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Abstract We characterise the spectral evolution of Gaussian process in optical fibre using the
Kolmogorov-Zakharov model. At high power regime, the spectrum at receiver is calculated by iteratively
solving KZ-model at shorter distance. It questions the possibility of monotonically increasing spectral
efficiency.

Introduction

The limit of the spectral efficiency (SE) of the op-
tical fibre channel has been an unsolved problem
in the optical communication society for decades.
An upper bound4 on the capacity was derived for
the point-to-point channel. Significant efforts have
been made to search for a tighter upper bound or
a non-saturating lower bound1,2,6,9. One related
subtle problem is how to characterize the trans-
mission bandwidth and in particular, the spectral
broadening at at all range of powers.

In this work, this problem is approached from
a trivial yet important aspect in a semi-analytical
way - the spectral evolution of Gaussian process
in optical fibre. The Kolmogorov-Zakharov (KZ)
model is used to calculate the power spectral den-
sity (PSD) at the end of a link. At high power
regime, the PSD at receiver is calculated by it-
eratively solving KZ model at a shorter distance.
In-band energy ratio ρ and 99%-energy bandwidth
are used to characterize the spectral broadening.

We show numerically that the in-band en-
ergy ratio can be approximately described by a
monotonically decreasing function ρ ≈ fρ(

P
√
L

W 1.33 ).
The result implies that: (i) Given a fixed pro-
cessing bandwidth, increasing signal power of
a Gaussian process causes more severe spec-
tral broadening, limiting the achievable SE, (ii)

if the signal bandwidth is increased while the
power also grows proportional to W (1+ε) for ε <
0.33, the spectral broadening seems to be negligi-
ble. Hence, an ever-increasing spectral efficiency
might become possible.

The Optic-fibre Transmission Scenario

The optic-fibre model of concern is a multi-span
point-to-point dispersion unmanaged fibre link
with equally-spaced erbium-doped fibre amplifier

Tab. 1: Fibre and system parameters

ν 193.44 THz center carrier freq.
α 0.046 km−1 fiber loss
γ 1.27 (W.km)

−1 nonlinearity para.
β2 −21.5× 10−27 s2/m dispersion para.
W 32/64/128 GHz linear bandwidth
Ro 4 oversampling rate
r 0.01 RRC roll-off factor
Lsp 80 km span length
Nsp 20/40/80 number of spans

(EDFA), which can be described by

j
∂q

∂z
=− j α

2
q +

β2

2

∂2q

∂t2
− γ|q|2q, (1)

where j =
√
−1 and q(t, z) is the complex en-

velope of the signal as a function of time t and
distance z along the fibre, β2, γ, and α are the
dispersion, non-linear, and loss coefficients of the
fibre; see Tab. 1. Lumped amplification is per-
formed at the end of the kth span with the power
gain gk = exp(αLsp), where Lsp is the span length
and Nsp is the number of spans.

Let assume the input signal q(t, 0), 0 < t < T0,
to be a band-limited complex Gaussian (cyclo)
stationary process, defined by its Fourier series

q(t, 0) =

∞∑
k=−∞

Qk exp(j2π
k

T0
t), 0 < t < T0

The Fourier coefficients Qk are independent
symmetrically-complex Gaussian random vari-
ables with zero mean and the variance Sk. For
a band-limited signal of bandwidth W , we have
Sk = 0 for |k| > bWT0c. The power spectral den-
sity (PSD) of q(t) is

Sq(f) = Skδ(f −
k

T0
).



Note that any desired power spectral density can
be obtained through a suitable linear filter. Such
an input signal satisfies the necessary conditions
of the KZ model8 that (i)Qk are uncorrelated and,
(ii) q(t, z) has quasi-Gaussian distribution8 for
all z (under sufficiently weak nonlinearity frame-
work). We further assume that the Fourier coeffi-
cients stays uncorrelated during the transmission.

Although the Gaussian process is a restrictive
assumption, it has some practical relevance. In
the current coherent optical transmission with rel-
atively small launch power, the Gaussian-like in-
put distribution, e.g. by probabilistic amplitude
shaping, is of interest for the flexibility, high spec-
tral efficiency as well as increasing the transmis-
sion reach. Moreover, the distribution of trans-
mitted symbols converges anyhow to a quazi-
Gaussian distribution after a long enough prop-
agation distance and under sufficiently weak non-
linearity5,7.

The Kolmogorov-Zakharov (KZ) Model

We apply the KZ model for analytical charac-
terisation of the spectral broadening. The KZ
model is a more suitable framework than the GN
model5 simply because the KZ model is energy-
preserving8.

Let ∆z denote an integer multiple of span
length Lsp. We define Sk[i] as the PSD of q(t, z =

i∆z) after propagation of i∆z/Lsp spans. At the
transmitter, Sk[0] = Sk. According to the KZ
model8, the PSD Sk[i] can be recursively approx-
imated as

Sk[i+ 1] ≈ Sk[i] + 2γ2
∑

(l,m,n)∈V (k)

|Hlmnk(∆z)|2Tlmnk[i],

(2)
where

V (k) , {(l,m, n)|l +m = n+ k, l 6= k,m 6= n},

Ω = jα− β2(
2π

T0
)2(l2 +m2 − n2 − k2),

Hlmnk(∆z) =
1− ejΩLsp

Ω
e−jΩ(∆z−Lsp)/2 sin(∆zΩ/2)

sin(LspΩ/2)
,

Tlmnk[i] = Sl[i]Sm[i]Sn[i] + Sl[i]Sm[i]Sk[i]

− Sl[i]Sn[i]Sk[i]− Sm[i]Sn[i]Sk[i].

Eq. (2) is only the first order perturbation approx-
imation of the nonlinear kinetic equation Eq. (44)
in8. The accuracy of approximation depends on
how small ∆z is chosen and depends on the
power range. For relatively small power, one sin-
gle iteration is quite accurate by ∆z = LspNsp.

For a higher range of power, more iterations are
required with smaller ∆z as illustrated in Fig. 1.
The number of iterations, which varies with signal
power and bandwidth, were empirically obtained
in Fig. 1. Note that ∆z = Lsp is the smallest ∆z.
We observed numerically that choosing smaller
∆z results more precise approximation than in-
creasing the order of perturbation solution.
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Fig. 1: Characterisation of spectral broadening in a 20-span
transmission link with different initial bandwidths of 32/64/128

GHz. Solid lines are results from KZ model, the number of
iterations holds for 32 GHz bandwidth. Dotted lines are from
simulations with 16-QAM 0.01-RRC-pulse signals. Dashed

lines are fitted curves.
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Fig. 2: Characterisation of spectral broadening of signals with
32 GHz initial bandwidth at different transmission distances
(20/40/80 spans). Solid lines are results from the KZ model,

dots are from simulations. Dashed lines are fitted curves.

Characterisation of Spectral Broadening
We choose two figures of merit to characterise the
spectral broadening:
(i) ρ: the in-band energy ratio, the fraction of the
energy preserved in the initial bandwidth W .
(ii) η: the bandwidth expansion factor. The band-
width is defined as the smallest frequency band
holding more than 99% of energy.

We first compare the analytic estimation of (2)
with the split-step Fourier simulation. The sim-
ulation parameters are outlined in Tab. 1. The
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Fig. 3: Spectral broadening of a 32 GHz signal at the power

of (a) 12 dBm and (b) 16 dBm.

amplifiers noise was skipped in the simulation.
Figures 1 and 2 show the variation of ρ and η

in terms of input launch power for different input
signal bandwidth W and for different number of
spans. We observe that the analytic predictions
(dashed lines) are quite consistent with the sim-
ulation results (dots). For not very large values
of launch power (ρ > 0.9), ρ can be empirically
approximated by,

ρ(W,L,P) ≈ 1

1 + ln
(
1 + ζ P

2L
W 2.65

) , (3)

where L = LspNsp is the total distance, ζ is a con-
stant, depending on the link parameters and the
span length, P is the launch power in linear-scale
(not in dBm). We observe in Fig. 1 and 2 that the
above approximation fits closely to the simulation
for P < 10 dBm. For larger values of P, we ob-
serve that the scaling behaviour of ρ(W,L,P) and
η(W,L,P) tends to become a function of P

√
L

W 2 . It
means that

ρ ≈ fρ(
P
√
L

W 2
), η ≈ fη(

P
√
L

W 2
) (4)

Discussion on the Spectral Efficiency

It is shown recently4 that the spectral efficiency
(SE) of the channel model (1), with ideal dis-
tributed amplification, is upper-bounded by the
AWGN capacity

log

(
1 +

P
NaseWmax

)
, (5)

where Nase is the noise power spectral density
and Wmax is the maximum signal bandwidth. The
recent result3 shows that, for dispersion-less fi-
bre, for fixed initial bandwidth and large power,
the bandwidth scales at least as a constant times√
P. For the channel with dispersion, we show a

similar scaling in (4) for Gaussian input process.
Let us assume that, for EDFA-amplified links,

the upper-bound (5) is still valid , then we have

SE ≤ log

(
1 +

P
NaseWfη( P

√
L

W 1.33 )

)
,

If P and W scale up at the same time with P ∝
W(1+ε) where ε < 0.33, the fη will remain near 1,
i.e., the spectral broadening is negligible, while P

W

grows boundlessly.
Note that our scaling laws are derived for a

Gaussian process and based on the result from
iterative KZ-model without any ASE noise. There-
fore, the scaling law can be different for an arbi-
trary input process in the highly nonlinear regime
in which the KZ model is not valid any more.

Conclusions
In this work, we analysed the spectral evolution
of Gaussian process with iterative KZ model so-
lution for a large range of input powers. Conclu-
sions are reached that 1) for a fixed bandwidth,
the spectral efficiency of Gaussian process is lim-
ited by the effect of spectral broadening, 2) an
ever-increasing SE might be possible if the signal
bandwidth and power are increased at the same
time with P ≈ O(W 1.33).
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