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High olive oil diets enhance cervical
tumour growth in mice: transcriptome
analysis for potential candidate genes and
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Abstract

Background: Numerous epidemiologic studies have found a close association between obesity and cancer. Dietary
fat is a fundamental contributor to obesity and is a risk factor for cancer. Thus far, the impact of dietary olive oil on
cancer development remains inconclusive, and little is known about its underlying mechanisms.

Methods: Nude mouse xenograft models were used to examine the effects of high olive oil diet feeding on
cervical cancer (CC) development and progression. Cell proliferation, migration and invasion were observed by the
methods of EdU incorporation, Wound healing and Transwell assay, separately. RNA-sequencing technology and
comprehensive bioinformatics analyses were used to elucidate the molecular processes regulated by dietary fat.
Differentially expressed genes (DEGs) were identified and were functionally analyzed by Gene Ontology (GO), Kyoto
Enrichment of Genes and Genomes (KEGG). Then, protein–protein interaction (PPI) network and sub-PPI network
analyses were conducted using the STRING database and Cytoscape software.

Results: A high olive oil diet aggravated tumourigenesis in an experimental xenograft model of CC. Oleic acid, the
main ingredient of olive oil, promoted cell growth and migration in vitro. Transcriptome sequencing analysis of
xenograft tumour tissues was then performed to elucidate the regulation of molecular events regulated by dietary
fat. Dietary olive oil induced 648 DEGs, comprising 155 up-regulated DEGs and 493 down-regulated DEGs. GO and
pathway enrichment analysis revealed that some of the DEGs including EGR1 and FOXN2 were involved in the
transcription regulation and others, including TGFB2 and COL4A3 in cell proliferation. The 15 most strongly
associated DEGs were selected from the PPI network and hub genes including JUN, TIMP3, OAS1, OASL and EGR1
were confirmed by real-time quantitative PCR analysis.

Conclusions: Our study suggests that a high olive oil diet aggravates CC progression in vivo and in vitro. We
provide clues to build a potential link between dietary fat and cancerogenesis and identify areas requiring further
investigation.
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Background
Cervical cancer (CC) is the fourth leading cause of
cancer-related death among women worldwide with ap-
proximately 527,600 new cases each year [1] with about
89% of deaths occurring in less developed countries [2].
The oncogenic types of human papillomavirus (HPV)
persistent infection are the most common cause of CC
[3]. However, progression from high-risk HPV-positive
premalignant lesions to malignant carcinoma seldom oc-
curs [4], indicating additional contributors are required
to promote CC’s malignant transformation and
progression.
Obesity and lifestyle factors, such as smoking, nutrition

and physical activity, are considered risk factors in the de-
velopment of CC. In recent years, a large body of emer-
ging evidence has elucidated a strong association between
obesity and CC morbidity and mortality [5–7]. Dietary fat
is a fundamental contributor to obesity [8, 9] and is one of
the potential factors thought to link obesity and CC. Ac-
cumulating evidence has demonstrated that dietary lipids
are associated with various malignant tumours, such as
breast cancer, colorectal cancer, pancreatic cancer, and
prostate cancer [10–12]. Additionally, recent evidence has
suggested that both amount and type of dietary fat are im-
portant in the cancer aetiology [13].
Olive oil, a common ingredient of Mediterranean diet

[14], has attracted much attention, especially in the last
few years. Numerous epidemiological studies have re-
ported that cancer occurrence in the Mediterranean was
lower, especially involving in the endometrium, breast,
skin, intestine and prostate, suggesting protective effects
of olive oil [14–17]. Olive oil exhibits beneficial effects
due to various antioxidants, including Vitamin E and
phenolic compounds such as tyrosol, hydroxytyrosol,
and oleuropein. Moreover, it has been demonstrated
that, besides antioxidant ability, olive oil exerts
anti-inflammatory and anti-neoplastic activities [18, 19].
It displays anti-tumourigenic properties by promoting
apoptosis and cell cycle arrest in various cancers, such
as lung, oesophageal and colon cancers [20]. However,
contrasting results have been reported to show olive oil’s
tumour-enhancing effects. Oleic acid (OA), which con-
stitutes 70–80% of olive oil, promotes cell proliferation
and migration in highly metastatic gastric and breast
cancer cells in an AMPK-dependent manner [21]. A
large population-based case-control study of OA indi-
cated that it may increase the risk of pancreatic cancer
[22]. Additionally, a high OA diet exhibits a
tumour-enhancing effect in rats by modulating epigen-
etic patterns [23]. Hence more work is needed to clarify
the association between dietary olive oil and cancer.
To assist in clarifying disparate outcomes, we exam-

ined the effects of high olive oil diet feeding on CC de-
velopment and progression using nude mouse xenograft

models. We performed a comparative transcription ana-
lysis of xenograft tumour samples using RNA-seq tech-
nology to detect the differential transcriptomic
characteristics. Our findings may provide novel insights
into understanding the underlying molecular mechanism
between dietary lipids and CC.

Materials and methods
Cell culture and mouse xenograft models
CC HeLa cells were cultured in high-glucose Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% foetal bovine serum (FBS) and 1%
penicillin-streptomycin. The cells were grown in a hu-
midified atmosphere with 5% CO2 at 37 °C and were
subcultured as needed using trypsin-EDTA. Animal care
and experimental procedures were approved by the Ani-
mal Care Committees at Chongqing Medical University.
Four-week-old athymic male BALB/c-nude mice were
fed a control diet (CD; 10 kcal % fat), or a high olive oil
diet (OD; 45 kcal % fat) ad libitum until the end of the
study (n = 5). The detailed nutritional profiles of the di-
ets are presented in Additional file 1: Table S1. A total
of 5 × 106 cells in 200 μl PBS was injected subcutane-
ously into the left flank of the animals. The tumour di-
mensions were measured every 4 days, and the volumes
were calculated by the standard formula: length×width2/
2. All the animals were sacrificed 6 weeks after injection,
and the tumours were excised, weighed and treated for
histological examination.

Histology and immunohistochemistry (IHC)
Xenograft samples were fixed in 4% paraformaldehyde
overnight at 4 °C. Subsequently, after dehydration in
ethanol, clearing in xylene, and embedding in paraffin,
5-μm-thick histological sections were obtained. To
evaluate tumour heterogeneity and pathological grade,
the tissue sections were stained with haematoxylin and
eosin (H&E). The IHC procedure was applied according
to the instructions of a commercial kit (ZsBio, China).
The sections were incubated with anti-proliferating cell
nuclear antigen (PCNA) primary antibodies (1:8000;
CST, USA) at 4 °C overnight. The IHC results were ana-
lysed using a microscope by two separate researchers at
400 ×magnification in five randomly selected represen-
tative fields.

Cell proliferation assays
For growth curves, HeLa cells were seeded in 96-well
plates treated with or without 10 μM OA and were im-
aged in an IncuCyte (Essen, USA) automated incubator
microscope. Pictures were taken every 4 h., and cell con-
fluence was calculated per well using an associated soft-
ware algorithm. DNA synthesis was determined using a
Cell-Light EdU Apollo 643 In Vitro Imaging Kit
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(RiboBio, China) according to the manufacturer’s in-
structions. Briefly, the cells were incubated with 50 μM
EdU for 1 h. before fixation with 4% paraformaldehyde,
permeabilization in 0.3% Triton X-100, and EdU stain-
ing. The EdU-positive cells were counted randomly in
five fields under a microscope (× 100).

Wound-healing and Transwell migration assays
Wound-healing and Transwell migration assays were
performed to evaluate the parallel and vertical migration
ability of the cells, respectively. For the wound-healing
assay, HeLa cells were plated on 24-well plates,
scratched with a pipette tip, and washed with PBS to re-
move cell debris. Wound closure was observed and
photographed at 0, 24 and 48 h. For the Transwell assay,
2 × 104 cells in 100 μl of serum-free medium with or
without 10 μM OA were loaded into the upper chamber.
Medium containing 10% FBS was added to the lower
chamber. After incubation, cells that adhered to the
lower surface of the filter were fixed, stained and photo-
graphed. Migration was determined by counting the cells
in five randomly selected visual fields.

RNA extraction, cDNA construction, and sequencing
Total RNA was prepared from CD-fed mouse xenograft
samples and OD-fed mouse xenograft samples using
TRIzol reagent (Takara, Japan) according to the manu-
facturer’s protocol, after which the concentration was
measured using the NanoDrop 2000 system (Thermo
Fisher, USA). During the quality control steps, the Agi-
lent 2200 Bioanalyser system (Agilent, USA) was used
for qualification and quantification of the RNA samples.
The RNA extracted with the following criteria was sub-
jected to RNA-Seq analysis: RNA integrity number, ≥7;
OD260/OD280, 1.9–2.1; 28S/18S ratio, > 1.8. Next,
cDNA was synthesized using the Ion Total RNA-Seq Kit
v2 (Life Technologies, USA) according to the manufac-
turer’s instructions. After library construction, each li-
brary preparation was sequenced using the Illumina
HiSeq™ 2000 system (Illumina, USA).

Identification of DEGs
After sequencing, raw reads were generated. Next, clean
reads were obtained after filtering low-quality reads or
reads with an adapter sequence. Further analyses were
performed based on those clean reads, and they were
mapped to the reference genome in the Ensemble data-
base using Misplacing software [24]. To quantify the
gene expression levels, a reliable method considering the
gene length for the read counts and effects of the se-
quencing depth was adopted. Thus, the expression level
of each gene was normalized by the reads per kilobase
per million (RPKM) [25]. The EBSeq package was imple-
mented to screen DEGs [26], and they were filtered

employing a fold-change (FC) method and false discov-
ery rate (FDR) correction, exhibiting an FC > 2 along
with FDR < 0.05.

Gene ontology (GO) and pathway enrichment analysis
To analyse the DEGs at the functional level, GO enrich-
ment analysis and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis of the DEGs were
conducted. Here, the online tool adopted in this study
for GO and KEGG analysis was Database for Annota-
tion, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/home.jsp) [27]. We submitted
the DEGs list into it and selected Homo sapiens in the
species column. Finally, the GO terms or KEGG path-
ways with the cut-off criteria (P < 0.05) were chosen as
the enriched function of the DEGs.

Protein-protein interaction (PPI) network and hub gene
analysis
To further investigate the molecular mechanism of CC,
all DEGs were used to construct the PPI network using
the biological online database tool (Search Tool for the
Retrieval of Interacting Genes, STRING, http://string-
db.org) [28] to determine and predict the interaction
among them. A combined score > 0.7 (high confidence
score) was considered significant, and then the PPI net-
work was visualized using Cytoscape software (Version
3.5.1) [29]. To evaluate the importance of nodes in the
PPI network, the degree centrality of nodes was calcu-
lated and utilized in the present study [30] using the
CytoNCA plugin [31] in Cytoscape software. The hub
genes/proteins, a small number of crucial nodes for the
protein interactions in the PPI network, were chosen
with a centrality degree > 8. Because a higher k-core
score means a more topological central location, subnet-
works in the PPI network were explored by k-core scor-
ing using the MCODE plugin in Cytoscape software, and
significant subnetworks with a k-core > 6 were consid-
ered potential core regulatory networks.

Real-time quantitative PCR (RT-qPCR)
To validate the RNA-Seq results, cDNA was synthesized
by reverse transcription using 1 μg of the original RNA
sample as described previously. Next, the cDNA prod-
ucts were subjected to 2-step PCR amplification.
RT-qPCR using the SYBR Green method was used to
detect the gene expression level. β-Actin was chosen as
the reference gene, and the expression levels were com-
puted according to the 2-ΔΔCt method. The primer se-
quences are provided in Additional file 2: Table S2.

Statistical analysis
The data were represented as the means ± SEM. Differ-
ences between the two groups were assessed by
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Student’s t-test, analysed using the SPSS 22.0 software
and considered significant at P < 0.05.

Results
High olive oil diet promotes tumour growth in an
experimental CC model
HeLa cells were implanted subcutaneously to CD- and
OD-fed nude mice to address the effects of dietary olive
oil on tumourigenesis. Mice were sacrificed on day 40,
and the tumour xenografts were dissected, weighed and
photographed (Fig. 1a). Tumour growth over a 6-week
time course was increased significantly in the OD group
vs. the CD group (Fig. 1b). High olive oil diet also mark-
edly increased the weight of the xenografts by more than
6-fold (Fig. 1c). Furthermore, OD group xenograft tis-
sues exhibited nuclear hyperchromasia and increased
nucleus-to-cytoplasmic ratios, representing poor differ-
entiation and higher heterogeneity (Fig. 1d, upper). Like-
wise, IHC analyses further uncovered a significant
increase in PCNA-positive cells in the OD group (Fig.
1d, lower). These data indicated that high olive oil feed-
ing in nude mice can promote tumour cell growth in
vivo.

OA promotes CC cell growth and migration in vitro
Because OA (more than 70% enriched in olive oil) is the
most important functional nutrient component of olive
oil, we next explored the effects of OA on the malignant
phenotype of tumour cells in vitro. First, using the
IncuCyte-automated incubator-microscope system, we
observed a clear increase in cell proliferation following
10 μM OA treatment (Fig. 2a). Next, the EdU assay was
used to detect the possible change in DNA synthesis.
The results showed that the EdU-positive cells were in-
creased by OA treatment (P < 0.05) compared with the
negative control (NC) group (Fig. 2b). Additionally, to
investigate the influence of OA on the migration of
HeLa cells in vitro, the wound-healing assay and Trans-
well assay were performed. The results showed that OA
treatment markedly enhanced the cell migration ability
in HeLa cells (Fig. 2c, d).

Differentially expressed mRNAs under high olive oil diet
feeding
To identify the changes in the transcriptional profiles
under different nutritive conditions, we selected three
xenograft tumour samples from two groups for
RNA-seq analysis. The gene expression level was com-
puted and normalized by RPKM. Subsequently, analysis
of DEGs was performed as shown in Fig. 3. Based on the
cut-off criteria, in total, 648 genes displayed differential
expression in the OD group, including 155 up-regulated
DEGs and 493 down-regulated DEGs, compared with
the control diet. Hierarchical cluster analysis showing

systematic variations of the samples revealed that the
DEGs could be utilized to accurately distinguish the OD
samples from the CD samples (Fig. 4a). Volcano plots
were used to assess gene expression variation between
the groups (Fig. 4b). These data indicated that the ex-
pression of mRNAs under the high olive oil dietary con-
dition differs from that under the control dietary
condition.

Functional annotation and pathway enrichment of DEGs
Next, to obtain a more comprehensive understanding and
identify the functional categories of the DEGs, the data
were clustered through GO analysis in DAVID. The signifi-
cantly enriched GO terms with a P value < 0.05 that were
divided into biological process (BP), cellular component
(CC) and molecular function (MF) ontologies are illustrated
in Fig. 5. Regarding the BP ontology, comparing the OD
with the CD groups, the highly enriched GO terms of
up-regulated DEGs were mainly related to positive regula-
tion of transcription (10 genes), G2/M transition of the mi-
totic cell cycle (5 genes) and cell adhesion (9 genes).
Consistently, the down-regulated DEGs were involved in
significant subcategories, including negative regulation of
cell proliferation (20 genes), negative regulation of viral
genome replication (6 genes) and immune response (18
genes). In the CC ontology, we found that the majority of
up-regulated DEGs were associated with subcategory
named plasma membrane (40 genes) whereas
down-regulated DEGs were involved in multiple cell com-
ponents such as extracellular space (72 genes), extracellular
exosome (114 genes) and plasma membrane (114 genes).
In the MF ontology of all DEGs, the binding-related items
constituted most of the enriched GO categories, including
calcium ion binding (12 genes), clathrin binding (3 genes),
fibronectin binding (6 genes), and heparin binding (13
genes). Furthermore, according to the KEGG pathway ana-
lysis results (data not shown), the up-regulated DEGs were
found to be mostly enriched in the Wnt signalling pathway
(4 genes), while the dysfunctional pathways enriched in
down-regulated DEGs included antigen processing and
presentation (7 genes), the P53 signalling pathway (6
genes), and phagosome (10 genes).

PPI network analysis
To further investigate the molecular mechanism of the high
olive oil diet-promoted tumour growth and interactive rela-
tionships among all DEGs, we mapped the 648 DEGs to
the STRING database, and validated interactions with a
combined score greater than 0.7 (high confidence) were se-
lected to construct a PPI network. The PPI network con-
sisted of 565 nodes and 401 interactions (Fig. 6a). In the
PPI network, 15 proteins, including Jun Proto-Oncogene
(JUN), Decorin (DCN), Thrombospondin 1 (THBS1),
Major Histocompatibility Complex, Class II, DR alpha
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(HLA-DRA), Endothelin 1 (EDN1), TIMP Metallopeptidase
Inhibitor 3 (TIMP3), Transforming Growth Factor Beta 2
(TGFB2), 2′-5′-Oligoadenylate Synthetase 3 (OAS3),
2′-5′-Oligoadenylate Synthetase Like (OASL), 2′-5′-Oli-
goadenylate Synthetase 1 (OAS1), Platelet Derived Growth
Factor Subunit B (PDGFB), Matrix Metallopeptidase 1
(MMP1), Early Growth Response 1 (EGR1), Syndecan 4
(SDC4) and Serpin Family E Member 1 (SERPINE1), were
strongly connected to other proteins (degree centrality
more than 8), indicating that they were hub genes (Fig. 6b).
These hub genes might play crucial roles in olive

oil-induced tumour growth. The hub genes and their corre-
sponding degree are shown in Table 1. Moreover, the whole
network was analysed utilizing the cytoscape plugin
MCODE. The top 3 significant modules marked A, B and
C, respectively, with a k-core more than 6, were selected as
subnetworks, and 15 hub genes involved in the modules
were marked with different colours (Fig. 7).

Confirmation of DEGs by RT-qPCR
Five DEGs (JUN, TIMP3, OAS1, OASL, and EGR1) were
arbitrarily selected to confirm their differential

Fig. 1 High olive oil diet feeding promotes the growth of xenografts in nude mice. HeLa cells were injected subcutaneously into 4-week-old nude
mice fed a control or an olive oil diet ad libitum. At 6 weeks after implantation, the animals were sacrificed, and the tumour masses were excised. a
Representative graph of tumours formed by the implantation of HeLa cells under different diets. b Analysis of tumour growth curves over a 6-week
time course. c Tumour weights in different diet groups of nude mice. d Top, H&E-stained sections of xenografts. Bottom, Immunohistochemical
staining of tumour sectios using an anti-PCNA antibody. Original magnification, × 400. Right, quantification of the percentage of the PCNA-positive
area. The data were statistically analysed using Student’s t-test, and values are shown as the means ± SD. *P < 0.05, ***P < 0.001
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expression levels by RT-qPCR. As shown in Fig. 8, the
qPCR results of the DEGs agreed with those of
RNA-Seq analysis, suggesting the RNA-Seq data used in
the present study were reliable and accurate. Both the
OD group and CD group had three independent sam-
ples, and all the samples were processed in triplicate.

Discussion
Olive oil, regarded as a key nutraceutical component of
the traditional Mediterranean diet, exerts a beneficial

impact mainly on the development and progression of
cardiovascular risk events [32]. However, in the last two
decades, there have been puzzling results regarding the
possible role of dietary olive oil in cancer prevention and
treatment. In the present study, we showed that feeding
nude mice a high olive oil diet enhances xenograft
tumour growth and progression. A bioinformatics ana-
lysis was performed to explore potential crucial DEGs
associated with high olive oil diet. Then an advanced
analysis was conducted to give insights into the

Fig. 2 OA accelerates HeLa cell proliferation and migration. a Growth curves for HeLa cells treated with or without OA were analysed using an
IncuCyte incubator microscope (the mean confluence values were compared at 48 h.; n = 5). b DNA synthesis of HeLa cells subjected to the EdU
incorporation assay. EdU staining (red). Cell nuclei were stained with Hoechst33342 (blue). The quantification of EdU-positive cells was conducted
macroscopically and was expressed as a percentage relative to the control cells. c OA promotes scratch-induced migration of HeLa cells.
Representative phase contrast micrographs of cells treated with or without OA for 0 h. and 48 h.. Relative migration distances are calculated
representing scratch closure after 48 h. compared with the initial distances. d Transwell assays were performed to investigate the effects of OA on
the migration ability of HeLa cells. Quantitative analysis of migration experiments demonstrated that OA promotes HeLa cell migration compared
with NC. *P < 0.05, ***P < 0.001
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Fig. 3 Flowchart of RNA-seq transcriptomic bioinformatics analysis in xenograft tumour samples representing different dietary treatment groups

Fig. 4 Heat map and volcano plots showed the expression profiles of mRNAs under two diet conditions. a Heat map for the DEGs. Each row
represents a tissue sample (total 6 samples); each column represents a single gene. The gradual colour ranged from red to green represented the
mRNA expression changing from up-regulation to down-regulation. b The volcano plot showed significantly changed mRNAs with FDR < 0.05
and |log2FC (fold change)|≥ 1. The red-marked nodes represented up-regulated genes (155), the blue ones represented down-regulated genes
(493), and the grey ones showed no significance
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biological functions and pathways involving DEGs. Fi-
nally, by building the PPI, we identified some hub genes
and three subnetworks that might play decisive roles in
the boosting effect of experimental CC.
As a result, 648 DEGs were screened out, including

155 up-regulated and 493 down-regulated DEGs. The
up-regulated DEGs were mainly involved in functions
related to positive regulation of transcription, such as
EGR1 and Forkhead Box N2 (FOXN2). CC has been
proven to be related to the disruption of transcription,
including enhanced oncogene expression, loss of func-
tion of tumour suppressor genes and DNA repair genes
[33]. EGR1, the only up-regulated hub gene in this study,
activates expression of some cell cycle-related genes
(e.g., cyclin D2 and Mitotic Arrest Deficient Protein 2)
[34] and several growth factors (e.g., Platelet Derived

Growth Factor Subunit A, Transforming Growth Factor
Beta 1 and Insulin- Like Growth Factor 2) [35], suggest-
ing its important role as an oncogene. EGR1 has been
linked to some key cellular functions, such as prolifera-
tion [36] and migration [37]. Moreover, high levels of
EGR1 were seen in CC tissues compared with that in
normal tissues, suggesting its role in cervical oncogen-
esis [38]. The down-regulated DEGs were mainly related
to the negative regulation of cell proliferation, such as
Collagen Type IV Alpha 3 Chain and TGFB2. Further-
more, enriched KEGG pathways of up-regulated DEGs
only included the Wnt signalling pathway. A disturbance
in the Wnt signalling pathway has been highly noted in
various cancers, including CC [39, 40]. Down-regulated
DEGs were mostly associated with antigen processing
and presentation. These altered genes and pathways may

Fig. 5 GO analysis of the DEGs. The GO categories include BP, CC
and MF, respectively. Highly enriched GO terms of up- and down-
regulated mRNAs from the DAVID database with 10 enrichment
scores. a Up-regulated DEGs. b Down- regulated DEGs

Fig. 6 PPI network of DEGs using the STRING. a STRING database
constructed the network (high confidence score more than 0.7)
based on protein-protein interactions, including experiments, co-
expression and gene fusion. b The 15 genes calculated by degree
centrality with a degree score ranging from 9 to 17 were selected as
Hub genes; The size and colour change of the nodes denoted the
level of degree score
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enhance our understanding of the mechanisms of dietary
olive oil-induced tumour progression .
Through PPI network construction, a series of hub

genes/proteins has been observed to form a local
network, including JUN, DCN, THBS1, HLA-DRA,
EDN1, TIMP3, TGFB2, OAS3, OASL, OAS1, PDGFB,
MMP1, EGR1, SDC4 and SERPINE1, of which most
DEGs have been reported to associate with cancer
development. JUN encoding the c-Jun protein is
among the hub genes that exhibit the highest degree
of connectivity. JUN is widely regarded as an onco-
gene, which is the most extensively studied protein
of the activator protein-1 (AP-1) complex and is in-
volved in numerous cell activities, including prolifer-
ation, migration and tumour progression [41]. On
the other hand, the c-Jun NH2-terminal kinase
(JNK) /c-Jun pathway is an important pro-apoptotic
signalling pathway in cancer cells. In our present
study, JUN was significantly decreased in the xeno-
grafts of olive oil-fed mice. To address the possible
role of JUN in CC, we analysed the cervical and
endocervical cancers dataset of The Cancer Genome
Atlas (TCGA) and found that the expression of JUN
was also significantly down-regulated in CC tissues
compared with that in normal tissues. The second
hub gene, DCN, encoding Decorin, is markedly re-
lated to two main themes—maintenance of cellular
structure and regulation of signal transduction path-
ways—culminating in anti-tumourigenic effects [42].
Studies have shown that deficiency of DCN is per-
missive for tumour development [43], whereas over-
expression of DCN could block the cell cycle and
decrease the invasive ability of cancer cells [42].

Although numerous applications of DCN as an anti-
cancer therapeutic have been carried out, few studies
have addressed the role of DCN in CC. THBS1, the
third hub gene, is a 450-kDa homotrimeric matricel-
lular glycoprotein with potent antiangiogenic effects
by inhibiting the activity of Vascular Endothelial
Growth Factor (VEGF) [44, 45]. Depend on its role
to suppress angiogenesis, THBS1 was shown to re-
tard tumour growth and is often found
down-regulated in tumour samples [46]. In this
study, we speculated that dietary high olive oil intake
may contribute to tumourigenesis via JUN, DCN and
THBS1-related signalling pathways, thereby main-
taining proliferative capacity, anti-apoptosis, and pro-
moting angiogenesis.
Subsequently, subnetwork analysis of the PPI network

revealed that 3 clusters of genes representing a more topo-
logical central location were associated with CC prolifera-
tion and migration. Due to the inclusion of multiple OAS
protein family members, the subnetwork that maintained
the highest k-core value was associated with viral replica-
tion. The OAS proteins, consisting of OAS1/2/3 and
OASL protein, were the first interferon-induced anti-viral
proteins impeding the translation of viral nucleic acids
[47]. The association between HPV and CC has been
clearly established [48], and it is widely accepted that the
major cause of CC is chronic infection with oncogenic
HPV. However, the role of OAS family members during
tumour development is not well documented.
Regarding the molecular mechanisms of olive oil and

other dietary lipids on cancer, these aspects include: 1)
influence on lipid peroxidation and the subsequent oxi-
dative DNA damage, which can modulate inflammation

Table 1 Detail information of 15 hub genes between control diet and high olive diet selected by degree centrality

No. Gene ID Protein Names Degree Betweeness Closeness

1 JUN Transcription factor AP-1 17 12,790.9 0.0133

2 DCN Decorin 13 5328.0 0.0132

3 THBS1 Thrombospondin-1 13 1587.0 0.0132

4 HLA-DRA HLA class II histocompatibility antigen 13 4704.1 0.0131

5 TIMP3 Metalloproteinase inhibitor 3 11 1142.2 0.0132

6 TGFB2 Transforming growth factor beta-2 11 1907.1 0.0132

7 EDN1 Endothelin-1 11 4387.2 0.0132

8 PDGFB Platelet-derived growth factor subunit B 10 1240.2 0.0132

9 OAS3 2′-5′-oligoadenylate synthase 3 10 1546.5 0.0131

10 OASL 2′-5′-oligoadenylate synthase-like protein 10 1546.5 0.0131

11 OAS1 2′-5′-oligoadenylate synthase 1 10 1546.5 0.0131

12 SDC4 Syndecan-4 9 2005.1 0.0132

13 SERPINE1 Endothelial plasminogen activator inhibitor 9 3693.0 0.0132

14 MMP1 Matrix metalloproteinase-1 9 2731.9 0.0132

15 EGR1 Early growth response protein 1 9 5957.4 0.0132
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and tumor development; 2) influence on transcription
factor activity, gene expression, and signal transduction,
which leads to changes in metabolism, cell proliferation,
and angiogenesis; 3) alteration of the immune system,
which leads to immune function abnormalities and in-
flammatory cytokine production imbalance [49–51].
Based on these clues, we try to find the potential

links between dietary olive oil and the hub genes. In-
flammation is a hallmark of cancer [52] and involved
in all stages of the malignant process [53]. A high-fat
diet can induce chronic inflammation, which in turn
may aggravate oxidative stress and lipid peroxidation
[54]. TIMP3, listed in the top centrality of
down-regulated DEGs, has been shown to regulate
TNF functions and modulate inflammatory responses
[55]. In addition, the effects of dietary lipids and their
metabolites on carcinogenesis may be directly medi-
ated by binding to various nuclear receptors (PPAR,

HNF4A) and activating their transcription factor ac-
tion, or indirectly mediated as the result of changes
in the abundance of regulatory transcription factors
(SREBP, NFκB) [56]. Hub genes such as JUN and
EGR1 are critical transcription factor, which can bind
to NFκB and PPARγ respectively to regulate various
gene expressions. Furthermore, immune system is
critical for tumour control and immune destruction
has been recognized as a new hallmark of tumorigen-
esis [57]. Dietary lipids, especially olive oil, have been
shown to modulate the immune and inflammatory re-
sponses [58]. Recently, the OAS proteins are con-
nected to innate immune-activated diseases and the
activation of the OAS-RNase L axis has emerged as a
feature of early immune transcriptome [59] [60].
However, there is no evidence that illuminate the re-
lationship between olive oil and these hub genes. Our
further work will conduct to establish the role of

Fig. 7 Top 3 modules from the PPI network. The significant 3 clusters marked a, b and c, respectively, identified from the PPI network with k-core
> 6, were regarded as topological central networks. Red-marked nodes represented up-regulated hub genes participating in three sub-networks,
and the green marked ones represented down-regulated genes
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dietary olive oil in the control of these hub genes and
their regulatory networks.

Conclusions
In conclusion, our study suggests that high olive oil diet
aggravates CC progression in vivo and in vitro. A com-
prehensive bioinformatics analysis showed distinct gene
expression patterns between CD-fed mice and OD-fed
mice and provides a set of useful hub genes for future
investigation into molecular mechanisms and
biomarkers.
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