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Abstract

The focus of this thesis is on developing probabilistic models for data observed over

temporal and graph domains, and the corresponding variational inference algorithms.

In many real-world phenomena, sequential data points that are observed closer in

time often exhibit higher degrees of dependency. Similarly, data points observed

over a graph domain (e.g., user interests in a social network) may exhibit higher

dependencies with lower degrees of separation over the graph. Furthermore, the

connectivity structures that define the graph domain can also evolve temporally (i.e.,

temporal networks) and exhibit dependencies over time. The data sets observed

over temporal and graph domains often (but not always) violate the independent

and identically distributed (i.i.d.) assumption made by many mathematical models.

The works presented in this dissertation address various challenges in modelling

data sets that exhibit dependencies over temporal and graph domains. In Chapter 3,

I present a stochastic variational inference algorithm that enables factorial hidden

Markov models for sequential data to scale up to extremely long sequences. In

Chapter 4, I propose a simple but powerful Gaussian process model that captures

the dependencies of data points observed on a graph domain, and demonstrate its

viability in graph-based semi-supervised learning problems. In Chapter 5, I present a

dynamical model for graphs that captures the temporal evolution of the connectivity

structures as well as the sparse connectivity structures often observed in temporal

real network data sets. Finally, I summarise the contributions of the thesis and

propose several directions for future works that can build on the proposed methods

in Chapter 6.
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Introduction

Data sets observed in the real-world can arise from many different complex pro-

cesses. Some processes include dynamical components that result in observations

which exhibit sequential dependency and repeatable patterns over time. Some other

processes may include interactive components where interactions between entities in

the system result in observations that exhibit dependency with respect to the patterns

of interactions. The interactions between entities in the system form a network, and

is often expressed as a graph. For example, data points observed on entities (i.e.,

node labels in a network) that have interacted can exhibit dependency as a result of

the interactions. Additionally, networks that encode patterns of interactions between

entities can also exhibit sequential dependency as a result of underlying dynamical

components that drive the system. Sequential and network dependencies are very

important features of many data sets. These features should be accounted for and

exploited by statistical models whenever possible in order to adequately capture the

patterns in the data sets.

Examples of sequential data are abundant in our everyday lives, ranging from

the music that we listen to, to the DNA sequences that encode our biological traits.

Another setting where important sequential data sets are collected is in the financial

markets, where participants buy and sell financial products at prices informed by in-

formation available to the participants. The time series of transaction prices recorded
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in the markets can exhibit both sequential and cross-sectional dependencies due to

the varying speeds of market participants in receiving, processing and reacting to

information, among many other reasons. As the technologies to capture, process and

store sequential data improve, more and more sequential data sets that are extremely

long and rich in structures have become available for analysis. A relevant exam-

ple is the increasing adoptions of smart electricity meters which record household

electricity consumption at minute intervals. The higher frequency at which the data

is captured not only results in longer sequences, but also captures intra-day usage

patterns which were not previously available. The availability of long sequential

data sets with rich structures calls for powerful and flexible models that can scale up

to the sizes of these data sets. Furthermore, sequential data sets are not restricted

to vector-valued sequences. Another interesting type of sequential data sets that are

often observed in the real-world are temporal sequences of network data, which I

will discuss later in this section.

Apart from sequential dependency, another type of dependency that is both

important and commonplace in real-world data sets is network dependency. In data

sets where network structures exist, the data points are typically viewed as vertices1

in the networks and the network edges2 represent the relationships between the data

points. The presence of an edge between two vertices (i.e., 1-hop neighbours) typi-

cally implies positive associations between the two data points on the vertices. While

no theorem dictates that 1-hop neighbours are always positively associated, such

positive associations are widely observed empirically, and is known as homophily in

the literatures [Goldenberg et al., 2010]. The dependencies between vertices fade

away as the numbers of hops between pairs of vertices increase. As such, it is natural

to view the network structure as an irregular coordinate system in non-Euclidean

space where distances between pairs of data points are measured in the numbers of

hops separating the pairs. Looking at network data through this coordinate system

view allows us to draw parallels between sequential and network dependencies, in

1Vertices are also referred to as nodes in the literatures.
2Edges are also referred to as links or connections in the literatures.



15

that sequential data consists of a list of data points ordered on a regular 1-dimensional

grid in the Euclidean space, and the dependencies between pairs of data points in the

sequence decrease as the Euclidean distances between them increase.

Examples of network data in the wild include communication networks, where

vertices and edges represent individuals and their interactions respectively; computer

networks where computers are connected through communication links; rail networks

where train stations are connected by train tracks, and many others. A particularly

illustrative example of network data are citation networks. Vertices in citation

network are academic publications, and the edges in the network connect each vertex

to a list of other publications cited in its bibliography. Each vertex may also include

covariates, such as the bag-of-word representation of the publication, as well as a

label that indicates the field/sub-field that the publication is associated with. As

academic papers that belong to the same sub-fields are more likely to cite each others,

the vertex labels of neighbours are typically positively associated, giving rise to

dependency over the citation network connectivity structure. Clearly, the network

dependency should be taken into account when building statistical models.

In addition to data sets with naturally observed network structures, practitioners

have also invented various heuristics and algorithms to create networks for inde-

pendently and identically distributed (i.i.d.) data sets that can suitably represent the

relationships between the data points (e.g., Argyriou et al. [2006]). The derived

network representations allow powerful algorithms that operate on networks to be

applied to the data sets.

Network data sets are complex in nature, with a multitude of properties that

can be difficult to capture by any single model. Understanding different aspects of a

network data set often requires modellers to look at the data through many different

lenses. The description of networks in the previous paragraphs assumed that the

fundamental datum of the network data sets is the vertex. While many existing

models and algorithms implicitly make the same assumption of treating vertices as

the fundamental data unit, this is by no mean the only way to think about networks.
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Given different modelling objectives, it may be more intuitive and productive to

think of edges, triplets, hyper-edges or even paths in the networks as the fundamental

units, as discussed in details in Crane [2018], and model them as such.

Moving Average Models: Sequences and Networks

Moving average process is one of the most fundamental and well-known stochastic process

in the time series literature. Given a sequence indexed by positive integers (y1,y2,y3, . . .), the

moving average process models the dependency between data points in a sequence as

yt =
q

∑
s=1

asεt−s + εt (1.1)

where εt ∼N (0,σ2) is a sequence of i.i.d. Gaussian white noise and a1, . . . ,aq are the model

parameters. The model in Equation (1.1) is known as the MA(q) process. The auto-covariance

structure of the sequence as specified by MA(q) can be easily derived from the first principle.

The moving average model can also be extended to data sets with network structure. Given

data points {yn|n ∈ 1, . . . ,N} observed on the vertices of a network G with N vertices, one can

specify

yn =
q

∑
s=1

( as

|Ne(s,n)| ∑
i∈Ne(s,n)

εi

)
+ εn (1.2)

where εn ∼N (0,σ2), a1, . . . ,aq are model parameters and Ne(s,n) is the set of indices denoting

the s−hop neighbours of vertex n. For q=1, it is easy to see that

y∼N (0,PPᵀ) (1.3)

where y = [y1, . . . ,yN ]
T, P = (I+D)−1(I+A), A ∈ {0,1}N×N is the adjacency matrix for the

network G and D ∈ ZN×N is the diagonal vertex degree matrix.

The models specified in Equation (1.1) and (1.2) are similar in that the data points are

dependent on their adjacent data points. However, the notions of adjacency differ in the two

scenarios. In the sequential data, adjacent data points are defined as the data points that precede

the data point of interest. In the network, adjacent data points refer to the neighbours of the data

point of interest at different hops. The two models presented above illustrated the conceptual

similarities between modelling sequential and network data sets.
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In addition to the data points observed on the vertices of network, the connec-

tivity structure of the network itself is often of modelling interest. While the network

connectivity often exhibits rich structure, it is difficult to gain deeper insights, such

as understanding the community structure of the network, without models. Net-

work data sets are intrinsically temporal as it is extremely rare to observe all the

vertices and edges of a network at the same moment in time: vertices typically join

the network at different time points while connections form and vanish over time.

Therefore, it may be important to account for the temporal aspect of network data

sets using dynamic network models whenever possible.

One example of the network data sets in which the temporal aspect is important

is the communication network. In a communication network, users of the communi-

cation service (e.g., e-mails, telecommunications etc.) are represented by the vertices,

and the communication records between pairs of users are the edges. The edges are

typically time-stamped at the moment when the users communicate. Aggregating

the edges that are observed daily, we can construct a sequence of communication

networks in which each network in the sequence represents a snapshot of com-

munications between the users during the day. The sequence of networks may be

temporally correlated as users who had communicated previously are more likely to

communicate again in the near-future.

The focus of this thesis is on the development of probabilistic models and

variational inference algorithms that can capture the non-trivial dependency struc-

tures of sequences, networks and sequences of networks data sets. The probabilistic

models of primary interest are probabilistic graphical models (PGMs) and Gaussian

processes (GPs). These probabilistic methods provide a convenient, modular and

powerful way to specify models that can capture different types of dependency struc-

ture intended by the modellers. However, performing Bayesian inference in complex

probabilistic models has remained a difficult challenge without a satisfying universal

solution, and requires bespoke approximate inference algorithms to be developed.

Therefore, in addition to proposing novel probabilistic models for dependent data,
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the development of suitable variational inference algorithms for the proposed mod-

els forms a key part of this thesis. A review of the core concepts, algorithms and

probabilistic models that are the building blocks of the works presented in this thesis

is available in Chapter 2.

1.1 Contributions

The contributions made in this dissertation are summarised as follow:

1. The proposal of a novel scalable variational inference algorithm for factorial

hidden Markov models (FHMMs) in Chapter 3. The proposed algorithm

extends the stochastic variational inference algorithm proposed in Hoffman

et al. [2013] to FHMM, and takes advantage of a novel Gaussian-Bernoulli

copula parameterization of Markov chain variational distribution that lends

itself to amortized inference using feed-forward recognition neural networks.

The computational complexity of the proposed algorithm is sub-linear with

respect to the length of the data sequences, allowing FHMMs to be applied

to very long sequences under limited computing budgets. This is a joint work

with Pawel Chilinski.

2. The proposal of a data efficient Gaussian process model for semi-supervised

learning on graphs in Chapter 4. The proposed model shows extremely compet-

itive performance when compared to the state-of-the-art graph neural networks

on semi-supervised learning benchmark experiments, and outperforms the

neural networks in active learning experiments where labels are scarce. Fur-

thermore, the model does not require a validation data set for early stopping

to control over-fitting. The model can be viewed as an instance of empirical

distribution regression weighted locally by network connectivity. Its intuitive

construction is further motivated by a Bayesian linear model interpretation

where the node features are filtered by an operator related to the graph Lapla-

cian. The method can be easily implemented by adapting off-the-shelf scalable
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variational inference algorithms for Gaussian processes.

3. The proposal of a dynamic edge exchangeable random network model that

can capture sparse connections observed in real temporal networks, in contrast

to existing dynamic models which can only model dense networks. The model

achieved good link prediction accuracy on multiple data sets when compared

to the benchmark models, and is able to extract interpretable time-varying

community structures from the data. In addition to sparsity, the model accounts

for the effect of social influence on vertices’ future behaviours. Compared to

the dynamic blockmodels, the proposed model has a smaller latent space. The

compact latent space requires a smaller number of parameters to be estimated

in variational inference and results in a computationally friendly inference

algorithm.

The works presented in Chapter 3 and Chapter 4 have been published as the following

self-contained articles in conference proceedings.

• Y.C. Ng, P. Chilinski, R. Silva. Scaling Factorial Hidden Markov Models:

Stochastic Variational Inference without Messages. In NIPS, 2016.

• Y.C. Ng, N. Colombo, R. Silva. Bayesian Semi-supervised Learning with

Graph Gaussian Processes. To appear in NIPS, 2018.
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Background

In this chapter, I survey important concepts, models and algorithms that are the

building blocks of the works presented in this dissertation, and provide relevant

references to the literatures. The topics surveyed in this chapter are general and

non-exhaustive. Technical concepts that are more specific to the three pieces of work

presented in this dissertation are surveyed in the relevant chapters.

At the core of probabilistic models are joint probability distributions that specify

the statistical dependencies between the observed data and a set of latent random vari-

ables that explain the data. In Section 2.1, I survey the probabilistic graphical model

(PGM) as a flexible framework to compose joint probability distributions over a large

number of random variables, with a focus on the directed PGMs. In Section 2.2, I

introduce the dynamic directed graphical models, which are discrete-time stochastic

processes constructed through recursively specified conditional distributions. The

two types of dynamic PGM discussed are the hidden Markov Model (HMM) and

the linear dynamical system (LDS). The HMM is relevant to the work presented in

Chapter 3 while the LDS is related to the work in Chapter 5.

In Section 2.3, I discuss some graphical models for network data sets. The

probabilistic graphical models for networks are related to the models proposed in

Chapter 5. Starting with some discussions on the probabilistic graphical models for
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static network, I then proceed to discuss their dynamic extensions through temporally

coupling the graphical models for static network using LDS and HMM. The resulted

dynamic network models can capture the temporal evolution of the connectivity in

sequences of networks.

In addition to the probabilistic graphical models, I discuss the Gaussian process

(GP) as a flexible Bayesian non-parametric model for supervised learning in Sec-

tion 2.4. Using the vanilla GP as a building block, I propose a simple but effective

Bayesian model for semi-supervised learning on graphs in Chapter 4.

Finally, I discuss the variational inference algorithms in Section 2.5. Variational

inference serves as an important tool to approximate the intractable posterior distri-

butions encountered in probabilistic models, and is extensively used in the works

presented in the dissertation.

2.1 Probabilistic Graphical Models

A rich framework to construct high-dimensional joint probability distribution of

data is the probabilistic graphical model (PGM). PGM allows a joint distribution

to be decomposed into a product of factors. The decomposition allows for a more

succinct representation of the probabilistic model compared to a direct specification

of the joint distribution because of the inductive bias introduced in the decomposition

process. Additionally, inference for PGMs can be performed using a suite of well-

developed algorithms.

The two main categories of PGMs are the directed graphical models and the

undirected graphical models. Directed graphical models are typically chosen when

there is plausible hierarchical or causal structure in the data, such that the joint

distributions can be factorised accordingly. The time series and network models of

interest in this report mainly fall into the directed graphical model category because

of the causal nature of time and the hierarchical structure in network interactions

[Fox, 2009].
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More formally, a directed graphical model is a directed acyclic graph (DAG)

where each node in the DAG represents a random variable with directed incoming

edges from its parent nodes and outgoing edges to its child nodes. The joint proba-

bility distribution for the random variables of interest can be expressed as a product

of conditional distributions, with one conditional distribution for each node in the

DAG and a conditioning set that corresponds to its parent nodes. Two nodes in the

DAG that are independent a priori may be conditionally dependent when conditioned

on their common descendants. This phenomenon is known as explaining away,

and plays a critical role in determining the conditional independence relationships

encoded by the directed graphical model. To efficiently determine the conditional

independence relationships encoded by a directed graphical model, one can make

use of the Bayes ball algorithm [Murphy, 2012].

Inference in PGMs amounts to computing the conditional probability distribu-

tions of the unobserved random variables conditioning on the observed data, known

as the posterior distributions. For tree-structured PGMs, inference can be performed

efficiently using dynamic programming algorithms that exploit the conditional in-

dependence structure of the graphical models [Barber, 2012]. However, computing

the posterior distributions of general PGMs are typically difficult because of the in-

tractable high-dimensional integrals and/or summations in the normalising constants

that need to be evaluated. Therefore, practitioners resort to approximate inference

algorithms to approximate the posterior distributions.

2.2 Probabilistic Time Series Models

In this section, I briefly review the hidden Markov model (HMM), the linear dy-

namical system (LDS) and the switching linear dynamical system (sLDS). These

probabilistic time series models are stochastic processes that can be expressed as

dynamic directed graphical models.

Building on the foundation for the HMM and LDS laid down in the following
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Latent z1 z2 z3 zT

Observed y1 y2 y3 yT

. . .

Figure 2.1: This figure shows a directed probabilistic graphical model of the hidden Markov
model. This is also a valid graphical model for the linear dynamical system when the latent
variables are continuous. The structure of the graphical model implies that conditioning on
the present latent variable zt ′ , the latent variables in the future zt>t ′ are independent of the
latent variables in the past zt<t ′ .

sub-sections, we describe a powerful extension of the HMM called the factorial

HMM in chapter 3, and propose a scalable variational inference algorithm for the

factorial HMM. In chapter 5, we propose a dynamic network model that leverages a

variant of the LDS to model the temporal dependence in dynamic networks.

2.2.1 Hidden Markov Models

The hidden Markov model is a class of discrete time stochastic process with a latent

discrete-valued Markov process where given the latent state at a particular time point,

the observation is independent of other observations and distributed according to the

state-specific probability distributions. The probability distributions for observations

(i.e., the emission distributions), can either be discrete or continuous depending on

the type of data observed. Intuitively, HMMs can be thought of as mixture models

where the data point specific latent cluster assignments are distributed according to

the underlying Markov process.

Given a sequence of observations y1, ...,yT , the joint probability distribution of

the observed sequence and the corresponding latent states of the Markov process

z1, ...,zT parameterised by the model parameters θ are as follow.

pθ (y1:T ,z1:T ) = pθ (z1)pθ (y1|z1)
T−1

∏
t=2

pθ (zt |zt−1)pθ (yt |zt) (2.1)

The joint distribution in Equation (2.1) is a product of the initial distribution
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Figure 2.2: This figure shows some samples drawn from a 4-state HMM with 2-dimensional
Gaussian emission distributions. The stars represent the means of the Gaussian distributions
and the ellipses represent the covariance. The colored dots are the samples. The colors
encode the 4 different states of the HMM.

pθ (z1), the transition distribution pθ (zt |zt−1) and the emission distribution pθ (yt |zt).

The initial and transition distributions of the Markov process are typically chosen to

be categorical distributions. The model parameters θ can be estimated from the data

using the expectation-maximisation (EM) algorithm [Dempster et al., 1977].

Given the observed sequence y1:T , exact inference in HMM can be performed

efficiently with dynamic programming algorithms as the corresponding graphical

model has tree structure that implies conditional independence between the future

and the past given the current latent state. The inference tasks of interest are filtering,

smoothing and forecasting, which correspond to computing p(zτ |y1:τ), p(zτ |y1:T )

and p(zT+n|y1:T ) respectively where τ ∈ {1, ...,T − 1} and n ∈ Z+. The standard

Forward-Backward algorithm to compute these distributions are detailed in standard

machine learning textbooks such as [Murphy, 2012].
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2.2.2 Linear Dynamical System

The linear dynamical systems are probabilistic time series models with a latent

Gaussian Markov chain and observation probability distributions that are condition-

ally independent given the latent states at the corresponding time points. A LDS

is essentially equivalent to a HMM with continuous latent states. Therefore, the

LDS shares the same graphical model representation and conditional independence

relationships as the HMM.

Given a sequence of observations y1, ...,yT , the joint probability distribution of

the observed sequence and the corresponding real-valued multivariate state vectors

h1, ...,hT with the model parameters θ are as follow.

pθ (y1:T ,h1:T ) = pθ (h1)pθ (y1|h1)
T−1

∏
t=2

pθ (ht |ht−1)pθ (yt |ht) (2.2)

In contrast to the HMM, the initial distribution pθ (h1) and transition distribu-

tion pθ (ht |ht−1) are chosen to be multivariate Gaussian distributions N (µI,ΣI) and

N (Aht−1,ΣQ) respectively. The emission distribution pθ (yt |ht) is typically a multi-

variate Gaussian distribution N (Cht ,ΣR), but can be chosen to suit the sequences of

modelling interest.

Inference in LDS is highly similar to inference in HMMs. The filtering, smooth-

ing and predictive distributions, p(hτ |y1:τ), p(hτ |y1:T ) and p(hT+n|y1:T ), can be

computed using the same forward-backward algorithm, with the summations over

the latent states replaced with integrals that can be solved analytically because of the

model’s linear Gaussian structure.

While the linear Gaussian structure of the model allows for tractable inference,

it also imposes restrictions on the model’s flexibility. Johnson et al. [2016] improved

the flexibility of LDS at the expense of tractability by replacing the linear emission

distribution mean Cht with a flexible black-box function fθ (ht) and developed a

tractable variational inference algorithm to approximate the posterior distributions.
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Recent innovations in deep learning combined with advances in approximate in-

ference techniques have opened up interesting opportunities to extend LDS for

challenging modelling tasks.

2.2.3 Switching Linear Dynamical System

The switching linear dynamical system (sLDS) is an extension of LDS to allow the

parameters of the transition and emission distributions at each time step to be chosen

from a dictionary of parameters, each of which may fit particular segments of the

time series data better than the other parameters. Therefore, sLDS have been applied

to model complex time series that exhibit different properties over different segments

[Barber et al., 2011].

To select a suitable set of parameters from the dictionary for each time step,

a new discrete latent state st at each time step is introduced to the model such that

the transition and emission distributions are conditional on st . The dynamics for the

sequence of latent states s1, ...,sT are typically modelled with a Markov process, but

can be further adapted to modelling requirements [Linderman et al., 2016].

Expanding the LDS parameter notations θ = {µI,ΣI,A,ΣQ,C,ΣR} to sLDS

with K parameter states (i.e., st ∈ {1, ...,K}), the model parameters for the sLDS

are θ = {{µ(1)
I , ...,µ

(K)
I },{Σ

(1)
I , ...,Σ

(K)
I },{A(1), ...,A(K)},{Σ(1)

Q , ...,Σ
(K)
Q },{C(1), ...,

C(K)},{Σ(1)
R , ...,Σ

(K)
R }}. Given st , the transition and emission distributions are there-

fore N (A(st)ht−1,Σ
(st)
Q ) and N (C(st)ht ,Σ

(st)
R ) respectively. The joint probability

distribution of sLDS with a Markov process distributed parameter state-space is as

follow

pθ (y1:T ,h1:T ,s1:T ) =pθ (h1|s1)pθ (y1|h1,s1)pθ (s1)

T−1

∏
t=2

pθ (yt |ht ,st)pθ (ht |ht−1,st)pθ (st |st−1).
(2.3)

The expressiveness of sLDS comes at the cost of intractable exact inference,
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Discrete s1 s2 s3 sT

Continuous h1 h2 h3 hT

Observed y1 y2 y3 yT

. . .

. . .

Figure 2.3: This figure shows a directed probabilistic graphical model of the switching
linear dynamical system.

as the exact filtering distributions, which are mixtures of Gaussians, have numbers

of components that increase exponentially with respect to their time indices. For

example, the filtering distribution p(ht |y1:t ,st) for a sLDS with K components is a

mixture of Kt−1 Gaussians. The difficulty to keep track of the Gaussian mixtures

demands inference algorithms that can sufficiently approximate the multi-modal

posterior distributions without incurring exponential memory cost. Some pointers to

tractable inference algorithm for sLDS can be found in [Barber et al., 2011, Murphy,

2012].
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2.3 Probabilistic Network Models

Network data are data sets that express the relationships between multiple entities

that are known as vertices or nodes. A network G consists of a set of N vertices

V , typically indexed by positive integers up to N (i.e., V = {1, ...,N}), and a set

of 2−tuples E that specifies the relationships between the vertices in V (e.g., E =

{(1,3),(2,3),(1,2)}). In directed networks, the order of the vertices in tuple encodes

the origin/destination relationship between two vertices, such that (i, j) implies a

directed edge from vertex i to vertex j. In undirected networks, the ordering is simply

ignored. A network can also be equivalently expressed using a N×N binary-valued

adjacency matrix Y, with Yi j = 1 if (i, j) ∈ E and 0 otherwise. The binary-valued

matrix is also known as a graph, and in the case when its elements are random

variables, it is called a random graph. Many probabilistic network models essentially

define probability distributions on random graphs.

In this section, we briefly review some probabilistic network models and con-

cepts that are relevant to the edge-exchangeable dynamic network models described

in Chapter 5. We first describe the mixed-membership stochastic blockmodel and its

dynamic network variant. Using the intuition developed, we then briefly describe

exchangeable random graphs, in which mixed-membership stochastic blockmodel

and many other probabilistic network models are special cases, and discuss their

inherent limitations in modelling real-world network data. The discussions serve as

a foundation for the dynamic network model that we propose in chapter 5. Finally,

we review the concept of edge-exchangeability in network modelling. The model

proposed in chapter 5 falls under the edge-exchangeable framework.

We refer readers who are interested in an in-depth survey of probabilistic

network models to Goldenberg et al. [2010]. The excellent survey paper covers an

extensive list of probabilistic network models and properties of networks that are

commonly observed in the real-world.



2.3. Probabilistic Network Models 29

2.3.1 Mixed-membership Stochastic Blockmodels

A common approach to model network data is to assume that the vertices in the data

set can be categorised into several clusters, and the probability of interaction between

two vertices is dependent on their unobserved cluster assignments. As the cluster

assignments of the members are unobserved, they are assumed to be latent variables

that can be inferred from the network data. This data generative process is known as

stochastic blockmodel (SBM), first proposed by Nowicki and Snijders [2001].

Mixed-membership stochastic blockmodel (MMSB) [Airoldi et al., 2008] gen-

eralises the SBM to allow vertices to take on different cluster assignments depending

on the vertices they are interacting with. Therefore, the cluster assignments of the

vertices are unique to the vertices they are interacting with, and are sampled from

from vertex-specific multinomial distributions. For example, in a directed network

with 3 clusters, vertex A may belong to cluster 1 in a directed interaction from

vertex A to B, and belong to cluster 2 in an interaction from A to C while belonging

to cluster 3 in an interaction from B to A. Given the cluster assignments of two

interacting vertices, the probability of forming a connection between the two vertices

is the corresponding probability between the two clusters.

To sample a directed network G with N vertices and adjacency matrix Y from

a MMSB with K clusters, one can draw samples using the generative process in

Algorithm 1. The algorithm was first presented in Airoldi et al. [2008]. Modification

of the procedure to sample undirected network requires only trivial changes to

enforce symmetry to the cluster indicators.

The MMSB requires 3 hyper-parameters to be specified. These hyper-
parameters are the number of vertices N ∈ Z+, the concentration hyper-parameter
α ∈ RK

+ for the Dirichlet prior distribution of the mixed-membership vector and the
B ∈ [0,1]K×K matrix that describes the probabilities of connections between differ-
ent mixed-membership clusters. The generative process implies a joint probability
distribution as specified in Equation (2.4), which consists of N2 +N latent variables.
In Equation 2.4, Ypq ∈ {0,1} is an entry in the adjancency matrix that describes
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Algorithm 1 Data generating process for the MMSB.

Input: N ∈ Z+, α ∈ RK
+, B ∈ [0,1]K×K

Output: Adjacency matrix Y ∈ 0,1N×N

1: for p← 1 to N do
2: Sample a mixed-membership vector: πp ∼ Dirichlet(α)

3: for p← 1 to N do
4: for q← 1 to N do
5: Sample a 1-hot column vector: zp→q ∼Categorical(πp)
6: Sample a 1-hot column vector: zp←q ∼Categorical(πq)
7: Sample an edge: Ypq ∼ Bernoulli(zTp→qBzp←q)

the network data, zp→q and zp←q are indicator random variables that indicate the
community memberships of vertex p and q respectively as they interact with each
other. These community assignment random variables are assumed to be sampled
from vertex-specific categorical distributions parameterised by πp.

p(Y,Z→,Z←,π1:N) =
[
∏
p,q

p(Ypq|zp→q,zp←q,B)p(zp→q|πp)p(zp←q|πq)
][

∏
p

p(πp|α)
]

(2.4)

Exact posterior inference in MMSB is intractable because of the large number

of latent variables that need to be marginalised. As a result, many approximate

inference and sampling algorithms, such as the algorithms proposed in Airoldi et al.

[2008], Gopalan et al. [2012] and Chang [2011], have been developed.

Despite its popularity in the statistical network modelling community, MMSBs

are not able to capture the sparsity of edges commonly observed in real network data.

We discuss the limitation in more details in Section 2.3.3.

2.3.2 Dynamic Mixed-membership Stochastic Blockmodels

Networks that are observed in real-life often evolve over time, with new edges and

vertices entering the networks at different time points while some existing edges

disappear. Modelling these time-evolving networks can often reveal interesting

time-varying patterns of the networks, and even allows us to make predictions. Many

different probabilistic dynamic network models have been proposed by different

authors [Ho et al., 2011, Xu and Hero, 2014, Heaukulani and Ghahramani, 2013,
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Algorithm 2 Data generating process for the dM3SB .

Input: C,N,T ∈ Z+, v ∈ RK×1, Φ ∈ RK×K , Σ1:C ∈ RK×K , δ ∈ ∆K , B ∈ [0,1]K×K

Output: A sequence of adjacency matrices [Y(1), ...,Y(T )], where Y(t) ∈ {0,1}N×N

1: for h← 1 to C do . Sample a sequence of latent states
2: Sample µ

(1)
h ∼N (v,Φ)

3: for t← 2 to T do
4: Sample µ

(t)
h ∼N (µ

(t−1)
h ,Φ)

5: for t← 1 to T do
6: for p← 1 to N do
7: Sample c(t)p ∼Categorical(δ ) . Sample mixture component indicator
8: Sample γ

(t)
p ∼N (µ

(t)

c(t)p
,Σ

c(t)p
) . Sample mixed-membership vector

9: Transform π
(t)
p ← So f tmax(γ(t)p )

10: for p← 1 to N do . Sample a network as in Algorithm 1
11: for q← 1 to N do
12: Sample z(t)p→q ∼Categorical(π(t)

p )

13: Sample z(t)p←q ∼Categorical(π(t)
q )

14: Sample Y(t)
pq ∼ Bernoulli(z(t)p→q

T

Bz(t)p←q)

Sarkar and Moore, 2006, Sewell et al., 2017, Durante and Dunson, 2014].

The review in this section focuses on the dynamic mixture of mixed-membership

stochastic blockmodel (dM3SB ) proposed by Ho et al. [2011]. dM3SB extends

the MMSB in two directions. Firstly, dM3SB replaces the Dirichlet prior of the

mixed-membership vector with a mixture of logistic normal prior, such that the

mixture model can capture both the covariance between different clusters and the

multi-modal data densities. Secondly, dM3SB models the time dependency of the

networks by chaining the mixture of logistic normal priors at adjacent time points

with a Gaussian random walk state-space.

The generative process to sample a time series of T networks G1, ...,GT with

adjacency matrices Y(1), ...,Y(T ) among a set of N vertices V from a dM3SB with K

mixed-membership clusters and C state-space mixture components is as described in

Algorithm 2.

As with MMSB, inference and parameter learning in dM3SB are computation-
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ally intractable. A structured mean-field variational inference and a variational EM

algorithms were developed to allow tractable posterior inference and learning by Ho

et al. [2011].

2.3.3 Exchangeable Random Graphs and Limitations

A network G = (V,E) with an adjacency matrix Y is invariant to the relabelling of

the vertices V . Roughly speaking, this means that renaming the vertices in G does

not alter the information contained in the data. The invariant property, defined in

Definition 2.3.1, also implies that simultaneously permuting the rows and columns

of Y has no effect on the network represented by Y. A random graph that is jointly

exchangeable is called an exchangeable random graph.

Definition 2.3.1. A random graph (Yi j) is called jointly exchangeable if (Yi j)
d
=

(Yπ(i)π( j)) for every permutation π of Z.

The jointly exchangeable property of Y is widely exploited to define probabilis-

tic network models, including the MMSB [Lloyd et al., 2012]. It is easy to see that

the relabelling of vertices has no effect on the MMSB joint probability distribution

in Equation (2.4). Probabilistic models for jointly exchangeable random graph are

characterised and unified by the following Aldous-Hoover representation theorem

[Aldous, 1981, Hoover, 1979].

Theorem 2.3.1. A random graph (Yi j) is jointly exchangeable if and only if it can

be represented as follows: There is a random function F : [0,1]3 → Y such that

(Yi j)
d
= (F(Ui,U j,Ui, j)), where (Ui)i∈Z and (Ui, j)i, j∈Z are, respectively, a sequence

and an array of i.i.d. Uni f orm[0,1] random variables, which are independent of F.

While the theorem above assumes that (Ui)i∈Z and (U{i, j})i, j∈Z are i.i.d.

Uni f orm
[
0,1
]

distributed, the uniformly distributed assumption is not a neces-

sary condition given the following conditions hold as detailed in Orbanz and Roy

[2015].
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1. Both (Ui)i∈Z and (U{i, j})i, j∈Z are i.i.d.

2. The random variables are independent of the random function F .

3. The distributions of (Ui)i∈Z and (U{i, j})i, j∈Z are non-atomic.

In the case where the random graph is symmetric (undirected network),

the Aldous-Hoover theorem can be expressed as a symmetric graphon function

W : [0,1]2→ [0,1] [Lovász, 2012], such that F(Ui,U j,Ui, j)
d
= 1(Ui, j < W (Ui,U j).

A random graph GN with N vertices sampled from an exchangeable random graph

model has an expected proportion of edges p = 1
2
∫
[0,1]2 W (x,y)dxdy. The expected

number of edges in the sampled undirected graph is N(N−1)
2 p = Θ(N2) if p > 0.

Therefore, networks sampled from exchangeable random graph models are guaran-

teed to be either trivially empty (p = 0) or dense (p > 0, |E| = Θ(N2)). However,

networks observed in the real-world are generally sparse (i.e., |E|= o(N2)) [Gold-

enberg et al., 2010]. Therefore, probabilistic network models and their dynamic

variants that are built upon the exchangeable random graph assumption cannot fit

sparse real network data well.

2.3.4 Edge Exchangeable Network Models

Definition 2.3.2. Consider the random network sequence (Gn)n, where Gn has a set

of edges En that are indexed by integers and Vn are the active vertices of En (i.e., Vn

is the union of all vertices in En). (Gn)n is (infinitely) edge exchangeable if for every

n ∈ Z and every permutation π of the edge indices in En, Gn
d
= G̃n, where G̃n is the

resulted network from the permutation.

The limitation of the exchangeable random graph approach in modelling sparse

network data has called for a different framework to model sparse networks. To

address the issue, Crane and Dempsey [2016], Cai et al. [2016] separately proposed

to model sparse networks as edge exchangeable random networks, and showed that

the edge exchangeable models do indeed produce sparse networks. The notion of
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edge exchangeability is fundamentally different from the previously described joint

exchangeability of random graphs and the Kallenberg exchangeability explored in

Caron and Fox [2014]. We refer to the previously described joint exchangeability as

vertex exchangeability to avoid confusion.

The vertex exchangeable random graphs, as defined in Definition 2.3.1, im-

plicitly assumes that vertices are the statistical units of network data [Crane and

Dempsey, 2016]. The assumption implies that as vertices are sampled or observed,

the connectivity information between the set of sampled vertices (i.e., the edges and

the lack of edges) become fully available. This is consistent with the approach of

modelling networks as binary-valued adjacency matrices. However, many networks

observed in the real world are only partial observations of the interactions. It is

difficult to differentiate between non-interactions and unobserved interactions.

In contrast, the edge exchangeable models assume that edges are the statistical

units of networks, and that the observed edges in networks are finite samples of an

interaction process. With the edge exchangeable assumption, the models are invariant

to the ordering of the edges. Therefore, the edges are drawn iid conditioning on an

underlying distribution. Edge exchangeable networks are formally defined in Cai

et al. [2016] in Definition 2.3.1. An in-depth discussion of the edge exchangeable

models is presented in Janson [2017].

2.4 Gaussian Processes

In this section, I briefly review the powerful Gaussian process model. Gaussian

process is a powerful tool in the probabilistic modelling tool kits. In chapter 4, we

propose an extension of Gaussian process to model data points observed on the

vertices of graphs.

Gaussian processes are a flexible class of stochastic processes that leverage the

convenient properties of multivariate Gaussian distribution to specify prior probabil-

ity distributions over functions f : X → R indexed by x ∈ X . The marginalisation
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property of the multivariate Gaussian distribution implies that the marginal distribu-

tion for any finite subset of random variables from a collection of jointly multivariate

Gaussian distributed random variables is also a multivariate Gaussian distribution,

with the mean vector and the covariance matrix specified by the corresponding sub-

sets of the original joint distribution parameters. In Gaussian process, the distribution

over an infinite collection of Gaussian distributed random variables f (·) is fully

specified by its mean function µ : X → R and the positive semi-definite covariance

kernel function kθ : X ×X → R parameterized by a small set of hyper-parameters

θ . Therefore, a GP distributed random function can be denoted as

f (·)∼ GP(µ(·),kθ (·, ·)). (2.5)

In the simplest case of Gaussian process interpolation, a prior over the inter-

polating function f can be specified using a GP. Once a set of observations drawn

from the underlying function DI = {(x1, f (x1)), . . . ,(xN , f (xN))} is observed, the

predictive distribution at arbitrary point x can be analytically computed as follow

p( f (x)|DI}=
p( f (x),DI)

p(DI)
. (2.6)

The distributions p( f (x),DI) and p(DI) are multivariate Gaussian distributions with

the mean vectors and the covariance matrices specified by evaluating µ(·) and kθ (·, ·)

at the corresponding index sets.

The applications of GPs to model real-world data sets usually require the speci-

fication of per data point likelihood functions that are coupled via a GP prior for the

likelihood parameters. One typical modelling scenario that requires the specification

of likelihood functions is Gaussian process regression. Given continuous valued

data points with additive noise DR = {(x1,y1), . . . ,(xN ,yN)}, a likelihood model

p(yn| f (xn)), where f (xn) is the ‘location’ parameter of the distribution, can be speci-

fied for the data points to account for additive noise. Combining the likelihood model

with a GP prior on f (x), one can compute the posterior process of f (x), p( f (x)|DR),
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and draw inference on the underlying function that generated the data set using the

Bayes rule

p( f (x)|DR}=
p( f (x))∏

N
n=1 p(yn| f (xn))

p(DR)
. (2.7)

The most commonly used likelihood function for the GP regression model is the

Gaussian distribution, which conveniently allows Equation (2.7) to be computed

analytically. Other than the Gaussian distribution, likelihood functions that are

suitable for regression tasks include the Laplace distributions and the Student-t

distributions. However, the use of non-Gaussian likelihood functions results in

intractable model that requires approximate inference algorithms to compute the

posterior process.

Beyond regression, Gaussian processes are also powerful priors for building

classification models and latent variable models [Rasmussen and Williams, 2006,

Lawrence, 2004, Byron et al., 2009]. However, performing inference in these more

complicated GP models is analytically intractable and requires suitable approximate

inference algorithms. Another major drawback of the GP models is the computa-

tional complexity. Performing inference in GP models incurs a memory cost that

scales O(N2) and a computational cost that scales O(N3), where N is the number

of data points in the training data set D, rendering the models to be computation-

ally intractable in modelling big data sets. Fortunately, research breakthroughs in

variational inference algorithms in recent years have provided feasible solutions that

address both the analytically and computationally intractable aspects of Gaussian

processes. I review the variational inference algorithms for GPs in Section 2.5.3.

The choice of the covariance function kθ (x,x′), also known as the kernel func-

tion, is particularly important for Gaussian processes. The covariance function deter-

mines the prior covariances between pairs of random variables indexed by different

values of x, and therefore the prior probability density assigned to functions of dif-

ferent smoothness and trends. For example, the commonly used squared exponential

(SE) covariance function kθ (x,x′) = σ2e−
(x−x′)T(x−x′)

2l2 assumes that prior covariance

between random variables decays exponentially with respect to the squared Euclidean
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distance between their indices, with the rate of decay determined by the lengthscale

parameter l. Therefore, SE covariance function with larger lengthscale parameter

results in a GP that places higher density on smoother functions compared to another

SE covariance GP with a smaller lengthscale parameter. In addition to smoothness,

the covariance function can also be designed to incorporate other prior knowledge

such as seasonal and linear trends. GPs with carefully designed kernels to capture

specific known trends in the data are able to extrapolate sensibly, resulting in greater

performances when compared to the other generic models. However, designing

suitable kernel functions requires extensive expert knowledge, and the development

of algorithms for automatic discovery of kernels remains an active research area

[Duvenaud, 2014, Wilson, 2014].

Inputs to the kernel functions are not restricted to vector valued data only.

Kernels for structured objects such as sequences, graphs and probability distributions

have also been proposed, extending the scopes of kernel machines, including the

Gaussian processes, to beyond vector valued data. In Chapter 4, I discuss a GP

model with kernel function which operates on vertices in graphs that can also be

viewed as a GP that operates on probability distributions.

As the kernel functions are critical components of Gaussian processes, I refer the

readers to comprehensive reviews of different kernel functions in Duvenaud [2014]

and Rasmussen and Williams [2006]. Discussions and reviews on the technical

details of the Gaussian processes are available in Rasmussen and Williams [2006].

2.5 Variational Inference

Posterior inference in probabilistic models are typically intractable because com-

puting the normalising constants of the posterior distributions involve integrating or

summing over a large number of random variables. Variational inference provides a

scalable solution to approximate the posterior distribution p with a tractable family

of approximating distributions q such that the Kullback-Leibler (KL) divergence
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between the intractable true posterior distribution and the approximating distribution

KL(q||p) is (indirectly) minimised.

Consider a data set X = {x1, ...,xN} with N data points that are assumed

to be generated from a model with joint probability distribution pθ (X ,Z) =

∏
N
n=1 pθ (xn|zn)pθ (zn), where Z = {z1, ...,zN} are K dimensional latent variables

drawn from the prior distribution pθ (Z) = ∏
N
n=1 pθ (zn) and θ denotes the set of

model parameters. The goal of variational inference is to approximate the intractable

posterior distribution p(Z|X) = pθ (X ,Z)
pθ (X) with a family of distribution qλ (Z) =

∏
N
n=1 qλn(zn) parameterised by the set of variational parameters λ = {λ1, ...,λN}.

The conventional choice of the family of approximating variational distributions

qλn(zn) is the fully-factorised exponential family distributions ∏
K
k=1 qλnk

(znk), called

the mean-field distributions. The mean-field distributions are primarily chosen for

the easiness to compute the expectations of the sufficient statistics, which allow

the variational inference objective function for conditionally conjugate models to

be evaluated in a tractable way. However, recent advances in integrating sampling

algorithms into variational inference have allowed richer non-factorial variational

distributions that are easy to sample from to be used instead [Kingma and Welling,

2013, Ranganath et al., 2014, Kucukelbir et al., 2016].

Variational inference seeks to optimise the variational parameters λ such that

KL(qλ (Z)||p(Z|X)) is minimized. However, the KL divergence itself is again in-

tractable because it requires the evaluation of the intractable model evidence p(X).

Therefore, the evidence lower bound (ELBO), which is equivalent to the KL diver-

gence up to a normalising constant is optimized instead. The ELBO is derived by

lower bounding the model’s log-evidence using the Jensen’s inequality

ln
∫

Z
pθ (X ,Z)≥

∫
Z

qλ (Z) ln
pθ (X ,Z)
qλ (Z)

. (2.8)

The r.h.s. of Equation (2.8) is the variational objective function ELBO to be

maximised with respect to λ . If the actual posterior distribution falls inside the
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family of variational distributions, the value of ELBO at its global maxima is equal

to the log-evidence and the bound is tight.

The ELBO, as stated in Equation (2.9), and its gradients with respect to λ

can be evaluated analytically when the model is conditionally conjugate and the

variational distributions are from the mean-field family. The gradients can then be

used in gradient ascent or coordinate ascent algorithms to optimise the variational

parameters to convergence. However, in many interesting probabilistic models,

such as the Bayesian logistic regression model and the variational autoencoder

(VAE), the models are not conditionally conjugate and require further approximations

of the expected log-complete likelihood term Eqλ
[ln pθ (X ,Z)]. The intractable

expectation can be approximated by linearising the log-complete likelihood such that

its expectation can be analytically evaluated [Jaakkola and Jordan, 1997, Johnson

et al., 2016, Wang and Blei, 2013]. More recently, black-box variational inference

methods that attempt to approximate ELBO and its gradients using Monte Carlo

samples from the variational distributions have also been successfully applied in

Titsias and Lázaro-Gredilla [2014], Ranganath et al. [2014], Kucukelbir et al. [2016],

Kingma and Welling [2013].

ELBO(λ ) = Eqλ
[ln pθ (X ,Z)]−Eqλ

[lnqλ (Z)] (2.9)

An intuitive way to interpret the ELBO is to rearrange Equation (2.9) as a

sum of the expected model log-likelihood and −KL(qλ (Z)||pθ (Z)), as shown in

Equation (2.10). The ELBO objective function can be interpreted as a trade-off

between modelling the data well by maximising Eqλ
[ln pθ (X |Z)] and minimizing

the KL distance to the prior:

ELBO(λ ) =−KL(qλ (Z)||pθ (Z))+Eqλ
[ln pθ (X |Z)]. (2.10)

While the review above derived the ELBO based on data points that are i.i.d.
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samples drawn from the model, Equation (2.9) is also valid for dependent data.

However, the fully factorised assumption of the mean-field distributions is often too

restrictive for dependent data and may result in highly biased approximations. There-

fore, further assumptions, such as time dependency, are often taken into account to

partially factorise the qλ (X). The resulted variational distributions are the structured

mean-field distributions. We review the structured mean-field variational inference

for probabilistic models with latent Markov processes in Section 2.5.2.

2.5.1 Variational Expectation-Maximisation Algorithm

Probabilistic models are often parameterised with model parameters or hyper-

parameters that can be learned from the data. In a Bayesian inference setting,

prior distributions are placed on the parameters and their posterior distributions can

be inferred using the suite of tools for Bayesian inference, including variational infer-

ence. Otherwise, the parameters are often learned by maximising the log-evidence

of the probabilistic models
∫

Z pθ (X ,Z) with the expectation-maximisation (EM)

algorithm under the maximum likelihood principle [Dempster et al., 1977]. However,

the EM algorithm requires access to the exact posterior distributions of the latent

variables and computing the exact posterior distributions is intractable for many

models of interest as discussed in Section 2.5.

The variational EM algorithm attempts to approximate the maximum likelihood

model parameters θ̂ML by maximising the lower bound of the log-evidence as derived

in Equation (2.9). Expanding the arguments of the ELBO function to include model

parameters θ , the optimal variational EM parameter setting θ̂V EM is

θ̂V EM = argmax
θ

ELBO(λ ,θ) = argmax
θ

Eqλ
[ln pθ (X ,Z)]. (2.11)

The variational EM solution θ̂V EM is not guaranteed to converge to θ̂ML as the

set of local maxima of ELBO may not include θ̂ML if the family of variational distri-

butions does not include the true posterior distributions. As with the EM algorithm,
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Figure 2.4: This figure shows an undirected graphical model that encodes the conditional
independence structure of the smoothing posterior distribution resulted from the variational
Kalman filter algorithm.

the variational EM solution may also converge to a sub-optimal local maxima as

the ELBO function is non-convex and the converged solutions are dependent on the

starting points as well as the optimisation algorithms. Therefore, the application of

the variational EM algorithm often requires multiple random restarts and careful

selection of the optimizer’s parameter settings to find a good solution.

2.5.2 Variational Inference for Latent Markov Models

Hidden Markov models and linear dynamical systems are probabilistic time series

models with tractable posterior inference. However, many of their more complex

extensions do not share the same computational convenience. Some examples of

these intractable latent Markov models include the factorial hidden Markov models

[Ghahramani and Jordan, 1997], dynamic topic models [Blei and Lafferty, 2006],

dynamic word embedding [Bamler and Mandt, 2017] and dynamic MMSB [Ho et al.,

2011].

In factorial hidden Markov models, the multiple latent Markov processes are

coupled at each time point upon conditioning on the observations, resulting in

posterior computations that scale exponentially with the number of latent Markov

chains. A naive application of the completely factorised mean-field variational

inference algorithm to the model results in highly biased approximation because of

the strong sequential dependency. Therefore, a structured mean-field approach that

preserves the time dependency within each Markov chain but ignores the dependency

across chains was proposed. The variational distribution for each of the Markov

chain preserves the conditional independence assumption of Markov chains where

the future is independent of the past when conditioned on the present.
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In models like the dynamic topic models and the dynamic MMSB where poste-

rior inference is intractable because of the complex likelihood functions, variants

of the variational Kalman filter algorithm are typically applied [Blei and Lafferty,

2006]. The variational Kalman filter algorithms result in smoothing Gaussian vari-

ational distributions with Markovian conditional independence structure. As such,

the smoothing Gaussian variational distributions can be equivalently parameterised

by directly specifying a block-tridiagonal precision matrix [Archer et al., 2015].

Another alternative but equivalent parameterisation of the variational distribution is

by the following normalised product of bi-variate distributions for adjacent pairs of

latent variables xt ,xt+1 in the state-space

q(x1, ...,xT ) =
∏

T−1
t=1 q(xt ,xt+1)

∏
T−1
t=2 q(xt)

. (2.12)

The pairwise variational distributions q(xt ,xt+1) are bi-variate Gaussians with

mean and covariance variational parameters and q(xt) are the corresponding Gaussian

marginals. This alternative parameterisation allows the first and second moments of

the distributions, which are often required in variational EM algorithm to be easily

computed from the parameters.

Combining the directly parameterised Gaussian Markov chain variational dis-

tributions with the reparameterisation trick allows complex probabilistic models

with latent Markov process to be treated as convenient black-boxes when variational

inference is applied.

2.5.3 Variational Inference for Gaussian Processes

Posterior inference in Gaussian processes poses two main challenges to the prac-

titioners. Firstly, the computational complexity of computing the posterior dis-

tribution is O(N3), where N is the number of data points in the training data set

D = {(x1,y1), . . . ,(xN ,yN)}. The computational bottleneck arises from inverting the

kernel matrix of the GP prior and is a ubiquitous problem that also applies to GP
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models that are analytically tractable. Secondly, posterior inference for many GP

models with non-conjugate likelihoods is analytically intractable. Therefore, suitable

approximate inference methods are required in order to work with the intractable GP

models.

Algorithms such as the Laplace approximation [Williams and Barber, 1998], the

Fully Independent Training Conditional (FITC) algorithm [Snelson and Ghahramani,

2006], the expectation-propagation (EP) algorithm [Kim and Ghahramani, 2006, Li

et al., 2015a], the elliptical slice sampler [Murray et al., 2010] and many others have

been proposed by various authors over the years to address the two challenges. A

sparse approximation scheme proposed in Titsias [2009] resolves the two sources of

intractability elegantly under the variational inference framework. The approximation

scheme gives practitioners the ability to trade off the fidelity of the approximations

and the computational complexity, allowing GPs to scale up to larger data sets. The

complexity of the variational algorithm is O(NM2), where M is a hyper-parameter

that can be chosen based on computational requirements. Additionally, it side-

steps the analytical intractability by turning the intractable normalizing constant

in Equation (2.7) for models with non-conjugate likelihood functions into a series

of 1-dimensional integrals that can be efficiently approximated using well-known

numerical methods. In Bauer et al. [2016], the authors showed that this variational

approximation method is superior to the widely adopted FITC algorithm, in that

the variational algorithm attempts to approximate the true posterior processes while

the FITC algorithm approximates a model different from the one intended. This

variational inference algorithm for GPs is the template of the variational algorithm

used in Chapter 4. I describe the sparse variational inference algorithm in the

following paragraphs. The algorithm described does not assume specific likelihood

functions, and is applicable to both regression and classification tasks.

Given training data setD= {(x1,y1), . . . ,(xN ,yN)}, where y = [y1, . . . ,yN ]
T are

labels for classification or regression tasks and X = [x1, . . . ,xN ]
T are the correspond-

ing features in the feature space X , a Gaussian process model for the data set can be
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defined as

p(y, f|X) = p(f|X)
N

∏
n=1

p(yn| fn) (2.13)

where p(f|X) is the joint probability distribution for f = [ f (x1), . . . , f (xN)]
T and f (·)

is a GP distributed random function with the kernel function kθ (·, ·), such that p(f|X)

is a zero mean multivariate Gaussian distribution with a covariance matrix KXX ,

p(f|X) =N (0,KXX). (2.14)

The posterior distribution of interest is

p(f|y,X) =
p(y, f|X)∫
p(y, f|X)df

. (2.15)

As described in Section 2.4, Equation (2.15) is analytically intractable if p(yn| fn)

is non-Gaussian, and expensive to compute for big data sets in the Gaussian case.

To approximate the posterior distribution in Equation (2.15), Titsias [2009] intro-

duced a set of M inducing points u = [u1, . . . ,uM]T = [ f (z1), . . . , f (zM)]T, where

Z = [z1, . . . ,zM]T are inducing inputs in X . The inducing inputs Z are variational

parameters that can be optimized to achieve good approximation quality. In addition,

a variational distribution q(u, f) = q(u)p(f|u) is introduced to obtain a variational

lower bound of the GP model

log p(y)≥
∫

q(u)p(f|u) log
∏

N
n=1 p(yn| fn)����p(f|u) p(u|Z)

q(u)����p(f|u)
dudf

=
N

∑
n=1

∫
p( fn|u) log p(yn| fn)d fn−KL(q(u)||p(u|Z)).

(2.16)

For models with Gaussian likelihood functions, the optimal q(u) can be obtained

using the calculus of variation, resulting in an optimal multivariate Gaussian varia-

tional distribution. For models with intractable likelihood functions, a multivariate

Gaussian variational distribution q(u) =N (m,Σ) is typically assumed, and the varia-

tional parameters m,Σ and Z can be estimated by maximizing Equation (2.16) using

a gradient ascent algorithm. The 1-dimensional integrals
∫

p( fn|u) log p(yn| fn)d fn
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can be efficiently approximated using numerical methods if no analytical solution

is available for the specified likelihood functions. The computational complexity

of optimizing the bound in Equation (2.16) is O(NM2). The predictive distribution

p(y∗|Y) at a test point x∗ is as follow.

p(y∗|Y)≈
∫

p(y∗| f∗)
∫

p( f∗|u)q(u)dud f∗ (2.17)

The distribution is analytically intractable for non-Gaussian likelihood functions, but

can be approximated using Monte Carlo method.

As the number of data points N becomes large, the bound in Equation (2.16)

can be optimized stochastically using only mini-batches of the data points, such

that the computational cost of optimizing the bound can be further reduced. The

stochastic optimization approach is described in Hensman et al. [2015a].

2.5.4 Challenges and Innovations in Variational Inference

Despite the wide-spread use of variational inference in the machine learning commu-

nity, there remains significant shortcomings and challenges that require methodolog-

ical innovations to overcome. We briefly highlight the key challenges and point to

some recent literatures that attempt to address them.

Scalability

Computing the ELBO function and its gradients often become computationally

challenging as the data sets increase in size. In i.i.d. data setting, the computational

complexity of ELBO scales linearly with the number of data points. In time series

models, the computational complexity is often linear with respect to the number

of time points. In certain network models, such as the MMSB, the computational

complexity is quadratic with respect to the number of vertices in the networks.

Various stochastic variational inference algorithms have been proposed to reduce

the computational cost of variational inference by optimising a noisy but unbiased
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surrogate of the ELBO function through data sub-sampling [Hoffman et al., 2013,

Foti et al., 2014, Gopalan et al., 2012]. By randomly selecting a subset of the

data at each iteration of the variational inference algorithm and optimise the noisy

approximation of the ELBO with stochastic gradient ascent algorithm, the algorithm

will converge to the optima of the ELBO function while reducing the computational

complexity to sub-linear [Robbins and Monro, 1951].

The number of variational parameters λ that need to be stored also becomes

large as the size of the data set increases. To reduce the memory requirements, amor-

tised variational inference algorithms that reparameterise the variational parameters

as outputs of expressive neural networks have been successfully applied to both large

i.i.d data sets and long time series data [Kingma and Welling, 2013, Ng et al., 2016].

Tractability

The parameterisations of complex probabilistic models often include probability

distributions that are not log-linear. The class of models includes those with logistic,

softmax and neural network functions in the likelihoods [Jaakkola and Jordan, 1997,

Blei and Lafferty, 2006, Kingma and Welling, 2013, Johnson et al., 2016] and the

latent states [Linderman et al., 2016]. The ELBO functions of this class of models

are intractable because of the non-linear expectations Eqλ
[ln pθ (X ,Z)] that can no

longer be analytically evaluated. Applying variational inference to these models

requires either deterministic linear approximations, as is the case in Jaakkola and

Jordan [1997], Blei and Lafferty [2006], Kingma and Welling [2013], Johnson

et al. [2016], or Monte Carlo approximations of the expectations with variance

reduction techniques [Kingma and Welling, 2013, Ranganath et al., 2014, Titsias

and Lázaro-Gredilla, 2014].

Approximation Accuracy

Despite the attractive computational property of variational inference algorithms, the

resulted approximations are known to be biased because of mismatch between the
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simple variational distributions and complex true posterior distributions. The choice

of KL(q||p) as the divergence measure also exacerbate the problem as the approxi-

mations resulted by minimising KL(q||p) are known to severely under-estimate the

posterior uncertainties [Minka et al., 2005]. The bias in the approximated posteriors

also result in biased model parameter estimates when combined with the variational

EM algorithm for parameter learning. Several methodological innovations that

seek to enrich the expressiveness of the variational distributions in order to reduce

approximation bias have been successfully applied in iid data settings [Ranganath

et al., 2016, Kingma et al., 2016, Rezende and Mohamed, 2015, Tran et al., 2015b,a,

Gershman et al., 2012]. Additionally, different choices of divergence measures had

also been proposed to address the under-estimations of posterior uncertainties in vari-

ational inference [Li and Turner, 2016, Dieng et al., 2016]. However, much remains

to be explored and studied to address this significant disadvantage of variational

inference.
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Scalable Variational Inference for

Factorial Hidden Markov Models

Factorial Hidden Markov Models (FHMMs) are powerful models for se-
quential data but they do not scale well with long sequences. We propose a
scalable inference and learning algorithm for FHMMs that draws on ideas
from the stochastic variational inference, neural network and copula liter-
atures. Unlike the existing approaches, the proposed algorithm requires no
message passing procedure among latent variables and can be distributed
to a network of computers to speed up learning. Our experiments corrobo-
rate that the proposed algorithm does not introduce further approximation
bias compared to the proven structured mean-field algorithm, and achieves
better performance with long sequences and large FHMMs.

Breakthroughs in modern technology have allowed more sequential data to be

collected in higher resolutions. The resulted sequential data sets are often extremely

long and high-dimensional, exhibiting rich structures and long-range dependency that

can only be captured by fitting large models to the sequences, such as Hidden Markov

Models (HMMs) with a large state space. The standard methods of learning and

performing inference in the HMM class of models are the Expectation-Maximization

(EM) and the Forward-Backward algorithms. The Forward-Backward and EM

algorithms are prohibitively expensive for long sequences and large models because

of their linear and quadratic computational complexity with respect to sequence

length and state space size respectively.

The work presented in this chapter was completed in collaboration with Pawel Chilinski.
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To rein in the computational cost of inference in HMMs, several variational

inference algorithms that trade-off inference accuracy in exchange for lower com-

putational cost have been proposed in the literatures. Variational inference is a

deterministic approximate inference technique that approximates posterior distribu-

tion p by minimizing the Kullback-Leibler divergence KL(q||p), where q lies in a

family of distributions selected to approximate p as closely as possible while keeping

the inference algorithm computationally tractable [Wainwright and Jordan, 2008].

Despite its biased approximation of the actual posteriors, the variational inference

approach has been proven to work well in practice [Teh et al., 2007].

Variational inference has also been successfully scaled to tackle problems with

large data sets through the use of stochastic gradient descent (SGD) algorithms [Hoff-

man et al., 2013]. However, applications of such techniques to models where the data

is dependent (i.e., non-i.i.d.) require much care in the choice of the approximating

family and parameter update schedules to preserve dependency structure in the data

[Gopalan and Blei, 2013]. More recently, developments of stochastic variational

inference algorithms to scale models for non-i.i.d. data to large data sets have been

increasingly explored [Foti et al., 2014, Gopalan and Blei, 2013].

We propose a stochastic variational inference algorithm to scale up inference

for a flexible class of hidden Markov models called the factorial hidden Markov

models (FHMM). Despite its flexibility, the existing inference algorithms for FHMM

that rely on passing messages between the latent Markovian random variables do

not scale well to long sequences. The proposed inference algorithm approximates

the posterior distributions with chains of bivariate Gaussian copulas. Unlike the

existing variational inference algorithms, the proposed approach eliminates the need

for explicit message passing between latent variables and allows computations to

be distributed to multiple computers. To scale the variational distribution to long

sequences, we reparameterise the bivariate Gaussian copula chain parameters with

feed-forward recognition neural networks that are shared by copula chain parameters

across different time points. The use of recognition networks in variational inference



3.1. Factorial Hidden Markov Models 50

has been well-explored in models in which data is assumed to be i.i.d. [Kingma

and Welling, 2013, Hinton et al., 1995]. To the best of our knowledge, the use

of recognition networks to decouple inference in non-factorised stochastic process

of unbounded length has not been well-explored. In addition, both the FHMM

parameters and the parameters of the recognition networks are learnt in conjunction

by maximising the stochastic lower bound of the log-marginal likelihood, computed

based on randomly sampled subchains from the full sequence of interest. The

combination of recognition networks and stochastic optimisations allow us to scale

the Gaussian copula chain variational inference approach to very long sequences.

3.1 Factorial Hidden Markov Models

Building on the background survey of the hidden Markov models in Section 2.2.1,

we briefly introduce the factorial hidden Markov models, the existing variational

inference algorithm, and its limtations.

Factorial hidden Markov models (FHMMs) are a class of HMMs consisting of

M latent variables st = (s1
t , · · · ,sM

t ) at each time point, and observations yt where

the conditional emission probability of the observations p(yt |st ,η) is parameterised

through factorial combinations of st and emission parameters η . Each of the latent

variables sm
t evolves independently in time through discrete-valued Markov chains

governed by transition matrix Am [Ghahramani and Jordan, 1997]. For a sequence

of observations y = (y1, · · · ,yT ) and corresponding latent variables s = (s1, · · · ,sT ),

the joint distribution can be written as follow.

p(y,s) =
M

∏
m=1

p(sm
1 )p(y1|s1,η)

T

∏
t=2

p(yt |st ,η)
M

∏
m=1

p(sm
t |sm

t−1,Am) (3.1)

Depending on the state of latent variables at a particular time point, different

subsets of emission parameters η can be selected, resulting in a dynamic mixture

of distributions for the data. The factorial representation of state space reduces the
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required number of parameters to encode transition dynamics compared to regular

HMMs with the same number of states. As an example, a state space with 2M states

can be encoded by M binary transition matrices with a total of 2M parameters while

a regular HMM requires a transition matrix with 2M× (2M− 1) parameters to be

estimated.

We specify a FHMM with D−dimensional Gaussian emission distributions and

M binary hidden Markov chains. The emission distributions share a covariance matrix

Σ across different states while the mean is parameterised as a linear combination of

the latent variables

µt = WTŝt , (3.2)

where ŝt = [s1
t , · · · ,sM

t ,1]T is a M+1-dimensional binary vector and W ∈R(M+1)×D.

The FHMM model parameters Γ = (Σ,W,A1, · · · ,AM) can be estimated with the

EM algorithm. Note that to facilitate optimisations, we reparameterised Σ as LLT

where L ∈ RD×D is a lower-triangular matrix.

The computational complexity for exact inference in FHMM with M K-state

hidden Markov chains is O(T MKM+1). The exponential cost with respect to the

number of chains is induced by the coupling of the Markov chains in the posterior,

and renders exact inference computationally intractable as the number of chains

increases. A structured mean-field (SMF) variational inference approach proposed

in [Ghahramani and Jordan, 1997] approximates the posterior distribution with M

independent Markov chains and reduces the complexity to O(T MK2) in models

with linear-Gaussian emission distributions. While the reduction in complexity is

significant, inference and learning with SMF remain insurmountable in the presence

of extremely long sequences. In addition, SMF requires the storage of O(2T MK)

variational parameters in-memory per training sequence. Such computational re-

quirements remain expensive to satisfy even in the age of cloud computing.
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3.2 Review: Gaussian Copulas, Stochastic Varia-

tional & Amortised Inference

In this section, we review the key concepts that form the basis of the novel scalable

variational inference algorithm will be introduced in Section 3.3. These important

concepts are Gaussian copula, stochastic variational inference and amortised infer-

ence. In the next section, we describe a novel variational distribution with Markovian

structure that is constructed by chaining bivariate Gaussian copulas. The structure of

the variational distribution allows stochastic variational inference with amortising to

be readily applicable to allow scalable inference.

3.2.1 Gaussian Copulas

Gaussian copulas are a family of multivariate cumulative distribution functions

(CDFs) that capture linear dependency structure between random variables with

potentially different marginal distributions. Given two random variables X1,X2 with

their respective marginal CDFs F1,F2, their Gaussian copula joint CDF can be written

as

Φρ(φ
−1(F1(x1)),φ

−1(F2(x2))) (3.3)

where φ−1 is the quantile function of the standard Gaussian distribution, and Φ is the

CDF of the standard bivariate Gaussian distribution with correlation ρ . In a bivariate

setting, the dependency between X1 and X2 is captured by ρ . The bivariate Gaussian

copula can be easily extended to multivariate settings through a correlation matrix.

For an in-depth introduction of copulas, please refer to [Nelsen, 2013, Elidan, 2013].

3.2.2 Stochastic Variational Inference

Variational inference is a class of deterministic approximate inference algorithms that

approximate intractable posterior distributions p(s|y) of latent variables s given data y

with a tractable family of variational distributions qβ (s) parameterised by variational

parameters β . The variational parameters are fitted to approximate the posterior
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distributions by maximising the evidence lower bound of log-marginal likelihood

(ELBO) [Wainwright and Jordan, 2008]. By applying the Jensen’s inequality to∫
p(y,s)ds the ELBO can be expressed as

ELBO = Eq[log p(y,s)]−Eq[logq(s)]. (3.4)

The ELBO can also be interpreted as the negative KL-divergence KL(qβ (s)||p(s|y))

up to a constant. Therefore, variational inference results in variational distribution

that is the closest to p within the approximating family as measured by KL.

Maximising ELBO in the presence of large data set is computationally expensive

as it requires the ELBO to be computed over all data points. Stochastic variational

inference (SVI) [Hoffman et al., 2013] successfully scales the inference technique

to large data sets using subsampling based stochastic gradient descent algorithms

[Duchi et al., 2011].

3.2.3 Amortised Inference and Recognition Neural Networks

The many successes of neural networks in tackling certain supervised learning tasks

have generated much research interest in applying neural networks to unsupervised

learning and probabilistic modelling problems [Stuhlmüller et al., 2013, Gershman

and Goodman, 2014, Rezende et al., 2014, Kingma and Welling, 2013]. A recognition

neural network was initially proposed in [Hinton et al., 1995] to extract underlying

structures of data modelled by a generative neural network. Taking the observed

data as input, the feed-forward recognition network learns to predict a vector of

unobserved code that the generative neural network initially conjectured to generate

the observed data.

More recently, a recognition network was applied to variational inference

for latent variable models [Kingma and Welling, 2013, Gershman and Goodman,

2014]. Given data, the latent variable model and an assumed family of variational

distributions, the recognition network learns to predict optimal variational parameters
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for the specific data points. As the recognition network parameters are shared by all

data points, information learned by the network on a subset of data points are shared

with other data points. This inference process is aptly named amortised inference.

In short, recognition network can simply be thought of as a feed-forward neural

network that learns to predict optimal variational parameters given the observed data,

with ELBO as its utility function.

3.3 Message-free Stochastic Variational Inference

While the structured mean-field (SMF) variational inference and its associated EM

algorithms are effective tools for inference and learning in FHMMs with short

sequences, they become prohibitively expensive as the sequences grow longer. For

example, one iteration of SMF forward-backward message passing for FHMM of 5

Markov chains and 106 sequential data points takes hours of computing time on a

modern 8-cores workstation, rendering SMF unusable for large scale problems. To

scale FHMMs to long sequences, we resort to stochastic variational inference.

The proposed variational inference algorithm approximates posterior distribu-

tions of the M hidden Markov chains in FHMM with M independent chains of bivari-

ate Gaussian-Bernoulli copulas. The bivariate Gaussian-Bernoulli copula extends

the Gaussian copula to incorporate Bernoulli marginal distributions while keeping

a Gaussian correlation structure, and is mathematically defined in Equation 3.6.

The computational cost of optimising the variational parameters is managed by a

subsampling-based stochastic gradient ascent algorithm similar to SVI. In addition,

parameters of the copula chains are reparameterised using feed-forward recognition

neural networks to improve efficiency of the variational inference algorithm.

In contrast to the EM approach for learning FHMM model parameters, our

approach allows for both the model parameters and variational parameters to be

learnt in conjunction by maximising the ELBO with a stochastic gradient ascent

algorithm. In the following sections, we describe the variational distributions and
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recognition networks, and derive the stochastic ELBO for SGD.

3.3.1 Variational Chains of Bivariate Gaussian Copulas

Similar to the SMF variational inference algorithm proposed by [Ghahramani and

Jordan, 1997], we aim to preserve posterior dependency of latent variables within

the same hidden Markov chains by introducing chains of bivariate Gaussian copulas.

The chain of bivariate Gaussian copulas variational distribution can be written as the

product of bivariate Gaussian copulas divided by the marginals of latent variables at

the intersection of the pairs

q(sm) =
∏

T
t=2 qt(sm

t−1,s
m
t )

∏
T−1
t=2 qt(sm

t )
(3.5)

where qt(sm
t−1,s

m
t ) is the joint probability mass function of a bivariate Gaussian

copula as defined in Equation 3.6. We suppress the t subscript in qt from here on for

succinctness.

The copula parameterization in Equation (3.5) offers several advantages. Firstly,

the overlapping bivariate copula structure enforces coherence of q(sm
t ) such that

∑sm
t−1

q(sm
t−1,s

m
t ) = ∑sm

t+1
q(sm

t ,s
m
t+1). Secondly, the chain structure of the distribution

restricts the growth in the number of variational parameters to only two parameters

per chain for every increment in the sequence length. The two additional parameters

encode the correlation of the random variables in the final two time points, and the

marginal variational distribution of the last random variable. Finally, the Gaussian

copula allows marginals and dependence structure of the random variables to be

modelled separately [Elidan, 2013]. The decoupling of the marginal and correlation

parameters allows these parameters to be predicted separately using feed-forward

recognition neural networks, and the neural network parameters can be optimised

jointly to form a good variational approximation.

We propose to approximate the posteriors of adjacent FHMM latent variables
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with the following bivariate Gaussian-Bernoulli copula probability mass function

q(sm
t−1 = 0,sm

t = 0) = qm
00t

q(sm
t−1 = 1,sm

t = 0) = 1−θt,m−qm
00t

q(sm
t−1 = 0,sm

t = 1) = 1−θt−1,m−qm
00t

q(sm
t−1 = 1,sm

t = 1) = θt,m +θt−1,m +qm
00t
−1

(3.6)

where qm
00t

= Φρt,m(φ
−1(1− θt−1,m),φ

−1(1− θt,m)) and q(sm
t = 1) = θt,m is a

Bernoulli distribution with parameter θt,m ∈ [0,1]. The Gaussian-Bernoulli cop-

ula can be easily extended to multinomial random variables.

Assuming independence between random variables in different hidden chains,

the posterior distribution of s can be factorised by chains and approximated by

q(s) =
M

∏
m=1

q(sm). (3.7)

3.3.2 Feed-forward Recognition Neural Networks

The number of variational parameters in the chains of bivariate Gaussian copulas

scales linearly with respect to the length of the sequence as well as the number of

sequences in the data set. While it is possible to directly optimise these variational

parameters, the approach quickly becomes infeasible as the size of data set grows. We

propose to circumvent the challenging scalability problem by reparameterising the

variational parameters with rolling feed-forward recognition neural networks that are

shared among variational parameters within the same chain. The marginal variational

parameters θt,m and copula correlation variational parameters ρt,m are parameterised

with different recognition networks as they are parameters of a different nature.

Given observed sequence y = (y1, . . . ,yT ), the marginal and correlation recog-

nition networks for hidden chain m compute the variational parameters θt,m

and ρt,m by performing a forward pass on a window of observed data ∆yt =
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(yt− 1
2 ∆t , . . . ,yt , . . . ,yt+ 1

2 ∆t)

θt,m = f m
θ (∆yt) ρt,m = f m

ρ (∆yt) (3.8)

where ∆t +1 is the user selected size of rolling window, f m
θ

and f m
ρ are the marginal

and correlation recognition networks for hidden chain m with parameters ωm =

(ωθ ,m,ωρ,m). The output layer non-linearities of f m
θ

and f m
ρ are chosen to be the

sigmoid and hyperbolic tangent functions respectively to match the range of θt,m and

ρt,m.

The recognition network hyperparameters, such as the number of hidden units,

non-linearity, and the window size ∆t can be chosen based on computing budget and

empirical evidence. In our experiments with shorter sequences where ELBO can be

computed within a reasonable amount of time, we did not observe any significant

difference in the convergence of the ELBO among different choices of non-linearity.

However, we observed that the converged value of the ELBO is sensitive to the

number of hidden units and the number of hidden units needs to be adapted to the

data set and computing budget. Recognition networks with larger hidden layers have

larger capacity to approximate the posterior distributions as closely as possible but

require more computing budget to learn. Similarly, the choice of ∆t determines the

amount of information that can be captured by the variational distributions as well

as the computing budget required to learn the recognition network parameters. As

a rule of thumb, we recommend the number of hidden units and ∆t to be chosen

as large as the computing budget allows in long sequences. We emphasise that the

range of posterior dependency captured by the correlation recognition networks is

not limited by ∆t, as the recognition network parameters are shared across time,

allowing dependency information to be encoded in the network parameters. For

FHMMs with large number of hidden chains, various schemes to share the networks’

hidden layers can be devised to scale the method to FHMMs with a large state space.

This presents another trade-off between computational requirements and goodness

of posterior approximations.
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In addition to scalability, the use of recognition networks also allows our ap-

proach to perform fast inference at run-time, as computing the posterior distributions

only require forward passes of the recognition networks with data windows of inter-

est. The computational complexity of the recognition network forward pass scales

linearly with respect to ∆t. As with other types of neural networks, the computation

is highly data-parallel and can be massively sped up with GPU. In comparison,

computation for a stochastic variational inference algorithm based on a message

passing approach also scales linearly with respect to ∆t but is not data-parallel [Foti

et al., 2014]. Subchains from long sequences, together with their associated recogni-

tion network computations, can also be distributed across a cluster of computers to

improve learning and inference speed.

However, the use of recognition networks is not without its drawbacks. Com-

pared to message passing algorithms, the recognition networks approach cannot

handle missing data gracefully by integrating out the relevant random variables. The

fidelity of the approximated posterior can also be limited by the capacity of the

neural networks and bad local minimas. The posterior distributions of the random

variables close to the beginning and the end of the sequence also require special

handling, as the rolling window cannot be moved any further to the left or right of

the sequences. In such scenarios, the posteriors can be computed by adapting the

structured mean-field algorithm proposed in [Ghahramani and Jordan, 1997] to the

subchains at the boundaries. The importance of the boundary scenarios in learning

the FHMM model parameters diminishes as the data sequence becomes longer.

3.3.3 Learning Recognition Network and Model Parameters

Given sequence y of length T , the M-chain FHMM parameters Γ and recognition

network parameters Ω = (ω1, . . . ,ωM) need to be adapted to the data by maximising

the ELBO as expressed in Equation (3.4) with respect to Γ and Ω. Note that the

distribution q(sm) is now parameterised by the recognition network parameters

ωm. For notational simplicty, we do not explicitly express the parameterisation of
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q(sm) in our notations. Plugging in the FHMM joint distribution in Equation (3.1)

and variational distribution in Equation (3.7), the FHMM ELBO L(Γ,Ω) for the

variational chains of bivariate Gaussian copula is approximated as

L(Γ,Ω)≈
T− 1

2 ∆t−1

∑
t= 1

2 ∆t+1

〈
log p(yt |s1

t , . . . ,s
M
t )
〉

q

+
M

∑
m=1

〈
log p(sm

t |sm
t−1)

〉
q +
〈

logq(sm
t )
〉

q−
〈

logq(sm
t ,s

m
t+1)

〉
q. (3.9)

Equation (3.9) is only an approximation of the ELBO as the variational distribution

of sm
t close to the beginning and the end of the sequence cannot be computed using

the recognition networks, as the recognition networks require data points before

and after t in the input to compute the variational parameters at time point t. The

FHMM initial distribution ∏
M
m=1 p(sm

1 ) cannot be learned using our approach as

the initial distribution cannot be incorporated into Equation 3.9. However, they

can be approximated by the stationary distribution of the transition matrices as T

become large assuming that the sequence is close to stationary [Foti et al., 2014].

Comparisons to SMF in our experiment results suggest that the error caused by the

approximations is negligible.

The log-transition probability expectations and variational entropy in Equation

(3.9) can be easily computed as they are simply sums over pairs of Bernoulli random

variables. The expectations of log-emission distributions can be efficiently computed

for certain distributions, such as multinomial and multivariate Gaussian distributions.

Stochastic Gradient Descent & Subsampling Scheme

We propose to optimise Equation (3.9) with SGD by computing noisy unbiased

gradients of ELBO with respect to Γ and Ω based on contributions from subchains

of length ∆t +1 randomly sampled from y [Duchi et al., 2011, Hoffman et al., 2013].

Multiple subchains can be sampled in each of the learning iterations to form a mini-

batch of subchains, reducing variance of the noisy gradients. Noisy gradients with
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high variance can cause the SGD algorithm to converge slowly or diverge [Duchi

et al., 2011]. The subchains should also be sampled randomly without replacement

until all subchains in y are depleted to speed up convergence. To ensure unbiasedness

of the noisy gradients, the gradients computed in each iteration need to be multiplied

by a batch factor

c =
T −∆t

nminibatch
(3.10)

where nminibatch is the number of subchains in each mini-batch. The scaled noisy

gradients can then be used by SGD algorithm of choice to optimise L. In our

implementation of the algorithm, gradients are computed using the Python automatic

differentiation tool [Maclaurin et al., 2015] and the optimisation is performed using

Rmsprop [Tieleman and Hinton, 2012].

3.4 Related Work

Copulas have previously been adapted in variational inference literatures as a tool to

model posterior dependency in models with i.i.d. data assumption [Tran et al., 2015a,

Han et al., 2015]. However, the previously proposed approaches cannot be directly

applied to HMM class of models without addressing parameter estimation issues as

the dimensionality of the posterior distributions grow with the length of sequences.

The proposed formulation of the variational distribution circumvents the problem

by exploiting the chain structure of the model, coupling only random variables

within the same chain that are adjacent in time with a bivariate Gaussian-Bernoulli

copula, leading to a coherent chain of bivariate Gaussian copulas as the variational

distribution.

On the other hand, a stochastic variational inference algorithm that also aims

to scale HMM class of models to long sequences has previously been proposed in

[Foti et al., 2014]. Our proposed algorithm differs from the existing approach in

that it does not require explicit message passing to perform inference and learning.
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Applying the algorithm proposed in [Foti et al., 2014] to FHMM requires multiple

message passing iterations to determine the buffer length of each subchain in the

mini batch of data, and the procedure needs to be repeated for each FHMM Markov

chain. The message passing routines can be expensive as the number of Markov

chains grows. In contrast, the proposed recognition network approach eliminates

the need for iterative message passing and allows the variational distributions to

be learned directly from the data using gradient descent. The use of recognition

networks also allows fast inference at run-time with modern parallel computing

hardware.

The use of recognition networks as inference devices for graphical models has

received much research interest recently because of its scalability and simplicity.

Similar to our approach, the algorithms proposed in [Fan et al., 2016, Johnson et al.,

2016] also make use of the recognition networks for inference, but still rely on

message passing to perform certain computations. In addition, [Archer et al., 2015]

proposed an inference algorithm for state space models using a recognition network.

However, the algorithm cannot be applied to models with non-Gaussian posteriors.

Finally, the proposed algorithm is analogous to composite likelihood algorithms

for learning in HMMs in that the data dependency is broken up according to subchains

to allow tractable computations [Gao and Song, 2011]. The EM-composite likelihood

algorithm in [Gao and Song, 2011] partitions the likelihood function according to

subchains, bounding each subchain separately with a different posterior distribution

that uses only the data in that subsequence. Our recognition models generalise that.

3.5 Experiments

We evaluate the validity of our algorithm and the scalability claim with experiments

using real and simulated data.
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3.5.1 Algorithm Validation

To validate the algorithm, we learn FHMMs on simulated and real data using the

proposed algorithm and the existing SMF-EM algorithm. The models learned

using the two approaches are compared with log-likelihood (LL). In addition, we

compare the learned FHMM parameters to parameters used to simulate the data. The

validation experiments ensure that the proposed approach does not introduce further

approximation bias compared to SMF.

Simulated Data: We simulate a 1,000 time steps long 2-dimensional sequence

from a FHMM with 2 hidden binary chains and Gaussian emission, and attempt

to recover the true model parameters with the proposed approach. The proposed

algorithm successfully recovers the true model parameters from the simulated data.

The LL of the learned model also compared favorably to FHMM learned using

the SMF-EM algorithm, showing no visible further bias compares to the proven

SMF-EM algorithm. The LL of the proposed algorithm and SMF-EM are shown

in Table 3.1. The learned emission parameters, together with the training data, are

visualised in Figure 3.1.

Bach Chorales Data Set [Lichman, 2013]: Following the experiment in [Ghahra-

mani and Jordan, 1997], we compare the proposed algorithm to SMF-EM based

on LL. The training and testing data consist of 30 and 36 sequences from the Bach

Chorales data set respectively. FHMMs with various numbers of binary hidden

Markov chains are learned from the training data with both algorithms. The log-

likelihoods, tabulated in Table 3.1, show that the proposed algorithm is competitive

with SMF-EM on a real data set in which FHMM is proven to be a good model, and

show no further bias. Note that the training log-likelihood of the FHMM with 8

chains trained using the proposed algorithm is smaller than the FHMM with 7 chains,

showing that the proposed algorithm can be trapped in bad local minima.
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Proposed Algo. SMF
nchain LLtrain LLtest LLtrain LLtest

Simulated Data
2 -2.320 -2.332 -2.315 -2.338

Bach Chorales
2 -7.241 -7.908 -7.172 -7.869
3 -6.627 -7.306 -6.754 -7.489
4 -6.365 -7.322 -6.409 -7.282
5 -6.135 -6.947 -5.989 -7.174
6 -5.973 -6.716 -5.852 -7.008
7 -5.754 -6.527 -5.771 -6.664
8 -5.836 -6.722 -5.675 -6.697

Table 3.1: Log-likelihoods from the validation experiments. The results demonstrate that
the proposed algorithm is competitive with SMF.

Figure 3.1: This figure shows the simulated data set in validation experiments with the
emission parameters from simulation (red), learned by the proposed algorithm (green) and
the SMF-EM algorithm (blue). The emission means are depicted as stars and standard
deviations as elliptical contour at 1 standard deviation.

3.5.2 Scalability Verification

To verify the scalability claim, we compare the LL of FHMMs with different num-

bers of hidden chains learned on simulated sequences of increasing length using

the proposed and SMF-based EM algorithms. Two sets of experiments are con-

ducted to showcase scalability with respect to sequence length and the number of

hidden Markov chains. To simulate real-world scenarios where computing budget

is constrained, both algorithms are given the same fixed computing budget. The

learned FHMMs are compared after the computing budget is depleted. Finally, we
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demonstrate the scalability of the proposed algorithm by learning a 10 binary hidden

Markov chains FHMM on long time series recorded in a real-world scenario.

Simulated Data: This experiment consists of two parts to verify scalability with

respect to sequence length and the state space size. In the first component, we

simulate 2-dimensional sequences of varying length from a FHMM with 4-binary

chains using an approach similar to the validation experiment. Given fixed computing

budget of 2 hours per sequence on a 24 cores Intel i7 workstation, both SMF-EM

and the proposed algorithm attempt to fit 4-chain FHMMs to the sequences. Two

testing sequences of length 50,000 are also simulated from the same model. In the

second component, we keep the sequence length to 15,000 and attempt to learn

FHMMs with various numbers of chains with computing budget of 1,000s. The

computing budget in the second component is scaled according to the sequence

length. Log-likelihoods are computed with the last available learned parameters after

computing time runs out. The proposed algorithm is competitive with SMF-EM

when sequences are shorter and state space is smaller, and outperforms SMF-EM

in longer sequences and larger state space. The results in Figure 3.2 and Figure 3.3

both show the increasing gaps in the log-likelihoods as sequence length and state

space size increased. The recognition networks in the experiments have 1 hidden

layer with 30 tanh hidden units, and rolling window size of 5. The marginal and

correlation recognition networks for latent variables in the same FHMM Markov

chain share hidden units to reduce memory and computing requirements as the

number of Markov chains increases.

Household Power Consumption Data Set [Lichman, 2013]: We demonstrate the

applicability of our algorithm to long sequences in which learning with SMF-EM

using the full data set is simply intractable. The power consumption data set consists

of a 9-dimensional sequence of 2,075,259 time steps. After dropping the date/time

series and the current intensity series that is highly correlated with the power con-

sumption series, we keep the first 106 data points of the remaining 6 dimensional

sequence for training and set aside the remaining series as test data. A FHMM
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with 10 hidden Markov chains is learned on the training data using the proposed

algorithm. In this particular problem, we force all 20 recognition networks in our

algorithm to share a common tanh hidden layer of 200 units. The rolling window

size is set to 21 and we allow the algorithm to complete 150,000 SGD iterations

with 10 subchains per iteration before terminating. To compare, we also learned the

10-chain FHMM with SMF-EM on the last 5,000 data points of the training data.

The models learned with the proposed algorithm and SMF-EM are compared based

on the Mean Squared Error (MSE) of the smoothed test data (i.e., learned emission

means weighted by latent variable posterior). As shown in Table 3.2, the test MSEs

of the proposed algorithm are lower than the SMF-EM algorithm in all data dimen-

sions. The result shows that learning with more data is indeed advantageous, and the

proposed algorithm allows FHMMs to take advantage of the large data set.

Dim. MSESMF MSEProposed

1 0.155 0.082
2 0.084 0.055
3 0.079 0.027
4 0.466 0.145
5 0.121 0.062
6 0.202 0.145

Table 3.2: Test mean squared errors (MSEs) of the SMF-EM and the proposed algorithm
for each dimension in the household power consumption data set. The results show that
the proposed algorithm is able to take advantage of the full data set to learn a better model
because of its scalability.



3.5. Experiments 66

Figure 3.2: The red and blue lines show the train (solid) and test (dashed) log-likelihood
(y-axis) results from the proposed and SMF-EM algorithms in the scalability experiments as
the sequence length (x-axis) increases. Both algorithms are given 2hr computing budget per
data set. SMF-EM failed to complete a single iteration for length of 150,000.

Figure 3.3: The red and blue lines show the train (solid) and test (dashed) log-likelihood
(y-axis) results from the proposed and SMF-EM algorithms in the scalability experiments as
the number of hidden Markov chain (x-axis) increases. Both algorithms are given 1,000s
computing budget per data set.
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3.6 Discussions

In this chapter, I presented a novel stochastic variational inference and learning

algorithm that does not rely on message passing to scale FHMM to long sequences

and large state space. The proposed algorithm achieves competitive results when

compared to structured mean-field on short sequences, and outperforms structured

mean-field on longer sequences with a fixed computing budget that resembles a

real-world model deployment scenario. The applicability of the algorithm to long se-

quences where the structured mean-field algorithm is infeasible is also demonstrated.

The proposed scalable algorithm opens up new opportunities to apply FHMMs to

long sequential data with rich structures that could not be previously modelled using

existing algorithms.



4

Gaussian Processes for Bayesian

Semi-supervised Learning on Graphs

In this chapter, I present a data-efficient Gaussian process-based Bayesian
approach to the semi-supervised learning problem on graphs. The pro-
posed model shows extremely competitive performance when compared
to the state-of-the-art graph neural networks on semi-supervised learning
benchmark experiments, and outperforms the neural networks in active
learning experiments where labels are scarce. Furthermore, unlike the
graph neural networks, the model does not require a validation data set for
early stopping to control over-fitting. The proposed model can be viewed
as an instance of empirical distribution regression weighted locally by
network connectivity. Furthermore, I motivate the intuitive construction
of the model with a Bayesian linear model interpretation where the node
features are filtered by an operator related to the graph Laplacian. The
model can be easily implemented by adapting an off-the-shelf scalable
variational inference algorithm for Gaussian processes.

Data sets with network and graph structures that describe the relationships between

the data points (nodes) are abundant in the real world. Examples of such data sets

include friendship graphs on social networks, citation networks of academic papers,

web graphs and many others. The relational graphs often provide rich information in

addition to the node features that can be exploited to build better predictive models

of the node labels, which can be costly to collect. In scenarios where there are not

enough resources to collect sufficient labels, it is important to design data-efficient

models that can generalize well with few training labels. The class of learning
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problems where a relational graph of the data points is available is referred to as

graph-based semi-supervised learning in the literature [Chapelle et al., 2009, Zhu,

2005].

Many of the successful graph-based semi-supervised learning models are based

on graph Laplacian regularization or learning embeddings of the nodes. While these

models have been widely adopted, their predictive performance leaves room for

improvement. More recently, powerful graph neural networks that surpass Laplacian

and embedding based methods in predictive performance have become popular.

However, neural network models require relatively larger number of labels to prevent

over-fitting and work well. We discuss the existing models for graph-based semi-

supervised learning in detail in Section 4.3.

We propose a new Gaussian process model for graph-based semi-supervised

learning problems that can generalize well with few labels, bridging the gap be-

tween the simpler models and the more data intensive graph neural networks. The

proposed model is also competitive with graph neural networks in settings where

there are sufficient labelled data. While posterior inference for the proposed model

is intractable for classification problems, scalable variational inducing point approxi-

mation method for Gaussian processes can be directly applied to perform inference.

Despite the potentially large number of inducing points that need to be optimized,

the model is protected from over-fitting by the variational lower bound, and does not

require a validation data set for early stopping. We refer to the proposed model as

the graph Gaussian process (GGP).

4.1 Background

In this section, we briefly review key concepts in Gaussian processes and the relevant

variational approximation technique. Additionally, we review the graph Laplacian,

which is relevant to the alternative view of the model that we describe in Section 4.2.1.

The reviews in this section serve as a starting point to introduce the proposed model
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and introduce the notations used across the remaining of this chapter, which may

differ from the notations used in Chapter 2.

4.1.1 Gaussian Processes

A Gaussian process (GP) f (x) is an infinite collection of random variables, of which

any finite subset is jointly Gaussian distributed. Consequently, a GP is completely

specified by its mean function m(x) and covariance kernel function kθ (x,x′), where

x,x′ ∈ X denote the possible inputs that index the GP and θ is a set of hyper-

parameters parameterizing the kernel function. We denote the GP as follows

f (x)∼ GP
(
m(x),kθ (x,x′)

)
. (4.1)

GPs are widely used as priors on functions in the Bayesian machine learning

literatures because of their wide support, posterior consistency, tractable posterior

in certain settings and many other good properties. Combined with a suitable

likelihood function as specified in Equation (4.2), one can construct a regression

or classification model that probabilistically accounts for uncertainties and control

over-fitting through Bayesian smoothing. However, if the likelihood is non-Gaussian,

such as in the case of classification, inferring the posterior process is analytically

intractable and requires approximations. The GP is connected to the observed data

via the likelihood function

yn | f (xn)∼ p(yn| f (xn)) ∀n ∈ {1, . . . ,N}. (4.2)

The positive definite kernel function kθ (x,x′) : X ×X −→ R is a key component of

GP that specifies the covariance of f (x) a priori. While kθ (x,x′) is typically directly

specified, any kernel function can be expressed as the inner product of features maps

〈φ(x),φ(x′)〉H in the Hilbert spaceH. The dependency of the feature map on θ is

implicitly assumed for conciseness. The feature map φ(x) : X −→H projects x into a

typically high-dimensional (possibly infinite) feature space such that linear models
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in the feature space can model the target variable y effectively. Therefore, GP can

equivalently be formulated as

f (x) = φ(x)Tw, (4.3)

where w is assigned a multivariate Gaussian prior distribution and marginalized. We

assume the index set to be X = RD×1 without loss of generality.

For a detailed review of the GP and the kernel functions, please refer to

[Williams and Rasmussen, 2006].

4.1.2 Scalable Variational Inference for Gaussian Processes

Despite the flexibility of the GP prior, there are two major drawbacks that plague the

model. First, if the likelihood function in Equation (4.2) is non-Gaussian, posterior

inference cannot be computed analytically. Secondly, the computational complexity

of the inference algorithm is O(N3) where N is the number of training data points,

rendering the model inapplicable to large data sets.

Fortunately, modern variational inference provides a solution to both problems

by introducing a set of M inducing points Z = [z1, . . . ,zM]T, where zm ∈ RD×1. The

inducing points, which are variational parameters, index a set of random variables u=

[ f (z1), . . . , f (zM)]T that is a subset of the GP function f (x). Through conditioning

and assuming m(x) is zero, the conditional GP can be expressed as

f (x) | u∼ GP(kT
zxK−1

zz u,kθ (x,x)−kT
zxK−1

zz kzx) (4.4)

where kzx = [kθ (z1,x), . . . ,kθ (zM,x)] and [Kzz]i j = kθ (zi,z j). Naturally, p(u) =

N (0,Kzz). The variational posterior distribution of u, q(u) is assumed to be a

multivariate Gaussian distribution with mean m and covariance matrix S. Following

the standard derivation of variational inference, the Evidence Lower Bound (ELBO)
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objective function is

L(θ ,Z,m,S) =
N

∑
n=1

Eq( f (xn))[log p(yn| f (xn))]−KL[q(u)||p(u)]. (4.5)

The variational distribution q( f (xn)) can be easily derived from the conditional GP

in Equation (4.4) and q(u), and its expectation can be approximated effectively using

1-dimensional quadratures. We refer the readers to [Matthews, 2016] for detailed

derivations and results.

4.1.3 The Graph Laplacian

Given adjacency matrix A ∈ {0,1}N×N of an undirected binary graph G = (V,E)

without self-loop, the corresponding graph Laplacian is defined as

L = D−A, (4.6)

where D is the N×N diagonal node degree matrix. The graph Laplacian can be

viewed as an operator on the space of functions g : V −→ R indexed by the graph’s

nodes such that

Lg(n) = ∑
v∈Ne(n)

[g(n)−g(v)], (4.7)

where Ne(n) is the set containing neighbours of node n. Intuitively, applying the

Laplacian operator to the function g results in a function that quantifies the variability

of g around the nodes in the graph.

The Laplacian’s spectrum encodes the geometric properties of the graph that are

useful in crafting graph filters and kernels [Shuman et al., 2013, Vishwanathan et al.,

2010, Bronstein et al., 2017, Chung, 1997]. As the Laplacian matrix is real symmetric

and diagonalizable, its eigen-decomposition exists. We denote the decomposition as

L = UΛUT, (4.8)
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where the columns of U ∈ RN×N are the eigenfunctions of L and the diagonal

Λ∈RN×N contains the corresponding eigenvalues. Therefore, the Laplacian operator

can also be viewed as a filter on function g re-expressed using the eigenfunction

basis. Regularization can be achieved by directly manipulating the eigenvalues of

the system [Smola and Kondor, 2003].

We refer the readers to Bronstein et al. [2017], Shuman et al. [2013] and Chung

[1997] for comprehensive reviews of the graph Laplacian and its spectrum.

4.2 Graph Gaussian Processes

Given a data set of size N with D-dimensional features X = [x1, . . . ,xN ]
T, a sym-

metric binary adjacency matrix A ∈ {0,1}N×N that represents the relational graph

of the data points and labels for a subset of the data points, Yo = [y1, . . . ,yO], with

each yi ∈ {1, . . . ,K}, we seek to predict the unobserved labels of the remaining data

points YU = [yO+1, . . .yN ]. We denote the set of all labels as Y = YO∪YU .

The GGP specifies the conditional distribution pθ (Y|X,A), and predicts YU

via the predictive distribution pθ (YU |YO,X,A). The joint model is specified as the

product of the conditionally independent likelihood p(yn|hn) and the GGP prior

pθ (h|X,A) with hyper-parameters θ . The latent likelihood parameter vector h ∈

RN×1 is defined in the next paragraph.

The joint distribution of the model factorizes as

pθ (Y,h|X,A) = pθ (h|X,A)
N

∏
n=1

p(yn|hn), (4.9)

where for the multi-class classification problem that we are interested in, p(yn | hn)

is given by the robust-max likelihood [Matthews, 2016, Girolami and Rogers, 2006,

Kim and Ghahramani, 2006, Hernández-Lobato et al., 2011, Hensman et al., 2015b].

We construct the GGP prior from a Gaussian process distributed latent function

f (x) : RD×1 −→ R, f (x) ∼ GP
(
0,kθ (x,x′)

)
, where the key assumption is that the
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likelihood parameter hn for data point n is an average of the values of f over its

1-hop neighbourhood Ne(n) as given by A:

hn =
f (xn)+∑l∈Ne(n) f (xl)

1+Dn
(4.10)

where Ne(n) = {l : l ∈ {1, . . . ,N},Anl = 1}, Dn = |Ne(n)|. We further motivate this

key assumption in Section 4.2.1.

As f (x) has a zero mean function, the GGP prior can be succinctly expressed

as a multivariate Gaussian random field

pθ (h|X,A) =N (0,PKXXPT), (4.11)

where P = (I+D)−1(I+A) and [KXX]i j = kθ (xi,x j). A suitable kernel function

kθ (xi,x j) for the task at hand can be chosen from the suite of well-studied existing

kernels, such as those described in [Duvenaud, 2014]. We refer to the chosen

kernel function as the base kernel of the GGP. The P matrix is sometimes known

as the random-walk matrix in the literatures [Chung, 1997]. A graphical model

representation of the proposed model is shown in Figure 4.1.

The covariance structure specified in Equation (4.11) is equivalent to the pair-

wise covariance

Cov(hm,hn) =
1

(1+Dm)(1+Dn)
∑

i∈{m∪Ne(m)}
∑

j∈{n∪Ne(n)}
kθ (xi,x j)

= 〈 1
1+Dm

∑
i∈{m∪Ne(m)}

φ(xi),
1

1+Dn
∑

j∈{n∪Ne(n)}
φ(x j)〉H (4.12)

where φ(·) is the feature map that corresponds to the base kernel kθ (·, ·). Equa-

tion (4.12) can be viewed as the inner product between the empirical kernel mean

embeddings that correspond to the bags of node features observed in the 1-hop neigh-

borhood sub-graphs of node m and n, relating the proposed model to the Gaussian

process distribution regression model presented in e.g. [Flaxman et al., 2015].



4.2. Graph Gaussian Processes 75

Figure 4.1: The figure depicts a relational graph (left) and the corresponding GGP repre-
sented as a graphical model (right). The thick circle represents a set of fully connected
nodes.

More specifically, we can view the GGP as a distribution classification model

for the labelled bags of node features {({xi|i ∈ {n∪Ne(n)}},yn)}O
n=1, such that the

unobserved distribution Pn that generates {xi|i ∈ {n∪Ne(n)}} is summarized by its

empirical kernel mean embedding

µ̂n =
1

1+Dn
∑

j∈{n∪Ne(n)}
φ(x j). (4.13)

The prior on h can equivalently be expressed as h∼ GP(0,〈µ̂m, µ̂n〉H). For detailed

reviews of the kernel mean embedding and distribution regression models, we refer

the readers to [Muandet et al., 2017] and [Szabó et al., 2016] respectively.

One main assumption of the 1-hop neighbourhood averaging mechanism is

homophily - i.e., nodes with similar covariates are more likely to form connections

with each others [Goldenberg et al., 2010]. The assumption allows us to approx-

imately treat the node covariates from a 1-hop neighbourhood as samples drawn

from the same data distribution, in order to model them using distribution regression.
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While it is perfectly reasonable to consider multi-hops neighbourhood averaging, the

homophily assumption starts to break down if we consider 2-hop neighbours which

are not directly connected. Nevertheless, it is interesting to explore non-naive ways

to account for multi-hop neighbours in the future, such as stacking 1-hop averaging

graph GPs in a structure similar to that of the deep Gaussian processes [Damianou

and Lawrence, 2013, Salimbeni and Deisenroth, 2017], or having multiple latent

GPs for neighbours of different hops that are summed up in the likelihood functions.

4.2.1 An Alternative View of the Graph Gaussian Processes

In this section, we present an alternative formulation of the GGP, which results in an

intuitive interpretation of the model. The alternative formulation views the GGP as a

Bayesian linear model on feature maps of the nodes that have been transformed by a

function related to the graph Laplacian L.

As we reviewed in Section 4.1.1, the kernel matrix KXX in Equation (4.11)

can be written as the product of feature map matrix ΦXΦT
X where row n of ΦX

corresponds to the feature maps of node n, φ(xn) = [φn1, . . . ,φnQ]
T. Therefore, the

covariance matrix in Equation (4.11), PΦXΦT
XPT, can be viewed as the product of

the transformed feature maps

Φ̂X = PΦX = (I+D)−1DΦX +(I+D)−1(I−L)ΦX. (4.14)

where L is the graph Laplacian matrix as defined in Equation (4.6). Isolating the

transformed feature maps for node n (i.e., row n of Φ̂X) gives

φ̂(xn) =
Dn

1+Dn
φ(xn)+

1
1+Dn

[(I−L)ΦX]
T
n , (4.15)

where Dn is the degree of node n and [·]n denotes row n of a matrix. The proposed

GGP model is equivalent to a supervised Bayesian linear classification model with a

feature pre-processing step that follows from the expression in Equation (4.15). For

isolated nodes (Dn = 0), the expression in Equation (4.15) leaves the node feature
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maps unchanged (φ̂ = φ ).

The (I−L) term in Equation (4.15) can be viewed as a spectral filter U(I−

Λ)UT, where U and Λ are the eigenmatrix and eigenvalues of the Laplacian as

defined in Section 4.1.3. For connected nodes, the expression results in new features

that are weighted averages of the original features and features transformed by the

spectral filter. The alternative formulation opens up opportunities to design other

spectral filters with different regularization properties, such as those described in

[Smola and Kondor, 2003], that can replace the (I−L) expression in Equation (4.15).

We leave the exploration of this research direction to future work.

In addition, it is well-known that many graphs and networks observed in the

real world follow the power-law node degree distributions [Goldenberg et al., 2010],

implying that there are a handful of nodes with very large degrees (known as hubs)

and many with relatively small numbers of connections. The nodes with few connec-

tions (small Dn) are likely to be connected to one of the handful of heavily connected

nodes, and their transformed node feature maps are highly influenced by the features

of the hub nodes. On the other hand, individual neighbours of the hub nodes have

relatively small impact on the hub nodes because of the large number of neighbours

that the hubs are connected to. This highlights the asymmetric outsize influence of

hubs in the proposed GGP model, such that a mis-labelled hub node may result in a

more significant drop in the model’s accuracy compared to a mis-labelled node with

much lower degree of connections.

4.2.2 Variational Inference with Inducing Points

Posterior inference for the GGP is analytically intractable because of the non-

conjugate likelihood. We approximate the posterior of the GGP using a variational

inference algorithm with inducing points similar to the inter-domain inference al-

gorithm presented in [van der Wilk et al., 2017]. Implementing the GGP with its

variational inference algorithm amounts to implementing a new kernel function that
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follows Equation (4.12) in the GPflow Python package.1

We introduce a set of M inducing random variables u = [ f (z1), . . . , f (zM)]T

indexed by inducing points {zm}M
m=1 in the same domain as the GP function f (x)∼

GP
(
0,kθ (x,x′)

)
. As a result, the inter-domain covariance between hn and f (zm) is

Cov(hn, f (zm)) =
1

Dn +1

[
kθ (xn,zm)+ ∑

l∈Ne(n)
kθ (xl,zm)

]
. (4.16)

Additionally, we introduce a multivariate Gaussian variational distribution

q(u) =N (m,SST) for the inducing random variables with variational parameters

m ∈ RM×1 and the lower triangular S ∈ RM×M. Through Gaussian conditioning,

q(u) results in the variational Gaussian distribution q(h) that is of our interest. The

variational parameters m,S,{zm}M
m=1 and the kernel hyper-parameters θ are then

jointly fitted by maximizing the ELBO function in Equation (4.5).

4.2.3 Computational Complexity

The computational complexity of the inference algorithm is O(|Yo|M2). In the

experiments, we chose M to be the number of labelled nodes in the graph |Yo|, which

is small relative to the total number of nodes. Computing the covariance function

in Equation (4.12) incurs a computational cost of O(D2
max) per labelled node, where

Dmax is the maximum node degree. In practice, the computational cost of computing

the covariance function is small because of the sparse property of graphs typically

observed in the real-world [Goldenberg et al., 2010].

4.3 Related Work

Graph-based learning problems have been studied extensively by researchers from

both machine learning and signal processing communities, leading to many models

and algorithms that are well-summarized in review papers [Bronstein et al., 2017,

1https://github.com/markvdw/GPflow-inter-domain
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Sandryhaila and Moura, 2014, Shuman et al., 2013].

Gaussian process-based models that operate on graphs have previously been

developed in the closely related relational learning discipline, resulting in the mixed

graph Gaussian process (XGP) [Silva et al., 2008] and relational Gaussian process

(RGP) [Chu et al., 2007]. Additionally, the renowned Label Propagation (LP)[Zhu

et al., 2003a] model can also be viewed as a GP with its covariance structure

specified by the graph Laplacian matrix [Zhu et al., 2003b]. The GGP differs from

the previously proposed GP models in that the local neighbourhood structures of the

graph and the node features are directly used in the specification of the covariance

function, resulting in a simple model that is highly effective.

Models based on Laplacian regularization that restrict the node labels to vary

smoothly over graphs have also been proposed previously. The LP model can be

viewed as an instance under this framework. Other Laplacian regularization based

models include the deep semi-supervised embedding [Weston et al., 2012] and the

manifold regularization [Belkin et al., 2006] models. As shown in the experimental

results in Table 4.2, the predictive performance of these models fall short of other

more sophisticated models.

Additionally, models that extract embeddings of nodes and local sub-graphs

which can be used for predictions have also been proposed by multiple authors. These

models include DeepWalk [Perozzi et al., 2014], node2vec [Grover and Leskovec,

2016], planetoid [Yang et al., 2016] and many others. The proposed GGP is related

to the embedding based models in that it can be viewed as a GP classifer that

takes empirical kernel mean embeddings extracted from the 1-hop neighbourhood

sub-graphs as inputs to predict node labels.

Finally, many geometric deep learning models that operate on graphs have

been proposed and shown to be successful in graph-based semi-supervised learning

problems. The earlier models including [Li et al., 2015b, Scarselli et al., 2009,

Gori et al., 2005] are inspired by the recurrent neural networks. On the other hand,
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convolution neural networks that learn convolutional filters in the graph Laplacian

spectral domain have been demonstrated to perform well. These models include the

spectral CNN [Bruna et al., 2013], DCNN [Atwood and Towsley, 2016], ChebNet

[Defferrard et al., 2016] and GCN [Kipf and Welling, 2016]. Neural networks that

operate on the graph spectral domain are limited by the graph-specific Fourier basis.

The more recently proposed MoNet [Monti et al., 2017] addressed the graph-specific

limitation of spectral graph neural networks. The idea of filtering in graph spectral

domain is a powerful one that has also been explored in the kernel literatures [Smola

and Kondor, 2003, Vishwanathan et al., 2010]. We draw parallels between our

proposed model and the spectral filtering approaches in Section 4.2.1, where we

view the GGP as a standard GP classifier operating on feature maps that have been

transformed through a filter that can be related to the graph spectral domain.

Our work has also been inspired by literatures in Gaussian processes that mix

GPs via an additive function, such as [Byron et al., 2009, Duvenaud et al., 2011,

van der Wilk et al., 2017].

4.4 Experiments

We present two sets of experiments to benchmark the predictive performance of

the GGP against existing models under two different settings. In Section 4.4.1, we

demonstrate that the GGP is a viable and extremely competitive alternative to the

graph convolutional neural network (GCN) in settings where there are sufficient

labelled data points. In Section 4.4.2, we test the models in an active learning

experimental setup, and show that the GGP outperforms the baseline models when

there are few training labels.

4.4.1 Semi-supervised Classification on Graphs

The semi-supervised classification experiments in this section exactly replicate the

experimental setup in Kipf and Welling [2016], where the GCN is known to perform
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Type Nnodes Nedges Nlabel cat. Dfeatures Label Rate

Cora Citation 2,708 5,429 7 1,433 0.052
Citeseer Citation 3,327 4,732 6 3,703 0.036
Pubmed Citation 19,717 44,338 3 500 0.003

Table 4.1: A summary of the benchmark data sets for the semi-supervised classification
experiment.

Cora Citeseer Pubmed

GGP 80.9% 69.7% 77.1%
GGP-X 84.7% 75.6% 82.4%
GCN[Kipf and Welling, 2016] 81.5% 70.3% 79.0%
DCNN[Atwood and Towsley, 2016] 76.8% - 73.0%
MoNet[Monti et al., 2017] 81.7% - 78.8%
DeepWalk[Perozzi et al., 2014] 67.2% 43.2% 65.3%
Planetoid[Yang et al., 2016] 75.7% 64.7% 77.2%
ICA[Lu and Getoor, 2003] 75.1% 69.1% 73.9%
LP[Zhu et al., 2003a] 68.0% 45.3% 63.0%
SemiEmb[Weston et al., 2012] 59.0% 59.6% 71.1%
ManiReg[Belkin et al., 2006] 59.5% 60.1% 70.7%

Table 4.2: This table shows the test classification accuracies of the semi-supervised learning
experiments described in Section 4.4.1. The test sets consist of 1,000 data points. The GGP
accuracies are averaged over 10 random restarts. The results for DCNN and MoNet are
copied from [Monti et al., 2017] while the results for the other models are from [Kipf and
Welling, 2016]. Please refer to Section 4.4.1 for discussions of the results.

well. The three benchmark data sets are citation networks with bag-of-words (BOW)

features, and the prediction targets are the topics of the scientific papers in the citation

networks.

The experimental results are presented in Table 4.2, and show that the predictive

performance of the proposed GGP is competitive with the GCN and MoNet [Monti

et al., 2017] (another deep learning model), and superior to the other baseline models.

While the GCN outperforms the proposed model by small margins on the test sets

with 1,000 data points, it is important to note that the GCN had access to 500

additional labelled data points for early stopping. As the GGP does not require early

stopping, the additional labelled data points can instead be directly used to train

the model to significantly improve the predictive performance. To demonstrate this
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advantage, we report another set of results for a GGP trained using the 500 additional

data points in Table 4.2, in the row labelled as ‘GGP-X’. The boost in the predictive

performances shows that the GGP can better exploit the available labelled data to

make predictions.

The GGP base kernel of choice is the 3rd degree polynomial kernel, which is

known to work well with high-dimensional BOW features [Williams and Rasmussen,

2006]. We re-weighed the BOW features using the popular term frequency-inverse

document frequency (TFIDF) technique [Sparck Jones, 1972]. The variational param-

eters and the hyper-parameters were jointly optimized using the ADAM optimizer

[Kingma and Ba, 2014].

The baseline models that we compared to are the ones that were presented and

compared to in [Kipf and Welling, 2016] and [Monti et al., 2017].

4.4.2 Active Learning on Graphs

Active learning is a domain that faces the same challenges as semi-supervised

learning where labels are scarce and expensive to obtain [Zhu, 2005]. In active

learning, a subset of unlabelled data points are selected sequentially to be queried

according to an acquisition function, with the goal of maximizing the accuracy of

the predictive model using significantly fewer labels than would be required if the

labelled set were sampled uniformly at random [Balcan et al., 2010]. A motivating

example of this problem scenario is in the medical setting where the time of human

experts is precious, and the machines must aim to make the best use of the time.

Therefore, having a data efficient predictive model that can generalize well with few

labels is of critical importance in addition to having a good acquisition function.

In this section, we leverage GGP as the semi-supervised classification model

of active learner in graph-based active learning problem [Zhu, 2005, Ma et al.,

2013, Dasarathy et al., 2015, Jun and Nowak, 2016, Mac Aodha et al., 2014]. The

GGP is paired with the proven Σ-optimal (SOPT) acquisition function to form an
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active learner [Ma et al., 2013]. The SOPT acquisition function is a model agnostic

acquisition function that leverages the spectral decomposition of the observed graph’s

Laplacian matrix and the indices of the labelled nodes to identify the next node to

query, such that the predictive accuracy of the active learner is maximally increased.

The main goal of the active learning experiments is to demonstrate that the GGP can

learn better than both the GCN and the Label Propagation model (LP) [Zhu et al.,

2003a] with very few labelled data points.

Starting with only 1 randomly selected labelled data point (i.e., node), the active

learner identifies the next data point to be labelled using the acquisition function.

Once the label of the said data point is acquired, the classification model is retrained

and its test accuracy is evaluated on the remaining unlabelled data points. In our

experiments, the process is repeated until 50 labels are acquired. The experiments

are also repeated with 10 different initial labelled data points. In addition to the

SOPT acquisition function, we show the results of the same models paired with the

random acquisition function (RAND) for comparisons.

The test accuracies with different numbers of labelled data points are presented

as learning curves in Figure 4.2. In addition, we summarize the results numerically

using the Area under the Learning Curve (ALC) metric in Table 4.3. The ALC is

normalized to have a maximum value of 1, which corresponds to a hypothetical

learner that can achieve 100% test accuracy with only 1 label. The results show that

the proposed GGP model is indeed more data efficient than the baselines and can

outperform both the GCN and the LP models when labelled data are scarce.

The benchmark data sets for the active learning experiments are the Cora and

Citeseer data sets. However, due to technical restriction imposed by the SOPT

acquisition function, only the largest connected sub-graph of the data set is used.

The restriction reduces the number of nodes in the Cora and Citeseer data sets to

2,485 and 2,120 respectively. Both of the data sets were also used as benchmark

data sets in [Ma et al., 2013].
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Figure 4.2: The sub-figures show the test accuracies from the active learning experiment
(y-axis) for the Cora (left) and Citeseer (right) data sets with different number of labelled
data points (x-axis). The results are averaged over 10 trials with different initial data points.
SOPT and RAND refer to the acquisition functions described in Section 4.4.2. The smaller
error bars of ‘RAND-GGP’ compared to those of ‘RAND-GCN’ demonstrate the relative
robustness of the GGP models under random shuffling of data points in the training data
set. The tiny error bars of the ‘SOPT-*’ results show that the ‘SOPT’ acquisition function is
insensitive to the randomly selected initial labelled data point. Please also refer to Table 4.3
for numerical summaries of the results.

Cora Citeseer

SOPT-GGP 0.733±0.001 0.678±0.002
SOPT-GCN 0.706±0.001 0.675±0.002
SOPT-LP 0.672±0.001 0.638±0.001

RAND-GGP 0.575±0.007 0.557±0.008
RAND-GCN 0.584±0.011 0.533±0.008
RAND-LP 0.424±0.020 0.490±0.011

Table 4.3: This table shows the Area under the Learning Curve (ALC) scores for the active
learning experiment. ALC refers to the area under the learning curves shown in Figure 4.2
normalised to have a maximum value of 1. The ALCs are computed by averaging over
10 different initial data points. The results show that the GGP is able to generalise better
with fewer labels compared to the baselines. ‘SOPT’ and ‘RAND’ refer to the acquisition
functions used. Please refer to Section 4.4.2 for discussions of the results.

We pre-process the BOW features with TFIDF and apply a linear kernel as

the base kernel of the GGP. All parameters are jointly optimized using the ADAM

optimizer. The GCN and LP models are trained using the settings recommended in

[Kipf and Welling, 2016] and [Ma et al., 2013] respectively.
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4.5 Discussions

A Gaussian process model that is data-efficient for semi-supervised learning problems

on graphs is presented in this chapter. The experiments show that the proposed

model is competitive with the state-of-the-art deep learning models, and outperforms

when the number of labels is small. The proposed model is simple, effective and

can leverage modern scalable variational inference algorithm for GP with minimal

modification. In addition, the construction of our model is motivated by distribution

regression using the empirical kernel mean embeddings, and can also be viewed

under the framework of filtering in the graph spectrum. The spectral view offers

a new potential research direction that can be explored in future work. Another

interesting direction of research, as described in Section 4.2, is the investigation of

non-naive ways to account for multi-hop neighbours in the graphs.



5

Edge Clustering Dynamic Network

Model

In this chapter, I present a dynamic edge exchangeable network model
that can capture sparse connections observed in real temporal networks,
in contrast to existing models which are dense. The model achieved
competitive link prediction accuracy on multiple data sets when compared
to benchmark models, including a dynamic variant of the blockmodel and a
dynamic latent feature model. It is also capable of extracting interpretable
time-varying community structures from the data. In addition to sparsity,
the model accounts for the effect of social influence on vertices’ future
behaviours. Compared to the dynamic blockmodels, the proposed model
has a smaller latent space. The compact latent space requires a smaller
number of parameters to be estimated in variational inference and results
in a computationally friendly inference algorithm.

Many real-world events that involve collections of pair-wise interactions between

entities and individuals can be considered as network data. The interactions between

members of the networks often exhibit rich structures that evolve through time in

a subtle but discernible pattern. Capturing the structure and pattern allows one to

gain insights into the nature of the interactions and the identities of the members, as

well as to predict future interactions. However, it can be challenging to distil useful

information from dynamic networks because of the limited amount of interactions

observed within each unit of time. These interactions are often also noisy and

possibly non-stationary. Modelling such data sets requires practitioners to make
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assumptions in order to borrow strength from interactions observed at different points

in time and with different counter-parties.

Probabilistic dynamic network models that induce dependency across networks

observed at different times with latent structures have been studied by many re-

searchers. Many existing approaches are dynamic generalisations of the Stochastic

Block Models (SBMs) [Nowicki and Snijders, 2001], Mixed-membership Stochastic

Blockmodels (MMSBs) [Airoldi et al., 2008] and Latent Space Models [Hoff et al.,

2002]. These dynamic generalisations include [Ho et al., 2011, Xu and Hero, 2014,

Heaukulani and Ghahramani, 2013, Sarkar and Moore, 2006, Sewell et al., 2017].

A Gaussian process-based approach to dynamic network models was also explored

in [Durante and Dunson, 2014]. While the existing models do indeed capture the

connectivity patterns of networks and their evolution, they are not able to capture the

sparse connections that are observed in many network data [Goldenberg et al., 2010].

Building on recent works on edge-exchangeable non-parametric Bayesian net-

work models [Williamson, 2016, Cai et al., 2016, Crane and Dempsey, 2016], I

propose a discrete-time dynamic network model designed to capture three important

properties that are observed in real-world temporal networks. I discuss the three

properties in Section 5.1, and introduce the proposed model in Section 5.2. In

Section 5.4, I review some existing models for temporal networks and compare them

to the proposed model. This is followed by further discussions on some related

works in Section 5.5. Finally, I present some experimental results and discussions in

Section 5.6.

5.1 Sparse Temporal Networks

We consider a temporal sequence of networks {G(t)}T
t=1 indexed by t ∈ Z+, each

containing a set of vertices and edges G(t) ≡ {V(t),E (t)}. E (t) = {e(t)1 , ...,e(t)
N(t)} is the

set of N(t) edges observed at t and V(t) is the set of vertices that have participated in

at least one edge up to t such that V(t−1) ⊆ V(t). An edge e(t)i = (v(t)i ,v′
(t)

i ) is a tuple
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of two interacting vertices, and may or may not be directed. We focus on undirected

temporal networks in this paper and ignore the order of vertices in the tuple. Many

events that involve pairwise interactions between entities and individuals can be

considered as temporal networks. Real-world examples of temporal networks include

e-mail communication networks, friendship networks, trading networks and many

more.

Temporal networks exhibit statistical properties that are of practical interest.

We focus on addressing three important properties in this paper: sparsity, community

structure and social influence. Our proposed model differs from the existing models

by taking into account all three properties simultaneously while being less computa-

tionally demanding compared to many existing ones. It also allows the set of vertices

to grow over time, as opposed to forcing the set of vertices to remain constant.

5.1.1 Sparsity

The connections observed among the vertices in real-world networks are typically

sparse, with only a small number of observed edges compared to all possible pairs of

vertices [Barabási and Pósfai, 2016, Goldenberg et al., 2010]. Using a social network

with thousands of members as an intuitive example, most, if not all members of the

social network are connected to tens or hundreds of other members in the network,

instead of thousands of other members. Therefore, the total number of connections

in the social network is an order of magnitude smaller than the number of all possible

pairs of members. Sparsity is an essential condition to maintain certain structural

properties observed in real networks, such as the ‘small world phenomena’ and the

power-law degree distributions, as these properties can only occur in sparse networks

[Orbanz and Roy, 2015]. Formally, a network G = (V,E) with |E| edges and |V|

vertices is sparse if |E|= o(|V|2) (i.e., |E| is asymptotically upper bounded by c · |V|2

for c > 0).

In the context of temporal networks {G(t)}T
t=1, each of the observed networks

G(t) may be sparse. We argue that in some cases, G(t) is sparser than static networks
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that are aggregates of temporal networks. Therefore, it is important that temporal

network models are able to capture the sparse property of real observations. However,

as we discuss in Section 5.4, most existing dynamic network models do not allow

for sparse connections because of their underlying exchangeability assumption.

5.1.2 Community Structure

In many networks, the connections between vertices can be clustered into different

categories, with overlapping subsets of vertices dominating each of the categories. In

a social network, for example, edges can represent relationships between colleagues,

college friends, family members and other types of social relationships. Within each

type of relationship, a subset of vertices are over-represented compared to the others.

Some vertices may also dominate multiple types of relationships. Vertices that partic-

ipate in multiple types of connections are referred to as having mixed-memberships

in the stochastic blockmodel literature [Airoldi et al., 2008]. In temporal networks,

the number of edges belonging to each category can fluctuate through time and the

dominating vertices of each category can also evolve [Xing et al., 2010, Xu and

Hero, 2014, Ho et al., 2011]. The types of edges are not annotated in many network

data sets, but can be inferred through statistical analysis. While dynamic variants

of the mixed-membership stochastic blockmodel can model the mixed-membership

community structure, they cannot account for sparse connections by construction

[Orbanz and Roy, 2015]. As a consequence, these models do not allow for the

presence of hubs and power-law degree distributions.

5.1.3 Social Influence

The presence of an edge connecting two vertices at time t implies that the two vertices

had interacted in some ways during the period. The interaction may influence the

states of both vertices at the subsequent time point, causing the two vertices to

interact with the world similarly in the future. The two vertices may also interact

with many other vertices at t, causing their respective future states to reflect their
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own historical states and the social influence from their respective neighbours at t to

various degrees. The causal nature of time allows us to draw potential causal links

from the observed connections of vertices at t to their future states, and perform

inference on future connections between vertices [Blundell et al., 2012, Farajtabar

et al., 2015, Linderman and Adams, 2014]. The effect of social influence plays

an important role in the evolution of temporal networks, and should be taken into

account in building temporal network models [Heaukulani and Ghahramani, 2013].

5.2 Dynamic Edge Exchangeable Network Model

We propose a dynamic model for sparse temporal networks {G(t)}T
t=1 that is built

upon the edge exchangeable framework proposed in [Cai et al., 2016, Crane and

Dempsey, 2016]. By enforcing the edge exchangeable assumption to the marginal

distribution at each time point t, the model allows G(t) to be sparse. In contrast, the

existing dynamic models guarantee that G(t) is either empty or dense (see Section 5.4).

The edge exchangeable marginals for different time points are coupled by latent

Gaussian Markov chains to model the social influence effects and evolution of the

temporal networks. Additionally, we introduce a Poisson vertex birth mechanism

to allow new vertices to join the networks at different times. In the following sub-

sections, we first discuss the generative process for individual G(t) and introduce the

Markov dynamics that couple together the temporal sequence of networks. We then

present a variational inference algorithm and discuss its computational complexity

in Section 5.3.

5.2.1 Edge Exchangeable Sparse Networks

The edge exchangeable assumption applied to each of the networks G(t) in the

temporal sequence {G(t)}T
t=1 dictates that the edges in the set E (t) = {e(t)1 , ...,e(t)

N(t)}

are exchangeable and the probability distribution of G(t) is invariant to the order of

the edges in E (t). Therefore, e(t)1 , ...,e(t)
N(t) are i.i.d. samples of an edge distribution

Pt(e). Following our notations from Section 5.1, an undirected edge e(t)i is a tuple of
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two unordered participating vertices (v(t)i ,v′
(t)

i ). As a result, Pt(e = (v(t)i ,v′
(t)

i )) can be

factorised into a product of identical vertex distributions Pt(v
(t)
i )Pt(v′

(t)

i ). We present

some simulation results in Section 5.6 to demonstrate that our edge exchangeable

network construction can model sparsity. We refer the readers to [Janson, 2017] for

a detailed general review of edge exchangeable networks.

5.2.2 Community Structure Mixture Model

To incorporate community structure, we adopted the edge clustering approach pro-

posed for non-parametric static network model in [Williamson, 2016] to our model.

We assume that the observed edges E (t) are samples of a mixture of M edge distribu-

tions in Equation (5.1) (corresponding to M communities) where the per-edge latent

mixture component indicators c(t)i ∈ {1, ...,M} describe the types of connection that

the edges belong to. We suppress the parameters in Equation (5.1) for compact

presentation.

Pt(e = (v(t)i ,v′
(t)

i )) =
M

∑
m=1

[
Pt(c

(t)
i = m)Pt(v

(t)
i |c

(t)
i = m)Pt(v′

(t)

i |c
(t)
i = m)

]
(5.1)

For undirected networks, Pt(v
(t)
i |c

(t)
i ) and Pt(v′

(t)

i |c
(t)
i ) are identical vertex distribu-

tions which we collectively denote as Pt(v|c(t)i ) for notational convenience. Pt(c
(t)
i )

and {Pt(v|c(t)i = m)}M
m=1 are parameterised as logistic normal distributions with M-

dimensional and (|V(t−1)|+L(t))-dimensional support respectively. |V(t−1)| is the

number of vertices observed in the networks up to the previous time point (with

|V(0)|= 0) and L(t) is the Poisson distributed number of potential new vertices that

may join the network at t.

The relative sizes of the communities may grow and shrink over time and

exhibit temporal dependency, as sudden large changes to the community sizes are

rare. We construct the following latent Gaussian Markov chain for the parameters of
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the logistic normal distributions k(t) ∈ RM×1 to capture the temporal dependency.

Pt(c
(t)
i = m|k(t)) ∝ ek(t)m (5.2)

P(k(1:T )) =N (k(1);m,LLᵀ)
T

∏
t=2
N (k(t);Ak(t−1),LLᵀ) (5.3)

m∈RM×1, A∈RM×M and the lower-triangular matrix L∈RM×M are the parameters

of the Markov chain.

The mth vertex distribution at t, Pt(v|c(t)i = m) (abbreviated as Pt,m(v) for com-

pactness), encodes the relative dominance of the vertices in community m at time

t. We endow each vertex v at time t with a Gaussian distributed latent state vector

h(t)
v ∈ RM×1, such that

pt,m(v = vi) ∝ eh(t)v,m. (5.4)

The normalising constant for Equation (5.4) is the sum over the exponentiated mth

hidden states of all the vertices in V(t−1) and the L(t) potential new vertices at t.

5.2.3 Markov Dynamics with Social Influence

The latent state vectors of the L(t) potential new vertices are sampled from an initial

Gaussian distribution parameterised by the mean vector µµµ ∈ RM×1 and the lower-

triangular matrix B ∈ RM×M

p(h) =N (h; µµµ,BBᵀ). (5.5)

If the potential new vertices are indeed sampled to form G(t), they are added to

the set V(t) and together with the existing vertices that joined in the previous time

steps, their respective latent state vector h(t)
v evolves to the next time point according

to the conditional Gaussian distribution in Equation (5.6). The new potential vertices

at t that do not participate in G(t) are dropped from the model and ignored in the next
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time step.

p(h(t+1)
v |G(t),{h(t)

i |i ∈ V
(t)}) =N (h(t+1)

v ; f(v,G(t),{h(t)
i |i ∈ V

(t)}),BBᵀ) (5.6)

To model the varying degrees of social influence on the evolution of temporal

networks, the mean of the conditional Gaussian in Equation (5.6) is parameterised

as a M-dimensional vector function fv,t = f(v,G(t),{h(t)
i |i ∈ V(t)}) defined as

fv,t = w(t)
vv h(t)

v + ∑
i∈ne(v,t)

w(t)
vi h(t)

i (5.7)

where ne(v, t) is the set of neighbour vertices that vertex v formed an edge with in

G(t). Equation (5.7) is a weighted average of h(t)
v and the previous latent state vectors

of vertex v’s neighbours at t. The parameterization of Equation 5.7 implies that

the state of vertex v at time t + 1 is influenced by the states of the vertices that it

interacted with at t, capturing the effect of social influence among the vertices. The

non-negative weights w(t)
vi is a dot-product based similarity measure between vertex

v and i defined as

w(t)
vi =

eh(t)
v ·h

(t)
i

eh(t)
v ·h

(t)
v +∑ j∈ne(v,t) eh(t)

v ·h
(t)
j

. (5.8)

Intuitively, the neighbours of the vertex v at t pull the latent state of v towards

themselves at different degrees after they interacted at t. The neighbours that are more

similar to vertex v in the latent space have higher influence on its future latent state.

If the vertex v did not interact with any vertex, then fv,t = h(t)
v and Equation (5.6) is

simply a random walk.

The weighted average parameterisation of the conditional mean in Equa-

tion (5.7) is similar to the local context-based soft attention mechanism proposed

in [Luong et al., 2015] for NLP neural networks in two ways. Firstly, it assigns

higher weights to vertices that are more similar in the latent space. Similarly, the

attention mechanism in [Luong et al., 2015] assigns higher weights to words that are
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similar in context. Secondly, Equation (5.7) avoids the computationally expensive

operation of summing over all existing vertices by looking only at the neighbours

of vertex v at the previous time step. It is ‘local’ in the sense that it only sums

over vertex v’s immediate neighbours. The attention mechanism in [Luong et al.,

2015] is ‘local’ in the sense that the attention mechanism only consider other words

that surround the target word in a sentence instead of the whole corpus, leading

to saving in computational costs. We refer to the latent process parameterized by

Equation (5.7) as the Attention Augmented State-space (ATTAS). To the best of our

knowledge, we are the first to propose an attention mechanism in probabilistic model

for network data. We compare ATTAS to a simple random walk (RW) process as

well as other models in the prediction experiments.

5.2.4 Poisson Vertex Birth Mechanism

The number of new vertices L(t) at time t is uncertain prior to observing G(t). We

seek to account for the uncertainty with a Poisson prior distribution with log-rate

parameter λ (t)

P(L(t)|λ (t)) = Poisson(eλ (t)
). (5.9)

We observed in many temporal networks that L(1) is typically large because no

vertex existed in the networks prior to t = 1. The subsequent L(t) typically becomes

smaller. Therefore, we propose to capture the temporal dynamics of L(t) with an

auto-regressive Markov chain prior on the parameter sequence λ (1:T )

p(λ (1:T )) =N (λ (1); µλ ;σ
2
λ
)

T

∏
t=2
N (λ (t);aλ λ

(t−1),σ2
λ
). (5.10)

In the scenario when 0 < aλ < 1, the long-run expectation of L(t) is 1 (as the long-run

expectation of λ (t) is 0) despite the larger initial expectation of eµλ . As previously

described, the L(t) potential new vertices are assigned a latent state vector sampled

from Equation (5.5) and are discarded from the model if they do not participate in

G(t).
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5.2.5 Model Summary

We provide a generative summary of the dynamic edge-exchangeable network model

described in the previous sub-sections, and depict the generative process for a

sequence of T = 3 temporal networks with 2 communities in Figure 5.1. We assume

that the number of edges sampled at each time point N(1:T ) are directly specified.

However, they can also be modeled with Poisson distributions or directly observed

from the data sets in practice. The data generating process of the proposed model is

described in Algorithm 3.

The data generating process is also presented pictorially in Figure 5.1. The

individual vertices in Figure 5.1 are represented as colored balls in the data box,

with pairs of vertices forming edges that compose the networks. The yellow vertex

does not participate at t = 2 but remains in the network because it participated at

t = 1 while the green vertex joins at t = 2. The community labels of the edges are

sampled from the grayscale community distributions at the top, and annotated on

the sampled edges. Conditioning on the community label, two vertices are sampled

from the colored mixture distributions above the box to form an edge. The vertex

state vectors h(t)
v of the mixture distributions are represented as colored circles

in the rectangles above the distributions, with their ATTAS evolution mechanism

described in Section 5.2.3 depicted as directed arrows through time. h(t)
v of new

potential vertices are grouped in dotted rectangles, with those that do not immediately

participate in the network discarded at every time step (e.g., black at t = 1). The

number of new potential vertices L(t) is determined by Poisson distributions with

log-rates λ (t) that evolve according to a Gaussian Markov chain.
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Algorithm 3 Data generating process for the dynamic network model.

Input: T , N(1:T ), M, θ = {µλ , σλ , aλ , µµµ , B, m, A, L}
Output: A sequence of networks [(V(1),E (1)), . . . ,(V(T ),E (T ))]

1: V(0)←{}
2: for t← 1 to T do
3: V(t)←V(t−1), E (t)←{}
4: Sample λ (t) using Equation (5.10)
5: Sample L(t) using Equation (5.9)
6: Sample k(t) using Equation (5.3)
7: Sample h(t) and h(t)

z using Equation (5.6)
8: for i← 1 to Nt do
9: Sample c(t)i using Equation (5.2)

10: Sample e(t)i = (v(t)i ,v′
(t)

i ) using Equation (5.4)
11: E (t)←{E (t),e(t)i }
12: V(t)←V(t)∪{v(t)i ,v′

(t)

i }
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Figure 5.1: The figure shows the generative process for a sequence of 3 temporal networks
with 2 communities. This figure is best understood together with the text in Section 5.2.5.
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5.3 Variational Inference

We approximate the posterior distributions of the model’s latent variables with a

variational inference (VI) algorithm [Blei et al., 2017]. The latent variables of interest

are L(1:T ), λ (1:T ), k(1:T ), the per-edge community type latent variables c(t)i and the

per-vertex latent state vectors h(τv:T )
v . τv is the time when vertex v first joined the

networks.

The time dependency of temporal networks requires that the approximating vari-

ational distributions q for h(τv:T )
v , k(1:T ) and λ (1:T ) to preserve their time dependency.

To preserve the time dependency while allowing tractable variational distributions,

we utilize the structured mean-field (SMF) family of variational distributions [Saul

and Jordan, 1996]. The SMF family approximates q(h(τv:T )
v ) for v ∈ V(T ), q(k(1:T ))

and q(λ (1:T )) as Gaussian Markov chains [Blei and Lafferty, 2006, Ghahramani and

Jordan, 1997, Ng et al., 2016, Archer et al., 2015], and the remaining variational

distributions as fully-factorized exponential family distributions.

The proposed ATTAS latent process introduce non-conjugate structures to the

model through the fv,t function in Equation (5.7). Additionally, the log-normalizing

constants of the multivariate logistic normal distributions in Equation (5.2) and

Equation (5.4) are also non-conjugate. The two sources of non-conjugacy render the

evidence lower bound (ELBO) objective function of VI analytically intractable. We

take a two-pronged approach to tackle the intractable ELBO. We first linearize the log-

normalizing constants using Taylor’s series approximation [Blei and Lafferty, 2006].

The linear approximation introduces an additional lower bound to the ELBO, but

allows {{q(c(t)i )}N(t)

i=1}T
t=1 to be optimized analytically through fast conjugate updates.

The conjugate updates are equivalent to optimizing the variational parameters with

natural gradients, and lead to faster convergence. To tackle the more complex

intractable terms introduced by ATTAS, we resort to optimizing the variational

parameters of q(h(τv:T )
v ) with ADAM [Kingma and Ba, 2014] using unbiased Monte

Carlo gradients computed with the reparameterization tricks [Kingma and Welling,

2013, Archer et al., 2015]. We alternate between performing the conjugate updates
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and multiple steps of the stochastic gradient updates. We find that exploiting the linear

approximations and conjugate updates lead to faster and better convergence when

compared to a fully Monte Carlo approach. The details of the linear approximations

and the conjugate updates are outlined in Appendix A.

We learn the model parameters θ by maximizing the same ELBO objective

as VI. The model parameters updates are performed together with the stochastic

gradient updates of VI.

We validated the goodness of the VI approximation using a simulated experi-

ment to recover ground truth edge community labels c(t)i . The VI algorithm was able

to recover 96% of the 1694 ground truth labels across 3 time steps at a normalized

mutual information (NMI) score of 0.75. Derivations of the VI algorithm follows

the standard ELBO maximization framework [Blei et al., 2017] and the conjugate

updates follow from the method derived in [Hoffman et al., 2013].

5.3.1 Computational Complexity

The computational bottleneck of the variational inference algorithm lies in com-

puting the M×T approximated expected log-normalizing constant terms and the

corresponding gradients, contributed by the logistic normal distributions in Equa-

tion (5.4). Computing the approximated expectations requires summing over the

expected exponentiated latent state vectors h(t)
v for all vertices in V(T ). The sums are

then used to update {{q(c(t)i )}N(t)

i=1}T
t=1. Therefore, the computational complexity of

the VI algorithm is O(ETOT M+ |V(T )|MT ), where ETOT = ∑
T
t=1 N(t), |V(T )| is the

total number of vertices in the temporal networks, M is the number of communities

and T is the number of time points. The computational complexity of VI for the pro-

posed model is significantly lower than the dynamic variants of mixed-membership

stochastic blockmodels, which have complexity of O(M|V(T )|2T ) and beyond [Xing

et al., 2010, Ho et al., 2011].
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5.4 Comparisons to Existing Models

We compare and contrast the proposed dynamic edge exchangeable network model

to some existing probabilistic models for temporal networks, focusing on how the

proposed model handles the 3 key properties discussed in Section 5.1 differently,

and the models’ inference computational complexities.

One key property of the proposed model is its ability to model sparse connec-

tions in each networks G(t) in the temporal network sequence by assuming the edges

observed within each time points are exchangeable units of data. This is in contrast

to the existing models that are dynamic variants of the mixed-membership stochastic

blockmodel [Xing et al., 2010, Ho et al., 2011, Xu and Hero, 2014, Zreik et al., 2017],

latent space model [Sarkar and Moore, 2006, Sewell et al., 2017] and latent feature

model [Heaukulani and Ghahramani, 2013]. Marginally, these existing dynamic

models make use of likelihood models that fall under the exchangeable random graph

framework of Aldous-Hoover representation theorem [Aldous, 1981, Hoover, 1979].

It is well known that exchangeable random graphs are either empty or dense [Orbanz

and Roy, 2015]. Therefore, under the existing models, G(t) cannot be sparse. As we

discussed in Section 5.1, certain structural properties of real networks are unique to

sparse networks only. The limitation of the existing models in capturing sparsity is

an important disadvantage.

The proposed model incorporates community structure by directly clustering

edges with a mixture model, and interpret the per-edge latent mixture component

indicators c(t)i as the types of interactions between the two interacting vertices

(e.g., work connections, college friends, family ties in social networks). The edge-

clustering approach models the same type of community structure as the assortative

mixed-membership stochastic blockmodel (aMMSB) [Gopalan et al., 2012] despite

the differences in model construction. In aMMSB, each of the vertices assumes

different interaction-specific latent roles when interacting with other vertices and

two vertices form an edge with high probability only when both vertices assume

the same latent roles (e.g., colleague-colleague interactions etc.). The types of
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interactions encoded in aMMSB correspond to the interaction-specific latent roles of

both interacting vertices, and is equivalent to the edge-clustering formulation. For

example, a colleague-colleague interaction is equivalent to a work connection.

The direct edge-clustering approach of our model results in a significantly

smaller set of latent variables compared to an equivalent aMMSB. To model a

static network G = (V,E) with M communities, the proposed edge-clustering model

requires |E| latent mixture component indicator {ci}|E |i=1 while aMMSB (or other types

of MMSB) requires 2 · |V|2 latent role indicators. Generalizing to temporal networks

{G(t)}T
t=1, the proposed model requires only ∑

T
t=1 |E (t)| latent variables to capture the

community structure compared to 2 ·T |V(T )|2 for dynamic MMSBs. The difference

in the size of latent space is especially significant when the networks {G(t)}T
t=1

are sparse. The compactness of our model results in fewer numbers of variational

distributions to approximate in variational inference, and lead to computational gains

as discussed in Section 5.3.1.

The dynamic latent feature propagation model proposed in [Heaukulani and

Ghahramani, 2013] also accounts for the social influence of neighbours by assigning

‘social influence weights’ to the vertices. The model is restricted in that each

vertex has equal influence on their neighbours. The ATTAS proposal bypassed the

restriction with the attention mechanism, such that the vertices exert higher influence

on their neighbours that are more similar. In addition, the ATTAS construction does

not introduce any additional model parameters while the social influence weights of

the dynamic latent feature propagation model need to be learned.

5.5 Related Work

In addition to the work on dynamic networks mentioned previously, the ATTAS

latent process proposed in Section 5.2 also relates to continuous-time point processes

models for reciprocating relationships such as [Blundell et al., 2012, Farajtabar et al.,

2015, Linderman and Adams, 2014]. These models are typically applied to a fixed
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number of nodes and correspond to dense generative models, like MMSBs, which

provide no simple control on the number of sampled interactions within any particular

time window: each interaction follows directly from node-level or node-cluster-level

latent features, as opposed to edge-cluster-level features. Continuous-time models

have advantages and disadvantages compared to discrete-time models that are well-

studied. We favour discrete-time modelling due to the inferential ease by which we

can enforce a bottleneck of event counts, and the flexibility of attention models as

way of parameterising interactions using individual-level latent vectors.

There have been many advances on non-parametric sparse network models

[Caron and Fox, 2014, Cai et al., 2016, Crane and Dempsey, 2016, Williamson,

2016], with efficient Markov chain Monte Carlo algorithms. However, existing

works on relating these models to dynamic modelling is limited [Williamson, 2016].

Models based on non-parametric block models exist in the literature (e.g., [Ishiguro

et al., 2010]). It is not our goal to fill in the gap between continuous-time dynamic

and non-parametric edge-clustering models. In practice, we believe that social

data is too non-stationary for the elegant machinery of Hawkes processes to really

be effective, and we see our contribution as a practical framework for short term

predictions and historical smoothing and clustering of observed interactions over

which extensions can be built.

5.6 Experiments

We conducted 3 experiments with the following goals.

1. Investigate sparsity under various hyper-parameter settings.

2. Benchmark the model’s link prediction powers.

3. Investigate the model’s capacity to capture community structures.
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5.6.1 Sparse Networks Simulations

The proposed dynamic network model consists of T logistic normal edge distribu-

tions that are coupled by latent Markov chains. Each edge distribution can capture

sparse connections in G(t). In this experiment, we investigate the sparsity of net-

works simulated from a logistic normal edge distribution (i.e., T = 1) with different

hyper-parameter settings, and show that the networks simulated with certain hyper-

parameter settings are sparse. To focus on sparsity, we set M = 1 and ignore the

community structure.

To simulate the networks, we first sample the number of latent vertices L ∼

Poisson(106) and the vertices’ latent states hi ∼ N (0,σ2) for i ∈ {1, . . . ,L}. The

edges are then sampled from the edge distribution P(e= (i, j)|σ) = P(v= i|σ)P(v=

j|σ) where P(v = i|σ) = ehi

∑
L
l=1 ehl

. The hyper-parameter of interest is the standard

deviation σ . The standard deviation fully determines the excess kurtosis of the

transformed random variable ehi , which in turn governs the shape of the logistic

normal P(v|σ). A small σ value corresponds to a flat P(v|σ) while a large σ

corresponds to a multi-modal P(v|σ) because of the resulted heavy-tailed distribution

for ehi . With a flat P(v|σ), the number of vertices sampled to join the network (i.e.,

active vertices) increases quickly with respect to the number of edges sampled as

the probability mass is distributed more evenly among the potential vertices. With a

multi-modal distribution the number of active vertices increases more slowly, leading

to denser networks.

The quantity of our interest is the ratio of the log number of sampled edges

log |E| to the log number of active vertices log |V|. A network is sparse if the ratio is

less than 2 [Cai et al., 2016]. We simulate networks with increasingly more edges

at different σ values, and show that the sampled networks are sparse for small σ in

Figure 5.2.
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Figure 5.2: The log-log plots show the number of sampled edges v.s. the number of active
vertices of the simulated networks. The σ hyper-parameter is set to 4,5,10 (left to right),
resulting in log |E|/ log |V| ratio of approximately 1.5,1.7,2.4 respectively, as shown in the
slopes of the colored dots. The different dot colors in each plot represent different random
seed. The black solid lines have slopes equal to 2. The scales on the x and y axes are 101 to
105 and 106 respectively.

5.6.2 Link Predictions

We conducted 3-fold held-out link prediction experiments using three temporal

binary network data sets. The experiments are motivated by the real-world scenario

of predicting imminent interactions between pairs of vertices given partially observed

data in the current time period, and the network’s history. In the experiments, the

edges observed in the last time slot were randomly split into three sets of similar

sizes. Two of the sets were then combined with other edges from the previous time

slots to form the training data set. The trained models were evaluated on the edges

in the held-out fold. We called this experiment Challenge 1.

In addition, we compared the top-performing models from Challenge 1 in a

more difficult scenario of predicting edges between pairs of vertices that were not

observed to have interacted in the network’s history. We called this experiment

Challenge 2. We dropped the COLLEGE data set in Challenge 2 due to its extremely

small held-out set after censoring the previously observed interactions.

In Challenge 1, the proposed model (ATTAS) is benchmarked against the dy-

namic mixture of mixed-membership stochastic blockmodel (dM3SB) [Ho et al.,

2011], dynamic latent feature propagation model (LFP) [Heaukulani and Ghahra-
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mani, 2013], aMMSB with Poisson likelihood and two other baselines. We also

compared the ATTAS to a variant of the proposed model that does not account for

social influence, and instead model the evolution of vertex latent state vectors h(t)
v

with random walk Markov chains. This model is known as RW. The performance of

the models are compared based on the ROC curves and the AUC metrics in Figure 5.3

and Table 5.1 respectively. The proposed ATTAS model significantly outperformed

the dM3SB which shares similar interpretable structure as our model. While the LFP

model performed better than the ATTAS, it does not provide easily interpretable

community structures to explain its predictions in the way that our model does.

Furthermore, the computational complexity of LFP grows exponentially with respect

to the number of time points T and the number of latent features K [Heaukulani and

Ghahramani, 2013], rendering the model un-scalable. The Dirichlet-Multinomial

baseline, which assigns predictive probability to a pair of vertices in proportion to the

number of observed edges between the pair in the training data, appears to have high

AUC scores. However, it cannot predict non-trivial edges (i.e. historically infrequent

interactions) well as shown by its relatively flat ROC curves in Figure 5.3. For

example, in the second fold of the ENRON data, the slope of Dirichlet-Multinomial’s

ROC curve at 0.2 False Positive Rate (x-axis, approximately where the blue and

green/red curves crossed) is near zero while the slopes of ATTAS/RW ROCs are

significantly higher.

The high AUCs of Dirichlet-Multinomial baseline indicates that there are many

edges in the held-out data set that can be easily predicted by simply checking if a pair

of vertices had previously interacted in the training data set. However, such trivial

predictions are uninteresting and do not require sophisticated statistical models. This

motivates Challenge 2, which requires the models to predict non-trivial edges. The

maximum F1-scores and AUCs of the top-performing models from Challenge 1

(LFP and ATTAS) in Challenge 2 are reported in Table 5.2. The maximum F1

scores were computed by scanning over all possible precision/recall thresholds. In

Challenge 2, the Dirichlet-Multinomial baseline has a F1-score of 0 and AUC of 0.5

by construction. The result indicates that in tasks where predicting non-obvious edges
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are crucial, our models are preferable. This is especially true when interpretability of

the predictions is important because of the built-in community detection mechanism

in our proposed ATTAS model.

The results in Table 5.1 also show that modeling social influence is important

and highly beneficial for link predictions. The ATTAS model that captures the social

influence effect significantly outperformed the RW model with simple random walk

latent process in the ENRON and COLLEGE data sets, while achieving essentially

the same performance as RW in TRADING.

ENRON TRADING COLLEGE

ATTAS 0.857±0.003 0.965±0.001 0.823±0.004
RW 0.829±0.012 0.970±0.001 0.811±0.017
dM3SB 0.730±0.012 0.968±0.002 0.656±0.008
LFP 0.889±0.005 0.982±0.001 0.870±0.012
aMMSB 0.799±0.006 0.731±0.002 0.742±0.042
Dirich-Mult. 0.828±0.006 0.946±0.006 0.882±0.019
Equi-prob. 0.479±0.005 0.553±0.012 0.510±0.056

Table 5.1: 3-fold cross-validated AUCs for Challenge 1.

ENRON TRADING

F1
ATTAS 0.124±0.010 0.171±0.014
LFP 0.102±0.014 0.160±0.012

AUC
ATTAS 0.806±0.012 0.881±0.011
LFP 0.806±0.005 0.942±0.002

Table 5.2: 3-fold cross-validated F1 and AUCs for Challenge 2.

We describe the data sets used in the link prediction experiments in the following

paragraphs.

ENRON [Shetty and Adibi, 2004]: 4 months of ENRON e-mail communication

networks were used in the experiments. Two persons/vertices in the networks share

an edge in a particular month if there is at least 1 e-mail communication between the

pair in that month. There are 126 vertices in the first network, and the number of

vertices increased to 138 by the end of the fourth month. We assumed the number of

communities to be 3 in the predictive experiments.
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Figure 5.3: The sub-figures show the ROC curves of ATTAS (red), RW (green), dM3SB
(magenta), LFP (orange), aMMSB (black) and Dirichlet-Multinomial (blue) on different
folds of the data.

TRADING [Economics Web Institute]: 4 years of the international trading networks

from 1970 to 1973 were used in the experiments. Two countries/vertices in the

networks share an edge in a particular year if the amount of trade between the two

countries in the year is non-zero. There are 126 vertices in the network at 1970,

and the number increased to 134 by the end of 1973. We assumed the number of

communities to be 4 in the predictive experiments.

COLLEGE [Van de Bunt et al., 1999]: This data set consists of 7 snapshots of

friendship networks between university freshmen in a Dutch university. The original

data set consists of pair-wise friendliness scores between the freshmen surveyed, with
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score of -1 indicating animosity, to +3 indicating a best friend. We pre-processed

the 7 snapshots such that two freshmen/vertices share an edge only if both rated

each other with a positive score in the same period. There are 4 vertices in the

first network, and the number increased to 31 by the end of the seventh period. We

assumed the number of communities to be 3 in the predictive experiments.

The following paragraphs describe the details of the models compared in the

3-fold cross-validated link prediction experiment.

ATTAS, RW: The proposed dynamic network model with the ATTAS/random

process. The models were trained for 50,000 iterations and given 5 random restarts

per experiment. The predictive probability of seeing an edge between vertex i and

j were computed using 500 Monte Carlo samples drawn from the fitted variational

distributions.

dM3SB: The dynamic mixture of mixed-membership stochastic blockmodel pro-

posed in [Ho et al., 2011]. The model hyper-parameters were selected using the

BIC grid search procedure proposed in [Ho et al., 2011]. The hyper-parameter grids

for the number of mixture component and the number of community are [2,3,4,5]

and [3,4,5,6] respectively. We performed 5 random restarts per configuration. The

model was also modified to leave out the links in the hold-out set.

LFP: The dynamic latent feature propagation model proposed in [Heaukulani and

Ghahramani, 2013]. The number of latent features K was set to 10 and the MCMC

inference procedure was performed with the hyperparameters suggested in the

original paper.

aMMSB: This is the assortative MMSB proposed in [Gopalan et al., 2012] with

Poisson likelihood. All the edges observed in the training data set were aggregated

and modelled as counts. The models were trained to convergence and given 5 random

restarts per experiment. The predictive probability is the probability of observing at

least one edge between two vertices conditioning on the training data.
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Dirichlet-Mult.: The Dirichlet-multinomial distributions over edges is equivalent to

an Infinite Relational Model [Kemp et al., 2006] where each pair of vertices is in its

own cluster. Please refer to [Williamson, 2016] for details.

Equi-probable: Equi-probable links baseline [Williamson, 2016]. This baseline

assumes the probability of observing an edge between two vertices is 1
N×(N−1) , where

N is the number of vertices in the training data.

5.6.3 Community Detection

Figure 5.4: This figure shows the adjacency matrices of the US Congress data set with the
edges coloured according to the inferred community types.

We demonstrate that the proposed ATTAS model can infer meaningful com-

munity structure in real temporal networks by fitting the model with M = 2 to a

sequence of 3 temporal networks created from the first 9 months of the 109th US

Congress voting records [US Congress]. The data set was divided into 3 three-month

periods. Two senators share an edge within each of the periods if they casted the

same votes for at least 50% of the bills voted on within the period.

Figure 5.4 shows the adjacency matrices of the temporal networks. The edges

are colored according to their inferred types and the vertices (rows and columns) are

sorted according to the senators’ party affiliations, with the black lines separating the

Democrats (left/top of the black lines) from the Republicans. A single unaffiliated

senator is represented in the bottom row/right-most column. Within each party, the

senators are sorted according to their relative frequencies of participating in each
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edge type.

The homogeneous edge colors in the top-left and bottom-right quadrants of the

adjacency matrices clearly show that ATTAS was able to infer meaning community

structures that reflect the reality (i.e., party affiliations). We also observed that

the sizes of the inferred communities changed over time, reflecting the changing

positions of senators with different views from their fellow party members (e.g.,

Democrats with more conservative views) and the dominance of the Republican party

during the Bush administration. It is interesting to notice that the voting patterns

of some senators ed well with other senators from both parties. They are highly

represented in both communities and are likely to form edges with both Republicans

and Democrats, acting as hubs in the networks.

5.7 Discussions

In this chapter, I presented an edge exchangeable model for temporal networks that

can model sparsity, community structures and social influences in the networks. The

proposed model is also less computationally demanding compared to many existing

models. The experiments show that the proposed ATTAS model performs well in link

predictions and can recover meaningful community structures. The ATTAS model

is particularly suitable for tasks where predicting non-obvious edges are crucial

and when interpretability of the predictions is important, as its predictions can be

explained by the built-in community detection mechanism. The work presented in

this chapter can be extended in several different directions in future works. These

future directions are discussed in details in Chapter 6.



6

Conclusion and Future Works

In this thesis, I presented and discussed three probabilistic models and scalable

learning algorithms that account for temporal and network structured dependence in

data sets. The proposed models and algorithms extended the existing literatures on

probabilistic modelling by either allowing existing probabilistic models to scale up

using novel variational inference algorithms, or by enriching the class of probabilistic

models for dependent data through incorporating novel structures in the models.

In Chapter 3, I discussed the factorial hidden Markov model and the limitation

of the existing inference algorithm in scaling up to very long sequential data. To ad-

dress the scalability issue, a structured variational inference algorithm that leverages

modern stochastic optimisation and deep learning techniques was proposed. The

proposed algorithm allows factorial hidden Markov models with a large number of

hidden Markov chains to be applied to very long sequences. The algorithm was then

verified and validated through extensive experiments on real and simulated data sets.

It may be possible to extend the proposed algorithms in two different directions in

future works. Firstly, the proposed variational inference algorithm imposes indepen-

dence assumption among the posterior Markov chains while they are not independent

in the true posterior distribution. One interesting future direction to explore is to

extend the scalable variational inference algorithm in order to capture the posterior

dependence structure using flexible neural network density models. Secondly, it
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will be useful to explore the development of scalable variational inference algorithm

for factorial hidden Markov models with non-linear likelihood functions, such as

the Gaussian likelihood function where the mean parameter is parameterised as a

non-linear function of the factorial latent states. The non-linear factorial hidden

Markov model can capture richer structure in the sequential data set than the existing

model while retaining the the model’s interpretability. However, the existing scalable

inference algorithms, including the one proposed, are not readily applicable to the

non-linear model. Therefore, it is useful to extend the existing scalable inference

algorithms such that they can be applied to factorial hidden Markov models with

non-linear parameters.

In Chapter 4, I presented a novel Gaussian process model for semi-supervised

learning on data sets with network structure. The proposed probabilistic model

accounts for information in the node-specific covariates and the dependence structure

among the nodes as determined by the network structure, in order to predict the

node labels. Experiments on benchmark data sets showed that the proposed model

is competitive with the state-of-the-art deep learning models despite its simplicity,

and is advantageous when the number of labelled nodes is small. As discussed in

Chapter 4, it is possible to extend the proposed model in two interesting directions

in future works. First of all, future research can investigate the extension of the

covariance function of the proposed model through its spectral view. It may be

possible to design richer covariance structure with better regularising property by

imposing additional smoothness constraint on the spectral filters that correspond to

the Gaussian process models. Another interesting direction is to explore the hierar-

chical extension of the proposed model, such that multi-hop long-range information

of the network can be exploited.

In Chapter 5, I presented an edge exchangeable model for temporal networks

that can model sparsity, community structures and social influences in temporal

networks simultaneously. The work presented in the chapter can be extended in

two directions in the future. Firstly, the computational complexity of the varia-
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tional inference algorithm can be further improved through further approximations.

The computational complexity of the proposed algorithm is bottle-necked by the

computations of the normalising constants of the multivariate logistic normal like-

lihood functions. Computing the normalising constants requires summations over

the exponentiated latent states of all the vertices present in the networks. The com-

plexity for computing the normalising constants is therefore linear with respect to

the number of vertices. The operation becomes expensive for networks with tens

of thousands of vertices. In this regard, it is possible to explore the adaptation of

techniques for approximate normalising constants in classifiers with large number

of classes [Titsias, 2016, Botev et al., 2017, Bengio et al., 2003] as well as word

embedding models for large corpus to the proposed dynamic network models [Mnih

and Kavukcuoglu, 2013, Bamler and Mandt, 2017], such that the algorithm can

scale to temporal network data sets with large number of vertices. Secondly, the

proposed model can be extended to allow the ‘states’ of the vertices throughout their

lifetime to be parsed. Temporal social networks are composed of heterogeneous sets

of vertices, in which their participation in the networks evolve over time depending

on the states of the vertices at the given time points. Inferring the states of the

vertices through different time periods can reveal important insights to the overall

networks, communities within the networks and individual vertices. One possible

approach to infer the temporal trajectories of the vertices’ states is the adaptation of

the switching linear dynamical system state-space to the dynamic network model,

such that the parameters for the vertices’ transition distributions at different time

points are selected from a dictionary based on their respective latent states at the

corresponding time. The inferred latent states can be used to parse the vertices’

properties and cluster them accordingly.

As discussed in various sections of this thesis, data sets in the real-world often

exhibit rich dependent structures that can be exploited by probabilistic models. The

research presented in this thesis explored the modelling of dependent structures in

the temporal and network dimensions within the probabilistic modelling framework

while proposing practical variational inference algorithms that enable the applica-
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tions of the models to non-trivial data sets. One key limitation that often inhibits

the exploration and application of probabilistic models to dependent data is the

computational difficulty that is inherent to the models that can capture the depen-

dency structure of the data sets. I hope that with the development of more efficient

computational methods within the machine learning and statistics community, and

the availability of cheaper computing power, the developments and applications of

probabilistic models for dependent data will become more accessible.



Appendix A

Variational Inference Algorithm for

the Dynamic Network Models

In this appendix, I present the derivation for the variational inference algorithm

for the dynamic network models proposed in Chapter 5. The variational inference

algorithm lower bounds the model’s marginal log-likelihood with the evidence lower

bound (ELBO) function in Equation A.1, and learn the variational parameters β and

model parameters θ jointly by maximising the ELBO objective function with respect

to these parameters.

L(β ,θ) =
T

∑
t=1

|E(t)|

∑
i=1

[Eq[lnP(v(t)i |c
(t)
i ,h(t),h(t)

z )]+Eq[lnP(v′
(t)

i |c
(t)
i ,h(t),h(t)

z )]]

+
T

∑
t=1

[Eq[lnP(Lt |eλt )]+
|E(t)|

∑
i=1

(Eq[lnP(c(t)i |k
(t))]]+Eq[ln pθ (k(1))]

+Eq[ln pθ (λ1)]+
T

∑
t=2

[Eq[ln pθ (k(t)|k(t−1))]+Eq[ln pθ (λt |λt−1)]]

+ ∑
i∈V (T )

[Eq[ln pθ (h
(τi)
i )]+

T

∑
t=τi+1

Eq[ln pθ (h
(t)
i |h

(t−1),h(t−1)
z )]]−Eq[lnqβ ].

(A.1)
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The ELBO in Equation A.1 is analytically intractable due to the expectations

with respect to the logistic normal log-normalizing constants in the equation. To allow

tractable computations, we introduce a further approximation for the expectations

over the logistic normal log-normalizing constant for the vertex log-likelihood. The

exact same derivation applies to the edge cluster indicator log-likelihood.

The additional layer of approximation induces a further lower bound on the

ELBO, and introduces additional variational parameters ζm,t . The lower bound can

be written as

Eq[lnP(v(t)i |c
(t)
i = m,h(t),h(t)

z )]

= Eq[h
(t)
j,m]−Eq[ln ∑

h∈h(t)
z

ehm + ∑
h∈h(t)

ehm ]

≥ Eq[h
(t)
j,m]−

Eq[∑h∈h(t)
z

ehm +∑h∈h(t) ehm]

ζm,t
− lnζm,t +1. (A.2)

The optimal values for ζm,t can be solved for by setting the derivative of the

lower bound in Equation A.2 w.r.t. ζm,t to 0:

Eq[∑h∈h(t)
z

ehm +∑h∈h(t) ehm]

ζ 2
m,t

− 1
ζm,t

= 0 (A.3)

ζm,t,opt = Eq[ ∑
h∈h(t)

z

ehm + ∑
h∈h(t)

ehm] (A.4)

With the approximation introduced above, it is possible to derive analytic

coordinate ascent update formula for the variational parameters c(t)i . The coordinate

ascent update equation for the variational parameters of c(t)i is derived by singling
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out all the terms involving the variational parameters related to c(t)i in the variational

lower bound, and set their derivatives to 0.

Denoting π
(t)
i = [π

(t)
i,1 , . . . ,π

(t)
i,M]T as the categorical variational parameters corre-

sponding to the latent variable c(t)i and isolating all the terms in the lower bound that

contains π
(t)
i,m results in the following expression

π
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i,m[Eq[h

(t)

v′
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i ,m
]+Eq[h

(t)
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]−2
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(t)
m ]− ∑l Eq[ek(t)m ]
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(A.5)

Setting the derivative of the expression above w.r.t π
(t)
i,m and solve for the optimal

π
(t)
i,m gives

lnπ
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(t)

v(t)i ,m
]−2

Eq[∑h∈h(t)
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+ [Eq[h
(t)

v′
(t)
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]+ [Eq[[k

(t)
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(A.6)

The optimal π
(t)
i,m is the normalized exponent of the expression in Equation A.6.
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Yingzhen Li and Richard E Turner. Rényi divergence variational inference. In

Advances in Neural Information Processing Systems, pages 1073–1081, 2016.
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