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Abstract 

For the pharmaceutical industry, there has been a movement towards 

greener chemistry to reduce environmental impact. This movement has 

sparked interest from the pharmaceutical and chemicals industry in synthetic 

biology, which involves increasing the use of biological hosts and enzymatic 

processes to produce pharmaceutical products. This increase in biocatalysis 

and synthetic biology has sparked more of a need for diverse and versatile 

enzymes in order to customise the end product as well as diverse and robust 

host organisms to accommodate the reactions. Synthetic biology also opens 

opportunities for the discovery of complex molecules which have been 

inaccessible by traditional synthetic chemistry routes. Using enzymes from 

the toluene metacleavage pathway found in Pseudomonas putida and an 

omega-transaminase, an engineered metabolic pathway was constructed in 

Escherichia coli and in various P. putida strains for the production of novel 

amines. In this study the conversion of benzoate to 2-hydroxymuconic 

semialdehyde (2-HMSA) has been investigated in a whole cell 

biotransformation reaction to compare the feasibility of using P. putida to E. 

coli as an alternative host organism for industrial processes. P. putida 

KT2440 showed activity comparable to E. coli, indicating that this could be a 

suitable organism for use in industry. Nineteen omega-transaminases were 

screened to select a transaminase which was able to convert 2-HMSA to a 

novel amine. Results showed that (R) – selective transaminase appeared to 

have activity with 2-HMSA, with an arthrobacter mutant transaminase 

(ArRMut11) showing the highest conversion rates. The conversion of 

modified starting materials, p-toluic acid, m-toluic acid and 2,3-

dimethylbenzoate were investigated with the engineered pathway. Identifying 

the amine products of the transaminase conversion of 2-HMSA and the 

modified starting substrates was attempted using a combination of HPLC and 

mass spectrometry, however the exact structures were not confirmed. 
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Impact statement 

The studies presented here could be impactful in a number of ways which 

are described below.  

Impact in academia 

The transaminase screening with the substrate 2-hydroxymuconic 

semialdehyde (2- HMSA) has laid the groundwork for future studies of 

transaminases for the conversion of compounds with similar structures. The 

investigation of the amino acid amine donors which showed glutamate was 

accepted by the transaminases more readily than alanine or 

methylbenzylamine may guide future research. 

This study has been a proof of concept study to show that a novel molecule 

can be created using an engineered pathway involving enzymes from 

different species and expressed in an alternative host organism. This could 

impact future research by providing some guidance on which Pseudomonas 

putida organisms may have growth and productivity rates which are most 

comparable with E. coli. 

Impact in industry 

During this research project novel molecules have been created showing a 

proof of concept that engineering metabolic pathways may be a relevant and 

promising method for drug discovery. Here P. putida have been shown to 

have comparable efficiency to E. coli and literature suggests that solvent 

tolerability is improved; thus making P. putida a potential interesting 

alternative host for industrial manufacturing processes.  

In this project, the usability of Antha software has been fed back to the 

developing company, Synthace Ltd. and this research has helped to improve 
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the programming within the software so that it is more flexible and user 

friendly for scientists performing biological experiments. 
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 Introduction Chapter 1.

The idea of synthetic biology has been around for a few decades (Benner & 

Sismour 2005; Hobom 1980), the technology and the interest in this field of 

research has recently gained momentum. Genetic manipulation is now 

common place in a laboratory, particularly in microbes. Along with the rapid 

advances of DNA synthesis technology; genetic engineering is becoming 

cheaper and faster than ever (Turner 2018). The ability to design a biological 

system to carry out pre-determined functions is the ultimate goal of synthetic 

biology. To achieve this; enzymes and metabolic systems must be better 

characterised and a wider range of chassis or host organisms must also be 

better understood. This will allow for improved selection of the appropriate 

enzymes and host organisms to efficiently produce molecules biologically. 

There has been a drive to reduce environmental damage caused by all 

industries. The chemical industries in particular, frequently use non-

renewable materials, producing high levels of toxic and chemical waste and 

using extreme amounts of energy in their processes. The pharmaceutical 

industry is one of these industries that is under pressure to change 

manufacturing processes to more green methods of chemical production 

(Woodley et al. 2013; Wohlgemuth 2010; Tucker 2006). Biological systems 

work under aqueous conditions and rarely produce any type of toxic waste. 

This property makes engineering biological systems to produce chemicals 

and ingredients for the pharmaceutical industry an ideal alternative to current 

methods of chemical synthesis (Sheldon 2016; Stewart 1997). Limitations to 

using biological systems however are lower yields produced by enzymes and 

non-optimised reactions and potentially longer processing times purifying the 

product from aqueous solution containing cell debris, enzymes and other 

biological contaminants. To increase the use of biocatalysis in research and 

development (R&D) and chemical manufacturing, biological processes must 

be more efficient and more reliable. This is the idea that the fields of 

synthetic biology and bioengineering aim to achieve. 



Chapter 1 Introduction 

20 

 

 

1.1 Combining biology and engineering 

 In order to be successful in both designing synthetic pathways for the 

production of novel molecules and producing high yields of the desired 

molecule in living micro-organisms it is important to combine the strategic 

planning and design of engineering with the biochemical knowledge of 

metabolic pathways. For this to be successful engineering strategies will 

need to be adapted to suit biological systems (Andrianantoandro et al. 2006). 

Engineering biological systems is part of the relatively new discipline of 

synthetic biology which must be distinguished from molecular biology. 

Molecular biology has allowed the manipulation of genetic information and 

has facilitated the study of macromolecules, especially proteins and many 

cell processes. From molecular biology, tools have been developed so that it 

is easy and simple to produce any desired protein from a recombinant 

organism. Synthetic biology uses the tools and knowledge from molecular 

biology combined with engineering principles to work towards an ultimate 

goal to be able to standardise, model and predict the biological reactions and 

processes (Farny 2018). Biology is complicated and unpredictable whereas 

engineering is made as simple as possible and is standardised. Combining 

these two disciplines will require adaptation of the normal principles of 

engineering. These main principles of engineering are standardisation, 

modularity and decoupling (Endy 2005). 

Standardisation is quite self-explanatory; in engineering everything is 

standardised, all engineers work in the same units and all measurements can 

be easily understood and translated between any lab in any country. Within 

biology, however, such strict standards do not exist. Measuring protein 

concentration varies between labs as it depends on the comparison between 

the sample and a known protein with known concentration. Measuring the 
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optical density during cell growth can also vary between labs, some 

researchers read the absorption at a wavelength of 600 nm, some at 650 nm 

and some even at 700 nm. In order to progress towards the idea of using 

synthetic biological components as tools or as a technology, measurements 

must be standardised so that anyone at any level of understanding of 

synthetic biology would be able to design a process using a given set of 

synthetic biology ‘tools’. Modularity is essentially simplifying a process. 

Engineers are able to categorise different levels of complexity and work on a 

particular level with little or no concern for the rest. Biologists, in general, 

take more of an interest in the more complex problems and want to explore 

and solve these; they are viewed as research problems. Another concern for 

biologists is that the complexities may interfere with the desired result of the 

research and therefore cannot be simply ignored. The last of the engineering 

principles that needs to be addressed is decoupling; this is the idea that one 

complex problem can be resolved by dividing the problem into different 

aspects and solving these as separate simpler problems. Once these are 

solved it is possible to combine the separate resolutions for a result to the 

original complex problem. Similar to abstraction, solving biological problems 

is often more complex than this. When combining different biological 

components, it is likely that they will interact in a different way than when 

observed as separate problems, and therefore the initial problem would not 

be solved. These issues with bringing engineering principles into biology are 

discussed further in (Endy 2005). 

It is unlikely that it is possible to simply apply the principles of engineering to 

biology; these principles must be adapted to accommodate the complexity of 

biological systems. That said, by assuming that the ultimate goal of synthetic 

biology is to have a set of ‘tools’ that can be picked out of a catalogue and 

assembled to produce an object or process with a particular function then 

biology must become more like engineering, and engineering should not 

become more like biology. To progress towards this we need a better 
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understanding of which biological components will work together and which 

are not compatible. From this idea “BioBrick” has been formed (Knight 2003). 

BioBricks are a standardised set of genetic elements which can be combined 

in a mix and match style and have been designed to produce consistent and 

reproducible results every time. A list of standardised biological parts can be 

found at the international genetically engineered machine competition’s 

(iGEM) list of registered parts http://parts.igem.org/Main_Page. Biological 

parts have been defined here as a nucleic acid sequence that encodes for a 

defined function which perform as expected without the variability which is 

often seen in biological experiments (Knight 2003). 

Defining and standardising all possible biological parts, however, would be 

extremely time consuming. New genomes are constantly being sequenced 

and new functions of genomic DNA are still being uncovered. Improving 

technologies is speeding up this process, for example it is now possible to 

produce DNA synthetically whereas in the past cloning DNA could take 

months and Endy, 2005, states that cloning and producing the correct DNA 

constructs for an experiment easily takes up to 50% of a molecular biologists 

time and efforts. It is important to have standardised parts because if 

synthetic biology is going to become an industrial and globally used 

technology, then the biological components need to be more predictable. 

Mistakes in DNA replication are unpredictable and provide one example 

where biology must be improved to progress towards the success of 

synthetic biology. 

On the other hand, biology is already like engineering as the Barabasi lab, 

2004, (Barabási & Oltvai 2004) compare metabolic networks within a cell to 

man-made networks such as the internet and transport networks. They 

demonstrate that cell networks are scale-free networks, meaning they have 

busy hubs which interact with many less busy nodes; in a cell the hubs and 

nodes are proteins. The hubs are proteins such as the tumour suppressor 

http://parts.igem.org/Main_Page
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phosphoprotein p53 which interacts with hundreds of other proteins but the 

majority of other proteins have very few interaction partners. In transport 

links, the hubs are busy airports such as London Heathrow and New York 

City’s JFK which have incoming and outgoing flights from hundreds of other 

airports but smaller airports such as the East Midlands Airport only interact 

with a few other airports. By comparing cell networks and the way a cell 

functions with these man-made networks, the question that arises is: could 

biology be viewed as an engineering problem? This property of cell networks 

also shows that there is a possibility that biology could be more predictable 

than scientists currently think. By bringing engineering strategies to biology 

we can increase the productivity and economic viability of using microbes to 

biosynthesise molecules. Characterising pathways and different biological 

host species will help to progress towards the goal of synthetic biology to 

make biological experiments more predictable. 

 

1.2 Synthetic biology and metabolic engineering 

To progress towards the ideal of synthetic biology and to create microbial 

factories for the production of useful molecules there must be an increased 

understanding and ability to engineer metabolic pathways. By adding several 

genes in sequence within the same vector it is possible to construct a novel 

biosynthetic pathway, given that the product of one enzyme is a possible 

substrate of another. Native biosynthetic pathways limit chemical production 

to the products found in nature, whereas manipulating and engineering these 

pathways allows the optimisation to produce yields high enough for industrial 

use and also to alter functional groups and produce novel molecules by 

introducing enzymes with different functionalities into a pathway. There is 

huge potential for a variety of molecules, but to access these we must have 

full usage of the enzymes required; this may mean that E. coli, which is the 

current workhorse of biological research, is not a sufficient host for the 
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reactions we are interested in. Pfeifer et al., 2001, demonstrated the use of 

E. coli in the production of active pharmaceutical ingredients such as 

polyketides. One of the most well-known and widely used of these is the 

antibiotic, erythromycin. Large scale production of erythromycin is currently 

synthesised by the bacteria Saccharopolyspora erythraea (Wu et al. 2011). 

This is a working example that shows the importance of microbial 

engineering in the production of industrially relevant chemicals. Here the 

organism used industrially is the organism in which the working enzymes 

naturally occur; proving that E. coli is not always the most useful host for 

biosynthesis and that other species can be and are industrially relevant. One 

reason for this is that organisms have evolved to perform native metabolic 

reactions in the most energy efficient way (Weeks & Chang 2011). Native 

genetic sequences have codon biases to accommodate tRNA abundances in 

their natural host organism to promote correct folding and efficient 

translation.  

Biocatalysis and synthetic biology in industry has recently gained huge 

momentum, which has resulted in the development of biological based 

processes for a wide range of products from biofuels to pharmaceutical 

ingredients. Polyketides are one class of molecules that have been used 

widely in pharmaceutical ingredients, pesticides and herbicides. Polyketides 

are synthesised by polyketide synthases, which have recently been 

investigated in the production of biofuels due to the wide variety of enzymes 

which provide the ability to tailor the product (Cai & Zhang 2018). Though 

this method of biofuel production is not yet efficient enough to compete with 

oil extraction, other methods could be, such as the break down of biomass, 

such as lignocellulose (Bilal et al. 2018) or sugar beet pulp (Berłowska et al. 

2016) to produce bioethanol. Engineering metabolic pathways is not only 

limited to biofuels, many other high value products have been produced as a 

result of engineered pathways; one such example is the production of anti-

malarial drug, artemisinic acid using engineered yeast. Artemisinic acid is 
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traditionally extracted from plants; making the drug expensive and difficult to 

produce in large amounts. The pathway engineering was performed here by 

combining an existing mevalonate pathway for the formation of farnesyl 

pyrophosphate (FPP) with enzymes, amorphadiene synthase gene (ADS) 

from A. annua and a novel cytochrome P450 to produce an engineered multi-

enzyme pathway for the conversion of simples sugars to artemisinic acid (Ro 

et al. 2006). It is not only naturally occurring compounds that have been 

produced using engineered enzymatic cascades. For example, the lengthy 

and complex manufacturing process for the production of atorvastatin, which 

is used for controlling cholesterol in the prevention of cardiovascular disease 

and one of the top 3 prescribed drugs in the United States (ClinCalc 2019), 

has been replaced by a biocatalytic conversion involving three enzymes. The 

enzymatic process involved a ketoreductase, a halohydrin dehydrogenase 

and a glucose dehydrogenase expressed in E. coli and used as lyophylisates 

in vitro  (Ma et al. 2010).  

 

1.2.1 The TOL metacleavage pathway 

The toluene (TOL) pathway, found in Pseudomonas putida mt-2 on the 

pWWO plasmid first isolated by Worsey & Williams in 1975, contains the 

xylene (xyl) enzymes involved in the catabolic pathway which breaks down 

aromatic compound such as xylenes, including toluene as shown in Figure 

1-1 (Murray et al. 1972).  The TOL metacleavage pathway is interesting 

firstly in terms of degrading pollutants and secondly each enzyme produces a 

molecule that could be further manipulated into useful molecules (Abril et al. 

1989). Examples of this are demonstrated by Reineke and Knackmuss 

(1979) who utilised enzymes from the TOL metacleavage pathway and 

created a novel pathway with enzymes that are able to modify halo-

aromatics. The resulting host was able to produce Krebs cycle intermediates 
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and therefore energy from halo-aromatic compounds and thus degrade 

pollutants from organic chemistry processes.  

 

Figure 1-1. The TOL metacleavage pathway is naturally found on the pWWO plasmid 
in P. putida.  
The metacleavage pathway is the lower pathway of a large metabolic pathway for the 
catabolism of aromatic compounds such as toluene into Krebs cycle intermediates. 
Enzymes: toluate-1,2-dioxygenase is a multisubunit complex encoded by the xylXYZ 
genes; 1,2-dihydroxycyclohexa-3,5-diene-carboxylate dehydrogenase encoded by 
xylL; catechol-2,3-dioxygenase encoded by xylE; 2-hydroxymuconic semialdehyde 
hydrolase encoded by xylF; 2-hydroxymuconic semialdehyde dehydrogenase 
encoded by xylG; 4-oxalocrotonate tautomerase encoded by xylH; 4-oxalocrotonate 
decarboxyloase encoded by xylI; 2-hydroxypent-2,4-dienoate hydratase encoded by 
xylJ; 4-hydroxy-2-oxovalerate aldolase encoded by xylK. Intermediates: a; benzoic 
acid, b; 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylic acid c; catechol, d; 2-
hydroxymuconic semialdehyde, e; 2-hydroxyhexa-2,4-dienedioic acid, f; 2-
hydroxyhex-3-enedioic acid, g; 2-hydroxyhexa-2,4-dienoic acid, h; 4-hydroxy-2-
oxohexanoic acid, i; pyruvate, j; propanal 

 

Another example of where useful and industrially interesting molecules have 

been produced by manipulating the TOL metacleavage pathway is in the 

production of indigo (N. Mermod et al. 1986).  Indigo is a blue pigment used 

in dyeing fabrics and is produced using chemical synthesis methods in 

industry, however this process produces toxic waste products and projects 

are on-going with the aim to find an industrially viable process for the 

production of indigo that is cheaper and more environmentally friendly (Qu et 

al. 2012). Mermod et al., (1986) used dioxygenases from the TOL 

metacleavage pathway in their engineered pathway for the production of 

indigo. This demonstrates the importance and usefulness of engineering 

synthetic pathways and the usefulness of the TOL pathway enzymes in 
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particular. Due to the reactive carboxylic and aldehyde groups; many of the 

intermediates in the pathway have the potential to be pharmaceutically 

relevant with some modification. The full DNA sequence of this plasmid has 

allowed the isolation and cloning of single genes so that individual enzymes 

can be used in engineered pathways to create novel interesting molecules 

(Horn et al. 1991). Therefore the TOL pathway is an interesting starting point 

for engineered pathways to create new biosynthetic routes to novel and 

industrially relevant molecules.  

1.2.2 Amines in industry 

One particular class of chemicals that are highly relevant in industry is 

amines. From pharmaceuticals to dyes to fertilisers, amines are used heavily 

in industry, though many are difficult to synthesise (Thoralf Gross et al. 2002; 

Ghislieri & Turner 2013). Amines can be particularly reactive and require 

protecting during synthesis, adding more steps in already laborious reactions 

(Woodley 2008). Amines are often found in natural compounds and are 

therefore frequently biologically active, making them particularly relevant and 

interesting to the pharmaceutical industry. Natural amino acids are highly 

relevant to industry and the global market size is estimated at around 6.19 

million tons in 2013 (Grand View Research Inc 2017). Amino acids are 

important in human nutrition and feedstock for animals. The amino acid that 

is used most widely worldwide is L-glutamate, which is used in the food 

additive monosodium glutamate; approximately half a million tons of L-

glutamate are produced per year (Breuer et al. 2004). Abundant amino acids, 

such as L-cysteine, can be purified from proteins and biological material 

(Leuchtenberger et al. 2005); however this does not provide the high yields 

necessary to meet demand; therefore developing enzyme catalysis methods 

for large scale production would greatly improve the production of such 

molecules (Breuer et al. 2004). Ghislieri et al., 2013, have demonstrated the 

use of monoamine oxidases in the deracemisation of amines and the 

relevance to the pharmaceutical industry in the production of active 
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pharmaceutical ingredients such as pyrrolidines and isoquinolines. These 

compounds are found in a wide variety of pharmaceuticals including 

analgesics, such as morphine, and antifungals (Lichman et al. 2015). Using 

enzymes in the production of chiral amines is of particular interest due to the 

highly specific and enantioselective nature of enzymes. In the production of 

pharmaceuticals, often only one enantiomer of a chiral compound will have 

the biological activity necessary. An example of this is the production of D-

phenylglycine using D-specific acylases which is an important precursor for 

the antibiotics ampicillin and amoxicillin (Leuchtenberger et al. 2005). The 

importance of having enantiomerically pure pharmaceuticals is demonstrated 

by thalidomide (Figure 1-2). The R-enantiomer of Thalidomide is used as a 

sedative, however the S-enantiomer causes embryonic deformities(Ghislieri 

& Turner 2013). Enantiomerically pure compounds are therefore much 

favoured by regulatory authorities and pharmaceutical companies.  

 

Figure 1-2. Thalidomide.  
The (R)- enantiomer is a useful pharmaceutical as a sedative; however in the 1960s it 
was found that the (S)-enantiomer caused embryonic deformities. 
  

Producing enantiomerically pure drugs is also preferable as the drugs often 

have a higher efficacy and lower dosages are required (Ghislieri & Turner 

2013). One of the enzymes that has gained interest over the past decade for 

selective amination in biocatalysis are the transaminases (or 

aminotransferases) (D. Patil et al. 2018; Gomm & O’Reilly 2018). 
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1.2.3 Transaminases 

Transaminases or aminotransferases are a group of enzymes that are 

involved in nitrogen metabolism within all living organisms and are important 

in the transfer of an amino group between molecules. Transaminases are 

found in every organism and therefore there is a huge variety available that 

have been studied (Guo & Berglund 2017; Höhne et al. 2010). 

Transaminases are interesting from a biocatalytic point of view as they can 

be extremely sterio-selective but can also be promiscuous in terms of 

substrate (Humble & Berglund 2011; Kazlauskas & Bornscheuer 2012). This 

means that transaminases may be versatile tools in the formation of 

enantiomerically pure and chiral amine molecules and aldehydes as their 

promiscuity may allow a range of substrates and therefore a range of product 

structures. Enantiomerically pure amine molecules are high value products, 

particularly in the pharmaceutical industry. Another advantage of 

transaminases is that they only require pyridoxal 5’ phosphate (PLP) as a 

cofactor. PLP is a derivative of vitamin B6 that is inexpensive recycled during 

the reaction. PLP binds to a lysine on the transaminase and acts as an 

intermediate in the transfer of the amine group to the aldehyde substrate, 

becoming pyridoxamine phosphate (PMP). Once the amine has been 

transferred from PMP to the aldehyde substrate, PLP is reformed, meaning 

that there is no need to continuously add more cofactor. This is also 

advantageous as the requirement for expensive cofactors that are often 

necessary for efficient enzyme function is eliminated. Likewise, expensive 

organic chemicals and synthetic chemistry processes that would be required 

for the chemical synthesis of enantiomerically pure amines are also not 

necessary. Transaminases were initially used to produce amino acids 

(Stewart 2001) but this now has been expanded so that other amine group 

containing compounds such as unnatural amino acids, amino sugars and 

more can be produced via biocatalysis using transaminases (Lee et al. 2005; 

Malik et al. 2012; Richter et al. 2015; Simon et al. 2013). 
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Transaminases have great potential to be useful in engineering synthetic 

pathways and substrates and products are not only limited to amino acids. 

By taking advantage of the low substrate specificity of transaminases, many 

new molecules could be produced, examples to demonstrate the variety of 

possible molecule types range from aminopolyols and sugar derivatives 

(Figure 1-3) to serinol monoesters (Figure 1-4) (Costa et al. 2017; Subrizi et 

al. 2019) which are both pharmaceutically relevant as they are 

pharmacologically active (Ávalos et al. 2008; Gómez & Varela 2009; 

Teruhiko Ishikawa et al. 2000; Magrioti et al. 2003). New amine molecules 

and new keto or aldehyde molecules could be produced, the only limitations 

being that the molecule must always be either an amine donor or amine 

acceptor in order to be a substrate for the reaction. However this is where 

building synthetic pathways is useful. Enzymes can be introduced upstream 

in the pathway in order to produce a suitable amine or keto substrate for the 

transaminase which is downstream. On the other hand transaminases could 

be used upstream in the pathway to create amine or keto molecules to feed 

downstream enzymes. Ager et al. 2001, have demonstrated the use of a 

novel engineered pathway converting threonine to aminobutyric acid that 

include transaminases for the production of non-proteinogenic amino acids 

which are used as pharmaceutical intermediates, thus highlighting the 

industrial significance of transaminases. In this study E. coli was used as the 

host organism and whilst commercially feasible yields were obtained, the 

need for a better cell host is also brought to the readers’ attention due to the 

catabolism of some intermediates by background metabolic processes in the 

cell (Ager et al. 2001).  One solution that is given here is to remove or 

inactivate chromosomal genes from E. coli that may cause interfering 

background reactions. Another more interesting speculation is the increasing 

usage of other organisms as host cells as genomic and metabolic information 

for more organisms becomes available. Therefore manipulating a wider 

variety of organisms in the way that E. coli are currently manipulated 

genetically will become easier and more common. This will allow better 
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optimisation of biocatalytic processes by providing a wider choice of 

organisms with varying properties, such as optimal growth at lower or higher 

temperatures or a lack of certain metabolic background reactions, so that the 

organism that is most suited to the desired reaction processes can be 

chosen to reduce background and increase yield of the desired product. 

 

Figure 1-3. Schematic showing the conversion of L-arabinose to cyclic aminopolyols 
using a transaminase. 
TAm: transaminase, PLP: pyridoxal 5’ phosphate, THF: tetrahydrofuran(Subrizi et al. 
2019). 

 

Figure 1-4. Schematic showing the conversion of 1-hexanoyloxy-3-hydrooxyaceone to 
serinol monoesters using a transaminase 

(Costa et al. 2017) 

 

1.2.3.1 Transaminase classes 

One property of transaminases is that they are so abundant in nature that it 

may be possible to find a transaminase that will work with any desired 

substrate. There are 6 transaminase subgroups, classified by the database 

of protein families (Pfam), which catalyse the conversion of specific molecule 

structures (Hwang et al. 2005; Finn et al. 2014). Class I and II includes L-
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alanine, L-aspartate, aromatic and histidol-phosphate aminotransferases. 

Class III includes omega (ω), ornithine and 4-aminobutyrate transaminases. 

Class IV includes branched chain amino acid transaminases and D-alanine 

transaminases. Class V includes serine and phosphoserine transaminases 

and a further class including sugar aminotransferases, sometimes referred to 

as class VI. Class I, II, IV and V transaminases catalyse conversion when the 

amine or keto acid group is at the α position and are very substrate specific; 

class III transaminases catalyse conversion at the ω, β or λ position and 

have gained a high level of interest recently due to their wider acceptance of 

substrates (Ward & Wohlgemuth 2010; Hwang et al. 2005). The classes of 

transaminases are outlined in Table 1-1 with an example of each class and 

their positional specificity. 
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Table 1-1 Examples of transaminases in each class and their main donor and acceptors. Adapted from Ward & Wohlgemuth 2010 

Class Positional specificity  Example Main donor Main acceptor 

I and II alpha Alanine TAm 

  

III omega Omega amino acid TAm 

  

III gamma Gamma aminobutyrate TAm 

  

III beta beta-aminocarboxylic acid TAm 

 
 

IV alpha D-alanine TAm 

  

V alpha Serine TAm 
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Class Positional specificity  Example Main donor Main acceptor 

VI Not applicable 
TDP-4-amino-4,6-dideoxy- D-
glucose TAm 
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1.2.3.2 Omega transaminases 

Named because of the position of the moiety that they are active upon, ω-

transaminases are widely used in a variety of research in the field of 

biocatalysis. These particular transaminases are interesting not only because 

of the conversion that they catalyse, but because of their substrate 

promiscuity. A key limitation of these enzymes when it comes to industrial 

biocatalysis is that the reaction exists as an equilibrium meaning that 

completion is never achieved. Figure 1-5 shows the conversion of (S)- 

methylbenzylamine to acetophenone by ω-transaminases. 

 

Figure 1-5. Conversion of aldehydes by (S)- selective transaminases using 
methylbenzylamine (MBA) as the amine donor. 
Using pyridoxal 5’ phosphate (PLP) as a cofactor, the amine moiety is transferred 
from the amine donor to the aldehyde substrate. Pyridoxamine phosphate (PMP) is 
generated as the intermediate and once the reaction is complete, PLP is regenerated. 

Use of methylbenzylamine (MBA) as an amine donor is common when 

screening a large number of transaminases for activity against a substrate or 

set of substrates. There are several examples where ω-transaminases have 

been used in industry. Such as in the production of the antidiabetic 

compound, sitagliptin, shown in Figure 1-6. 
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Figure 1-6. The biocatalytic conversion of prositagliptin to enantiopure sitagliptin by an engineered transaminase. 
The product is then further phosphorylated to the antidiabetic compound, phosphositagliptin as described by Savile, 2010. i-PRNH2: 
isopropylamine 

The traditional method of manufacture involves the use of high pressures and a rhodium based chiral catalyst which remains as a 

trace in the final product (Savile et al. 2010). The use of a stereoselective enzyme eliminates the need for the high pressures and 

contaminating catalysts and also provides higher enantiopurity of the final product. Other examples of ω-transaminases in industry 

are in the production of amino acids (Breuer et al. 2004) and 2-aminobutyrate which is used in the production of levetiracetam, the 

active pharmaceutical ingredient (API) in Keppra™, a therapy used in treatment for epilepsy (Shin & Kim 2009).
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1.3 Synthetic biology and alternative host organisms 

It is not only the metabolic pathways that are important in creating the 

desired products; the host organism must also be robust enough to support 

the genetic manipulation we are imposing. E. coli is the current workhorse in 

bioscience research but we are ever progressing towards a situation where 

E. coli is insufficient to answer the questions that we have left to investigate. 

Therefore as synthetic biology is developed and becomes increasingly 

complex; we must also develop a range of host organisms to support the 

complex pathways that we have built. 

E. coli is currently the most popular host as there is an abundance of 

molecular tools available for this organism. There is a lot of genomic, 

metabolic and growth information available for E. coli as well as a wide range 

of strains that have been optimised for specific functions and are 

commercially available such as Rosetta by Novagen which is designed to 

promote proper folding of eukaryotic proteins and Origami B which improves 

disulphide bond formation (Baeshen et al. 2015). E. coli grows best at 37 °C 

and a huge variety of growth media are also commercially available. The 

ease and abundance of information has resulted in E. coli becoming the first 

organism and often only bacteria tested for recombinant protein expression. 

However not all proteins express well in E. coli and as genomic profiling is 

ever increasing, new proteins and interesting enzymes are being discovered; 

a growing list of which are not well expressed or are not active when 

expressed in E. coli. Synthetic biology should be extremely versatile; 

however the most used expression host, E. coli has a specific optimum 

growth temperature of 37 ⁰C and pH of 6.5-7. These parameters may not be 

ideal for the desired reactions.  

Therefore investigating alternative host organisms are important in the 

progression of synthetic biology as genomic and metabolic engineering is 

becoming more diverse and widespread. 
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1.3.1 Minimal organisms 

A synthetic biology host should have the versatility to accommodate any 

reaction, enzymatic and chemical, this includes reactions that require 

extreme conditions such as high or low temperatures and various solvents. 

Many researchers in this area believe that the ideal synthetic biology host 

would be a minimal organism; one that only has the genetic information 

absolutely necessary for protein expression or whichever function is required 

by the scientist (Beites & Mendes 2015). This reasoning behind a minimal 

host organism is to reduce side reactions and increase the predictability of 

the system. Many researchers are working towards the development of 

minimal chasses such as this (Mansy et al. 2008; Noireaux & Libchaber 

2004; Kita et al. 2008; Luisi & Stano 2011); but there is still a huge 

uncertainty surrounding the reality of minimal host organisms experimentally. 

The host still needs to be robust and support reactions under a wide range of 

conditions (Ferber 2004). A minimal chassis could also provide the option of 

customising the host organism and building a chassis tailored to the reaction. 

It has also been suggested that a range of minimal chassis should be 

developed to accommodate a range of functionalities (Luisi et al. 2006). 

These ideas are yet to be tested experimentally.  

 

1.3.2 Molecular biology tools for alternative hosts 

Developing tools for alternative organisms, so that other hosts can be used 

as easily as E. coli is a closer reality for the expression of novel pathways 

and synthetic biological systems. Broad host vectors for the expression of 

recombinant proteins in alternative hosts do already exist (Fürste et al. 1986; 

Troeschel et al. 2012; N Mermod et al. 1986) but the molecular tools 
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available for genetic and metabolic manipulation of other microbes are 

extremely limited. In order to increase the development of tools for alternative 

microbes it is important to demonstrate that it is worthwhile to have a wider 

range of microbial “workhorses”. Although a minimal chassis may provide 

more predictability to biological systems, in theory, they will also lack the 

machinery and components that host organisms currently provide for the 

reaction. Co-factors, molecules and even host cell proteins that are essential 

for many intermediate structures during a reaction would not be present in a 

minimal chassis. The most useful properties of alternative host organisms will 

be different to that of E. coli such as high solvent tolerance to accommodate 

the production of high value aromatic compounds which would otherwise be 

toxic to the cell (Kusumawardhani et al. 2018) or optimum growth at different 

temperatures to match the enzymatic or chemical reaction of interest. One 

such organism is P. putida; certain strains of  which have been reported to be 

solvent tolerant and have an optimum growth temperature of 30 °C (Hill & 

Robinson 1975; Ni et al. 2013). Molecular biology tools are available for P. 

putida and this organism has been used as a host organism in the past. 

Much genetic engineering of this organism has been genetic engineering of 

the host genome (De Lorenzo 1994; de Lorenzo et al. 1998). Promoters have 

been used to create expression vectors for P. putida such as the tac 

promoter which consists of a hybrid of the trp and lac promoters (de Boer et 

al. 1983; Bagdasarian et al. 1983) and the Pm promoter which originates in 

P. putida from the TOL operon and is associated with the TOL meta-pathway 

involved in the breakdown of aromatic compounds such as toluene (Gawin et 

al. 2017; Worsey & Williams 1975).  More recently, the standard European 

vector architecture (SEVA) system have been developed (Durante-

Rodríguez et al. 2014; Silva-Rocha et al. 2013). These vectors are made up 

of standardized elements and are broad host range plasmids. Promoters 

used in these vectors are the trc promoter, derived from the trp and lacUV5 

promoters (Brosius et al. 1985), and the xylS/Pm promoter system which 

consists of the Pm promoter and the xylS transcriptional regulator gene 
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(Gawin et al. 2017). Other work that has been done with the SEVA plasmids 

is the investigation of the strength of the Pars1 promoter in Pseudomonas 

putida (Durante-Rodríguez et al. 2014). Other promoters have been 

investigated such as the Pben promoter which originate from P. putida  and 

controls the ortho-pathway involved in the breakdown of benzoate (Pérez-

Pantoja et al. 2014). This promoter has been investigated for its use in the 

context of metabolic control (Pérez-Pantoja et al. 2014). This is progress 

towards using P. putida as an alternative host organism but to compete with 

E. coli as a host organism, molecular biology tools must be as diverse and as 

easy to use as they are currently with E. coli. As the genome sequence has 

become available it will be increasingly easier to find and design strong 

promoter sequences specifically optimised for P. putida or endogenous 

strong promoters (Yong et al. 2014) and other molecular biology elements 

necessary for recombinant protein expression to rival E. coli (Martins Dos 

Santos et al. 2004; Nelson, Weinel, Paulsen, Dodson, Hilbert, V. a P. Martins 

dos Santos, et al. 2002). 

P. putida has already proven to be an industrially relevant host organism for 

the production of biosynthetic polymers and high value chemicals, these 

uses are reviewed well by Rehm 2010 and Schmid et al. 2001 respectively. 

This usefulness of P. putida as an alternative host for biocatalytic processes 

is mainly due to the tolerance to aromatic compounds which are usually toxic 

to E. coli cells (Kusumawardhani et al. 2018; Poblete-Castro et al. 2012; 

Schmid et al. 2001).  Properties that indicate that P. putida may be a useful 

alternative to E. coli in metabolic pathway engineering are that P. putida is 

known to be a native host of several interesting metabolic pathways 

(Denome et al. 1993; Feist & Hegeman 1969; Jimenez et al. 2002). Various 

Pseudomonas species are involved in processes such as nitrogen and 

carbon fixing, and the metabolism of organic solvents (M. M. Bagdasarian et 

al. 1981). Industrial uses of Pseudomonas putida includes the 

biotransformation of benzene to polyphenylene monomers; benzene cis- 
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glycol, which was produced in the kilograms using this method (Griffin & 

Magor 1986). Not only were genetically engineered P. putida used as a host 

organism; but the toluene dioxygenase from the TOL pWWO plasmid was 

also used in combination with one other enzyme to create a short engineered 

pathway (Ballard et al. 1983; Jenkins et al. 1987). This demonstrates that P. 

putida interesting in terms of both a novel host organism for the expression of 

engineered pathways as well as in finding new and interesting enzymes that 

may be incorporated into an engineered pathway (Poblete-Castro et al. 

2012). 

Other hosts frequently used in industry are antibiotic producers of the 

Streptomyces species (Baltz 2007). In industry antibiotics are commercially 

produced and extracted from their natural host organisms. This provides 

precedence for the commercial growth of Streptomyces and product 

purification from these organisms which could be taken advantage of for the 

production of non-intrinsic molecules (Chater 2006). There is less 

precedence for cloning in Streptomyces species in comparison with gram-

negative bacteria such as E. coli and P. putida meaning that more tools for 

genetic manipulation will need to be developed to realise the potential of 

Streptomyces as alternative host organisms in synthetic biology (Medema et 

al. 2011). 

1.4 Automation in the biotechnology industry 

With the development of new engineered genetic parts and a wider range of 

engineered host organisms, challenges around the standardisation and 

reproducibility of these biological parts will become more apparent (Baker 

2016). There are a number of factors that play a role in reproducible 

research. Two of the most simple to identify and overcome are 

inconsistencies in user handling and inaccurate recording. Due to these it is 

often unknown whether discrepancies in data are due to biological variance 

and therefore incorrect conclusions may be made. Both of these can be 
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overcome by incorporating new liquid handling technologies into biological 

experiments. By using automated liquid handling technologies consistency is 

guaranteed. Automated processes also require the user to provide 

instructions and therefore the input will always be recorded along with any 

errors that may have been made. The resolves any issues with inaccurate 

recording of data. Therefore any results from experiments truly show 

biological variability. Automation also has another major advantage; the 

ability to perform high throughput experiments in a time and cost effect 

manor. With the rise in biological based medicines and therapies such as 

biosynthesised chemicals as well as cell and gene therapies it will be 

essential to ensure robust and reproducible manufacturing processes. 

Manufacturing of advanced therapies such as cell and gene therapies is 

currently expensive and laborious. To aid more cost effective manufacturing 

process automation is essential (Pollard & Woodley 2007; Sadowski et al. 

2016). 

Automation in the biological sciences is being used more and more, however 

equipment and consumables for the liquid handling platforms are expensive 

and therefore mainly used by industry. For example liquid handling platforms 

have been developed by Qiagen to conduct high throughput DNA 

preparations but for a smaller lab this level of high throughput is often 

unnecessary. The Tecan and Hamilton platforms are the most commonly 

cited platforms, likely due to their early entry into the liquid handling space in 

biological laboratories (Roselle et al. 2017; Mora et al. 2017; Wildey et al. 

2017). The limitation of the Tecan platforms is the user interface which 

requires some programming knowledge to use the platform to its full 

capacity. More recently affordable liquid handling robots are coming to the 

market (Gupta et al. 2017), and increasing interest is driving competition 

which in turn will inevitably drive costs of liquid handlers down. However, 

biological experiments do not involve only liquid handling. 
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Biological experiments are inherently more complex than processes which 

currently have a high level of automation. There are many more variables 

and often many sensitive components which need to be handled in a specific 

way, for example in transformation of DNA into bacteria cells. Moving cells 

between ice to 42 °C and plating out onto agar plates all while maintaining 

sterility and avoiding cross contamination is not a process which typical liquid 

handling robots are designed for. Therefore automating biological 

experiments is a major challenge.  

 

1.5 Hypothesis and research question 

Amine molecules are of interest to the pharmaceutical industry because they 

are often biologically active, however complex, chiral amines are difficult to 

produce using chemical synthesis methods. In addition, there is a need for 

alternative host organisms as tools for use in synthetic biology based 

industrial processes. By using a combination of enzymes from TOL pathway, 

which result in an aldehyde, and a transaminase, this study investigates the 

hypothesis that metabolic pathways can be manipulated using synthetic 

biology based methods to produce an amine that would be difficult to 

produce using synthetic chemistry based methods. The resulting amine is 

hypothesised to be 2,6-diaminohex-4-enoic acid, which has is a novel amine 

and has not been created to the researchers knowledge at the time of this 

study. This study also investigates the possibility that this engineered 

pathway is functional in P. putida as an alternative host organism to E. coli. 

1.6 Aims and Objectives 

The aims and objectives of the studies described in this thesis are outlined 

below. 
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1. To compare P. putida with E. coli as a potential host organism for use 

in industrial research and for industrial use of biotcatalysis as a more 

environmentally friendly method to produce pharmaceutical 

ingredients by comparing conversion of benzoate to 2-

hydroxymuconic semialdehyde using a truncate of the TOL 

metacleavage pathway. 

2. To investigate whether it is possible to create an engineered pathway 

using the TOL metacleavage pathway and a transaminase which 

could produce a novel molecule. 

3. To develop an automated process for performing molecular biology 

experiments to reduce the lab time required by the researcher. And to 

test this by developing a cloning system for easier cloning in 

Streptomyces species in order to complete the following final aim; 

4. To investigate a Streptomyces species as an alternative industrially 

relevant host organism and compare with P. putida and E. coli by 

comparing conversion of the engineered pathway with the results 

seen in E. coli and P. putida. 
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Chapter 2: Materials and Methods  
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 Materials and Methods Chapter 2.

2.1 Cloning 

The following cloning methods are general methods used throughout the 

research. Any deviations from these methods are detailed as necessary in 

the relevant section. 

 

2.2 Plasmids used and constructed 

2.2.1 DNA manipulation 

Restriction enzymes and Q5 polymerase polymerase chain reaction (PCR) 

kits used were obtained from New England Biolabs. Quikchange site directed 

mutagenesis kits were purchased from Agilent Technologies. DNA primers 

were obtained from MWG Eurofins genomics and delivered as lyophilised 

powders purified by high purity salt free technology (HPSF). Primers were 

diluted with ultra-pure water to a concentration of 100 pmol/µL. PCR was 

performed as per the manufacturer’s instructions, typically 20 ng of template 

DNA was used per 25 µL reaction in a 250 µL microcentrifuge tube unless 

otherwise stated. Heat cycling was performed using the Prime Thermal 

Cycler (Cole-Palmer Ltd.) with heated lid. For each new PCR reaction 

performed , 8 identical reaction tubes were set up and run over a 10 ° C 

melting temperature gradient to determine the most appropriate melting 

temperature. DNA concentrations were measured using the Nanodrop 2000 

(ThermoScientific). 

In-Fusion cloning was performed in cases where traditional restriction 

enzyme and ligation based cloning was ineffective. In-Fusion cloning plus kit 

was purchased from Takara Bio and used as per manufacturer’s instructions. 
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2.2.2 Liquid and Solid media culture 

Agar plates were made using LB agar from Merck Millipore dissolved as 

instructed in deionized water and sterilised by autoclaving at 121 °C for 20 

minutes. Antibiotics, when appropriate, were added after sterilisation at the 

following concentrations: ampicillin; 500 µg/ml, kanamycin; 30 µg/ml. For 

liquid culture LB broth (Miller) from Merck Millipore was used. The powder 

was also dissolved as instructed and autoclaved to sterilise as described 

previously. Appropriate antiobiotics were added after sterilization at the 

concentrations listed above. 

2.2.3 Cloning in E. coli 

E. coli strains used were NEB 10beta (New England Biolabs) for large 

plasmids over 10 kb, TOP10 (Life Technologies) for plasmids below 10 kb, 

BL21 DE3* (Life technologies) for transaminase protein expression (all 

chemically competent). Heat shock transformations were performed as 

follows; cells were thawed on ice, once thawed, 10-20 ng of purified plasmid 

DNA was added and incubated on ice for 30 minutes. The mixture was heat 

shocked at 42 ° C for 30 seconds and put back on ice for 2 minutes. 1 ml of 

room temperature LB broth was added and incubated for 1 hour at 37 ° C 

with shaking before 200 ml was spread onto room temperature LB agar 

plates and incubated overnight at 37 ° C. 

2.2.4 Gel electrophoresis, plasmid purification and PCR cleanup 

PCR and cloning validation was determined using agarose gel 

electrophoresis. Agarose was purchased from Bioline and 1% agarose gels 

were made using TBE buffer purchased from Life Technologies (cat. no. 

AM9864) and 0.05% ethidium bromide (Sigma-Aldrich). Gel extraction, PCR 

and plasmid purification kits were purchased from Qiagen and used as per 

manufacturers instructions. 
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2.2.5 DNA sequencing 

DNA was sequenced using either Source Bioscience or the Eurofins 

genomics sequencing service and analysed using SnapGene software. 

2.2.6 Transformation in P.  putida 

DNA manipulation for P. putida vectors was done in E. coli and plasmids 

were transformed using the electroporation method described in Choi et al. 

2006. All P. putida strains were grown at 30 ° C. Solid and liquid culture used 

was used as described in 2.2.2. 

 

2.3 P. putida and TOL metacleavage pathway assays 

Liquid cultures were incubated with shaking at 200 r.p.m. (1SF-1-W Kuhner) 

from a starting OD600 of 0.2 for 2 hours and induced with 0.1 M IPTG. After 

one further hour 5 mM substrate was added. The substrates investigated 

were sodium benzoate, m-toluic acid (3-methylbenzoic acid), p-toluic acid (4-

methylbenzoic acid) and 3,4-dimethylbenzoic acid.  Growth and absorbance 

at the wavelength corresponding to the relevant product was measured every 

hour for a total of 8 hours and then at 24 hours. 

2.3.1 Quantification of TOL metacleavage pathway products,  

Absorbance of products was measured as specified in Table 2-1 below and 

the Beer-Lambert law was used to calculate concentration using molar 

absorption coefficients as described in the literature (Bayly et al. 1966; Kunz 

& Chapman 1981; Sala-trepat & Evans 1971).  

Table 2-1. Absorbance (λmax) and extinction coefficients (ε) used to calculate product 
concentration 

Product 
λmax (nm) 
at pH 7.0 

ε (M-1) 
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2-muconic semialdehyde 

 

375 33 000 

2-hydroxy-6-oxohepta-2,4-dienoic acid 

 

388 13 800 

2-hydroxy-5-methyl-6-oxohexa-2,4-dienoic 

acid 

 

382 28 100 

2-hydroxy-5-methyl-6-oxohepta-2,4-dienoic 

acid 

 

390 7 100 

 

 

2.4 Transaminase assay 

The following methods apply specifically to chapter 4 of this thesis. 

2.4.1 Initial screening 

2.4.1.1 Biotransformation of 2-HMSA 

For the production of 2-HMSA to use in the transaminase assays E. coli NEB 

10beta containing pQR1050 were grown in 50 ml LB broth (Miller, Merck) at 
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37 °C with shaking at 250 r.p.m. until an OD600 of between 0.6 – 0.8 and then 

inoculated with 0.1 M IPTG and the temperature lowered to 30 °C for 16 

hours. Cells were harvested by centrifugation and resuspended in 10 ml 10 

mM tris, 5 mM sodium benzoate at pH 8.5. Cells were shaken at 200 rpm at 

30 °C for 4 hours. Cells were spun down and supernatant containing 2-

HMSA was collected to be used in the transaminase assay or frozen at -80 

°C for use at a later date. 

2.4.1.2 Transaminase expression 

Transaminases were grown in BL21 DE3* at 37 °C, shaking at 250 r.p.m. 

until reaching an OD600 of between 0.6 - 0.8. Cells were induced with 0.1 M 

IPTG and the temperature lowered to 25 ° C for 16 hours. Cell pellets were 

resuspended in 25 % well cell pellet w/v 100 mM potassium phosphate buffer 

pH 8.0, 1 mM PLP. Cells were lysed by sonication for 10 cycles of 10 s on, 

10 s off (MSE SoniPrep 150, Sanyo). Insoluble cell components were 

removed using centrifugation and clarified lysate was frozen at -20 °C for use 

within 2 weeks.  

2.4.1.3 Reaction set up 

Transaminase assays were set up in 1 ml reactions containing the following: 

30 % v/v transaminase clarified lysate, 5 mM 2-HMSA, 100 mM potassium 

phosphate pH 8.0, 1 mM PLP, 50 mM amine donor. Reactions were 

quenched after 1, 3 and 24 hours using 0.2 % trifluoroacetic acid. 5 mM 

sodium pyruvate was used as the substrate in positive controls. Negative 

controls were done without the presence of an amine donor. 

2.4.2 2-HMSA purification 

Two methods were tested for the purification of 2-HMSA from the 

biotransformation buffer. After 2-HMSA was harvested from the 

biotransformation as described in 2.4.1.1 attempts to further purify and 

concentrate the 2-HMSA from this buffer are described as follows. 
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2.4.2.1 Q-Sepharose Fast Flow resin 

Q-Sepharose resin is stored in 20% ethanol, therefore before use this was 

removed and the resin was equilibrated with 10 mM Tris buffer, pH 8.5. Once 

equilibrated, 0.5 ml of the resin was added to 0.5 ml of the 2-HMSA solution 

in a 1.5 ml microcentrifuge tube. The mixture was inverted several times form 

a homogenous mixture and incubated at room temperature for 15 minutes to 

allow binding. Concentration of unbound 2-HMSA remaining in the buffer was 

measured by recording the absorbance at 375 nm. For elution 500 µl of the 

following buffers were tested: 2 %, 3.5 % and 5 % acetic acid were each 

investigated in 50 %, 75 % and 100 % methanol. After further 15 minutes 

incubation at room temperature on a tube roller the concentration of free 2-

HMSA in elution buffer was measured. 

2.4.2.2 Amberlite IRA-400 

Amberlite IRA-400 resin (chloride form, Sigma-Aldrich) was saturated with 

water as described by Bookser & Zhu 2001. 100 mg of water saturated resin 

was mixed with 0.5 ml 2-HMSA mixture in a 1.5 ml microcentrifuge tube. This 

was incubated with shaking in a thermomixer (Eppendorf) at 450 r.p.m. for 16 

hours. The resin was then washed with 100 % methanol for 15 minutes. This 

was repeated twice. Elution of 2-HMSA was tested with the following buffers; 

90:10 TFA/water, 90:10 formic acid/water, 95:5 methanol/TFA, 95:5 

methanol/formic acid. The concentration of 2-HMSA in the elution buffer was 

measured. 

2.4.3 Analysis  

2.4.3.1 HPLC analysis 

Samples were centrifuged for 10 minutes at 13 000 rpm to remove any 

particulates and diluted with water by a factor of 10. Acetophenone 

production was quantified by HPLC using a C18 column (ACE) and a 

gradient of 20:80 to 80:20 acetonitrile: water over 20 minutes. Acetophenone 

was detected at 254 nm. Peaks were also monitored at 210 nm, 375 nm and 
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245 nm in attempts to identify any new peaks which may correspond to any 

novel product. 

2.4.3.2 Reduction in 2-HMSA 

To measure the conversion rates, the reduction in 2-HMSA was measured by 

taking a 100 µl sample of the reaction mixture which was added to 900 µl of 

ultra pure water and measuring the absorbance at 375 nm. 2-HMSA has a 

strong absorption at 375 nm and the concentration is quantifiable using the 

extinction coefficient as reported in previous literature (Sala-trepat & Evans 

1971). Samples were taken at the following times: 0 h, 3 h and 24 h. 

2.4.3.3 Derivatisation of 2-HMSA amine products 

For the derivatisation of amines the following methods was used, adapted 

from (Marten & Naguschewski 2011). 

50 µl of 1 mg/ml AQC was added to 100 µl of supernatant taken from the 

transaminase assay or whole cell reaction and 350 µl of 0.2 M borate buffer, 

pH 8.0 in a 2 ml glass vial. The mixture was left at room temperature for 15 

minutes before HPLC analysis. 

2.4.3.4 HPLC 

After AQC derivatisation, as described in section 2.4.3.3, HPLC analysis was 

performed using a C18 column (ACE) and a gradient of 20: 80 to 80: 20 140 

mM sodium acetate (pH 5.9): acetonitrile respectively over 20 minutes. 

Peaks were detected at wavelengths of 245 nm, 210 nm and 375 nm. 

2.4.3.5 Mass spectrometry 

Samples were submitted to the department of Chemistry for mass 

spectrometry (MS) analysis. Types of MS used were liquid chromatography 

mass spectrometry (LC-MS) and electrospray ionisation quadrupole time of 

flight (ESI QTOF MS). 
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2.4.4 Whole cell conversion 

The following methods apply to chapter 5 of this thesis. 

2.4.4.1 Testing alternative substrates 

P. putida GS1 containing pQR1050 or pQR1062 was grown in 50 ml LB 

broth at 30 °C, 200 r. p. m. from a starting OD600 of 0.2 for 2 hours and 

induced with 0.1 M IPTG and 1 mM PLP. After one further hour 5 mM 

substrate was added. Growth and absorbance at the wavelength 

corresponding to the relevant product (described in Table 2-1) was measured 

every hour for a total of 8 hours and then at 24 hours. 

2.4.4.2 Biotransformation for preparation of samples for analysis 

P. putida GS1 containing pQR1050 or pQR1062 were grown in 100 ml LB 

broth at 30 °C, 200 r.p.m. for 2 hours before being induced with 0.1 mM 

IPTG. Cells were incubated for a further 16 hours. Cell pellets were 

resuspended in 10 ml 10 mM Tris, 0.1 mM PLP, 5 mM relevant substrate and 

incubated at 30 °C, 200 r.p.m. for 24 hours. Cells were pelleted and 

supernatant was collected for analysis. 
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 TOL pathway expression in P. putida and a Chapter 3.
comparison with E. coli  

3.1 Background and aims 

The TOL metacleavage pathway was well researched during the 1980s as 

interest in cleaning up environmental pollutants was high. In this study, the 

TOL pathway is revisited due to the interesting structures of the molecules 

that are produced rather than the molecules that can be broken down. 

Finding enzymes and metabolic pathways that may be useful for biocatalysis 

is essential for the realisation of greener chemistry and more mainstream use 

of industrial biocatalysis. With an increase in multi-enzyme cascades in 

biocatalysis, an increase in range of host organisms to accommodate the 

enzymes will be necessary. To create more environmentally friendly methods 

for large scale production of molecules via biocatalysis the idea of cell 

factories is popular (Purcell et al. 2013; Weeks & Chang 2011; Jeandet et al. 

2013). This requires a host that can accommodate optimum conditions for 

the enzymes they are producing as well as high substrate and product 

tolerances to ensure maximum and economic output. In this chapter P. 

putida is investigated as a potential host organism for the expression of a 

truncate of the TOL metacleavage pathway (Figure 3-1).  

 

Figure 3-1. The truncate of the TOL metacleavage pathway containing enzymes 
XylXYZLTE that are investigated throughout this study. 
This part of the pathway is responsible for the conversion of benzoate to 2-
hydroxymuconic semialdehyde. XylXYZ is a multi subunit enzyme and xylT encodes 
for a ferredoxin which aids in the activity of XylE (Harayama et al. 1991). Changing 
subgroups are shown in red. 
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P. putida is an interesting alternative to E. coli for a number of reasons. For 

example P. putida fast growing with an optimum temperature of 30 °C and 

non-pathogenic and therefore has the same advantages as E. coli in those 

respects. There are some tools available for cloning and manipulation as P. 

putida is also a gram negative bacteria. There are many strains, of which 

genomes have been sequenced and have been used in research therefore 

some ground work is already done. One of those most interesting properties 

though is the tolerance for solvents, which is particularly high in certain 

strains (Simon et al. 2015; Mi et al. 2014; Ramos-Gonzalez et al. 2003). 

Many strains achieve this high solvent tolerance either by breaking down the 

solvent or by a mechanism eliminating the solvent from the cell. Other 

research groups have also identified the P. putida as a potential industrial 

research organism (Nikel et al. 2016; Poblete-Castro et al. 2016). In this 

study a range of P. putida strains have been transformed with a plasmid 

containing a short truncate of the TOL metacleavage pathway. The 

differences in pathway activity in a whole cell bioconversion were monitored 

and compared between different strains of P. putida and also with E. coli. 

 

3.2 Cloning and genetic tools for P. putida 

Currently there is not a vast range of genetic tools for P. putida. There are 

broad host range plasmids that replicate across a number of gram negative 

bacteria which can be used in P. putida. As it is becoming more recognised 

that P. putida is an industrially relevant organism, more tools are being tested 

and developed for genetic engineering of this bacteria. Here the pMMB67EH 

plasmid has been used for expression of a truncate of the TOL metacleavage 

pathway in both P. putida strains and E. coli. The pMMB67EH plasmid is a 

broad host range plasmid with ampicillin resistance and an IPTG controllable 

tac promoter as shown in Figure 3-2. 
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Figure 3-2. The pMMB67EH plasmid. 
This plasmid was used as a broad host range plasmid used in the cloning of 
pQR1050. pMMB67EH was chosen because it can be transformed and expressed in 
both E. coli and P. putida. 

3.2.1 Cloning the TOL pathway fragment from pQR226 into pMMB67EH 

Traditional restriction digestion and ligation techniques were used to clone 

the TOL fragment from pQR226 (Figure 3-3) into pMMB67EH (methods 

described in section 2.1). The TOL fragment is approximately 5.5 kbps long 

and was originally cloned using XbaI and HindIII restriction enzymes to 

create the pQR226 plasmid used in this study (Jackson 1996). The same 

enzymes were used to extract the fragment and ligate it into the broad host 
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vector pMMB67EH as shown in Figure 3-4. Cloning success was confirmed 

by digesting the DNA isolated from the transformed colony with XbaI and 

HindIII restriction enzymes and by DNA sequencing as shown in appendix B.  

 

Figure 3-3. The pQR226 plasmid which contains the xylXYZLTE genes under lac 
controlled expression. 
pQR226 also contains genes necessary for kanamycin resistance. 

3.3 P. putida strains 

A variety of P. putida strains from the Ward lab collection were identified and 

selected for investigation. Strains were grown on solid LB agar as described 

in the methods section 2.3. P. putida strains were made electrocompetent 
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and transformed with the pQR1050 plasmid using the method as described 

in Choi et al. 2006. Not all strains were successfully transformed which may 

be due to a failure in the method used to make cells electrocompetent due to 

variations in strain characteristics or due to the large size of the pQR1050 

plasmid.  P. putida strains were transformed with pQR1050 plasmid in order 

to compare the activity of the TOL pathway enzymes in various strains. 

Initially P. putida KT2440 was used as it is the most documented in the 

literature and has been investigated as a host organism by other groups 

(Martínez-García et al. 2014). P. putida KT2440 is a derivative of P. putida 

mt-2 and has been widely investigated (Simon et al. 2015; Dammeyer et al. 

2013; Durante-Rodríguez et al. 2014; Nelson, Weinel, Paulsen, Dodson, 

Hilbert, V. a P. Martins dos Santos, et al. 2002; Nelson, Weinel, Paulsen, 

Dodson, Hilbert, V. A. P. Martins dos Santos, et al. 2002; Nikel et al. 2015; 

Nikel & de Lorenzo 2014). One of the major advantages of this strain is that it 

is recognised as GRAS (generally regarded as safe). Once methods had 

been established with strain KT2440, other P. putida strains tested were 

selected from the Ward lab collection of microorganisms at The Advanced 

Centre for Biochemical Engineering at University College London. Strains 

that contained the TOL plasmid or similar genes were avoided so that 

observed conversion was due to the transformed plasmid only. One strain 

that was not found in the Ward lab collection was P. putida GS1 (DSM 

12264). This strain was of particular interest due to reports of high solvent 

tolerance in the literature (Mi et al. 2014) and was purchased from the DSMZ 

collection.  
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Figure 3-4. Construction of the pQR1050 plasmid. 
The 5.5 kb XbaI-HindIII fragment containing the xylXYZLTE genes were isolated by restriction enzyme digestion and gel purification before ligation 
into digested pMMB67EH.
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Table 3-1 List of strains that were successfully transformed with pQR1050 and the 
origin of the strain 

 
Table 3-2 P. putida strains from collection that did not transform with pQR1050 

Pseudomonas strain Source 

PpS3 (Senior et al. 1976) 
PpM3 Ward lab collection 
PpK1 Ward lab collection 
PpTMC Ward lab collection 
AC105 Ward lab collection 
WA1 AjS10 G9 Ward lab collection 
PpP1 (PHD) (Shewan et al. 1960) 
NCIMB 10007 Ward lab collection 
P. indigofera (McFadden & Howes 1961) 
MT103 PpG1400 Na1 Ward lab collection 
MT303 Ward lab collection 
AC34 (Gunsalus et al. 1975) 
PpN1 Ward lab collection 
PpV1 Ward lab collection 
AJ3 C1 Bgw Ward lab collection 
AJ2 C1 BgS Ward lab collection 
A6 Ward lab collection 
P. acidovorans 9681 (Stanier et al. 1966) 
PAO1 (Holloway 1955) 
Paw339 PIM2007 Ward lab collection 

 

3.4 Substrate tolerance 

The production of 2-hydroxymuconic semialdehyde (2-HMSA) was tested 

with a range of concentrations of sodium benzoate (2.5 to 20 mM) to 

determine the optimum concentration for maximum production of 2-HMSA. 

P. putida strain Source 

KT2440 (M. Bagdasarian et al. 1981) 
AC10 (Friello et al. 1976) 
PpG277 (Rheinwald et al. 1973; Harder & 

Kunz 1986) 
PpD3 Ward lab collection 
PpL3 (Wong & Dunn 1974) 
GS1 (Speelmans et al. 1998) 
Paw1 (Williams & Murray 1974) 
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Cells were grown in shake flasks in 50 ml of LB broth and gene expression 

was induced with IPTG after 2 hours. After a further 1 hour the investigative 

concentration of sodium benzoate was added. Concentration of 2-HMSA and 

OD600 was measured every hour for a further 5 hours. An average of three 

samples from each of three biological replicates was taken in order to ensure 

consistent and reliable results. Detailed methods are described in section 

2.3. The cell growth and production of 2-HMSA followed similar trends, 

where higher concentrations of substrate (sodium benzoate, 15 mM and 20 

mM) resulted in slower growth and poor conversion to 2-HMSA. Lower 

concentrations of sodium benzoate (2.5 mM and 5 mM) resulted in roughly 

double the yield of 2-HMSA compared to the yields from cells exposed to the 

higher concentrations of sodium benzoate (Figure 3-6). Before induction after 

2 hours of growth and addition of substrate at 3 hours growth the growth 

rates between samples are very similar. It is only after sodium benzoate 

addition, and therefore the conversion of benzoate to 2-HMSA that the 

growth rates begin to differ; this indicates that it is the addition of the 

substrate or an intermediate product in the truncated TOL pathway that is the 

cause of the reduced growth rate (Figure 3-5). 

 



Chapter 3 TOL pathway expression in P. putida and a comparison with E. 
coli 

63 

 

 
Figure 3-5. Growth of P. putida KT2440 containing pQR1050. 
Expression was induced with IPTG after 2 hours. 2.5 mM, 5 mM, 10 mM, 15 mM or 20 
mM sodium benzoate was added after 3 hours. 

 
Figure 3-6. Production of 2-HMSA in P. putida KT2440 containing pQR1050 after 
addition of sodium benzoate at various concentrations ranging from 2.5 mM to 20 mM. 
Errors bars indicate variation arising from three biological replicates per benzoate 
concentration. Expression was induced with IPTG after 2 hours and sodium benzoate 
was added after 3 hours. 
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A one-way ANOVA significance test with a 95% confidence level was 

performed for the 8 hour time point to determine significant differences 

between concentrations of 2-HMSA produced. Significance was observed 

and a post-hoc Tukey test was performed to show relationships between 

particular groups (Figure 3-7). 

 
Figure 3-7. Post-hoc analysis showing the relationships between the different 
substrate concentrations after 8 hours. 

 

Post-hoc analysis shows that at the 8 hours the concentration of 2-HMSA 

with 10 mM substrate is significantly different to with 2.5 mM and 5 mM, that 

15 mM substrate is also significantly different to 2.5 mM and 5 mM and that 

20 mM substrate is significantly different to 2.5 mM, 5 mM and 10 mM 

substrate. The largest differences are seen between 20 mM and 5 mM and 

between 15 mM and 5 mM. With this information, all following experiments 

were performed with 5 mM substrate. 
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3.5 Growth and expression of the TOL pathway in P. putida  

Several strains of P. putida were transformed with pQR1050 and cultured on 

solid LB agar and in liquid LB broth. For the following experiments to 

compare the conversion of sodium benzoate to 2-HMSA, expression was 

induced with IPTG after 2 hours of growth at 30 ° C and sodium benzoate 

was added after 3 hours (as described in section 2.3). The cell growth and 

conversion of 5 mM sodium benzoate to 2-HMSA were measured using 

absorbance at 600 nm and 375 nm respectively. Measurements were taken 

in triplicate every hour until 5 hours post induction and at 24 hours. In 

addition to the technical triplicates taken, three biological replicates were 

performed for each strain and an average was taken. Negative controls were 

also performed, where absorbance at 375 nm was measured for samples of 

each strain with IPTG induction but without the addition of the benzoate 

substrate. The absorbance measurements from the negative control bacteria 

growth were also taken in triplicate and the average of these was used as a 

baseline absorbance for each strain. As a result the following figures (Figure 

3-8 to Figure 3-15) represent actual conversion rates where baseline 

absorbance has been subtracted from the average absorbance 

measurements for each time point. Absorbance measurements of the 

conversion in P. putida strains were compared with E. coli DH10β as shown 

in Figure 3-8 to Figure 3-15. Growth of E. coli, P. putida KT2440 and P. 

putida AC10 varied the most between biological replicates which is shown by 

large error bars in Figure 3-8, Figure 3-9 and Figure 3-10. Large variation in 

these strains could result from an inherent biological variation in growth. This 

is unlikely for E. coli DH10β due to the commercial development of this strain 

which will have ensured that this strain produces reliable results (NEB 2019). 
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Figure 3-8. Growth and conversion of benzoate to 2-HMSA in E. coli DH10β expressing 
pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 

 
Figure 3-9. Growth and conversion of sodium benzoate to 2-HMSA in P. putida KT2440 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 
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Figure 3-10. Growth and conversion of sodium benzoate to 2-HMSA in P. putida AC10 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 

 
Figure 3-11. Growth and conversion of sodium benzoate to 2-HMSA in P. putida GS1 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 
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Figure 3-12. Growth and conversion of sodium benzoate to 2-HMSA in P. putida G277 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 

 
Figure 3-13. Growth and conversion of sodium benzoate to 2-HMSA in P. putida ppL3 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 
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Figure 3-14. Growth and conversion of sodium benzoate to 2-HMSA in P. putida ppD3 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 

 
Figure 3-15. Growth andconversion of benzoate to -2HMSA in P. putida Paw1 
expressing pQR1050. 
Expression was induced with IPTG at 2 hours. 5 mM sodium benzoate was added at 3 
hours. Errors bars represent variation calculated from biological triplicates. 
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Table 3-3. Doubling times of E. coli and P. putida strains investigated in this chapter 
as observed during the whole cell conversion of sodium benzoate to 2-HMSA 

Strain Doubling time (h) 

E. coli DH10β 2.1 
P. putida KT2440 2.2 
P. putida AC10 2.1 
P. putida GS1 1.3 
P. putida G277 2.4 
P. putida ppL3 2.8 
P. putida ppD3 3.0 
P. putida Paw1 2.3 

 

A one way ANOVA test to show any differences between concentration of 2-

HMSA after 24 hours showed no significant difference between any of the 

strains including E. coli. This shows that P. putida is directly comparable to E. 

coli as an organism for expression and activity of recombinant proteins and 

enzymes. Though at 24 hours there is no significant difference in 2-HMSA 

concentration between strains, certain strains, such as AC10 (Figure 3-10) 

have slower rates of production during the initial 8 hours. For AC10 it is clear 

that this could be explained by the long lag phase that was observed. The 

optical density is comparable to other strains after 24 hours and the product 

concentration is also similar, suggesting a similar level of activity. P. putida 

GS1 showed a decrease in product concentration from 8 to 24 hours. This 

may be due to degradation of the product as observed in the literature (O’ 

Sullivan 2000). Previous literature has reported high solvent tolerance and 

industrially viable conversion rates observed in P. putida GS1 which aligns 

with the overall aims of this study, therefore this strain was selected for 

following experiments (Mars et al. 2001).  

All strains also show growth to similar optical densities after 8 hours and after 

overnight growth and similar growth rates (Table 3-3). All replicates were 

biological replicates and therefore there is variability in the growth. There is 

less variability in 2-HMSA production for E. coli, P. putida KT2440 and P. 

putida G277 (Figure 3-8, Figure 3-9, Figure 3-12 respectively). Other strains 
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show similar variability in 2-HMSA as with the growth which would be 

expected.  This indicates that the growth variability does not always have a 

large effect on 2-HMSA production at this small scale volume. The 

production of 2-HMSA does however appear to follow the same trend as the 

growth curves, increasing as growth increases. 

 

3.6 Discussion 

3.6.1 Many Pseudomonas strains did not transform 

There are a large number of strains in the Ward lab strain collection with 

which transformation of plasmid pQR1050 was unsuccessful. This is likely 

due to the method used to make the cells competent. It was found that 

concentrations of ampicillin needed to be increased to 1 mg/ml in selective 

agar due to natural resistance of many P. putida strains to the antibiotic. 

Even at this concentration strains such as PpS3, PpM3, Paw339 PIM2007 

and MT103 grew on selective agar providing false positives. With more time, 

other methods to produce competent cells would be tested with unsuccessful 

strains. In addition, a construct with kanamycin or other selective gene could 

be used to overcome the issues encountered with natural resistance to 

ampicillin. More details of future work can be found in Chapter 7. The strains 

that do show increased intrinsic resistance may be of interest in industrial 

processes due to their robust nature so it may be of value to investigate this 

further in another research project. After further investigation into genotype of 

the strains, it was discovered that P. putida Paw1 did in fact contain the 

pWWO plasmid encoding for the TOL pathway genes. Therefore the data 

presented here is not an accurate representation of the conversion as the 

strain has intrinsic activity. This is interesting in itself as in comparison with 

other strains, such as D3, L3 and GS1, the Paw1 strain did not show the 

most efficient conversion. This may be due to the tac promoter used in 
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pQR1050 which is induced by IPTG and allows for overexpression of the 

enzymes. In the Paw1 strain we cannot guarantee overexpression. 

3.6.2 High substrate concentration reduces conversion 

There are several reasons why an increase in substrate concentration could 

be limiting production of 2-HMSA. One may be that a build up of catechol, 

which is toxic to cells, slows growth or promotes cell death. Previous studies 

show that the flux through the TOL pathway is not equal for each step. The 

catechol 2,3-dioxygenase has slower turnover rates and therefore there is a 

build up of catechol in the system (Sheridan et al. 1998). This reduces the 

overall enzyme production and in turn the conversion to 2-HMSA. In addition 

to this it has also been reported that the inactivation by oxidation of catechol 

2,3-dioxygenase is also increased by higher concentration of substrate 

(Sheridan et al. 1998). However the growth for for 2.5 mM substrate is similar 

to that of the highest levels and if the catechol toxicity was the limiting factor 

you would expect an increase in cell growth for 2.5 mM compared with 5 mM 

which is not what has been observed here. This also does not explain why 

these is higher conversion between 0-5 hours with 2.5 mM and 5 mM 

compared with higher substrate concentrations but the growth rates are 

similar. Another possible reason is that there is substrate inhibition occurring. 

It is possible that at high concentrations of substrate, the sodium benzoate 

could be interacting with the active site of downstream enzymes but is not 

being converted and therefore inhibiting the enzymes. The enzymes have 

some promiscuity and can accept a range of similar substrates (Murray et al. 

1972; Abril et al. 1989), however substrates interacting with downstream 

enzymes in this pathway has not been reported previously. From an 

evolutionary perspective it is unlikely that the downstream enzymes of a 

pathway would accept substrates of the upstream enzymes as this would 

disrupt the systematic degradation of the initial substrate. In the case of the 

TOL pathway this would be toxic aromatic compounds and therefore it would 

not be beneficial to inhibit degradation in this way.  
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3.6.3 P. Putida is comparable to E. coli. 

The observation that there is no significant difference between E. coli and P. 

putida conversion of benzoate to 2-HMSA adds to existing evidence that P. 

putida could be an alternative host organism for use in industrial research 

and development. As interest in synthetic biology rises there is a need for a 

range of hosts to withstand high product and substrate concentrations 

required for industrial manufacturing processes. E. coli is most commonly 

used in industrial research and development because of the wide range of 

genetic tools available providing easy manipulation of the organism. In 

addition to this, E. coli is fast growing so results are obtained quickly which 

suits the fast paced industry environment and works well with time pressures 

imposed by patents. The growth curves of P. putida presented here (Figure 

3-8 to Figure 3-15) show that Pseudomonads are also fast growing bacteria 

and similar results can be obtained in the same time frame. There are some 

genetic tools available and more are being developed, for example the SEVA 

vectors (Silva-Rocha et al. 2013). This means that genetic manipulation can 

be equally as simple as in E. coli and this is only improving as more evidence 

for Pseudomonads as an industrial host organism is built.  

P. putida has an optimum growth temperature of 30 ° C which is lower than 

E. coli which is usually grown at 37 ° C. Temperature is often a major factor 

when optimising processes in both academia and industry. Often issues with 

recombinant protein expression and solubility are overcome by lowering the 

temperature for expression. It is thought that this reduces the rate of protein 

synthesis and therefore reduces degradation, aggregation thus promoting 

correct folding of the protein (EMBL 2018). The option of using a host 

organism that grows best at a lower temperature such as Pseudomonads at 

30 ° C may be beneficial for expression of recombinant proteins that do not 

express well in E. coli. For this particular case, the enzymes originate from 

Pseudomonas and therefore are most likely to perform best at a lower 

temperature. This is likely to be the reason why the enzymes in this process 
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performed well in both Pseudomonas strains and in E. coli. There is an 

abundance of research uncovering and investigating enzymes from unusual 

environments. Elucidating the activities and mechanisms of these will require 

a host organism for recombinant expression. Having the option to use a host 

organism closest to the originating organism or that at least grows at a 

similar temperature will be beneficial to researchers. This will help to 

maximise the output and reduce the failure rates resulting from poorly 

expressing proteins in E. coli. 

The variability in growth between biological replicates is seen in both E. coli 

and in Pseudomonas strains. This is something that is notoriously common in 

biological systems and is one of the reasons for the rise in interest in 

bioengineering (Sadowski et al. 2016). Therefore it is unsurprising that there 

is high variability in growth, particularly when working with small volumes of 

50 ml. Catechol is toxic to cells and therefore may explaining the varying 

growth rates. This may also explain why the growth appears to slow and cell 

density even decreases in particular instances (Figure 3-12, Figure 3-14, 

Figure 3-15). Other explanations for the variability could be differences in 

mixing due to the position of the flasks in the shaker, flasks in the centre of 

the shaker will experience differences in throw compared to flasks positioned 

at the outer edge of the shaker. Varying humidity within the shaking incubator 

could also affect cell growth. For some strains the variability in growth does 

not appear to have an effect on the production of 2-HMSA, this may be an 

indication of the robustness of P. putida.  
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 Engineering the TOL pathway with an omega-Chapter 4.
transaminase to produce a novel amine 

4.1 Background and aims 

Engineering metabolic pathways is one way to create novel molecules that 

would otherwise be difficult to produce using traditional chemical synthesis 

methods and are also likely to have biological activity. One family of 

molecules that are often biologically relevant and can be difficult to work with 

in synthetic chemistry are amines. For this reason the transaminase family of 

enzymes has gained interest over the past decade (Hwang et al. 2005; Nestl 

et al. 2014; Leuchtenberger et al. 2005). Transaminases facilitate the transfer 

of an amine group to an aldehyde or ketone e.g. in keto-acids. The product of 

the truncated TOL pathway studied in chapter 3 is an aldehyde and can be 

considered a potential transaminase substrate. Using a transaminase to 

convert the 2-HMSA would in theory create a novel amine molecule which 

could have potential as a novel synthon. This novel amine product of the 

engineered pathway would depend on the position of amination and 

speculative structures of this product are described in more detail in Table 

4-4. 2-HMSA itself would be difficult to synthesise and though it is available 

to purchase from Aurora Fine Chemicals is extremely expensive at a cost of 

over $1000 minimum order (in 2017). Therefore to create a novel amine 

using this aldehyde and a transaminase the aldehyde needs to be produced 

biologically using the TOL enzymes and followed by the addition of the 

transaminase. This would create an engineered multi-enzyme cascade 

resulting in a novel amine molecule. The production of 2-HMSA by the TOL 

pathway enzymes has been previously investigated so the next step is to 

explore the conversion of the aldehyde by a transaminase. 
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4.2 Screening omega transaminases for activity with 2-
hydroxymuconic semialdehyde using methylbenzylamine as an 
amine donor 

A selection of ω- transaminases were screened for activity with 2-HMSA as 

the substrate. Transaminases were selected based on previous observations 

of activity in the literature and within the group. There is an abundance of 

literature reporting the wide range of substrates accepted by CV2025 

(Villegas-Torres et al. 2015; Richter et al. 2015; Kaulmann et al. 2007). 

Another transaminase, the Arthrobacter mutant, ArRMut11, was designed to 

be robust and accept larger substrates containing aromatic rings (Savile et 

al. 2010).  This and other transaminases such as the P. putida, Klebsiella 

pneumonia, Vibrio fluvialis and Mycobacterium vanbaalenii have previously 

shown activity with cyclic and conjugated substrates of a similar size to 2-

HMSA (Richter et al. 2015). A full list of the 19 transaminases which were 

screened is described in Table 4-1. 

 Transaminases were expressed in E. coli BL21(DE3)*. Cells were lysed and 

cell debris removed, resulting in the use of clarified lysate containing active 

transaminase enzyme as described in the methods section 2.4.1. 2-HMSA 

was produced using a whole cell biotransformation in E. coli DH10β 

containing pQR1050 as described in section 2.4.1. 2-HMSA is excreted from 

the bacteria cells, which were therefore removed and the remaining buffer 

containing 2-HMSA was used in transaminase screening assays. The 

concentration of 2-HMSA was calculated by measuring the absorbance at 

375 nm and the extinction coefficient as described in the methods section 

2.3.1. This method ensured that the 2-HMSA used as the substrate in these 

assays contained as little other cell material or other contaminants (e.g. from 

growth media) as possible. Attempts to purify 2-HMSA are described later in 

this chapter, section 4.3.2.   
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 Table 4-1. List of plasmids containing transaminases used during this study. 

Plasmid Transaminase gene ID Gene source Reference 

pQR801 CV2025 Chromobacterium violaceum (Kaulmann et al. 2007) 
pQR810 PP_5182 Pseudomonas putida KT2440 (Sehl et al. 2012) 
pQR811 PP_2799 Pseudomonas putida KT2440 (Sehl et al. 2012) 
pQR813 PAO221 Pseudomonas aeruginosa PAO2 (Sehl et al. 2012) 
pQR958 PP_3718 Pseudomonas putida  (Villegas-Torres et al. 2015; Richter et al. 2015) 
pQR959 PP_2180 Pseudomonas putida  Unpublished data 
pQR960 BSU09260_1971 Bacillus subtillis Unpublished data 
pQR961 BSU09260_402 Bacillus subtillis (Lichman et al. 2015) 
pQR977 Dgeo_0713 Deinococcus geothermalis (Villegas-Torres et al. 2015) 
pQR978 Dgeo_1177 Deinococcus geothermalis Unpublished data 
pQR983 Dgeo_2743 Deinococcus geothermalis Unpublished data 
pQR986 BLi00767 Bacillus licheniformis Unpublished data 
pQR1003 VF_JS17 Vibrio fluvialis (Shin et al. 2003) 
pQR1005 KPN_00255 Klebsiella pneumonia (Villegas-Torres et al. 2015) 
pQR1006 KPN_00799 Klebsiella pneumonia (Richter et al. 2015) 
pQR1010 KPN_01493 Klebsiella pneumonia (Villegas-Torres et al. 2015) 
pQR1011 KPN_03745 Klebsiella pneumonia (Villegas-Torres et al. 2015) 
pQR1015 Mlut_10360 Micrococcus luteus Unpublished data 
pQR1019 Rsph17025_2835 Rhodobacter sphaeroides (Villegas-Torres et al. 2015) 
pQR1021 Rsph17029_3177 Rhodobacter sphaeroides (Villegas-Torres et al. 2015) 
pQR1048 Mvan4516 Mycobacterium vanbaalenii (Richter et al. 2015) 
pQR1049 ArRMut11 Arthrobacter sp. (Savile et al. 2010; Richter et al. 2015) 
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Transaminases were initially screened using the method with (S)- or (R)-  

methylbenzylamine (MBA) as the amine donor which is converted to 

acetophenone (Figure 1-5) as described in the methods section 2.4.1. 

Conversion of MBA occurs at a 1:1 ratio with the aldehyde amine recipient 

therefore the conversion of MBA can be directly associated with the 

conversion of the aldehyde substrate. The production of acetophenone was 

quantified using HPLC analysis and percent conversion was calculated 

(Figure 4-1). A negative control without 2-HMSA was performed to monitor 

any baseline conversion of MBA to acetophenone. All conversions were 

normalised against this baseline of acetophenone. 16 out of the 19 

transaminases screened showed no conversion. pQR1006 showed a less 

than 1% conversion. pQR1049 showed  13% conversion and pQR1048 

showed 1.5% conversion. Both the Arthrobacter (pQR1049) and 

Mycobacterium (pQR1048) transaminases are (R) – selective transaminases 

so it would appear that (R) – transaminases are more accepting of 2-HMSA 

as a substrate. 
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Figure 4-1. Screening of 19 transaminases for activity with 2-HMSA. 
(S) - MBA as the amine donor with all transaminases except for pQR1049 and 
pQR1048 for which (R) – MBA was used. Conversion was calculated by quantifying 
the accumulation of acetophenone by HPLC after 24 hours.   

 

4.2.1 Conversion of 2-HMSA to a novel amine using abundant amino 
acids as the amine donor 

For the use of biotransformation reactions in industry, the reaction must be 

economically viable; therefore the use of MBA as an amine donor would not 

be feasible. MBA is a relatively expensive reagent and the cost would not be 

feasible for a large scale process.  One of the aims of this study was also to 

investigate this engineered pathway in alternative host organisms and 

therefore develop the process as a whole cell reaction. MBA cannot 

penetrate the cell wall and therefore would not be suitable for this type of 

reaction. This led to investigating alternative amine donors with a particular 

interest in amines that are already abundant within the cell. The most 

obvious molecules that fit these criteria are amino acids. Abundant amino 

acids that are continuously produced within the cell are glutamate and 
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alanine. Serine was also selected as a number of transaminases have been 

previously successful with serine as the amine donor (Villegas Torres 2014; 

Deszcz et al. 2015). 

To investigate the use of alternative amine donors for the transaminase 

conversion of 2-HMSA the transaminases with any conversion observed 

using the MBA/acetophenone assay were investigated alongside additional 

transaminases expressed in pQR977, pQR1019 and pQR1021 which were 

identified from previous literature (Villegas Torres 2014). Reactions were set 

up using 2-HMSA from a whole cell biotransformation in E. coli DH10β, 

active transaminase in the form of clarified lysate from E. coli BL21(DE3)* 

expression, and a 10 fold excess of the relevant amino acid was added as 

described in methods section 2.4.1. All assays were replicated three times 

and an average calculated. 

To quantify the conversion of 2-HMSA in serine, alanine and glutamate 

assays the absorbance at 375 nm was recorded and the percent conversion 

calculated as described in section 2.4.3.2. Degradation of 2-HMSA after 4 

hours has been recorded (O’ Sullivan 2000) so a negative control without 

transaminase present was performed to monitor any decrease in 2-HMSA 

concentration not caused by enzymatic conversion. For alanine and 

glutamate absorbance was measured after 3 hours only due to the high 

levels of 2-HMSA degradation observed after a longer period of time (Figure 

4-3). Absorbance was measured after 3 hours and after 24 hours for serine 

(Figure 4-2). Detailed methods for this assay are described in 2.4.1.3.  
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Figure 4-2. Conversion of 2-HMSA after 3 hours and 24 hours with selected 
transaminases and serine as the amine donor. 
Conversions have been corrected using a baseline level of depletion of 2-HMSA 
concentration seen in negative controls without enzyme present. 

 

From Figure 4-2 conversion after 3 hours is 44% for pQR977, 46% with 

pQR1006, 40% with pQR1048 and 41% with pQR1049 after correction using 

the baseline conversion observed in control reactions. After 24 hours there is 

a much higher depletion of 2-HMSA in the control, this degradation after 4 

hours has been observed in previous literature (O’ Sullivan 2000) and 

appears to be a characteristic of 2-HMSA. The apparent conversion rates are 

as follows; 28% for pQR977, 29% for pQR1006, 30% for pQR1048 and 28% 

for pQR1049 after adjusting for degradation of 2-HMSA observed in the 

control sample. The reason for this may be because the transaminase 

conversion exists as an equilibrium reaction and therefore the conversion 

has reversed. The reduction in available 2-HMSA due to the degradation as 

observed in the control reaction may also contribute to a reduced conversion 

rate. No conversion for pQR1019 or pQR1021 was observed. This may be 
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due to inactive enzyme or because these transaminases did not accept 2-

HMSA as a substrate. Other abundant amino acids tested were glutamate 

and alanine (Figure 4-3).  

 

Figure 4-3. Conversion of 2-HMSA after 3 hours with selected transaminases and 
either alanine or glutamate as the amine donor. 
Conversions have been corrected using a baseline level of depletion of 2-HMSA 
concentration seen in negative controls without enzyme present. 

 

Conversions have been corrected using a baseline level of 2-HMSA 

depletion to take into account any degradation of 2-HMSA without 

transaminase as observed in the negative control without transaminase 

enzyme present. No conversion with pQR977, pQR1019 or pQR1021 was 

observed. With alanine, 2.8% conversion was observed with pQR1048 and 

8.7% with pQR1049. With glutamate conversion rates were better; 19% was 

observed with pQR1048 and 25% with pQR1049. These assays showed the 

most consistent conversion with the ArRMut11 transaminase expressed 
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using the pQR1049 plasmid, therefore this transaminase was used in further 

reactions to investigate this reaction and the product of the 2-HMSA 

conversion. 

 

4.3 Structural determination of the novel amine product of the TOL-
transaminase engineering pathway 

Though evidence of 2-HMSA being consumed were observed, the product 

formed was unknown. There are several possible molecules that could be 

formed after amination of 2-HMSA and it is also unknown whether this 

product may even react further. Further conversion of 2-HMSA with the 

ArRMut11 transaminase were performed using serine as an amine donor to 

generate product for further analysis. Analysis of the reaction mixture after 

quenching was conducted to attempt to determine any new compounds 

formed. 

4.3.1 Initial identification attempts using HPLC and LCMS 

Quenched reactions were analysed using HPLC at 0 h, 3 h and 24 h, as 

described in section 2.4.3.4. Chromatograms were compared between time 

points to determine appearance of any new peaks formed. Due to the nature 

of this reaction, including the use of clarified ArRMut11 transaminase lysate 

expressed in E. coli BL21(DE3)* and unpurified 2-HMSA produced during the 

biotransformation reaction in E. coli DH10β there were many peaks present 

in the HPLC chromatogram and any new peaks were undetectable. In 

addition to this the amine product of transaminase conversion of 2-HMSA is 

predicted to be very polar. With an amine and a carboxylic acid, it is likely 

that the product will elute from a C18 HPLC column immediately and 

therefore be undetectable by HPLC. LCMS analysis was also performed in 

an attempt to detect any compounds present corresponding to the mass of 

the predicted novel amine. Results of the LCMS also showed a high level of 
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background. Peaks were observed at the expected mass of the product, 

however due to the high background it was impossible to assume that this 

was the product. The reaction mixture was not pure enough to use for ESI-

TOF MS and therefore presence of the product was not confirmed. To truly 

determine presence of an amine product and elucidate a possible structure 

more confidence in mass spectrometry data was required. To obtain this data 

a more pure reaction mixture or a method for purifying the product from the 

mixture was required. 

4.3.2 Attempts to purify 2-HMSA to reduce background 

To reduce background by reducing compounds present in the reaction 

mixture purification of 2-HMSA was attempted. In theory, 2-HMSA should 

bind strongly to anionic purification resins. Two methods were trialed; Q 

Sepharose Fast Flow resin and Amberlite IRA-400 as described in section 

2.4.2. The 2-HMSA bound tightly to both resins but elution was difficult. 

Several elution buffers were tested. Table 4-2 and Table 4-3 provide details 

concentration of 2-HMSA loaded onto resin compared to the elution 

concentration for each buffer. 

Table 4-2. Concentration of 2-HMSA after elution from Q-Sepharose Fast Flow resin. 
The concentration of 2-HMSA loaded onto the column was 0.4 mM. Equal volumes for 
loading and elution were used. 

Elution buffer % recovery of 2-HMSA after 
elution 

2 % acetic acid, 50 % methanol 0.75 
2 % acetic acid, 75 % methanol 0.5 
2 % acetic acid, 100 % methanol 34.5 
3.5 % acetic acid, 50 % methanol 0.75 
3.5 % acetic acid, 75 % methanol 1.25 
3.5 % acetic acid, 100 % methanol 1 
5 % acetic acid, 50 % methanol 1.25 
5 % acetic acid, 75 % methanol 0.75 
5 % acetic acid, 100 % methanol 1.25 
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Table 4-3. Concentration of 2-HMSA after elution from Amberlite IRA-400 resin. The 
concentration of 2-HMSA loaded onto the column was 0.85 mM. Equal volumes for 
loading and elution were used. 

Elution buffer % recovery after elution 

90:10 TFA/water 8.7 
90:10 formic acid/water 25.3 
95:5 methanol/TFA 10.9 
95:5 methanol/formic acid 0 

 

Attempts to elute the 2-HMSA from the resin and maintain a reasonable 

concentration for subsequent reactions with a transaminase were all 

unsuccessful. 

4.3.3 Derivatisation of product for HPLC and LCMS identification 

As attempts to begin with a more defined reaction mixture were 

unsuccessful, the next step was to try to purify the product out of the mixture 

for identification. As mentioned earlier, it was concluded that the novel amine 

would be extremely polar and undetectable using HPLC with a standard C18 

column. Therefore derivatisation of the amine with 6-aminoquinolyl-N- 

hydroxysuccinimidyl carbamate (AQC) was used (methods described in 

section 2.4.3). This increases the hydrophobicity and facilitates HPLC 

detection of amines (Marten & Naguschewski 2011).  The transaminase 

assay with ArRMut11 transaminase clarified lysate expressed in E. coli 

BL21(DE3)* and unpurified 2-HMSA produced during the biotransformation 

reaction in E. coli DH10β and using serine as the amine donor was 

performed as described earlier in section 2.4.1.3. The reaction was 

quenched at multiple time points, including at 0h, 1h, 2h, 4h, 8h, and after 

24h. The AQC derivatisation method was then used with each sample and 

analysed using HPLC analysis as described in section 2.4.3.4. The HPLC 

chromatogram at each time point was overlaid on top of one another as 

shown in Figure 4-4 and Figure 4-5. Using this overlaying technique it was 

possible to identify which peaks were present before the reaction has begun 

(at time = 0h) and which peaks corresponded to molecules that were 
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produced during the reaction. New peaks that arose over the reaction period 

were investigated further. Though new peaks were observed, they could 

correspond to a number of molecules within the mixture including free 

derivatisation agent or excess amine donor derivatised by the agent. The 

new peaks were isolated by fraction collection and further analysed using 

ESI Q-TOF MS. Potential structures arising from transaminase conversion of 

2-HMSA were theorised, these are detailed in Table 4-4 along with their 

predicted derivatisation products. These predicted structures were used to 

identify relevant masses in mass spectrometry data. 

 
Table 4-4. A speculative list of potential products from the 2-HMSA/transaminase 
conversion with structures after derivatisation and expected mass 

Structure 
number 

Structure Exact mass 

1 

 

145.07389 

2  

(structure 1, 

after 

derivatisation) 
 

315.12191 

3 

 

144.090 

4 

(structure 3, 

after 

derivatisation) 
 

314.138 

5 

(structure 3, 

after double 

derivatisation)  

484.186 
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Structure 
number 

Structure Exact mass 

6 

 

143.058 

7 

(structure 6, 

after 

derivatisation) 
 

313.106 
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Figure 4-4. The change in HPLC chromatogram over a period of a 24 hour reaction. 
Peaks of interest that were further analysed by mass spectrometry are noted with a *. Peaks at retention time 12.0 minutes and 13.8 minutes were 
not observed consistently during replications and therefore were not investigated further. Coloured curves represent different timepoints at which 
the reactions were quenched; grey = 0h, blue = 1h,  pink = 2h,  green = 8h, red = 24h. purple = 4h,
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Figure 4-5. HPLC chromatogram showing the change in peaks from t=0h to t=24h. 
Peaks at 5.2 (1) and 5.5 (2) minutes increase over time . The peak at 8.0 minutes decreases after 24 hours (3). Two new peaks at 9.5 (4) and 11.9 (5) 
appear after 24 hours. Peaks 1, 2 and 4 were isolated and collected for further mass spectrometry analysis. Peak 5 was not reproducible over 
multiple replications of this conversion reaction and therefore was not investigated further. Peaks that showed no or little change in area were of 
no interest as they most likely correspond to components that are not involved in the reaction. Coloured curves represent different timepoints at 
which the reactions were quenched; grey = 0h, red = 24h. 
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Analysis of Figure 4-5 indicated peaks to be isolated for further mass 

spectrometry analysis. Peak 5 was impossible to collect as it was not 

reproducible consistently during HPLC runs indicating either degradation of 

this compound or an artifact arising from impurities in the reaction mixture. 

Peak 3 was of no interest as it is diminished after 24 hours and therefore is 

likely to correspond to a component of the reaction that is used such as 

serine which was used as the amine donor. Peaks at 1, 2 and 4 in Figure 4-5 

were isolated and collected. This was repeated for 15 runs. Fractions 

corresponding to the same peak were pooled and concentrated. The total 24 

hour derivatised reaction was analysed using LC-MS. Relevant masses were 

observed as follows; a mass of 336.2 indicating potential sodium adduct of 

structure 7 in Table 4-4; mass of 314.18 was also observed indicating the 

possible presence of structure 4 or a hydrogen adduct of structure 7 in Table 

4-4. Purified fractions of peaks 1, 2 and 4 from Figure 4-5 were were 

submitted for ESI Q-TOF MS which showed the following relevant mass; 

144.9296 which would indicate the possible presence of structure 3. Analysis 

shown in Figure 4-6 is the ESI Q-TOF MS analysis of peak 4 in Figure 4-5 

and showed a mass of 337.2717 and a fragmentation pattern which matches 

what would be expected for product 4 in Table 4-4.  
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Figure 4-6. ESI Q-TOF MS analysis of the amine product 
(a) The expected pattern produced by product 4 in table 4-2 with a sodium adduct as 
generated using the ESI Q-TOF MS analysis software. (b) The actual observed masses 
produced by the purified sample corresponding to the peak at 9.5 minutes in Figure 
4-5. 

 

There are multiple pieces of evidence to indicate the presence of structure 4 

which is the single derivatisation product of structure 3 in Table 4-4. This 

information leads us to believe that the amine produced by transaminase 

conversion of 2-HMSA is structure 3 in Table 4-4. Further confirmation of this 

structure would have to be determined using nuclear magnetic resonance 

(NMR) techniques, however the concentration of the amine product was not 

high enough in this instance for NMR techniques. Further work to confirm the 

structure of this product is outlined in Chapter 7. 
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4.4 Discussion 

4.4.1 Transaminase and amine donor screening 

From the data shown in Figure 4-1 it appears that 2-HMSA is a better 

substrate for (R)- selective transaminases even though 2-HMSA is achiral. 

The activity observed with pQR1049 and pQR1048 is consistent with 

previous studies where these transaminases were active with other aromatic 

compounds (Nina Richter et al. 2014).  

With serine as an amine donor where the reaction was observed over 24 

hours, there appears to be a decrease in conversion compared with after 3 

hours. This is due to transaminases having bidirectional activity therefore the 

reaction will eventually reach equilibrium. This in addition to the known 

degradation of 2-HMSA explains the lower rate of conversion. It is possible 

that the actual rate of conversion of 2-HMSA is higher than it appears. This is 

due to the transaminase conversion possibly occurring faster than the 

degradation of 2-HMSA. The only way to verify the actual conversion rate 

would be to quantify the product concentration. Due to the product being 

novel and the possibility of multiple products this has not yet been possible. 

For conversions with alanine and glutamate, activity with pQR977, pQR1019 

and pQR1021 should not be expected as these are labeled as serine 

transaminases in protein family databases. These were chosen due to good 

activity reported previously with serine (Villegas Torres 2014). However, we 

are now beginning to discover that there are often large discrepancies 

between the automatic annotations in the databases which are based on 

overall protein/protein homologies, and the actual substrate specificity of 

enzymes (Schnoes et al. 2009; Cozzetto & Jones 2017; Poux et al. 2014); 

particularly for transaminases which have a diverse and complex 

evolutionary history (Muratore et al. 2013). Transaminases pQR1019 and 

pQR1021 showed no activity with 2-HMSA as the substrate. The 
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Arthrobacter mutant transaminase, pQR1049, showed the most consistent 

activity with 2-HMSA regardless of amine donor. This aligns with literature 

that it is very robust and promiscuous (Richter et al. 2015; N. Richter et al. 

2014; Savile et al. 2010). The next experimental aim at this point was to 

clone the selected transaminase into the pQR1050 vector so that the 

transaminase is expressed with the upstream TOL enzymes as an 

engineered pathway and to test the engineered pathway with a range of 

substrates as described in chapter 5. 

4.4.2 Structural determination 

The mass spectrometry data shown gives an indication of the structure of the 

product formed. Further work to purify the product further and conduct further 

structural determination work such as NMR analysis would be preferable. 

Purification of the product would also allow quantification and further analysis 

into properties. The current purification method by HPLC results in impurities 

as seen by mass spectra obtained. It is certain that structure 5 (Table 4-4) 

was not observed therefore there was no double derivatisation occurring. A 

collective analysis of mass data gives a strong indication that structure 3 is 

the amine produced by transamination of 2-hydroxymuconic semialdehyde.  

The aims of this study were to show as a proof of concept that it is possible 

to create novel interesting compounds that would be difficult to produce by 

traditional chemical synthesis methods. By using an engineered pathway 

including a transaminase, a novel amine has been created in this study. 

Using IUPAC nomenclature this amine is named 2,6-diaminohex-4-enoic 

acid. The properties of this molecule are unknown so further work would be 

to elucidate these. Speculatively speaking, it is possible that the molecule 

could undergo polymerisation (Figure 4-9). Previous literature has described 

a process with 3-chloro-2-HMSA and ammonium chloride to produce a 

picolinic acid derivative as shown in Figure 4-7 (Riegert et al. 1998). 
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Figure 4-7. The conversion of chloro-catechol to 3-chloropicolinic acid using catechol 
2,3-dioxygenase (XylT) and ammonium chloride in a 2 step reaction. 

 

The novel amine produced here could also potentially undergo cyclisation to 

produce picolinic acid, a precursor to picolinic acid or a derivative. Picolinic 

acid (Figure 4-8) is of industrial interest as it assists the absorption of zinc 

ions in the small intestine amongst other functions (Grant et al. 2009).The 

novel amine produced has a very similar structure to 2-aminomuconic 

semialdehyde which is a metabolite of tryptophan and an intermediate in the 

biosynthesis of picolinic acid. There is some precedence for this as 

metabolites similar to 2-HMSA have been used to create picolonic acid using 

high temperatures, pressures and the use of ammonia (Riegert et al. 1998). 

Chapter 7 describes further work that could be done to investigate this. 

 

   

 

 
Figure 4-8. Picolinic acid 
Picolinic acid could be produced by cyclisation or further reaction of the novel amine 
produced by transamination of 2-HMSA. 
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a) 

 

 

b) 

 

Figure 4-9. Speculation of polymers that may be produced by polymerisation of the 
novel amine produced by transamination of 2-HMSA. 
(a) shows a polymer produced by condensation polymerisation of the carboxylic acid 
and amine. (b) shows the polymer that may be produced by the dehydrogenation of 
amines at each end of the molecule to produce a nitrogen-nitrogen bond. 

 

To test the amine product in any further reaction the amine must be purified 

from the reaction mixture. In addition to purification, the conversion must also 

somehow be scaled up to produce enough amine for further reactions. 

Difficulties in purification and scale up of the aldehyde to amine conversion 

were encountered as described earlier in this chapter. These are challenges 

that would need to be overcome in any process that is relevant to industry. In 

order to promote the use of bio-conversions and biotransformations in 

industry, these processes must be scaleable and be amenable to further 

downstream processing. 
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Chapter 5: Whole cell conversion of a 
range of substrates for the 
engineered TOL pathway with a 
transaminase in Pseudomonas putida 
as the host organism 
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 Whole cell conversion of a range of substrates for Chapter 5.
the engineered TOL pathway with a transaminase in 
Pseudomonas putida as the host organism 

5.1 Background 

Using the ArRMut11 transaminase selected after the transaminase screening 

a vector was constructed to incorporate the transaminase gene into the 

truncate of the TOL metacleavage plasmid (Figure 5-1). The aims of this 

study were to investigate this engineered pathway as a whole cell reaction. 

Performing the reaction in whole cells has both benefits and downsides when 

it comes to commercial relevance. The positive attributes of performing 

reactions in whole cells is the provision of energy and maintenance of the 

intracellular conditions that these enzymes would be normally working in, as 

long as the host cell is appropriate. As well as this, whole cells thrive in 

aqueous conditions and at ambient temperatures as mentioned previously, 

thus minimising heating costs and potential environmental pollutants from 

toxic solvent waste. There are also negatives to using whole cells as a 

reaction vessel. Reaction conditions that may be necessary for the reaction 

but are not natural to a cells natural state are more difficult to maintain and 

monitor. Many molecules, substrates or cofactors for example, are not cell 

membrane permeable; this could mean that cofactors or substrates cannot 

get into the cell or could mean that product cannot get out of the cell. Product 

build up within a cell could become inhibiting and limit conversion or could 

even be toxic to the cell. On top of this the desired product needs to be 

extracted and isolated from all the other cellular material which can be 

difficult and time consuming as discovered in chapter 4. In addition, the 

overexpressed enzymes compete for energy and resources with other 

cellular processes. Limiting cell growth or the overproduction of the 

recombinant enzyme may limit overall conversion to the desired reaction 

product. It would appear from this list that the negative arguments against 

using a live organism for chemical production processes may be stronger 
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than the positive, but the only way to change this is to continue studying 

reactions using whole cells in order to understand them. From a better 

understanding it will be possible to optimise reactions and produce systems 

that are feasible for commercial industrial processes. 

The reaction was investigated in P. putida GS1 and various starting materials 

were tested as the TOL pathway is known to accept a range of substrates 

(Murray et al. 1972; Abril et al. 1989). This versatility of enzymes and 

enzymatic pathways provides options to tailor the molecules that are created 

to specific needs for active pharmaceutical ingredients or other chemicals 

with value. This flexibility also gives us the option to design molecules and 

“mix and match” enzymes to create novel molecules. The aim of this study 

was to investigate the promiscuity of the TOL metacleavage pathway which 

has been investigated previously (Murray et al. 1972; Williams & Murray 

1974), and of the Arthrobacter mutant transaminase which has also been 

shown to have a range of substrate specificity with other types of molecules 

such as steroids (Nina Richter et al. 2014). Using different materials as 

starting substrates for this engineered pathway could lead to different novel 

amines being created, as long as the enzymes in the engineered pathway 

accept the modified intermediates. The rationale behind this proof of principle 

study is that different amines could be biologically active in different ways or 

could act as intermediates for other industrially relevant chemicals. 

 

5.2 Construction of a vector containing an engineered pathway with a 
transaminase 

In this study various methylbenzoates were investigated with the truncate of 

the TOL metacleavage pathway and with the engineered pathway with the 

ArRMut11 transaminase. A vector was constructed with the transaminase to 

create a single vector with the engineered pathway (Figure 5-1). 
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Figure 5-1. Construction of pQR1062 containing the xylXYZLTE genes and the ArRMut11 transaminase. 
pQR1050 was linearised using PCR amplification with primers containing 5’ overhangs overlapping with the ArRMut11 transaminase insert. 
Primers for ArRMut11 amplification had 5’ overlaps with the insertion point of pQR1050. In-fusion cloning was performed as described in section 
2.1. Sequence was verified by Sanger sequencing. Black curved arrows depict primer position and direction. 
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To investigate the conversion of various methylbenzoates to both the 

semaldehyde and to an amine after transamination,conversion of the 

methylbenzoate substrates to the aldehyde product of the TOL pathway were 

performed with pQR1050 and pQR1062 (without and with transaminase 

respectively). The pathway in pQR1050 ends in the production of the 

aldehyde and therefore this product should accumulate. With cells 

expressing pQR1062 the pathway ends in the transaminase which should 

accept the aldehyde as a substrate and therefore concentration of the 

aldehyde should be reduced compared with cells expressing the TOL 

pathway enzymes only. The growth and substrate conversion methods were 

kept consistent with the methods previously used in P. putida comparison 

studies (described in section 2.3.) except for the addition of 1mM PLP 

required for transaminase activity. Expression was induced after 2 hours and 

substrates were added after 3 hours. The concentration of the aldehydes 

(after enzymatic conversion with XylTE) are measured by recording the 

absorbance as described earlier in section 2.3.1. Biological triplicates and 

two sample t-tests were performed to assess statistical significance between 

concentrations of the aldehyde produced. 

 

5.3 Conversion of benzoic acid 

The conversion of benzoic acid to 2-HMSA and to the amine has been 

confirmed in chapters 3 and 4. The reaction schematic can be seen in Figure 

3-1. During previous transaminase activity studies, transaminase was 

expressed independently of the TOL plasmid and active enzyme in clarified 

cell lysate was used. The following study investigates the transaminase 

activity with 2-HMSA in a whole cell reaction where the TOL pathway 

truncate and the transaminase are expressed using one plasmid, pQR1062. 
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Figure 5-2. A comparison of the conversion of benzoate to 2-HMSA with and without 
transaminase. 
5 mM sodium benzoate was added 1 hour post induction as described in section 2.3. 
pQR1050 contains the TOL metacleavage pathway enzymes xylXYZLTE. pQR1062 
contains the full engineered pathway including the TOL metacleavage pathway 
enzymes and the transaminase. Conversion was calculated by measuring the 
absorbance at 375 nm. 

 

No significant difference in 2-HMSA concentration was observed between 

cells expressing pQR1050 and pQR1062 even though transaminase activity 

has been previously observed with 2-HMSA. This is clear from Figure 5-2 as 

there is virtually no difference between 2-HMSA concentration at any point 

between 4 and 8 hours or at 24 hours. This is also seen in the growth rates 

which appeared to be very similar for cells expressing both plasmids as 

shown in Figure 5-3.  
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Figure 5-3 A comparison of the growth rates of P. putida GS1 expressing pQR1062 
and pQR1050. 
Expression was induced after 2 hours and sodium benzoate was added after 3 hours. 
 

5.4 Conversion of m-toluic acid 

The conversion of modified benzoates were investigated with the TOL 

pathway to determine whether the TOL pathway enzymes would accept 

these substrates and whether the transaminase would also accept a range of 

substrates, thus indicating the flexibility of engineered pathways for 

producing a desired molecule. M-toluic acid (3-methylbenzoic acid) was one 

substrate investigated. This substrate was chosen as it has been previously 

reported to be converted by the TOL enzymes and the resulting aldehyde is 

also close in structure as 2-HMSA, meaning that it is also likely to be 

accepted by the transaminase (Murray et al. 1972). 
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Figure 5-4. Reaction of 3-methylbenzoic acid through to the predicted structure of the 
amine after transamination of the aldehyde. 

 
Figure 5-5. Conversion of 3-methylbenzoic acid and conversion with and without 
transaminase. 
5 mM 3-methylbenzoic acid was added 1 hour post induction as described in 2.4.4. 
pQR1050 contains the TOL metacleavage pathway enzymes xylXYZLTE. pQR1062 
contains the full engineered pathway including the TOL metacleavage pathway 
enzymes and the transaminase. Conversion was calculated by measuring absorbance 
of the aldehyde 2-hydroxy-6-oxohepta-2,4-dienoic acid at 388 nm. 
 

Over the initial 8 hours of expression there does not appear to be much 

difference between the concentrations of the aldehyde (2-hydroxy-4-methyl-

6-oxohexa-2,4-dienoic acid). After 24 hours there is clearly a lower 

concentration of aldehyde with pQR1062. Statistical analysis confirms that 

the difference in concentrations is significant. There appears to be an 



Chapter 5 Whole cell conversion of a range of substrates for the engineered 
TOL pathway with a transaminase in Pseudomonas putida as the host 
organism 

105 

 

approximately 40% conversion of the aldehyde by the transaminase after 24 

hours based on the average percent conversion (Figure 5-5). The presence 

of the transaminase is the only difference in the two reactions and therefore it 

is assumed that the conversion of the aldehyde to a novel amine by the 

transaminase is the cause of the difference in concentration observed. 

Growth rates for these conversions are shown in Figure 5-6 and cultures 

expressing both plasmids grow at a similar rates and diverge after 24 hours. 

Growth curves show an interesting pattern; both cultures appear to shown a 

reduction in OD600 at 7 hours with growth picking up again after 8 hours. All 

experiments were performed in triplicate and this trend appeared to occur 

consistently. After 24 hours the OD600 for cells expressing pQR1050 is 

considerably lower, which could be due to catechol build up inside the cells 

causing a toxic effect. 
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Figure 5-6 Growth rates of P. putida GS1 expressing pQR1050 and pQR1062 were 
measured over time. 
Expression was induced after 2 hours and 3-methylbenzoic acid was added after 3 
hours. 

The whole cell conversion of 3-methylbenzoic acid was also analysed by 

HPLC. In order to reduce background and unknown compounds present a 

biotransformation reaction was performed as detailed in section 2.4.4.2. The 

reaction was stopped after 24 hours and supernatant was derivatised using 

the AQC method in section 2.4.3.3. The HPLC chromatograms were overlaid 

to compare which peaks appeared in the presence and absence of the 

transaminase at shown in Figure 5-7. 
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Figure 5-7. HPLC chromatograms of the biotransformation of 3-methylbenzoic acid in cells containing enzymes expressed from pQR1050 (grey) 
and pQR1062 (red). 
pQR1062 contains the ArRMut11 transaminase and therefore is expected to result in an aminated product. pQR1050 does not contain the 
transaminase and this pathway results in an aldehyde. The identity of the peaks are unknown.
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From HPLC analysis the presence of new peaks at retention times of 5 

minutes, 5.727 minutes and 14.53 minutes indicates that there was 

transaminase conversion, however no further analysis was performed so the 

identity of these has not been confirmed. The new peaks also follow a similar 

pattern to new peaks observed during the conversion of 2-HMSA to the 

amine as shown in Figure 4-5. The peaks that appear between 7-8 minutes 

also follow a similar pattern as observed previously with the conversion of 2-

HMSA and are likely to be components of the reaction mixture that do not 

change such as PLP, however this has not been investigated further. 

 

5.5 Conversion of p-toluic acid 

P-toluic acid (4-methylbenzoic acid) was also investigated with the truncated 

TOL pathway and the engineered pathway to determine whether 4-

mehtylbenzoic acid would be converted to an aldehyde and to a novel amine. 

 
Figure 5-8. Reaction of 4-methylbenzoic acid through to the predicted structure of the 
amine after transamination of the aldehyde. 
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Figure 5-9. Conversion of 4-methylbenzoic acid with and without transaminase. 5 mM 
4-methylbenzoic acid was added 1 hour post induction as described in section 2.4.4.2. 
pQR1050 contains the TOL metacleavage pathway enzymes xylXYZLTE. pQR1062 
contains the full engineered pathway including the TOL metacleavage pathway 
enzymes and the transaminase. Concentration was calculated by measuring 
absorbance at 382 nm. 

Concentration of aldehyde (2-hydroxy-5-methyl-6-oxohexa-2,4-dienoic acid) 

appears to be higher with cells expressing pQR1050 from hour 4, one hour 

from the addition of substrate although for cells expressing pQR1050 a large 

error margin was seen as shown by error bars in Figure 5-9. This means that 

there is no statistical significant difference between concentrations up to 8 

hours. There is much lower error observed with cells expressing pQR1062. A 

significant difference between concentrations was only seen after 24 hours. 

Based on the average percent conversion there appears to be approximately 

74% conversion to the amine after 24 hours though due to the large error 

observed for pQR1050 this may not be very accurate. The large error bars 

for pQR1050 have risen from a wide variation in the conversion from 
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experiment to experiment. The reason for this is unknown. A comparison of 

the growth curves also shows a wide variation in the growth of cells 

expressing pQR1050 from experiment to experiment, which could explain the 

variation in conversion (Figure 5-10). The growth of these cells also show a 

dip in OD600 at 7 hours, consistent with cells fed with m-toluic acid as a 

substrate. For the first 8 hours, cells follow a similar growth curve and 

therefore conversion rates from p-toluic acid to the aldehyde are likely to be 

comparable. This indicates that the reduction in aldehyde present with 

pQR1062 could be due to the transaminase converting this aldehyde further. 

 
Figure 5-10 Comparison of the growth of P. putida GS1 expressing either pQR1050 or 
pQR1062. 
Expression was induced after 2 hours and substrate was added after 3 hours. 

 

Samples were derivatised using AQC and analysed by HPLC as described in 

sections 2.4.3.3 and 2.4.3.4 respectively. Results of each pQR1050 and 
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pQR1062 were overlaid to compare which, if any, peaks appear in the 

presence of the transaminase. The chromatograms are shown in Figure 

5-11.  
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Figure 5-11. HPLC chromatograms of the biotransformation of 4-methylbenzoic acid in cells containing enzymes expressed from pQR1050 (grey) 
and pQR1062 (red). 
pQR1062 contains the ArRMut11 transaminase and therefore is expected to result in an aminated product. pQR1050 does not contain the 
transaminase and this pathway results in an aldehyde. The identity of the peaks shown here are unknown.
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New peaks were observed at 5 minutes, 5.75 minutes and 14.547 minutes, 

again showing a similar pattern to the conversion of benzoate and 3-

methylbenzoic acid. 

 

5.6 Conversion of 3,4-dimethylbenzoic acid 

The final modified benzoate to be investigated with the truncated TOL 

pathway and the engineered pathway was 3,4-dimethylbenzoic acid. This 

was the largest of the substrates tested, as seen in the reaction scheme 

below (Figure 5-12). 

 

Figure 5-12. Reaction of 3,4-dimethylbenzoic acid through to the predicted structure 
of the amine after transamination of the aldehyde. 
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Figure 5-13. Conversion of 3,4-dimethylbenzoic acid and conversion with and without 
transaminase. 
5 mM 3,4-dimethylbenzoic acid was added 1 hour post induction as described in 
section 2.4.4. pQR1050 contains the TOL metacleavage pathway enzymes xylXYZLTE. 
pQR1062 contains the full engineered pathway including the TOL metacleavage 
pathway enzymes and the transaminase. Conversion was calculated by measuring 
absorbance at 390 nm. 

With 3,4-dimethylbenzoic acid as the starting material there is a clear 

difference between apparent percent conversion of the resulting aldehyde 

(2,4-heptadienoic acid) between pQR1050 and pQR1062 (Figure 5-13). 

Conversion rates of the aldehyde between hours 4 to 6 are similar, and there 

is no statistical difference between points during this time. After hour 6 of 

growth, which corresponds to 3 hours after substrate addition the 

concentration of aldehyde increases more in cells containing pQR1050 

compared with cells containing pQR1062. After 7 hours there is a significant 

difference between the concentrations of aldehyde. Results show an 

approximately 48% conversion of the aldehyde by the transaminase to the 
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aminated product after 24 hours based on the difference between the 

average percent conversions to the aldehyde. The growth of both cultures 

were very similar as shown in Figure 5-14. This indicates that conversion 

rates should also be similar and any difference in the concentration of the 

aldehyde is due to transaminase conversion.  

 

Figure 5-14 Comparison of the growth of P. putida GS1 expressing pQR1062 and 
pQR1050. 
Expression was induced after 2 hours and 3,4-dimethylbenzoic acid was added at 3 
hours. 

The reaction was analysed by HPLC after AQC derivatisation (described in 

section 2.4.3.3), results for each reaction were overlaid as shown in Figure 

5-15. 
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Figure 5-15. HPLC chromatograms of the biotransformation of 3,4-dimethylbenzoic acid in cells containing enzymes expressed from pQR1050 
(grey) and pQR1062 (red). 
pQR1062 contains the ArRMut11 transaminase and therefore is expected to result in an aminated product. pQR1050 does not contain the 
transaminase and this pathway results in an aldehyde. Identity of the peaks were not determined.
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New peaks were observed at 5 minutes, 5.783 minutes and 14.547 minutes. 

This also displays the same peak pattern as previous HPLC chromatograms 

(Figure 4-5, Figure 5-7 and Figure 5-11). The peak at approximately 5 

minutes is a particularly broad peak, possibly made of two broad peaks that 

have merged. This is also consistent with other HPLC traces in figures Figure 

5-7 and Figure 5-11.  

 

5.7 Discussion 

In chapter 4 we observed the conversion of 2-HMSA to a novel amine 

however in Figure 5-2 there does not appear to be a difference in 

concentration of 2-HMSA with and without transaminase which on its own 

would indicate no transaminase conversion of the 2-HMSA. A possible 

explanation for this may be poor transaminase expression or activity however 

transaminase activity is seen for modified substrates in sections 5.4, 5.5 and 

5.6 and therefore this can be eliminated as a possible reason for no apparent 

conversion. Another possible explanation is that the 2-HMSA is degrading, 

as observed previously (section 4.2.1) and reported in the literature (Asano 

et al. 2014; Vanier 1998). The instability of the 2-HMSA has resulted in a 

decrease in concentration even without the transaminase therefore no 

difference can be seen between the two biotransformations. 

There are clear differences between the concentrations of aldehydes 

produced by the modified substrates. This indicates that these aldehydes are 

more stable than 2-HMSA. In Figure 5-2, Figure 5-9 and Figure 5-13 the 

concentration of aldehyde continues to increase until 24 hours when the last 

sample was analysed whereas 2-HMSA produced by cells containing 

pQR1050 in Figure 5-5 decreases between 8 and 24 hours. This provides 
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further confirmation of the instability of 2-HMSA and in comparison, 

increased stability of the other aldehydes. 

HPLC analyses for all substrates show the same peak pattern. This is 

expected as the substrates are extremely similar in structure and the 

resulting amine is also expected to be very similar. There are three new 

peaks that appear which also matches with new peaks observed during the 

structural analysis of the amine in section 4.3. The peak identified as the 

novel amine was the peak at a retention time of approximately 9.5 minutes, 

therefore it would be sensible to assume that the novel peaks observed at a 

similar retention time for the modified substrates would also be the novel 

amine produced by the transaminase. The next steps to confirm the structure 

of the novel molecules produced would require purification of this peak and 

mass spectrometry analysis as performed in chapter 4. 

Searches for the predicted structures of the amines using SciFinder® 

(scifinder.cas.org) indicates that these molecules have not been published 

previously in the literature confirming the novelty of the molecules and of the 

engineered pathway. The properties of the novel amines presented here are 

unknown. Due to time constraints and the lack of purified highly concentrated 

product, NMR was not possible to confirm the identities of the products in this 

chapter. Further work to confirm the structures of these products is described 

in Chapter 7. 
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Figure 5-16. Novel amines produced in this chapter using (A) m-toluic acid, (B) p-
toluic acid, and (C) 3,4-dimethylbenzoic acid as substrates for the engineered pathway 
in pQR1062 

 

The novel amines presented here in Figure 5-16, if aminated at the hydroxyl 

group as shown, will be chiral. Chiral amines are particularly interesting to 

industry as they are difficult to produce using traditional synthetic chemistry 

methods in an enantiomerically pure state as discussed in the introduction, 

section 1.2.2. The structures of these products need to be further confirmed 

in order to determine any potential uses for these amines. 
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Chapter 6: Automating biological 
experiments 
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 Automating biological experiments Chapter 6.

6.1 Background 

6.1.1 Streptomyces and biological products for industry  

An example of a species that is already used industrially and could be 

investigated as an alternative host organism are the Streptomyces species of 

gram positive bacteria. Streptomyces are part of the Actinomyces family of 

gram positive bacteria and have been exploited for their antimicrobial 

properties over the last 100 years. Though these bacteria are used in the 

manufacture of antibiotics, genetic tools to manipulate and engineer 

Streptomyces growth and product production have not been developed to the 

extent that tools for E. coli have been developed. In many cases the strains 

of Streptomyces that produced desired antibiotics have been developed in 

house by the pharmaceutical companies that produce them. This means that 

if tools have been developed they are under strict protection by the company 

that has developed them and are being kept as trade secrets. However, 

generally speaking, the development of these strains has been by using 

random mutagenesis and therefore it is difficult to identify exactly what has 

caused any positive or negative effects and subsequently then difficult to 

apply these changes to other species to give the same effect (Bekker et al. 

2014). The lack of tools for genetic modification in Streptomyces species has 

meant that research with these bacteria is limited. Actinomycetes still have a 

wealth of unexplored biosynthesis pathways that may contain antimicrobial 

agents and interesting molecules. To increase our understanding of the 

biosynthesis pathways and to access these molecules better tools are 

needed to manipulate the bacteria easily. The aim of this study was to  

develop a cloning system in Streptomyces which could be used to clone the 

engineered pathway developed in chapter 5 into an example Streptomyces 

host organism and compare the conversion rate with the earlier conversion 

reported with P. putida and E. coli . 
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6.1.2 Cloning in Streptomyces 

Streptomyces species have a small linear genome and are generally 

organised with a core in the centre containing genes for essential metabolic 

pathways and an outer region containing secondary biosynthetic pathways 

such as for antibiotic synthesis. These outer regions of the genome are not 

essential to survival and are often easily mutated in nature (Hopwood 2006). 

Conveniently for us, this also means that genes for biosynthetic pathways 

are often close to each other or organised in operons. 

There are replicative plasmids available for cloning in Streptomyces, 

however the most popular method for cloning in gram positive bacteria is the 

introduction of DNA to integrate into the genome. There are a number of 

integration methods that each integrate into the genome at specific sites, 

thus requiring the recipient to have these sites in their genome. A popular 

method that was developed is the redirect method which uses flippase 

recognition target (FRT) sites using flippase, originating in Saccharomyces 

cerevisiae (Gust et al. 2004). Another is the Cre/LoxP method that allows 

integration into loxP sites using Cre recombinase (Herrmann et al. 2012). 

φC31 integration uses attachment sites (attP and attB) sites which are 

diverse across Streptomyces species (Combes et al. 2002). Genomes may 

also have multiple copies of the attachment/integration sites and therefore 

the number of insertion copies can be variable and unpredictable. With the 

aim to produce a robust and reproducible system this are therefore not ideal 

integration methods to use. There remains a need to for a reliable genome 

integration system that can replace or insert a single copy of the desired 

DNA sequence at a precise location within a genome. With this in mind a 

homologous recombination system was designed to use genome specific 

DNA sequences. 
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6.1.3 Engineering robustness and reproducibility in biology 

Developing a cloning system for Streptomyces species was attempted in 

parallel to the development of an automated system for performing biological 

experiments. It is widely recognised that biology is highly variable; there are 

even examples earlier in this thesis in Chapter 3 and Chapter 5 where the 

cell growth of P. putida was highly variable even when growth was replicated 

under the exact same conditions. Causes of this variability can be due to 

experimental discrepancies or slight biological differences. To increase the 

reliability of an experiment it is repeated as many times as is necessary to 

reduce error. Conducting high numbers of replicates though only increases 

chances of error arising from variable factors such as different batches of 

growth media or variability in laboratory personnel technique or skill. High 

throughput methods are slowly making their way into biological laboratories, 

thus enabling scientists to increase the n number of studies. Still, with highly 

complicated biological experiments this requires excellent focus to reduce 

mistakes. Bringing engineering principles into biology is a concept that has 

gained traction to address this issue of variability. Standardising parts is one 

system that is being used more, particularly in synthetic biology fields; an 

example of this is Biobricks (Knight 2003). Another area is removing human 

and experimental error by introducing digital and automated systems for 

designing and conducting experiments. Using automated systems reduces 

human error as the computer will only follow inputs, so if a 96 well plate is 

being used the ingredients for each well will match exactly what has been 

recorded. Automated systems also reduce experimental error by ensuring 

consistent pipetting and measurements which can often vary slightly when 

performed by hand. 

Automated systems also accurately record all details of the experiment. This 

ensures that the experiment is reproducible and the correct information is 

passed on or published for subsequent research. Aside from the accurate 

recording of information, automated systems also aid in reproducibility due to 
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their consistent performance. Due to this reduced variability in performance 

experimenters can also be confident that any differences in results are due to 

true differences between samples and not due to mistakes or experimental 

variables. 

There are a number of automated systems for biological experiments 

available. In this study, the operating system, Antha (Synthace Ltd.) and the 

Pipetmax® (Gilson) was used to develop an end to end molecular biology 

experiment beginning from the design of primers to transformation of DNA 

into competent cells.  

 

6.1.4 Automated process design using Antha 

The objective of this study is to create an end to end biological experiment 

from amplification of genome fragments to cloning and validation. There are 

a number of automated liquid handling tools available, the most flexible and 

widely used platform is the Tecan system which allows multiple functions 

using a single liquid handling platform. Antha is an operating system which 

can be connected to and coordinate the protocols of multiple pieces of 

equipment so that an experiment can be planned, designed and executed 

from beginning to end using a single software platform. The Antha operating 

system is still under development so this study was designed to continue the 

development and test in a real world experiment the usability and the 

performance of Antha. Results of the study would be fed back to developers 

of Antha at Synthace Ltd. 
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6.2 Automation of cloning for a Streptomyces vector 

A cloning experiment to construct a vector containing the homology arms 

derived from S. lividans genome, reporter gene gusA and neomycin 

resistance was designed as described in appendix C. The first step in this 

process was to PCR amplify the relevant homology arms from the 

Streptomyces lividans genome. 

6.2.1 PCR from Streptomyces lividans genome 

Primers for PCR of homology arms were designed manually. Streptomyces 

lividans was prepared for genome PCR by harvesting spores from agar 

plates grown for 5 days and freeze thawing in 50 ul dimethyl sulfoxide 

(DMSO) at – 80°C every 2 hours for 3 freeze thaw cycles. The PCR reaction 

mixture was then prepared using the Gilson Pipetmax™ controlled by the 

Antha software. Polymerase used was the Q5 polymerase (NEB). The PCR 

reaction mix was prepared as per manufacturer’s instructions, 1 µL of freeze 

thawed Streptomyces lividans spores were used per PCR reaction. Heat 

cycling was performed using the T100™ Thermal Cycler (BioRad). 

6.2.2 Running a gel 

To confirm success of the genomic PCR an agarose gel was run to check the 

size of DNA fragments amplified. E-gel™ 96 Gels with Sybr™ Safe DNA gel 

stain, 2% (Invitrogen) were used. The set up of the pipetmax for loading and 

running the gel is shown in Figure 6-1 below. 
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Figure 6-1. Gilson Pipetmax® set up to load and run PCR reactions for validation. 
The input plate contains completed PCR reactions ready to load onto the E-gel™ 96 
Gels with Sybr™ Safe DNA gel stain, 2% (Invitrogen). The E-gel® must always be 
positioned as shown here due to the power cable exiting the Pipetmax®.  

The gel was loaded using the Gilson Pipetmax® and Antha software and 

visualised using a Dark Reader blue transilluminator (Clare Chemicals). 

Regions which were amplified, annealing temperatures and corresponding 

agarose gel lanes are detailed in  

One limitation with the Antha software as it is currently is the lack of control 

over the position of the output wells and therefore the order of loading the 

PCR reactions in the gel was not intuitive. In addition to this the 96 well E-

gels® have staggered wells (as discussed later in section 6.5.2) making the 

gel more difficult to read. 
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Table 6-1. Position and length of amplified regions of the S. lividans genome and the 
corresponding lanes on the agarose gels in Figure 6-2 and Figure 6-3. For all 
amplifications, annealing temperatures used in PCR reactions were 70.0 °C, 69.3 °C, 
68.0 °C, 66.1 °C, 63.8 °C, 62.0 °C,  60.7 °C and 60.0 °C. The lanes in agarose gels 
correspond to the temperatures from left to right for each fragment. 

Amplified region of S. 
lividans genome (bp) 

Homology arm and 
size 

Agarose gel lanes 

3,249,242-3,250,277 Left 
1kb 

Figure 6-3, lanes 24-32 

3,247,378-3,250,277 Left 
3kb 

Figure 6-3, lanes 15-22 

3,244,783-3,247,452 Left 
2.5kb 

Figure 6-3, lanes 2-9 

3,247,480-3,250,277 Left 
2.5kb 

Figure 6-3, lanes 11-14 
and 33-36 

3,250,518-3,251,263 Right 
1kb 

Figure 6-2, lanes 24-32 

3,250,518-3,253,099 Right 
3kb 

Figure 6-2, lanes 15-22 

3,250,518-3,252,381 Right 
2.5kb 

Figure 6-2, lanes 2-9 

3,252,316-3,254,433 Right 
2.5kb 

Figure 6-2, lanes 11-14 
and 43-45 
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Figure 6-2. Gradient PCR results of right hand homology arms amplified from 
Streptomyces lividans genomic DNA run on an E-gel® 96 gels with Sybr® Safe, 2%. 
There were 8 PCR reactions per pair of PCR primers. The two sets of 2.5 kb homology 
arms make up the single 5 kb homology arm after vector assembly. There is also a 3 
kb and 1 kb homology arm. All PCRs for the 2.5 kb fragments were successful. There 
were also bands visible for 3 kb fragments at every melting temperature. For 1 kb 
homology arms bands were visible at higher annealing temperatures of 68.0 °C and 
69.3 °C. For all amplifications, annealing temperatures used in PCR reactions were 
70.0 °C, 69.3 °C, 68.0 °C, 66.1 °C, 63.8 °C, 62.0 °C,  60.7 °C and 60.0 °C. The lanes in 
agarose gels correspond to the temperatures from left to right for each fragment. 
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Figure 6-3. Gradient PCR results of left hand homology arms amplified from 
Streptomyces lividans genomic DNA run on an E-gel® 96 gels with Sybr® Safe, 2%. 
There were 8 PCR reactions per pair of PCR primers. The two sets of 2.5 kb homology 
arms would have made up the single 5 kb homology arm after vector assembly 
however no bands were observed for one of the 2.5 kb arms, in the middle row and 
only faint bands in the top and bottom rows indicating unsuccessful PCRs. There is 
also a 3 kb and 1 kb homology arm. PCRs to extract the 1 kb homology arm from the 
genome appear particularly successful as clear bands were visible. Faint bands were 
visible for the 3 kb fragments at all temperatures. For all amplifications, annealing 
temperatures used in PCR reactions were 70.0 °C, 69.3 °C, 68.0 °C, 66.1 °C, 63.8 °C, 
62.0 °C,  60.7 °C and 60.0 °C. The lanes in agarose gels correspond to the 
temperatures from left to right for each fragment. 

 

DNA markers were smeared on both agarose gels (Figure 6-2 and Figure 

6-3). This could be due to the fast running of the gels at a high current which 

are run in 12 minutes. This results in poor resolution between DNA fragments 

as is seen particularly in the DNA marker of Figure 6-2. Amplification of both 

sets of 3 kb homology arms and for all 1 kb homology arms. One of the 2.5 

kb fragments for the 5 kb left homology arm amplification from the genome 

was unsuccessful therefore going forward it was not possible to construct a 

vector with a 5 kb homology arm each side of the neomycin resistance gene 

that was to be inserted. The PCR of the right hand 5 kb homology arm was 

successful and still usable. Therefore the study was modified to also create 

vectors with unbalanced homology arm lengths. The remainder of each PCR 
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reaction not loaded onto the gel was purified using a Qiagen PCR cleanup kit 

to prepare the DNA for vector assembly. 

6.2.3 Vector assembly 

Once all DNA elements had been confirmed the vector could be assembled 

using the SapI restriction enzymes and T4 DNA ligase. The reaction was set 

up using the Gilson Pipetmax™ and Antha software as follows: 

1 µL of each part (50-100 ng) 

2 µL Cutsmart buffer 

1 µL SapI 

1 µL T4 DNA ligase (added after heat denaturation) 

Deionized water up to 10 µL 

 

The mixture, except for the T4 DNA ligase, once set up by the Gilson 

Pipetmax™ was incubated at 37 °C for 1 hour before transformation. The 

reaction was stopped by heat inactivation at 65 °C for 20 minutes. The T4 

DNA ligase was then added and the mixture was incubated at room 

temperature for 1 hour. Transformation was performed manually with NEB 

10beta chemically competent cells as per manufacturer’s instructions. Cells 

were plated on selective LB agar containing 50 µg/mL apramycin and 

incubated at 37 °C overnight. Colonies were observed as shown in Table 

6-2. 

6.3 Validation and comparison with manual cloning methods 

6.3.1 Comparison with manual cloning 

The process was also completed manually using identical parameters for 

reactions. Table 6-2 shows the number of colonies observed after 

transformation of both the automated and manual experiments. 
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Table 6-2. Number of colonies observed after transformation of both automated and 
manual cloning experiments 

Label Right homology 
arm length (kb) 

Left 
homology 
arm length 

(kb) 

Number of 
colonies from 

automation 
study 

Number of 
colonies 

by manual 
cloning 

A1 3 3 25 8 

B1 1 1 100 50 

C1 3 1 100 7 

D1 5 1 50 5 

E1 1 3 5 3 

F1 5 3 4 6 

 

Transformations were performed identically and the volumes of cells plated 

were equal for all samples. There were more colonies observed on plates 

from the automated cloning process, except for F1, compared with manual 

cloning. The reasons for this depend on whether the cloning was successful 

or not and therefore validation of the colonies was needed before any 

conclusions could be made. 

6.3.2 Validation by colony PCR 

To validate whether the cloning had been successful colony PCR was 

performed to verify the sequence of the plasmid. A protocol was designed 

using Antha to pick colonies for colony PCR. To pick a colony using Antha 

and the Gilson Pipetmax® the location of the colony must be precisely 

specified. This was overcome by creating an agarose plate in the size of a 

standard rectangular 1536 well plate (Figure 6-4) and selecting what would 

be the well location of the desired colony. A range of colonies from each 

transformation from the automated process were streaked onto a section of 

this agar plate and labelled A1 to F1 for ease of tracking. To work out what 

well location each desired colony was positioned at the agar plate was laid 

on top of a 1536 well plate as shown in Figure 6-5. Well positions that 
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corresponded to the desired colony were noted and input into the Antha 

protocol for colony picking. 

  

Figure 6-4. Colonies were restreaked onto an agar plate with the dimension of a 
standard 1536 well plate in preparation for picking by the Gilson Pipetmax®. 
Sections were labelled A1-F1. 

 

 

Figure 6-5. The agar plate was laid over a 1536 well plate so that the well number that 
corresponded to each desired colony to be picked could be noted. 

A

1 

A

1 

B

1 

B

1 

C

1 

C

1 

D

1 

D

1 

E

1 

F

1 

E

1 

F

1 



Chapter 6 Automating biological experiments 

133 

 

 

Six colonies per transformation were picked using the Gilson Pipetmax® 

controlled by Antha OS and inoculated into 50ul water in preparation for 

colony PCR.  

Primers for PCR were designed so that a region where two parts joined, one 

part being a homology arm, would be amplified using the Antha software. 

The method for designing primers was set up by defining parameters as 

follows: 

 length of primer between 20 – 30 base pairs; 

 GC content between 40 and 70% (higher GC allowance was selected 

due to the naturally high GC content of Streptomyces species 

genomes); 

 the starting position in the genome to begin searching for suitable 

forward primers; 

 the starting position in the reverse complement of the genome to 

begin searching for reverse primers; 

Colonies were prepared for colony PCR by resuspension in 50 µL deionized 

water and heated to 50 °C for 10 minutes. 1 µL of the denatured colony was 

used for the PCR reaction which was set up as previously described. After 

thermal cycling the PCR reaction mixture was observed using manual gel 

electrophoresis on a 1% agarose gel. Manual gel electrophoresis was used 

on this occasion due to time limitations.  Modifications to the Antha gel 

running protocol were being made in parallel to correct the gel loading onto 

the E-gels so that the order of samples was more logical and gel analysis 

was more user friendly. 
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Figure 6-6. Agarose gel of colony PCR reactions to validate cloning. 
Six colonies from each transformation were picked and inoculated into water using 
Antha OS and the Gilson Pipetmax®. PCR was performed using primers that would 
produce a fragment containing a joint between two parts of the vector assembly. From 
this gel it appears as though PCR reactions run in lanes 1, 14, 16 and 18 were 
successful. Bands observed in lanes 19-36 are faint and with poor resolution so it is 
unclear whether these represent positive PCR reactions. Bands at very low molecular 
weights in lanes 1-18 are assumed to be primers. Labels A1-F1 indicate which 
transformation the colony originated from. 

 

From the gel in Figure 6-6 it would appear that colonies tested in lanes 1, 14, 

16 and 18 may be positive clones. These lanes corresponded to colonies 

from sections A1 (lane 1) and C1 (lanes 14, 16 and 18). These colonies were 

sent for sequencing for sequence confirmation. 

Colonies that showed positive results during colony PCR were selected to 

send for sequence verification. Unfortunately sequencing results confirmed 

that both the manual and automated cloning had been unsuccessful. The 
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plasmid sequences that were observed showed artifacts of cloning where 

plasmid contains fragments of homology arms and the vector backbone 

allowing for replication in E. coli. The full assembled vector was not 

observed. 

 

6.4 Discussion 

6.4.1 Cloning was unsuccessful using both automated and manual 
methods 

Though assembly was not successful, this appeared to be a biological 

limitation and not a limitation of the automated process. The main aims of 

this study were to design and perform a biological experiment using the 

Antha software created by Synthace Ltd. The creation of a S. lividans vector 

was a secondary objective. The main objective, therefore, was achieved as 

the experiment was executed from beginning to end almost fully automated. 

Protocols to set up a PCR reaction, load and run a gel and design primers 

were successfully developed with Antha and executed using the Gilson 

Pipetmax™ when liquid handling was required. The assembly of the vector 

appears to be a biological issue. Streptomyces genomes have particularly 

high GC content and therefore cloning is often problematic. The homology 

arms chosen for this assembly were no exception to this, however the PCR 

from the genome was expected to be the limiting step but this was fairly 

successful. Possible reasons for the cloning artifacts observed could be over 

digestion with SapI or possible SapI recognition sites in the homology arms 

that were unknown due to a mutation in the S. lividans cells used compared 

with the genome sequence used from Genbank.  

There were colonies observed from both automated and manual 

transformations despite the cloning being unsuccessful. As mentioned 

above, one reason for this was the appearance of cloning artifacts meaning 
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that vectors may have contained the apramycin resistance gene but the 

vector was not assembled correctly. There were much higher numbers of 

false positive colonies from the automated process and this highlights a 

potential limitation of the process. This increased number of false positives 

may arise from cross contamination as the pipette is moving to different 

positions above the open well plates. Therefore there is the potential for 

small droplets to end up in wells that they should not be in. This could be 

minimised by using foil plate seals which the pipette tip in theory should 

pierce with ease when dispensing liquid but would only leave a small opening 

to each well. 

6.4.2 Challenges in usability with Antha 

A number of challenges were overcome when using the Antha software, 

particularly relating to the Gilson Pipetmax. Difficulties arose when 

determining the exact height and positioning of the 96 well plates. During the 

PCR protocol 96 well plates were kept on Eppendorf PCR cooler plates, this 

altered the height of the plates and needed to be updated on the 

programming of the protocol. These PCR cooler plates were frozen at -20 °C 

for 24 hours before use. If the plates were not frozen exactly horizontally they 

would freeze unevenly resulting in a slight height difference at one end of the 

plate compared to the other. This meant that pipetting by the Pipetmax™ 

occasionally resulted in tips reaching the bottom of the plate and bending or 

breaking, occasionally getting stuck in the plate or the tips not being ejected 

in to the waste properly. 

Challenges also arose with gel loading. The current for the gel 

electrophoresis is powered through the e-gel platform. It was possible to 

install this in the Pipetmax™, however it could only be positioned in the 

bottom right hand corner cell of the Pipetmax™ due to the position of the 

power cable attaching to the e-gel platform. This meant that this needed to 

be specified in the protocol. The e-gels used have a staggered well format 
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and therefore the default system for the computer was to load alternate rows 

first (i.e. odd numbered rows) followed by the even numbered rows (Figure 

6-7). This meant after running the gel it became more complicated to identify 

samples. This was corrected so that gels were loaded in a more user friendly 

order, this issue was resolved but further limitations to the E-gel system in 

general are discussed below.  
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Figure 6-7. The E-gel 96. Taken from the Life technologies E-gel technical guide. 
The default system for loading the E-gel 96 was to load rows A, C, E… and then B, D, 
F…. This was corrected for more user friendly identification of samples so that the gel 
was loaded A, B, C as expected. 

 

6.4.3 Limitations of the E-gels 

The 96 well e-gels are not user friendly themselves as the way the lanes are 

staggered means that samples run between the wells in the rows below, 

making identification of samples difficult. In future the 48 well format would 

be much more user friendly. The limitation with this would be that with the 

Pipetmax™ it is only possible to fit the e-gel in one location due to the power 

cable so only one gel could be run per protocol. To overcome this, it may be 

possible to use a different liquid handler that could accommodate multiple 

power cables exiting the cabinet. 

A limitation that is specific to the E-gels and cannot be overcome using the 

Antha software was the short running length meaning that small variations in 

DNA movement through the gel results in what appears to be large 

differences in DNA size. This is a resolution issue and an example of this can 

be observed in Figure 6-3. The 1 kb fragments run on this gel appear to line 
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up with the 3 kb marker on the ladder on the left but gradually run further 

down the gel to line up with the 1 kb marker as we move across the lanes to 

the right. The marker in a number of cases is not clearly resolved which may 

be overcome by using a marker with fewer molecular weight bands. To 

overcome the difference in running of the samples, it would be necessary to 

understand why this is happening across the gel to be able to reduce the 

effect. 
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 Future work Chapter 7.

 

7.1 Investigating more P. putida strains 

In Chapter 3, many P. putida strains did not transform using the 

electroporation method used. In addition to this, there is a wider collection of 

strains available in the Ward lab, which were not tested due to time 

constraints and a lack of high throughput methods. For a more complete 

study, a wider range of P. putida  strains should be transformed with 

pQR1050 and their conversion of benzoate to 2-HMSA measured.  

7.2 Full identification of the novel molecule produced after 
transaminase conversion of 2-HMSA 

The novel molecule produced after transaminase conversion of 2-HMSA was 

not fully confirmed. To confirm the structure of this molecule, NMR would be 

performed. The limitation in this study that was not overcome was the purity 

and the low concentration of the product. To gain sample that would be 

suitable for NMR analysis, the reaction should be conducted on a larger 

scale, for example using a 5 L bioreactor rather than in a shake flask 

experiment. This would require some additional method development as the 

methods used in chapter 3 are unlikely to transfer to a bioreactor based 

experiment. The amine product would also need to be isolated which should 

be performed using preparative HPLC. 

7.3 Properties and potential uses of the amine product 

Once purified, the amine can be further investigated. One use of the amine 

described in chapter 4 is as a precursor to picolinic acid. Methods to convert 

the amine to picolinic acid could be investigated, either using techniques as 

described in (Riegert et al. 1998) or by investigating further enzymes that 

may convert the amine further. 



Chapter 7 Future work 

142 

 

7.4 Investigating the engineered pathway in Streptomyces 

Due to time constraints the cloning in S. lividans was not completed. This 

should be continued to produce a vector that can be easily cloned into 

Streptomyces species and express the TOL pathway truncate. The 

production of 2-HMSA could be compared with the production in E. coli and 

in P. putida strains. Furthermore the engineered pathway could also be 

cloned into Streptomyces to produce the novel molecule and investigate the 

industrial feasibility of cloning an engineered pathway into Streptomyces 

species. 
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 Conclusion Chapter 8.

8.1 Restatement of the aims 

The aims of the research as set out in the introduction, chapter 1, were as 

follows: 

1. As a proof of principle, to show the creation of a novel amine using an 

engineered metabolic pathway and a transaminase from the UCL 

toolbox of transaminases 

2. To explore an engineered pathway in one or more industrially relevant 

alternative host organisms and compare the activity of the pathway to 

the activity in E. coli. 

3. To design and conduct a biological experiment using the Antha 

software with relevant automation technology. 

The remainder of this chapter will discuss the extent to which these aims 

were met and future work to leading on from these aims. 

The aim was to show as a proof of principle that novel molecules can be 

produced by engineering metabolic pathways. A novel amine was produced 

by engineering a fragment of the TOL metacleavage pathway and a 

transaminase from the UCL toolbox of transaminases. The amine was 

verified using mass spectrometry but it was not isolated and the absolute 

amount that was produced was not calculated. Therefore, thought the first 

aim was met in essence there is still work to be done to validate the process 

and confirm the conversion rates. This validation would be essential to make 

any judgements on the feasibility of this method of production for industry, 

which is the rationale behind this research project and the applicableness of 

this research to the real world. In addition to this structural work to confirm 

the conversion of the products predicted in chapter 5 starting with various 
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methylbenzoates as the starting material is something that also remains to 

be completed. 

With regards to the second aim, which is the investigation of alternative host 

organisms, the objective was partially fulfilled. P. putida was investigated 

successfully and compared to E. coli. It was found that particular strains 

showed similar activity in the conversion of 2-HMSA by the truncate of the 

TOL metacleavage pathway. There are a number of limitations to this 

investigation which were discussed in Chapter 3. The main limitation being 

that only one strain of E. coli was used as a comparison and may not be the 

ideal strain. Another limitation being that only LB media was used when 

better results may have been obtained using a minimal media optimised for 

each strain specifically. However with regards to the aim of this investigation, 

the main objective was met in the respect that it was shown that P. putida is 

a feasible alternative option for industrial research in bacteria due to similar 

enzyme expression and activity and similar growth times compared to the 

current standard that is E. coli. A shortcoming of this research project with 

respect to the second aim is the failure to express an engineered pathway in 

Streptomyces lividans. With more time, a different cloning strategy should be 

adopted to obtain positive clones for expression in Streptmyces lividans. 

The third aim, regarding the automation of a biological experiment was also 

partially successful. A biological experiment was conducted, though the 

process was not fully automated due to limitations of the liquid handling 

machines and lack of other automated equipment available such as 4°C 

incubation for the transformation. In addition to this the experiment was 

unsuccessful, which appears to be due to the cloning strategy rather than the 

automation aspect. It would be beneficial for future work to include a positive 

control where the every step of the experiment is known to work well 

manually and therefore the automation process can be truly validated. 
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8.2 Final remarks 

All in all, the main objectives of this project were met, though with more time 

the research could be made more robust. With the increase in automation, 

maybe this would be possible within a shorter timeframe in the future. 
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 Appendices  Chapter 9.

9.1 Appendix A - Primers 

9.1.1 Cloning for P. putida expression 

The following primers were used in constructing the broad host range 

plasmid used in chapters 3, 4 and 5. 

Table 9-1 Cloning pQR1050 

Primer name Primer sequence (5’-3’) 

TOLxyzlteFWD GGAATCTCTAGAAAGGCCTACCCCTTAGGCTTTATGCAAC 

TOLxyzlteREV GAAAATAAGCTTGAATTCCTCGAGAAACTCGCCGAAGCGCGC 

 
 
Table 9-2 Cloning pQR1062 

Primer name Primer sequence (5’-3’) 

ARTAmFWD ATTAGTCGGTTCGGCTAATTTTGTTTAACTTTAAGAAGG 
ArTAmREV AACAGCTTGCCGCTGTCAGTGGTGGTGGTGGTG 
pQR1050FWD CAGCGGCAAGCTGTTCGACAATGTC 
pQR1050REV GCCGAACCGACTAATTCACCGCTAATG 

 
 

9.1.2 Cloning for Streptomyces expression 

The following primers were used in constructing the DNA fragments used for 

cloning in chapter 6. 

Table 9-3 Constructing the vector backbone from pSET152 

Primer name Primer sequence (5’-3’) 

pSET152-For 
GAGCTACTGGTACCGTGCCAGCTGCATTAATGAATCGG
CCAACG 

pSET152-
For-lacZa 

GAGCTACTGGTACCCTACGTCTGTCGAGAAGTTTCTGA
TCGAAAAGTTCGACAGC 

pSET152-Rev 
TGCAGGTCGACGGATCTTTTCCGCTGCATAACCCCATG
GTCATCGAG 

SapI-mut1-
For 

CGGTTTGCGTATTGGGCACTCTTCCGCTTCCTCGCTCA 

sapI-mut1-
Rev 

TGAGCGAGGAAGCGGAAGAGTGCCCAATACGCAAACC
G 

SapI-mut2- CAGGTGGCTCAAGGAGAAGAGTCTTCAGAAGGAAGGTC
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For C 

SapI-mut2-
Rev 

GGACCTTCCTTCTGAAGACTCTTCTCCTTGAGCCACCTG 

SapI-mut3-
For 

TCCGCGAAGTCGCTCGTCTTGATGGAGCGCATGG 

SapI-mut3-
Rev 

CCATGCGCTCCATCAAGACGAGCGACTTCGCGGA 

SapI-mut4-
For 

CTTTTCCTCAATCGCCCTTCGTTCGTCTGGA 

SapI-mut4-
Rev 

TCCAGACGAACGAAGGGCGATTGAGGAAAAG 

 
 
 
Table 9-4  Primers for the PCR of homology arms from Streptomyces lividans  

Primer name Primer sequence (5’-3’) 

LHA-P1-For-
Lividans-des   

GAGCTGCAGCTCTTCTGAAACGAGTCGGTCGCCTAC
GCGAAGGAACGTCACGCCTT       

LHA-P1A-For-
Lividans-des  

GAGCTGCAGCTCTTCTGAAATCCAGTTCAAGATCGC
CGACATGGAGATGAAGG          

LHA-P2-Rev-
Lividans-des   

GAGCTGCAGCTCTTCTTCCTTGATTCGATCAAACGCG
TGCCTGTGGGTGACCGCT 

LHA-P2A-Rev-
Lividans-des  

GAGCTGCAGCTCTTCTTCCCGGAGCCCTCATTTTGA
CTTAGGTGAGCCTAACCTAAG      

LHA-P3-For-
Lividans-des   

GAGCTGCAGCTCTTCTAGGCGAATCAACTTAGGTTA
GGCTCACCTAAGTCAAAATGAGGGCT 

LHA-P3A-For-
Lividans-des  

GAGCTGCAGCTCTTCTAGGCAGGCACGCGTTTGATC
GAATCAACTTAGGTTAGGC        

LHA-P4-Rev-
Lividans-des   

GAGCTGCAGCTCTTCTCAGTCATACGGCGAACTCCT
GGAACGCGATCGACTGCT         

LHA-P4A-Rev-
Lividans-Des 

GAGCTGCAGCTCTTCTCAGCGATCGACTGCTCGACC
GGGTAGTACTCGC     

RHA-P1-For-
Lividans-des   

GAGCTGCAGCTCTTCTATAGTTCCAGGAGTTCGCCG
TATGAGCCGCTTGAGCA          

RHA-P1A-For-
Lividans-des  

GAGCTGCAGCTCTTCTATACTCGGACGCGAGTACTA
CCCGGTCGAGCAGTC 

RHA-P2-Rev-
Lividans-des   

GAGCTGCAGCTCTTCTGAGCGTGAAGATCGACAGGA
GCTTCTTGTCGTCCGGCACGT 

RHA-P2A-Rev-
lividans-des  

GAGCTGCAGCTCTTCTGAGGCGTAGAAGCTGTGCAG
CAGCGGGACGTAGTAGG     

RHA-P3-for-
Lividans-des   

GAGCTGCAGCTCTTCTCTCACGGACGTCTTCGACTG
CTTCTTCCGCTTC      

RHA-P3A-
ForLividans-des   

GAGCTGCAGCTCTTCTCTCCACAGCTTCTACGCCTA
CGACCTGGTGTACATGCCG   

RHA-P4-Rev-
lividans-des   

GAGCTGCAGCTCTTCTAAACCCACGTTCCGTCCTTCT
GGATGATTTCC  
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RHA-P4A-Rev-
Lividans-des  

GAGCTGCAGCTCTTCTAAAACCCAGTTCCCTGCGGA
GCAGACTGACGTTC  

LHA-1kb-For-
liv-des 

GAGCTGCAGCTCTTCTGAACTCAAGGAGCAGGGCCG
GCTGTACTCCTTCTAC 

RHA-1kb-Rev-
liv-des 

GAGCTGCAGCTCTTCTAAAGTGGCCCTCGGTCATGC
CGGTCTCGAC 

LHA-3kb-For-
liv-des 

GAGCTGCAGCTCTTCTGAAGGAGGAACAACTCCGCG
AGCAGGGCTGAG 

RHA-3kb-Rev-
liv-des 

GAGCTGCAGCTCTTCTAAACAGTACTGGGGCCTGGA
CCGCACCAG 
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9.2 Appendix B – Data analysis 

9.2.1 Cloning results analysis 

Cloning results were confirmed by either restriction digestion and DNA 

agarose gel or by DNA sequencing or both. Cloning in chapter 3 of the TOL 

xylXYZLTE genes into pMMB67EH to create pQR1050 was confirmed using 

DNA gel analysis and by sequencing analysis below. 

 

Figure 9-1. DNA agarose gel indicating the successful insertion of the TOL xylXYZLTE 
genes into pMMB67EH. 
The first lane shows the PCR amplified TOL xylXYZLTE genes from pQR226. The 
second lane shows the undigested plasmid isolated from the transformation of the 
cloning product described in section 3.2.1. The third lane shows the cloning product 
after digestion with XbaI and HindIII restriction enzymes. This indicates that the insert 
was successfully cloned into the pMMB67EH plasmid. 
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The DNA sequence of the isolated plasmid was also analysed. Primers for 

sequencing were as described in Table 9-5. 

Table 9-5. Primers used for DNA sequencing of pQR1050 and pQR1060 

Description DNA sequence 5’ – 3’ 

pMMB67EH forward CCGACATCATAACGGTTCTGGC 
pMMB67EH reverse GGCGTTTCACTTCTGAGTTCGGC 
TOL xylE forward GGGGAGATTACAACTACCC 
TOL xylX reverse GCCTTGTTTCCACTCCTAAAGCG 

 

Using these primers DNA sequencing analysis confirmed the sequence of 

pQR1050 and pQR1060. 

9.2.2 MBA/acetophenone HPLC analysis 

Percent conversion of transaminases using the MBA/acetophenone assay 

was calculated by HPLC analysis. Concentration of acetophenone in the 

reaction mixture were calculated based on the standard curve below in  

Figure 9-2.  

 
Figure 9-2. Acetophenone standard curve used to calculate concentration of acetophenone 
in the transaminase MBA assays. 
The concentration of acetophenone was ultimately used to calculate percent 
conversion of 2-HMSA to amine.  
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9.2.3 LCMS 

The following LCMS trace was used to elucidate the structure of the novel amine in section 4.3.3. 

 
 
 
Figure 9-3. LCMS trace resulting from the predicted HPLC purified derivatised amine product. 
Peaks at 314.8 and 336.20 were predicted to be the novel amine product without and with a sodium adduct respectively.
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9.3 Appendix C – Streptomyces cloning experimental design 

The following description of the cloning design for Streptomyces is applicable 

to chapter 6. 

9.3.1 Experimental design 

To begin an investigation into cloning in Streptomyces the species was 

selected based on abundance of previous knowledge and work. The 

particular strain of Streptomyces lividans without any naturally occurring 

plasmid was chosen so that the organism was simple to work with. 

The aim of this study was to design a cloning tool that would be easily 

transferable between Actinomyces species; therefore the integration site of 

the plasmid must be easily changeable and be flexible enough to integrate in 

any desired genome sequence. To achieve this homologous recombination 

was investigated. Positions for integration were chosen based on region of 

the genome – not too close to the ends due to the frequent modification of 

the ends in Streptomyces species but also not in the centre due to the 

essential nature of these genes. Modifying the genome must not result in any 

inhibition of growth or DNA regions necessary for survival in this case, 

though the method ultimately should allow the modification of these regions if 

so desired by the investigator. During homologous recombination the desired 

DNA to be introduced into the bacterium is flanked by sequences matching 

the desired integration site in the genome. 1 kb flanking have previously 

been used with a Crispr/Cas9 system in Streptomyces species (Cobb et al. 

2015); therefore this was the smallest size of recombination arm designed in 

order to maximise chances of success. However larger recombination sites 

not only results in a larger plasmid but also increases chances of disrupting 

essential DNA sequences in the genome.  
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Figure 9-4. Using homology arms, it is possible to integrate DNA into genomic DNA by 
the process of homologous recombination. 
The most desired result is a double crossover as shown here, where homology arms 
either side of the plasmid DNA of interest results in integration of only that target DNA 
and not the full plasmid. It is also possible to achieve a single crossover where the 
entire plasmid can be integrated into the genome. 

 

9.3.2 Integration site selection 

A range of homology arm sizes were investigated which added to the 

requirement for a region in the genome to design homology arms. The region 

needed to be in a locus that would not have an effect on growth or survival of 

the bacteria and also needed to be large enough to not have an effect on 
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flanking genome regions or other nearby metabolic pathways. The 

Streptomyces lividans genome is approximately 8.3 Mbp long (Rückert et al. 

2015). Assuming the core genes for growth and core metabolism are within 

the central 3 Mbp of the genome and the outer 2 Mbp at each end of the 

linear genome are frequently mutated the ideal region to investigate is 

approximately between 2 and 3 Mbp in from each end of the genome. A 

maximum length of 5 kb per homology arm was investigated and therefore 

the ideal location needed to be 10 kb in length. We aimed to investigate two 

suitable regions to minimise failure due to any unpredictable effects of 

modifying the DNA. 

To search for genes, operons and biosynthetic pathways within the 

Streptomyces lividans genome a variety of online tools were used including 

the GenBank database, the KEGG database, the BioCyc database and 

antiSMASH secondary metabolite mining and annotation (Kanehisa & Goto 

2000; Clark et al. 2016; Caspi et al. 2016; Weber et al. 2015). After searching 

for large enough regions of the genome that would only effect one pathway 

and filtering this into pathways that would not effect growth, two regions of 

the Streptomyces lividans genome were selected for the design of homology 

arms. The regions selected contain genes relevant to cobalamin biosynthesis 

and desferrioxamine biosynthesis. The cobalamin synthesis pathway genes 

are located in an operon on the Streptomyces coelicolor genome; and 

although only the cobN gene is annotated in the S. lividans genome these 

species are similar and further analysis of nearby genes would lead us to 

assume that the cobalamin biosynthesis pathway is also arranged in an 

operon in this genome. This operon in S. lividans is located between base 

pairs 2 194 980 and 2 211 537. This location fits our previous requirements 

of a position not too close to the ends of the genome but also not in the 

centre of the genome. Cobalamin, also known as vitamin B12, is a cofactor 

containing cobalt and is only used in some prokaryotes. This would indicate 

that it is not essential for survival. There is literature describing the effects of 
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cobalamin deficiency in S. coelicolor which describes reduced growth in 

minimal media but not in rich media. This indicates a function for cobalamin 

in the growth and development of Streptomyces species but not in survival 

(Takano et al. 2015). Though there does appear to be an effect on growth, 

for our research purposes and a lack of abundance of other suitable sites this 

region was selected for the design of homology arms. The desferrioxamine 

biosynthesis pathway is located between base pairs 3 244 783 and 3 254 

785 which is more towards the centre of the genome than initially planned 

but is far enough away from the cobalamin synthesis pathway that will be 

investigated. This is important because if the sites were too close then they 

may have the same negative effect on survival or growth and both would not 

be suitable for investigated cloning tools. Literature describes 

desferrioxamine as an iron siderophore that are found in abundance in 

Streptomyces species (Schrempf & Dyson 2011). Reported side effects 

arising from the inhibition of some desferrioxamine biosynthesis pathways in 

S. coelicolor are impaired growth or inhibition of spore formation (Tierrafría et 

al. 2011; Lambert et al. 2014). It is unknown whether either of these 

observations correspond to the equivalent desferrioxamine biosynthesis 

pathway as has been selected in the S. lividans genome. Therefore the effect 

of disrupting this pathway is unknown but may affect an aspect of cell growth. 

For the purpose of this study, this should not be a major hindrance. The main 

aim is to achieve homologous recombination in Steptomyces lividans and to 

determine success colonies need to be observed, further growth of these 

colonies is not necessary. 

9.3.3 Vector design 

There are two methods for transforming DNA into Streptomyces; these are 

conjugation and protoplasting (Kieser et al. 2000). Conjugation involves the 

use of E. coli ET12567/pUZ8002 containing the plasmid intended for 

transformation into Streptomyces. Protoplasting involves permeabilising the 

Streptomyces cells (to create protoplasts) and electroporation of these 
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protoplasts so that they will take up the new plasmid DNA. Conjugation 

traditionally has a good success rate and it used routinely in academic and 

industry research. Using the conjugation method requires a vector that 

contains the relevant DNA elements for conjugation as well as elements for 

transformation and replication in E. coli. A widely used vector for conjugation 

in Streptomyces research is the pSET152 vector. This vector contains all the 

necessary elements and also contains DNA encoding for the integrase 

protein φC31 and attP integration sites. For the purpose of this study, the 

integrase and integration sites in pSET152 would interfere with investigating 

integration by homologous recombination. These elements were therefore 

removed from the pSET152 vector using PCR to amplify the desired 

fragment of the backbone with appropriate restriction enzymes at each end 

and ligated to re-circularise the backbone. The pSET152 vector contains an 

apramycin resistance gene which does allow selection in both E. coli and S. 

lividans. With the φC31 integration the whole plasmid would be integrated 

into the genome, however using the homologous recombination method, the 

aim is to only introduce the fragment of DNA present between the two 

homology arms. The apramycin resistance gene is not located between the 

homology arms and therefore to select for positive clones in S. lividans after 

transformation neomycin resistance was chosen to be inserted between 

homology arms and thus be integrated into the S. lividans genome. With 

homologous recombination it is also possible for a single crossover to occur 

resulting in the entire plasmid being integrated into the genome. For this 

reason a reporter gene was also included in the plasmid outside of the 

homology arms, the GusA gene. GusA encodes for β-glucoronidase and 

provides a blue/white screen that has been widely used in Steptomyces and 

other bacteria (Myronovskyi et al. 2011; Li et al. 2015).  Having this reporter 

outside the homology arms it is possible to quickly screen for double 

crossover mutants which will appear as white colonies and single crossover 

mutants will appear blue when plated onto selective agar containing X-gluc 
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(5-bromo-4-chloro-3-indolyl-beta-D-glucuronide). The resulting vector is 

shown in Figure 9-5 below. 

 

 

Figure 9-5. Vectors for conjugation into Streptomyces species in this study will follow 
this design. 
The left and right homology arms will vary in size from 1 kb each to 5 kb each. The 
vector backbone contains genes necessary for conjugation and an apramycin 
resistance gene for selection in E. coli during cloning. The neomycin gene should be 
integrated into the Streptomyces genome after conjugation and allow selection of 
successful conjugants. The GusA gene is also a selection marker that will allow 
selection for Streptomyces colonies that have integrated the full plasmid into the 
genome as a result of an undesired single crossover. 

One of the main objectives of this study is to create a vector that can be 

easily manipulated and adapted for cloning in a range of Streptomyces 

species and different locations in the genome. Therefore the homology arms 

must be easily interchangeable. One widely used system to facilitate this is 

the golden gate system which takes advantage of type IIS restriction 
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endonucleases which cut outside of their DNA recognition sequence thus 

leaving the restriction site intact. Using this system and creating a system 

where overhangs left by the restriction enzyme for each individual element in 

the vector (described as parts) are different means one restriction enzyme 

can be used for assembly of the entire vector (Figure 9-6). The same 

enzyme can also be used when single or few parts need to be altered, for 

example changing the homology arms. 

Figure 9-6. The vector is designed so that the ends of each part have unique 
overlapping overhangs when digested with a type IIS endonuclease. 
This ensures that the vector is assembled correctly and also allows for easily 
interchangeable parts. Base pairs indicated by brackets at the ends of each genetic 
part indicate the overhanging base pairs after digestion with SapI. 

Designing the vector in this way with standard overhangs allowing for 

interchangeable parts is a step toward the more systematic design of 
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biological experiments. This type of experimental design allows for the move 

towards engineering biology by creating standard parts. The main challenge 

with this system is ensuring that the DNA elements do not contain the 

desired type IIS endonuclease recognition site. Therefore a number of the 

parts, including the vector backbone were mutated using site directed 

mutagenesis to remove SapI restriction sites. 
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9.4 Appendix D - Antha script 

The following scripts were used in chapter 6 for automation. 

9.4.1 Script for gradient PCR set up 

The below script was used with the PipetMax™ to load 96 well plates ready 

for gradient PCR. This was used for PCR from the Streptomyces genome 

and for the colony PCR for construct validation. 

protocol AutoPCR_Gradient_mmx 
import ( 
"github.com/antha-lang/antha/antha/anthalib/wtype" 
"github.com/antha-lang/antha/microArch/factory" 
) 
// Input parameters for this protocol (data) 
Parameters ( 
// PCRprep parameters 
Projectname string 
Reactiontotemplate map[string]string // e.g. ["left homology 
arm"]:"templatename" 
Reactiontoprimerpair map[string][2]string // e.g. ["left homology 
arm"]:"fwdprimer","revprimer" 
RowGradientRatherthanColumn bool // if true, 12 replicates of each reaction 
will be set up, one set of reactions per row, else 8 reactions set up 1 set per 
column 
) 
// Data which is returned from this protocol, and data types 
Data ( 
 Error error 
 NumberOfReactions int 
) 
// Physical Inputs to this protocol with types 
Inputs ( 
FwdPrimertype *wtype.LHComponent 
RevPrimertype *wtype.LHComponent 
Templatetype *wtype.LHComponent 
Plate *wtype.LHPlate 
) 
// Physical outputs from this protocol with types 
Outputs ( 
Reactions []*wtype.LHComponent 
) 
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Requirements { 
} 
// Conditions to run on startup 
Setup { 
} 
// The core process for this protocol, with the steps to be performed 
// for every input 
Steps { 
 var Samplenumber int 
 // if RowGradientRatherthanColumn == true,  
 //12 replicates of each reaction will be set up,  
 //one set of reactions per row,  
 //else 8 reactions set up 1 set per column 
 if RowGradientRatherthanColumn{ 
  Samplenumber = 12 
 } else { 
  Samplenumber = 8 
 } 
 var counter int 
Reactions = make([]*wtype.LHComponent,0) 
volumes := make([]wunit.Volume,0) 
welllocations := make([]string,0) 
/* 
// add step to make mastermix first 
mastermix := RunSteps(MakePCRmmx, 
               Parameters{ 
                    WaterVolume: wunit.NewVolume(10,"ul"), 
     ReactionVolume: 
wunit.NewVolume(25,"ul"), 
          BufferConcinX: 5, 
    FwdPrimerName: Reactiontoprimerpair[reactionname][0], 
    RevPrimerName: Reactiontoprimerpair[reactionname][1], 
     TemplateName: templatename, 
    ReactionName: reactionname, 
          FwdPrimerVol: wunit.NewVolume(1,"ul"), 
          RevPrimerVol: wunit.NewVolume(1,"ul"), 
          AdditiveVols: []wunit.Volume{wunit.NewVolume(5,"ul")}, 
          Templatevolume: wunit.NewVolume(1,"ul"), 
          PolymeraseVolume: wunit.NewVolume(1,"ul"), 
          DNTPVol:wunit.NewVolume(1,"ul"), 
          Numberofcycles: 30 , 
          InitDenaturationtime: wunit.NewTime(30,"s"), 
          Denaturationtime: wunit.NewTime(5,"s"), 
          Annealingtime: wunit.NewTime(10,"s"), 
          AnnealingTemp: wunit.NewTemperature(72,"C"), // Should be 
calculated from primer and template binding 
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          Extensiontime: wunit.NewTime(60,"s"), // should be calculated from 
template length and polymerase rate 
          Finalextensiontime: wunit.NewTime(180,"s"), 
          Hotstart: false, 
          AddPrimerstoMasterMix: false, 
  WellPosition: wellposition, 
                }, Inputs{ 
          FwdPrimer:FwdPrimertype, 
          RevPrimer: RevPrimertype, 
          DNTPS: factory.GetComponentByType("DNTPs") , 
          PCRPolymerase:factory.GetComponentByType("Q5Polymerase"), 
          Buffer:factory.GetComponentByType("Q5buffer"), 
          Water:factory.GetComponentByType("water"), 
          Template: Templatetype, 
          Additives: 
[]*wtype.LHComponent{factory.GetComponentByType("GCenhancer")} , 
          OutPlate: Plate, 
                        }) 
*/ 
for reactionname, templatename := range Reactiontotemplate { 
 //wellposition := Plate.AllWellPositions(wtype.BYCOLUMN)[counter] 
for j:=0;j< Samplenumber;j++{ 
// for i:= 0;i < len(Reactions);i++{  
 var wellcoords  = wtype.WellCoords{X:counter,Y:j} 
 if RowGradientRatherthanColumn{ 
  wellcoords  = wtype.WellCoords{X:j,Y:counter} 
 } else { 
  wellcoords  = wtype.WellCoords{X:counter,Y:j} 
 } 
 wellposition := wellcoords.FormatA1() 
result := RunSteps(PCR_vol_mmx, 
               Parameters{ 
             //       WaterVolume: wunit.NewVolume(10,"ul"), 
     MasterMixVolume: 
wunit.NewVolume(17,"ul"), 
    FwdPrimerName: Reactiontoprimerpair[reactionname][0], 
    RevPrimerName: Reactiontoprimerpair[reactionname][1], 
    TemplateName: templatename, 
    ReactionName: reactionname, 
          FwdPrimerVol: wunit.NewVolume(1,"ul"), 
          RevPrimerVol: wunit.NewVolume(1,"ul"), 
          Templatevolume: wunit.NewVolume(1,"ul"), 
          PolymeraseVolume: wunit.NewVolume(1,"ul"), 
          Numberofcycles: 30 , 
          InitDenaturationtime: wunit.NewTime(30,"s"), 
          Denaturationtime: wunit.NewTime(5,"s"), 
          Annealingtime: wunit.NewTime(10,"s"), 
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          AnnealingTemp: wunit.NewTemperature(72,"C"), // Should be 
calculated from primer and template binding 
          Extensiontime: wunit.NewTime(60,"s"), // should be calculated from 
template length and polymerase rate 
          Finalextensiontime: wunit.NewTime(180,"s"), 
          PrimersalreadyAddedtoMasterMix: false, 
  PolymeraseAlreadyaddedtoMastermix: true, 
  WellPosition: wellposition, 
                }, Inputs{ 
          FwdPrimer:FwdPrimertype, 
          RevPrimer: RevPrimertype, 
          PCRPolymerase:factory.GetComponentByType("Q5Polymerase"), 
          Template: Templatetype, 
          OutPlate: Plate, 
          MasterMix: factory.GetComponentByType("Q5mastermix"),              
                }) 
 
    Reactions = append(Reactions, result.Outputs.Reaction) 
    volumes = append(volumes,result.Outputs.Reaction.Volume()) 
 welllocations = append(welllocations,wellposition) 
  
    } 
 counter++ 
 } 
 NumberOfReactions = len(Reactions) 
 Error = wtype.ExportPlateCSV(Projectname+".csv", 
Plate,Projectname+"outputPlate", welllocations, Reactions, volumes)  
} 
 

 

9.4.2 Script for loading and running E-gel® 

The below script was used to load E-gels® from samples in a 96 well plate 
using the Gilson PipetMax™ and provide a file with the order of loading onto 
the gel for easy analysis. 
 
 
// example protocol for loading a DNAgel 
protocol DNA_gel_fromCSV 
import ( 
 "fmt" 
 "github.com/antha-lang/antha/antha/anthalib/wtype" 
 "github.com/antha-lang/antha/antha/anthalib/mixer" 
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 inplate "github.com/antha-lang/antha/target/mixer" 
 
) 
// Input parameters for this protocol (data) 
Parameters ( 
  
 ProjectName string 
 Loadingdyeinsample bool 
 InputCSVfile string 
 Samplenumber int 
 Watervol Volume 
 LadderVolume Volume 
 Loadingdyevolume Volume 
 DNAgelrunvolume Volume 
  
 Mixingpolicy string //wtype.LiquidType 
  
 //DNAladder Volume // or should this be a concentration? 
 
 //DNAgelruntime time.Duration 
 //DNAgelwellcapacity Volume 
 //DNAgelnumberofwells int32 
 //Organism Taxonomy //= 
http://www.ncbi.nlm.nih.gov/nuccore/49175990?report=genbank 
 //Organismgenome Genome 
 //Target_DNA wtype.DNASequence 
 //Target_DNAsize float64 //Length 
 //Runvoltage float64 
 //AgarosePercentage Percentage 
) // polyerase kit sets key info such as buffer composition, which effects 
primer melting temperature for example, along with thermocycle parameters 
 
// Data which is returned from this protocol, and data types 
Data ( 
   // NumberofBands[] int 
 //Bandsizes[] Length 
 //Bandconc[]Concentration 
 //Pass bool 
 //PhotoofDNAgel Image 
 Error error 
) 
 
 
// Physical Inputs to this protocol with types 
Inputs ( 
    Water *wtype.LHComponent 
 Ladder *wtype.LHComponent 
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 Sampletotest *wtype.LHComponent//WaterSolution 
 Loadingdye *wtype.LHComponent//WaterSolution //Chemspiderlink // 
not correct link but similar desirable 
 DNAgel *wtype.LHPlate  // gel 
 MixPlate *wtype.LHPlate// plate to mix samples if required 
 
 //DNAladder *wtype.LHComponent//NucleicacidSolution 
    //Water *wtype.LHComponent//WaterSolution 
 
 //DNAgelbuffer *wtype.LHComponent//WaterSolution 
 //DNAgelNucleicacidintercalator *wtype.LHComponent//ToxicSolution 
// e.g. ethidium bromide, sybrsafe 
 //QC_sample *wtype.LHComponent//QC // this is a control 
 //DNASizeladder *wtype.LHComponent//WaterSolution 
 //Devices.Gelpowerpack Device 
) // need to calculate which DNASizeladder is required based on target 
sequence length and required resolution to distinguish from incorrect 
assembly possibilities 
 
// Physical outputs from this protocol with types 
Outputs ( 
 Loadedsamples []*wtype.LHComponent//Gel 
    // 
) 
 
// No special requirements on inputs 
Requirements { 
    // None 
/* QC if negative result should still show band then include QC which will 
result in band // in reality this may never happen... the primers should be 
designed within antha too 
control blank with no template_DNA */ 
} 
 
// Condititions run on startup 
// Including configuring an controls required, and the blocking level needed 
// for them (in this case, per plate of samples processed) 
Setup { 
 /*control.config.per_DNAgel { 
 load DNASizeladder(DNAgelrunvolume) // should run more than one 
per gel in many cases 
 QC := mix (Loadingdye(loadingdyevolume), 
QC_sample(DNAgelrunvolume-loadingdyevolume)) 
 load QC(DNAgelrunvolume) 
 }*/ 
} 
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// The core process for this protocol, with the steps to be performed 
// for every input 
Steps { 
 
 // parse sample locations from file 
 inputplate,err := inplate.ParseInputPlateFile(InputCSVfile)  
  
 if err != nil { 
  Errorf(err.Error()) 
 } 
  
 // count number of colonies from inplate  
 loadedsamples := make([]*wtype.LHComponent,0) 
 wells := make([]string,0) 
 volumes := make([]wunit.Volume,0) 
  
 var DNAgelloadmix *wtype.LHComponent 
 var loadedsample *wtype.LHComponent 
 Water.Type = wtype.LTloadwater 
  
 var counter int 
  
 // work out sample volume 
  
 // copy volume 
 samplevolume := (wunit.CopyVolume(DNAgelrunvolume)) 
   
 // subtract volume of water 
 samplevolume.Subtract(Watervol) 
 /* 
 // add ladder sample to first column 
 loadedsample = MixInto( 
 DNAgel, 
 DNAgel.AllWellPositions(wtype.BYROW)[counter], 
 mixer.Sample(Water,Watervol), 
 mixer.Sample(Ladder, samplevolume), 
 ) 
 
 loadedsamples = append(Loadedsamples,loadedsample) 
 wells = 
append(wells,DNAgel.AllWellPositions(wtype.BYROW)[counter]) 
 volumes = append(volumes,loadedsample.Volume()) 
 counter++ 
 */ 
 for j:=0;j< Samplenumber;j++{ 
 for _, wellcontents := range inputplate.AllWellPositions(false){ 
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 if inputplate.WellMap()[wellcontents].Empty() == false{ 
    
  // ready to add water to well 
 waterSample := mixer.Sample(Water,Watervol) 
  
 // get position, ensuring the list is by row rather than by column 
 position := DNAgel.AllWellPositions(wtype.BYROW)[counter] 
 
  //get well coordinates 
 wellcoords := wtype.MakeWellCoordsA1(position) 
 fmt.Println("wellcoords.X",wellcoords.X) 
  
  
 // if first column add ladder sample  
 if wellcoords.X == 0 { 
   
 Ladder.Type,_ = wtype.LiquidTypeFromString(Mixingpolicy)  
  
  laddersample := MixInto( 
  DNAgel, 
 DNAgel.AllWellPositions(wtype.BYROW)[counter], 
 mixer.SampleForTotalVolume(Water,DNAgelrunvolume), 
 mixer.Sample(Ladder, LadderVolume), 
 ) 
 
 loadedsamples = append(loadedsamples,laddersample) 
 wells = append(wells,position) 
 volumes = append(volumes,laddersample.Volume()) 
 counter++ 
   
 } 
  
 // refresh position in case ladder was added 
 position = DNAgel.AllWellPositions(wtype.BYROW)[counter] 
  
  
 // temporarily avoiding using last column; remove later 
 // skips contents so fix properly!! 
 /* 
 if wellcoords.X == DNAgel.WlsX-1{ 
  counter++ 
  position = DNAgel.AllWellPositions(wtype.BYROW)[counter] 
 } 
  */ 
 Sampletotest =  inputplate.WellMap()[wellcontents].WContents 
  
  



Chapter 9 Appendices 

181 

 

 // load gel 
  
 // add loading dye if necessary 
  if Loadingdyeinsample == false { 
      
  Loadingdye.Type,_ = 
wtype.LiquidTypeFromString("NeedToMix") 
       
  DNAgelloadmixsolution := MixInto( 
  MixPlate, 
  "", 
  mixer.Sample(Sampletotest,samplevolume), 
  mixer.Sample(Loadingdye,Loadingdyevolume), 
  ) 
  DNAgelloadmix = DNAgelloadmixsolution 
  }else { 
    
  DNAgelloadmix = Sampletotest 
   
  } 
 
 // Ensure  sample will be dispensed appropriately: 
 
  
 // comment this line out to repeat load of same sample in all wells 
using first sample name 
 //DNAgelloadmix.CName = Samplenames[i]//[i] //originalname + 
strconv.Itoa(i) 
  
 // replacing following line with temporary hard code whilst developing 
protocol: 
 DNAgelloadmix.Type,_ = wtype.LiquidTypeFromString(Mixingpolicy)
  
 //DNAgelloadmix.Type = "loadwater" 
  
 loadedsample = MixInto( 
 DNAgel, 
 position, 
 waterSample, 
 ) 
  
 loadedsample = Mix(loadedsample,mixer.Sample(DNAgelloadmix, 
samplevolume)) 
 
 loadedsamples = append(loadedsamples,loadedsample) 
 wells = append(wells,position) 
 volumes = append(volumes,loadedsample.Volume()) 
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 counter++ 
 } 
 } 
 
} 
 Loadedsamples = loadedsamples 
 
 // export to file 
 //wtype.AutoExportPlateCSV(ProjectName+".csv",DNAgel) 
 Error = wtype.ExportPlateCSV(ProjectName+"_gelouput"+".csv", 
DNAgel, ProjectName+"gelouput", wells, Loadedsamples, volumes) 
 // Then run the gel 
 


