to antagonistic interactions. However, it is often challenging in practice to 145 
demonstrate robustly that interactions are occurring [47]. 146 

First, global climate change can affect the way biodiversity responds to land-use change. 147 
Specifically, regions with warming temperatures and decreasing precipitation are expected to 148 
experience the greatest impacts of habitat loss and fragmentation [49,52]. The resulting synergistic 149 



interactions are predicted to intensify the impacts of land-use change in almost a fifth of the world’s 150 
ecoregions [50]. Of concern for species conservation, the most affected ecoregions are also highly 151 
biodiverse, harbouring more than half of known terrestrial vertebrate species [50]. Climatic changes 152 
can also affect population sizes, breeding systems, sex ratios and individual fitness, which can impact 153 
a species’ ability to respond to land-use change [53,54]. 154 

Second, land-use change can affect the way biodiversity responds to climate change, with 155 
human land use and habitat fragmentation creating a hostile landscape and thus hindering species’ 156 
ability to track changes in climate [48,55,56]. Land-use change can also lead to localised climatic 157 
changes, with human-disturbed habitats often hotter and drier than natural habitats [57–59]. 158 
Consequently, ecological communities within human-disturbed habitats (deforested areas, 159 
agricultural lands, and cities) are generally composed of species that, on average, tolerate warmer 160 
and drier climatic conditions compared to species within natural habitats [57,58,60,61]. These 161 
differences in community composition may result directly from the local climatic changes or 162 
indirectly, for example because of changes in habitat or vegetation structure [58,60]. Regardless of 163 
the underlying mechanism, local temperature increases resulting from vegetation change will 164 
exacerbate regional warming, with important consequences for biodiversity. The fact that both land-165 
use and climate change are likely to favour species that can tolerate climatic extremes is expected to 166 
lead to a homogenisation of ecological communities, which may have negative impacts on 167 
ecosystem functioning [62–64]. For example, experiments with microbial communities showed that, 168 
under thermal stress, a greater number of species were required to maintain ecosystem function 169 
[65]. Conversely, high-quality habitat, such as forests with denser canopies, can buffer the effect of 170 
climatic changes, and may act as important refuges for species that are sensitive to climatic variation 171 
[51,66,67]. Interestingly, in some cases urban environments may act as refugia for species that are 172 
less able to tolerate the thermal extremes of managed (agricultural) ecosystems; for example, in 173 
recent years, numerous Australian flying fox populations have moved into urban parkland to access 174 
water and shelter [68]. Antagonistic interactions between land-use and climate change may occur if 175 
human-altered landscapes also act as refugia for species unable to tolerate global climatic changes. 176 
However, to our knowledge, there are currently no clear examples of such antagonistic interactions. 177 
In part, this may be due to the difficulty in identifying these types of interaction [47].  178 
 179 

Unevenness in biodiversity changes 180 
 181 

Geographic variation 182 
 183 
The impacts of land-use and climate change on biodiversity are predicted to vary spatially across the 184 
globe, which has important consequences for the conservation of biodiversity, and for the effects 185 
that biodiversity changes may have on ecosystems and human well-being. The tropics are repeatedly 186 
emphasised as showing disproportionately large losses of biodiversity [10,12,46,69–71], and contain 187 
a disproportionate number of species threatened with extinction [72,73]. Future responses of 188 
tropical species to climate change may be hindered by their lower dispersal abilities [74], and by 189 
their lower tolerance of climatic variation as a result of evolving in a climate that has historically 190 
been relatively stable [70,71,75]. In addition, it is likely that tropical species are currently living closer 191 
to their upper thermal limits compared to species within the temperate realm [67].  192 

Since climatic conditions in the tropics are expected to exceed historic variability by the end of 193 
this century [76], and rapid tropical land-use changes and human population growth are predicted in 194 
many scenarios [77,78], there is an impending challenge for biodiversity conservation within this 195 
realm [69]. This challenge may be exacerbated by governance issues [73], and the fact that much of 196 
the impact of human actions on tropical biodiversity is a result of consumption in other countries 197 
[79]. Consequently, mapping international trade in commodities and the resulting flows of 198 
biodiversity impacts is a key area of research [79–81]. 199 



The disproportionate effects of land-use and climate change on tropical ecosystems is a major 200 
concern for biodiversity conservation, given the large number of species found within the tropics. At 201 
least 78% of species, including many endemic species, occur in tropical ecosystems [73].  Moreover, 202 
the tropics are likely home to most currently undiscovered species [73,82]. Even within the tropics, 203 
certain areas are more impacted than others, with Asian biodiversity often emerging as being 204 
particularly sensitive to land-use change [11,83].  205 
 206 

Species variation 207 
 208 
Climate and land-use effects on biodiversity are also expected to fall unevenly on different species. 209 
The need to understand which species are likely to be most vulnerable to environmental changes 210 
has led to increasing efforts to identify characteristics associated with sensitivity. We focus here on 211 
two aspects of this work: first, whether rare or common species are more vulnerable; and second, 212 
whether there are ecological characteristics (traits) of species that are consistently associated with 213 
species’ responses. 214 

It has long been suggested that biodiversity losses will impact rare species more than common 215 
ones [84]. Rarity can be defined in several ways, including numerical rarity (i.e. low abundance), 216 
geographical rarity (i.e. small range size) or specialisation to particular habitats [85]. Evidence 217 
suggests that rare species have a disproportionately high risk of global extinction [86–88], and are 218 
highly sensitive to land-use change [12,89–91]. Furthermore, rare species have been predicted 219 
(using models) or hypothesised (based on expert opinion) to be at greater risk from future climatic 220 
changes than common species [92,93]. Rarity may also mediate interactions between climate and 221 
land-use change. For example, habitat specialists will likely be less able to shift their distributions 222 
through human-dominated landscapes in response to climate [55]. The degree to which rare or 223 
common species are likely to be sensitive to environmental changes depends on the ecosystem 224 
being studied, the characteristics of species, and the spatial and temporal scales of the studies 225 
[94,95]. The general tendency for rare, narrowly distributed and habitat-specialist species to be most 226 
impacted by land-use and climate changes contributes to the observed spatial homogenisation of 227 
biodiversity [33,34]. This reduced spatial turnover of species also leads to a reduction in global 228 
biodiversity, as unique species are lost and replaced by a similar set of widespread species 229 
everywhere [12,43,96]. 230 

The sensitivity of species to environmental change is also mediated by their ecological 231 
characteristics (or traits) [71,89,91,92], leading to observed changes in the functional diversity of 232 
ecological communities with land-use and climate change [97–99]. Traits that determine species’ 233 
sensitivity to environmental changes are often referred to as “response traits” (in contrast to “effect 234 
traits” that determine species contributions’ to ecosystem function ‒ see below) [100,101]. 235 
Importantly, some traits emerge as determining species’ responses to both land-use and climate 236 
change. Slower-breeding species with low mobility, and narrow food and habitat requirements have 237 
been shown to be disproportionately sensitive to both pressures [71,89,90,92,93]. Identifying which 238 
species traits confer greater risk to anthropogenic changes and which are likely to modify ecosystem 239 
processes is key for predicting the future of ecological communities and processes. 240 
 241 

Effects of biodiversity change on ecosystem functioning 242 
 243 
Over the past 20 years, attitudes have shifted from biodiversity being a consequence of the 244 
ecological and environmental properties of an ecosystem, to biodiversity being a key driver of 245 
ecosystem functioning [102]. A positive relationship between biodiversity (typically measured as 246 
species richness) and the magnitude and stability of ecosystem functioning (commonly measured as 247 
plant productivity or standing biomass) has been well established through many local-scale 248 
experimental and field studies [102–105]. As a result, changes in biodiversity due to human-driven 249 
environmental change can have a large effect on plant productivity and stability [106]. For example, 250 



land-use impacts on plant species diversity in tropical forests lead to decreased energy fluxes [107], 251 
and in dryland ecosystems there is greater ecosystem stability when plant species diversity is high 252 
[65]. At large scales, biodiversity is expected to have multiple, complex effects on different 253 
ecosystem processes [108–112], but this remains uncertain because most previous studies have 254 
been at conducted at small scales [113]. 255 

Different species have been shown to promote ecosystem functioning at different times, 256 
places and environmental contexts [3]. Contributions to ecosystem functioning depend on ecological 257 
characteristics (“effect traits”) [100]. Functional effect traits are often the same as those associated 258 
with a high sensitivity to environmental change (response traits – see above), in which case 259 
environmental change could result in larger-than-expected changes in ecosystem functions. 260 
Disproportionate losses of large-sized and high-trophic-level taxa (both of which are often most 261 
impacted by environmental changes) may lead to more negative changes in ecosystem functioning 262 
than caused by random losses [114,115]. Furthermore, rare species contribute unique traits to 263 
communities and thus are likely to support distinct functions in many systems [116–120], although 264 
in an undisturbed system both rare and common taxa have been shown to make unique 265 
contributions [121]. In addition to the effects of local losses of biodiversity, homogenisation across 266 
space, such as caused by the disproportionate loss of rare species, has also been associated with an 267 
independent negative effect on ecosystem functioning [110,122]. For example, a study of 65 268 
grasslands worldwide showed that naturally diverse communities, with a high turnover of species 269 
across space, had the greatest ecosystem multifunctionality (functions such as soil carbon storage, 270 
aboveground live biomass and litter decomposition were measured) [122]. Overall, therefore, 271 
systems with a large number of species, a high turnover of species in space, and a diversity of 272 
different types of species, are likely to be more resistant and resilient to environmental change 273 
through high and stable ecosystem functioning [123–126]. 274 
 275 

Consequences for human well-being 276 
 277 
The framing of biodiversity conservation has changed over time from a ‘nature-for-nature’s sake’ 278 
perspective to one that recognises the interdependence of biodiversity, ecosystem function and 279 
human well-being [127]. The ‘nature and people’ perspective [127] is now embedded within the 280 
international discourse around conservation, including in the UN Sustainable Development Goals 281 
[17], the Intergovernmental Panel on Biodiversity and Ecosystem Services (IPBES) [128], and 282 
research-policy agendas such as Planetary Health and One Health [129]. Connections between 283 
biodiversity and human well-being are captured in the concept of ‘ecosystem services’ (see [130] for 284 
a detailed review), or in more recently accepted terminology ‘nature’s contributions to people’ 285 
[131]. Contributions of the natural environment and biodiversity to human well-being can fall under 286 
several categories, such as provisioning (e.g. crop production, clean water, timber, fuelwood, non-287 
timber forest products), regulating (e.g. carbon storage and sequestration, pollination, disease 288 
regulation), and cultural services (e.g. aesthetic, spiritual, or recreational value) [4]. By impacting 289 
ecological communities and processes, land-use and climate changes can alter the provision of 290 
particular ecosystem services [132]. 291 

The best studied of the biodiversity-mediated regulating services is pollination. Pollinating 292 
species are in widespread decline [133], in large part owing to land-use and climate change 293 
[134,135]. For example, as agriculture expands to meet human food demands, croplands spread into 294 
previously forested landscapes, which can have impacts on pollinator abundance [136] and, 295 
ultimately, the yields of pollinator-dependent crops [137]. A reduction in agricultural productivity 296 
caused by the loss of pollinating biodiversity may necessitate further land-use change, leading to a 297 
positive feedback [138]. There is also evidence that climate change is negatively affecting pollinators 298 
[135,139]. Given the increasing climate and land-use change predicted for the future, pollination 299 
services are likely to be vulnerable. There is, however, uncertainty about the ability of novel species 300 
to contribute to pollination when rarer and more sensitive species are lost [140]. 301 



Provisioning services have also been an important research focus for understanding the 302 
interactions between land use and human well-being. For instance, the removal of trees for fuel to 303 
cook food is a common practice in many countries across the globe, but can degrade forest systems, 304 
potentially leading to longer-term feedbacks on people [141,142]. 305 

Land use can also affect Earth-system feedbacks, by altering local microclimates and the 306 
balance of carbon stocks. These interactions are clearly seen in forests, through impacts of land-use 307 
change on tree diversity, biomass, and carbon storage [143]. However, the nature and scale-308 
dependence of the relationships between land use, diversity, and carbon storage remain unclear in 309 
many cases [144], particularly when past climates have influenced carbon in present-day soils [145]. 310 
In addition, the picture is further complicated when the land used for provisioning services drives 311 
trade-offs with other ecosystem services. For example, fuelwood collection in China impairs seed-312 
dispersal services by rodents [146]. 313 

Ecosystem services can also have more direct impacts on human health and well-being. Of 314 
particular interest in the context of land-use and climate change is the mediation of zoonotic and 315 
vector-borne human disease risk. Interactions between species-level host-parasite interactions, 316 
overall community diversity and ecosystem structure can produce emergent effects on infectious 317 
disease transmission and risk, including of significant human pathogens (e.g. Lyme disease, 318 
hantaviruses, West Nile disease) [147–149]. However, evidence for a hypothesised general 319 
prophylactic effect of biodiversity on pathogen transmission rates (the dilution effect) is patchy 320 
[150], with recent evidence suggesting that ecological degradation can lead locally either to 321 
increases or decreases in disease risk depending on host traits, behaviour and local ecological 322 
context [151,152]. Across larger geographical areas or timescales, it is also possible that human risk 323 
of specific diseases may predominantly be mediated by land-use and/or climate effects on particular 324 
host or vector species, rather than by biodiversity loss per se [153–155]. 325 

Although ecosystem services provide a well-supported link between anthropogenic ecological 326 
change and potential benefits or costs to human societies [130], quantifying whether these translate 327 
to measurable, broader-scale outcomes for public health and well-being is a key emerging challenge 328 
[104,156]. Confounding socioeconomic or demographic factors, which show latitudinal trends that 329 
are coincident with biodiversity gradients [157], may mask any contributions of ecological change to 330 
aggregate health metrics such as disease burden [158]. Furthermore, in the short-term, the benefits 331 
to health and economies of land conversion for agriculture may significantly outweigh the costs of 332 
degrading other services, whose long-term implications (e.g. reductions in carbon storage or water 333 
provision, disease emergence) may not be felt for years or decades. Consequently, there is an urgent 334 
need to improve understanding of the connections between biodiversity change, ecosystem services 335 
and human well-being [156], and how these connections might be influenced by biodiversity 336 
changes brought about by climate and land-use change.   337 
 338 

Summary points 339 
 340 

 Land use and climate are already having profound effects on terrestrial biodiversity, and 341 
their effects are likely to accelerate in the coming decades. Our understanding of how 342 
climate and land use might interact in their effects on biodiversity is still very limited, but 343 
early evidence points toward a synergistic interaction. Overall, it is therefore likely that 344 
biodiversity changes will be greater than suggested by the majority of previous large-scale 345 
studies that have treated pressures additively or in isolation. 346 

 The effects of pressures on biodiversity do not fall evenly on all species. While most species 347 
are impacted negatively by land-use or climate change, some benefit. Characteristics such as 348 
rarity, slow breeding, low mobility and specific food and habitat requirements are associated 349 
with a high degree of sensitivity to both pressures. The replacement of many distinctive 350 
species with a few tolerant species bearing the same characteristics is already leading to a 351 
global homogenisation of biodiversity. 352 



 The loss of particular types of species, and the associated homogenisation of biodiversity, 353 
has important implications for the functioning of ecosystems and for the ecosystem services 354 
(or nature’s contributions to people) on which humans rely. The links between biodiversity 355 
changes and ecosystem functioning and services remain unclear, but it is certain that we are 356 
losing important groups (such as pollinators). It is also very likely that the homogenisation of 357 
biodiversity will reduce the resilience of ecosystem functioning to future environmental 358 
changes. Finally, in many cases, it appears that among those species that are tolerant of 359 
human activities are species that could have detrimental effects on human health (i.e. 360 
reservoirs of zoonotic disease). 361 

 Effects of environmental changes on biodiversity also fall unevenly geographically. The 362 
tropics, especially the Southeast Asian tropics, consistently emerge as having biodiversity 363 
that is particularly sensitive to land-use and climate changes. This is a concern for human 364 
societies, given that the most rapid future population increases will occur in the tropics, and 365 
much of the future expansion in agriculture must also take place here (often supplying 366 
consumption in other countries). 367 

 Overall, the evidence suggests that to avoid large-scale losses of biodiversity we need to 368 
reduce the major pressures on biodiversity from land-use and climate change, by mitigating 369 
greenhouse gas emissions [159], preserving remaining natural habitats in protected areas 370 
[160], and improving the conservation of biodiversity within areas used by humans [161]. 371 
We also need to improve our understanding of the interactions between the effects of land-372 
use and climate change, and the link between biodiversity change and ecosystem functions 373 
and services. However, the available evidence already points toward profound and uneven 374 
biodiversity changes, with important effects, in most cases negative, for ecosystems and 375 
human societies. 376 
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