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Abstract 

The goal of biopharmaceutical capacity planning and scheduling is to identify an 

optimal production schedule (solution) that would satisfy multiple financial and 

operational objectives. It is a complex combinatorial optimisation problem 

characterised by features such as multi-product portfolios, variable process durations 

and yields, long product lead and approval times, and uncertain market forecasts. The 

bulk of research in the area of biopharmaceutical capacity planning and scheduling 

has focused on Mixed Integer Linear Programming (MILP) formulations. Heuristic 

optimisation methods such as Genetic Algorithms (GAs) have received very little 

attention even though they are reportedly more flexible, easier to implement and, in 

certain cases, have the potential of outperforming mathematical programming 

models. Therefore, this thesis addresses this knowledge gap by describing the 

development of a flexible GA-based Decision Support Tool (DST) for single- and 

multi-objective biopharmaceutical capacity planning and scheduling under 

deterministic and uncertain product demand. 

 

This thesis makes four broad contributions. Firstly, a GA is designed for solving 

biopharmaceutical capacity planning and scheduling problems using a discrete-time 

representation. The effectiveness of the algorithm is demonstrated on two industrial 

case studies and compared with discrete-time MILP models from the literature. A 

rolling time horizon strategy is applied to improve solution quality and the performance 

of the GA. A Particle Swam Optimisation (PSO) algorithm is utilised as a meta-

optimiser to automatically tune the parameters of the GA. Secondly, a novel variable-

length chromosome structure and an entirely new continuous-time scheduling 

heuristic are developed for more realistic and efficient medium-term scheduling of 

biopharmaceutical manufacture. The variable-length chromosome enables the GA to 

generate production schedules from a single gene. The novel variable-length GA with 
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an embedded continuous-time scheduling heuristic is shown to outperform related 

discrete- and continuous-time MILP models on two literature-based examples. 

Thirdly, a multi-objective component is added to the variable-length GA and the 

continuous-time scheduling heuristic is extended with additional constraints and 

features, including rolling product sequence-dependent changeovers and lengthy 

product quality control and assurance (QC/QA) checks. A real-life industrial case 

study is used to demonstrate the functionality and benefits of the multi-objective 

optimisation. The multi-objective variable-length GA is used to optimise both the total 

production throughput and monthly product inventory levels of a multi-product 

biopharmaceutical facility. Finally, the multi-objective variable-length GA is combined 

with a Graphics Processing Unit (GPU)-accelerated Monte Carlo simulation for 

biopharmaceutical capacity planning and scheduling under uncertain product 

demand. The merits of the approach are highlighted by comparing the production 

schedules generated when the uncertainty in demand is ignored and when it is 

accounted for by characterising it with a probability distribution. In the final sections of 

this thesis an example of a commercial application of this work is presented. 
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Impact Statement 

Capacity planning and scheduling plays a very important role in the biopharmaceutical 

industry. Improper planning decisions can lead to high costs and loss of profit. 

Ransohoff (2004) estimated that for a typical 500 kg/year mAb facility 50% 

underutilisation could cost $2-3 M/month whereas 50% under capacity would likely 

result in a monthly profit loss of $40-50M. When Amgen launched Enbrel, an arthritis 

drug, in 1998, the demand for it was higher than anticipated. Malik et al. (2002) 

estimated that the lack of manufacturing capacity for Enbrel cost the company more 

than $200M in lost revenue in 2001. Hence, this work describes a flexible, GA-based 

DST developed in collaboration with industry experts for multi-objective capacity 

planning and scheduling of biopharmaceutical manufacture bringing several benefits 

to both academia and industry. A special focus is placed on deployability of the tool 

which is something that is very rarely discussed in production planning and scheduling 

literature. 

 

This thesis addresses the research gap in heuristic-based biopharmaceutical capacity 

planning and scheduling optimisation by describing a framework based on a novel 

variable-length GA embedded with a continuous-time scheduling heuristic. The 

framework has been applied to a variety of literature-based and real life industrial case 

studies The results were presented during the 28th European Conference on 

Operational Research (EURO), the 253rd American Chemical Society (ACS) National 

Meeting (Jankauskas, Long, et al., 2017), and a keynote lecture at the 27th European 

Symposium on Computer Aided Process Engineering (ESCAPE) (Jankauskas, 

Papageorgiou, et al., 2017). 

 

Even though there have been multiple biopharmaceutical capacity planning and 

scheduling optimisation models reported in the literature, companies still rely mostly 
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on manual, spreadsheet-based scheduling methods mostly due to a steep learning 

curve and a high level of expertise associated with mathematical programming 

models (Mustafa et al., 2006; Widmer et al., 2008). Using more accessible research 

principles, the GA-based DST developed during this PhD helps the biopharmaceutical 

companies understand the impact of constraints and uncertainties on key operational 

and risk metrics and allows to make better scheduling decisions faster. A commercial 

application of the framework was demonstrated to the industrial sponsor in 

Indianapolis, USA, during August 1-3, 2018. 
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1. Background 

The environment of biopharmaceutical manufacture is vastly dynamic and complex. 

Its business landscape is defined by expensive, long-term research and development 

(R&D) process and high risks of clinical failure. Biopharmaceutical products are also 

immensely sophisticated requiring substantial investment of capital, human 

resources, and technological expertise to produce them. Depending on the scale, 

biopharmaceutical facilities cost approximately $40-500M and can take several years 

to build. Moreover, they are costly to operate, with long process durations, relatively 

low yields, and the need for highly skilled experts to run them (Otto et al., 2014). 

 

Nevertheless, due to success and general efficiency of biopharmaceutical products 

in treating complex health diseases, the industry has experienced constant and 

enormous growth since its inception in 1982 (Siganporia, 2016). For example, the 

number of biotech patent applications every year has been growing at 25% annually 

since 1995, the global revenues of biopharmaceuticals were reported to be over 

$100B in 2010 (Walsh, 2010) and over $150B in 2014 (Otto et al., 2014). The overall 

annual industry growth has been estimated at 14-15% (Langer & Rader, 2017). 

 

Managing manufacturing facility assets for these growing and dynamic 

biopharmaceutical portfolios requires careful capacity planning. Essential to achieving 

this are agile capacity planning algorithms that can reconcile multiple conflicting 

objectives and deal with inherent uncertainty. Hence, this thesis presents the 

development of a flexible planning and scheduling tool for optimising the 

manufacturing capacity in an existing multi-product facility using a stochastic multi-

objective GA.  

 



1. Background 

 
 

12 

This chapter will discuss the risks and costs of biopharmaceutical drug development 

(Section 1.1), describe what a typical biopharmaceutical manufacturing process 

looks like (Section 1.2), overview the concepts of planning and scheduling (Section 

1.3) and the most common optimisation approaches (Sections 1.4 and 1.5), and 

review related work carried out on capacity planning and scheduling in 

pharmaceutical and biopharmaceutical industry (Section 1.6). Finally, the aims and 

the overall structure of this thesis are discussed in Section 1.7. 

 

1.1. Biopharmaceutical Industry Overview 

For a biopharmaceutical product to make it into the market, it must first pass a series 

pre-clinical tests and clinical trials (Figure 1.1). An investigational new drug application 

can be filed with the Food and Drug Administration (FDA) for drugs that pass the pre-

clinical testing. If the application is successful, phase I of clinical trials can begin. 

During this phase the drug product is administered to a small number of healthy 

volunteers to study its safety and pharmacology, i.e. absorption, metabolic effect, 

excretion, and toxicity. The next phase, i.e. phase II, of clinical trials examines the 

effectiveness of the compound on subjects with the target disease. Phase III is the 

final stage before a new drug application (NDA) can be submitted to the FDA and the 

drug can be sold to the market (Friedman et al., 2015). 

 

The characteristics of biopharmaceutical drug development are vastly different 

compared to most of the chemical engineering industry: high costs of development, 

high risks of failure during drug discovery, clinical trials that take years to complete, 

time sensitive compounds, limited product shelf-life, stringent current good 

manufacturing practices (cGMP), unique process validation requirements, and 

intense competition from generics after the end of a 20-year patent (Laínez et al., 

2012; Majozi et al., 2015).  
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Figure 1.1. Traditional drug development value chain (Source: Sabatier et al., 2010). 

 

The likelihood of a new biopharmaceutical drug product gaining approval for 

marketing and the rate of approval for new products have been getting lower over the 

years. According to Kaitin and DiMasi (2010), only one in six new drugs that entered 

clinical trials in the United States during 1993-1998 and the 1999-2004 sub-periods 

were successfully approved for marketing. Shanley (2014) reported that only 12% of 

the candidate drugs get approved for use. According to a more recent study by DiMasi 

et al. (2016), the likelihood that a drug that enters clinical testing is also about 12%. 

Figure 1.2 highlights the risks and costs associated with the development process. 

 

Figure 1.2. The costs of biopharmaceutical drug development pathway (Source: Nie, 

2015). 

 

The cost of development of a single drug entering human trials between 1989 and 

2002 was estimated to be in excess of $800M (DiMasi et al., 2003). Based on the 

data collected at University College London (UCL) (Farid, 2007), the costs of 

investment for antibody manufacturing facilities with total site capabilities in the range 

of 20,000–200,000L were reported to be $7,130–$17,000/m2 and $1,765–$4,220/L. 
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The development costs have been rising continuously for years. For example, in an 

analysis by Paul et al. (2010), the cost of a new molecular entity was reported to be 

in excess of $1B whereas DiMasi et al. (2016) revised this figure to $2.8B. 

 

1.2. Biopharmaceutical Manufacture 

A biopharmaceutical refers to any pharmaceutical drug product for therapeutic or in 

vivo diagnostic purposes produced from biological sources such as microbial, e.g. E. 

coli or P. pastoris, mammalian, e. g. Chinese hamster ovary (CHO) cells, and plant 

cell cultures. The unique and complex macromolecular structure of 

biopharmaceuticals distinguishes them from conventional chemical products. 

Biopharmaceutical production platforms can be operated in a batch, fed-batch, or 

perfusion mode. Fed-batch mode, where nutrients are periodically added to the 

bioreactor over the course of cell fermentation, is preferable to a regular batch mode 

mostly due to higher yields. In perfusion mode, the product is harvested throughout 

the culture rather than at the end of it. Perfusion mode is favoured when the product 

is unstable and the purification of it is time sensitive. Most biopharmaceutical 

production platforms are fed-batch-based (Fike, 2009; Jiang et al., 2012).  

 

Regardless of the mode of operation, a biopharmaceutical production process is 

typically divided into two broad manufacturing stages: upstream processing (USP) 

and downstream processing (DSP) (Figure 1.3). In USP, cells are derived from culture 

banks and nurtured in progressively larger bioreactors to express the 

biopharmaceutical product. In DSP, the raw product is extracted from the cells and 

purified using a series of processing steps such as centrifugation, microfiltration, 

chromatography, ultrafiltration, and viral clearance. Additionally, every step in both 

USP and DSP comprises several ancillary unit operations for cleaning, sterilisation, 
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preparation of intermediate materials such as culture media and buffer solutions, and 

product quality control and assurance (QC/QA). 

 

Figure 1.3. Typical biopharmaceutical production process flowsheet. Adapted from 

Tait (1998). 

 

Biopharmaceutical production is performed in a series of manufacturing campaigns. 

Determining the duration of each campaign is a difficult challenge that requires careful 

consideration of the tradeoff between two different kinds of risks and costs. For 

example, due to costs, risks of cross-contamination, and considerable amount of time 

associated with setup and cleaning during a campaign changeover, some companies 

prefer long campaigns with uninterrupted series of batches (Lakhdar et al., 2005). 

However, in order to meet uncertain demand, it can be safer for the biopharmaceutical 

facilities to operate multiple smaller scale bioreactors that are scheduled appropriately 

(Simaria et al., 2012). 

 

1.3. Planning and Scheduling Overview 

Planning and scheduling can have a substantial impact on production performance 

and cost-effectiveness of manufacturing operations. A good production schedule can 

result in significant savings through better capacity utilisation. For example, Ransohoff 
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(2004) reported that a typical mammalian cell-culture facility could increase its annual 

revenue by $380M with a 25% increase in plant utilisation. Planning and scheduling 

appear in a wide range of industries, including Pulp and Paper, Metals, Oil and Gas, 

Chemicals, Food and Beverages, Pharmaceuticals, Transportations, Service, and 

Military, because of a substantial impact on production performance and the cost-

effectiveness of manufacturing operations.  

 

Production planning refers to the preparation of manufacture: specifying what 

components are needed to manufacture a product, determining optimal sourcing of 

raw materials, clarifying what processes and unit operations are necessary to 

transform those raw materials into a final product, and defining the distribution 

network. Production scheduling, on the other hand, involves decisions regarding 

optimal allocation, sequencing, and timing of resources or capacity across a broad 

number of competing tasks to satisfy one or more objectives and constraints. Figure 

1.4 illustrates three major decisions in scheduling of batch processes: batching (lot-

sizing), assignment, and sequencing. 

 

Despite the variety of business environments, the type and goals of scheduling 

problems are usually defined by four major factors: market environment, interaction 

with other planning functions, production environment, and specific processing 

characteristics (Harjunkoski et al., 2014). 

 

 

Figure 1.4. Major decisions in batch process scheduling (Source: Harjunkoski et al., 

2014). 
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The variability and volume of product demand dictates the regularity and frequency of 

production campaigns. For example, the typical strategy for scheduling the production 

of high-volume products is to generate a cyclic schedule in order to maintain the 

product inventory at certain strategic levels, i.e. make-to-stock. In contrast, products 

with infrequent demand orders are usually scheduled as needed, i.e. make-to-order 

(Pochet & Wolsey, 2006). Manufacturing capacity also plays an important role in 

determining planning and scheduling objectives. If a production facility has 

manufacturing capacity to spare, then the goal of planning and scheduling is usually 

to minimise the total cost or earliness. On the other hand, when the product demand 

is higher than the manufacturing capacity, the goal is to maximise the total profit or 

throughput and/or minimise backlogs. It is common for companies to have multiple 

make-to-stock and make-to-order products manufactured in the same facility. 

 

Production scheduling also depends on the outcomes from other supply chain 

management functions such as procurement, distribution, and demand planning. For 

example, the availability of raw materials and the estimated quantities and due dates 

of product demand orders are key inputs to scheduling. Other factors influencing 

production scheduling decisions include the type of manufacturing process, e.g. batch 

or continuous, and the type of facility, e.g. single-stage or multi-stage. The more 

intricate the facility design is, the more complex a scheduling problem will be. The 

scheduling of a facility is also affected by the specific processing characteristics such 

as utilities, setup and changeover requirements, and storage and resource 

constraints. 

 

Traditionally, planning and scheduling has been carried out manually by specialists 

using spreadsheets, industry experience, and rule-based scheduling, e.g. first come 

first serve (FCFS), schedule the job with the shortest processing time (SPT), earliest 

due date first (EDD) (Panwalkar & Iskander, 1977; Haupt, 1989). However, due to 
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increasing production volumes, greater number of products, different manufacturing 

scenarios, and uncertain markets, it is difficult to ensure a cost-effective production 

plan without any optimisation support. Scheduling problems are NP-hard (Bitran & 

Yanasse, 1982) which is to say that finding the optimal solution to scheduling 

optimisation problems, especially the large-scale ones, is very difficult. Therefore, the 

general problem of planning and scheduling has received a considerable amount of 

attention in the literature. Ever since the introduction of the first basic lot sizing 

problem in 1958 (Wagner & Whitin, 1958), a number of papers have been written 

across different scientific communities. Due to the variety of problems, a number of 

approaches have been developed, including expert systems, decomposition-based 

methods, and optimisation algorithms based on mathematical programming or 

heuristics. Useful reviews of the development of planning and scheduling optimisation 

approaches over the last 10-20 years can be found in Shah (1998), Pinto and 

Grossmann (1998), Kallrath (2002), Floudas and Lin (2004), Méndez et al. (2006), 

Widmer et al. (2008), Majozi et al. (2015), and Copil et al. (2017).  

 

The subsequent sections will review mathematical programming and heuristic (mostly 

GA-based) optimisation approaches and the related work. 

 

1.4. Mathematical Programming 

The vast majority of the capacity planning and scheduling optimisation models are 

based on a branch of mathematical programming – mixed-integer linear programming 

(MILP) which is a variation of linear programming (LP) for combinatorial optimisation 

problems. Programming in this context refers to planning and logistics instead of 

computer programming. LP is a technique for the optimisation of a linear objective 

function subject to linear equality and inequality constraints. Despite the assumptions 

of linearity, both LP and MILP have been shown to be effective at solving problems in 
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a variety of domains including not only capacity planning (e.g. Lazaros G 

Papageorgiou et al., 2001) and scheduling (e.g. Lorigeon et al., 2002) but also 

transportation (e.g. Abara, 1989). 

 

The problem of solving a system of linear inequalities can be dated back to as far as 

Jean-Babtiste Joseph Fourier who published a method for solving such a system in 

1827 (Sierksma, 2001). However, the first LP formulation as well as a method for 

solving it are attributed to Leonid Kantorovich, a Soviet economist, who used it to 

reduce the costs of the Red Army in 1939 (Schrijver, 1998). Around the same time, 

Tjalling Koopmans formulated classical economic problems as LP problems. As a 

result, Kantorovich and Koopmans shared the Nobel prize in economics in 1975 

(Sierksma, 2001). 

 

 

Figure 1.5. A polytope defined as a feasible region by the constraints applied to the 

objective function. The simplicial cones are the corners (vertices) of a polytope. 

 

The early LP methods were improved by George B. Dantzig who independently 

developed a general LP formulation and invented the simplex method for solving LP 

problems (Dantzig, 1951). The name of the algorithm comes from the idea that it 

operates on simplicial cones which become simplices with additional constraints 

(Stone & Tovey, 1991). In Figure 1.5, the simplex method explores the feasible region 

by moving from corner to corner (or vertex) until the optimal solution is found. Only 

the corners of the polytope need to be explored since no other point on the line will 
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ever be optimal. The performance of the simplex method is highly dependent on the 

number of constraints, i.e. the number of constraints is proportional to the number of 

corner points (vertices) in the polytope that need to be explored. Alternative methods 

were developed for tackling more complex problems with a large number of 

constraints.  

 

Karmarkar (1984) developed an interior point method for solving large-scale LP 

problems. The name “interior” comes from the fact that the best solution is reached 

by traversing the interior of the feasible region, i.e. the polytope. This method, also 

known as Karmarkar’s algorithm, was proven to run in polynomial time and enabled 

solutions of LP problems that were beyond the capabilities of the simplex method. 

Nevertheless, Paparrizos et al. (2003) reported that on small and medium-sized LP 

problems, the simplex algorithm actually performs better. 

 

Many practical problems require discrete variables, e.g. explicit decisions are usually 

modelled using binary variables. One of the critical limitations of the simplex method 

is that it is only applicable to continuous variables. LP problems with discrete 

variables, i.e. MILP problems, could be solved by enumerating the solutions for every 

possible integer value. However, the brute-force method is only feasible when the 

scale of the problem is relatively small. Large MILP problems are typically solved 

using techniques that are based on divide-and-conquer algorithmic approaches such 

as branch and bound (B&B) algorithm. LP relaxations are first solved using the B&B 

algorithm to bound the objective function, and then branches are created by adding 

constraints that eliminate non-integer values. 

 

The mathematical programming models for capacity planning and scheduling 

optimisation can be classified according to the following four main aspects: time 

representation, material balances, event representation, and objective function 
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(Méndez et al., 2006). Time representation is the first and most important issue. The 

optimisation methods typically utilise discrete- or continuous-time representation. 

Discrete-time representation is based on the discretisation of planning horizon into a 

number of time periods with predefined durations. The start and end times of tasks 

can only take place at the boundaries of these periods. Since the time points are 

known, the overall model structure becomes simpler and easier to solve. However, 

the computational efficiency of the model and its size depend on the number of time 

periods defined as a function of the input data and desired accuracy of the solution. 

Furthermore, the reduction of the domain of timing decisions can often yield sub-

optimal or even infeasible solutions. Nevertheless, optimisation models using 

discrete-time representation have been widely used in the literature. 

 

Continuous-time representation has been adopted to overcome the aforementioned 

limitations and build data-independent optimisation models. Using this representation, 

timing decisions are represented as a set of continuous variables defining the timings 

of events. While the variable time handling allows for more flexible solutions and 

results in models with fewer variables, more complicated constraints with big-M (large 

number associated with the artificial variables) terms are required to model resource 

and inventory limitations which negatively impacts the complexity of the model and 

the capabilities of the overall method. 

 

Mathematical planning and scheduling models can be further classified based on how 

batches and their sizes are managed. There are two broad categories: models which 

assume that the number of batches of each size is known in advance and monolithic 

models that simultaneously address the optimal number and size of batches, 

allocation and sequencing of resources, and the timing of processing operations. The 

first category uses an approximate two-stage approach, i.e. batching and batch 

scheduling, to address larger practical problems. The second category of models 
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typically employ the state-task network (STN) (Kondili et al., 1993) or the resource-

task network (RTN) (Pantelides, 1994) to represent the problem. The STN is a 

directed graph that consists of state nodes, task nodes that represent processing 

operations, and arcs that indicate the flow of materials between the states and tasks. 

The STN-based optimisation approaches assume that processing events produce 

and consume states, e.g. raw materials, intermediate and final products. The RTN-

based formulation assumes that processing and storage tasks consume and release 

resource at their start and end times. STN- or RTN-based formulations are able to 

handle arbitrary network processes but are mostly limited to a small number of 

processing tasks and short planning horizons. 

 

Méndez et al. (2006) defined five different types of event representations. Figure 1.6 

illustrates the same schedule of fives batches (a, b, c, d, e) allocated to two units (J1 

and J2) generated using the alternative event representations. 

 

 

Figure 1.6. Different time representations used in scheduling problems (Source: 

Méndez et al., 2006). 

 

For discrete-time representations, the definition of global time periods is the only 

option for general network (processed materials can be mixed and split) and 

sequential (no mixing of the processed materials, the same batch is assumed to be 

processed in different stages) processes. A common fixed time grid valid for all shared 
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resources is predefined and events are scheduled to start and finish exactly at the 

grid points. The main advantage of a fixed time grid is its simplicity. Continuous-time 

formulation involves extensive alternative event representations that focus on 

different types of processes. For sequential processes, time slots and batch 

precedence-based approaches can be used, whereas in the case of general network 

processes, global time points and unit-specific time events are employed. The global 

time period representation corresponds to a generalisation of global time periods 

where the timing of time periods is modelled as a new variable. Based on the detailed 

comparison of various continuous-time models for short-term scheduling of batch 

plant performed by Shaik et al. (2006), the unit-specific event-based models always 

require fewer event points and yield favourable computational performance compared 

to both slot-based and global event-based models due to heterogeneous locations of 

event points used.  

 

Different criteria of solution quality can be used for scheduling problems. The six most 

commonly used are: makespan, earliness, tardiness, profit, inventory, and cost. The 

choice of the objective function has a direct effect on the computational performance 

of the optimisation model. A review of relevant literature on mathematical 

programming-based biopharmaceutical capacity planning and scheduling is provided 

in section 1.6. 

 

1.5. Heuristics 

While mathematical programming is often the optimisation method of choice, heuristic 

approaches have also been investigated to address certain limitations of these 

methods. These include dealing with non-linearities, uncertain parameters, and 

generating feasible solutions for industrial-sized problems in a reasonable amount of 

time. The word “heuristic” originates from Ancient Greek word for “find” or “discover”. 
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Generally, heuristic refers to any approximate problem-solving method that unlike 

mathematical programming does not guarantee optimality. Instead of being dedicated 

to the solution of a particular problem, heuristics are typically designed with the aim 

of being flexible enough to handle as many different combinatorial problems as 

possible. Despite the lack of guarantee of solution optimality, heuristics provide a 

number of advantages compared to classical optimisation, including flexibility, lack of 

assumptions about the problem, and ease-of-implementation in most cases. There 

have been many papers reporting success stories of applying heuristics to a wide-

range of NP-hard problems. Heuristic problem-solving methods can be broadly 

classified into local search methods and population-based search techniques 

(Widmer et al., 2008).  

 

In local search methods, the solution space is explored at each step by moving from 

one solution to a more optimal one in its neighbourhood. According to Hertz and 

Widmer (2003), local search can be thought of as a traversal of a directed graph G = 

(S, A) where S is a set of solutions to a particular problem and A is a set of arcs (s, 

s’) if and only if s’ is in the neighbourhood of s. The neighbourhood of a solution s is 

defined as the set of solutions that can be obtained from s by making simple 

modifications to it. Some of the better-known local search techniques are simulated 

annealing (Kirkpatrick et al., 1983) and tabu search (Glover, 1986). 

 

Population-based search techniques differ from the previous methods in that they 

keep a sample of solutions rather than a single candidate solution. The solution 

population is usually randomly generated and then iteratively tweaked and assessed 

in the direction of better solutions according to a certain set of rules. Most such 

methods are based on concepts borrowed from biology. For example, Particle Swarm 

Optimisation (PSO) algorithm, developed by James Kennedy and Russel Eberhart in 

the mid-1990s (James & Russell, 1995; Luke, 2013), was inspired by swarming and 
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flocking behaviours in animals. In PSO, every solution (or particle) is assigned 

randomised velocity and position vectors which are used to traverse the decision 

space. A more detailed description of the algorithm can be found in an overview by 

Poli et al. (2007). Other particularly popular set of optimisation techniques is known 

collectively as Evolutionary Optimisation (EO), Evolutionary Computation (EC) or 

Evolutionary Algorithms (EAs).  

 

1.5.1. Introduction to Genetic Algorithms 

GAs, invented by John J. H. Holland (1975) at the University of Michigan, are the most 

widely used class of EAs. Due to the relationship to biology and evolution theory, 

many biological terms have been used to describe GAs (Table 1.1). 

 

Table 1.1. Most common terms used to describe Genetic Algorithms. Adapted from 

Luke (2009) 

 
Term Meaning 

Gene 
A slot position in a chromosome and a smallest unit of an 

encoded solution that represents a decision 

Chromosome Encoded solution represented as a string of genes 

Individual A candidate solution 

Population A collection of chromosomes 

Fitness 
Determines the reproductive success Represents the 

quality of an encoded solution 

Objective function Function that estimates the fitness of a chromosome 

Crossover 
Process of combining two chromosomes to create one or 

more new individuals 

Mutation Random changes made to the encoded solutions 

Reproduction/Recombination Crossover and mutation 

Parent  Individual used to generate new solutions (offspring) 

Offspring 
New solutions generated by applying crossover and 

mutation to parents 

Selection 
Process of determining which parent solutions will undergo 

crossover and mutation 

Generation 
One iteration of GA which includes selection, crossover, 

and mutation 

Genetic operator 
Operator that guides the algorithm towards a solution to a 

given a problem, e.g. selection, crossover, and mutation  
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GAs can be divided into generational and steady-state algorithms. Generational 

algorithms, which are more common, update the entire or most of the sample whereas 

steady-state algorithms update the same sample a few individuals at a time. Algorithm 

1.1 describes a procedure of a basic generational GA. The algorithm initiates from a 

pool of typically randomly generated chromosomes. Parent chromosomes with a 

higher objective function value or fitness are selected for crossover and mutation to 

create new and hopefully better solutions for each new generation of the GA.  

 

Algorithm 1.1. Pseudocode of a basic GA. 

 
  1 procedure GeneticAlgorithm(popsize, max_gen, objective_function) 

  2    parents = ∅  

  3    gen = 0                   ▻ generation counter 

  4    best = □              ▻ placeholder for best individual 

  5    Generate new parent population of popsize 

  6    while gen < max_gens 

  7        for each parent in parents 

  9            Evaluate parent fitness with objective_function 

10            if best = □ or fitness of parent > fitness of best 

11                best = parent 

12            end if 

13        end for 

14        offspring = ∅  

15        for |parents| / 2 times 

16            parenta = SelectWithReplacement(parents) 

17            parentb = SelectWithReplacement (parents) 

18            offspringa, offspringb = Crossover(parenta, parentb) 

19            offspring = offspring U { Mutate(offspringa), Mutate(offspringb) } 

20        end if 

21        parents = offspring 

22        gen += 1 

23    end while 

24    return best  

25 end procedure 

 

The most common selection operators are fitness-proportional selection (also known 

as roulette-wheel selection) and tournament selection. As the name suggests, fitness-

proportional operator selects parent chromosomes with a probability that is 

proportional to their fitness. Tournament selection picks the best solution from a 

random population sample of size t (tournament size). Tournament selection with 

samples comprising two individuals is often referred to as binary tournament. It has 
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been extensively used due to its computational efficiency and better or equivalent 

convergence when compared to other selection methods that are available in the 

literature (Goldberg & Deb, 1991; Melanie, 1996). After the selection, the parent 

chromosomes are crossed over with a certain probability pC to create one or more 

offspring chromosomes. Commonly used crossover operators include a uniform 

crossover, which swaps each of the parent genes with a probability of 0.5, a single-

point crossover, which selects a random point and swaps all genes beyond that point 

in either parent’s chromosome between the two parents, and a multi-point crossover, 

which is a generalisation of a single-point crossover (Allmendinger, 2012). 

 

 

Figure 1.7. A cube formed by three-dimensional vectors (black circles) which 

represent positions of parent chromosomes in the decision space (Luke, 2009) 

 

The original motivation for crossover was building-block hypothesis (BBH) (Holland & 

Goldberg, 1989) or, more formally, schema theory (Reeves, 2003). The basic premise 

of BBH is that highly fit individuals often share certain traits, i.e. building blocks, which 

are defined as a collection of genes set to certain alleles, i.e. positions in the 

chromosome. Crossover works by spreading these building blocks throughout the 

population. However, with the crossover alone, the search capabilities of a GA are 

severely limited. For example, if parent chromosomes were three-dimensional 

vectors, they would form a cube in a decision space (Figure 1.7). Crossover of these 

vectors will result in offspring that would lie at other corners of the cube. Therefore, 

conventional crossover operators are limited to search inside the bounding box 
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surrounding the parents (Luke, 2009). Moreover, repeated crossover and selection 

often eliminate certain genes, create copies of the same individual, and cause the GA 

to prematurely converge. 

 

The usefulness of crossover operator has been extensively debated which led to the 

emergence of new recombination operators and Naïve Evolution algorithms that run 

without crossover (Fogel & Atmar, 1990; Senaratna, 2005). For example, Spears and 

Anand (1991) reported that for neural network modules and their control circuits GAs 

performed better without crossover. Naïve Evolution algorithms are supported by the 

many examples in nature of complex organisms which evolved without crossover, e.g. 

Bdelloidea – a class of microscopic pseudocoelomate freshwater animals (Senaratna, 

2005). Furthermore, biologists consider mutation, not crossover, as the main source 

of new “raw genetic material” (Hartl, 1988). Commonly used mutation operators in 

GAs are ones that change each gene in a chromosome independently with some 

probability pM. It is worth noting that the variety of GAs is vast. There are many 

different strategies for performing selection, crossover, mutation, and even the 

underlying algorithm. 

 

Unlike classical optimisation methods which make assumptions about the 

relationships between the variables, constraints, and the objective, GAs are flexible 

optimisers making minimal assumptions about the problem. Therefore, despite the 

lack of guarantee of finding the global optimum and the difficulty of designing the 

objective function, chromosome structure, and operators, GAs have been used to 

obtain approximate solutions to a wide range of complex linear and non-linear 

problem such as training neural networks (Chen & Liao, 1998), finding the optimal 

number, types, and positions of wireless transmitters (Ting et al., 2009), and creating 

a program capable of solving planning problems described in Planning Domain 

Definition Language (PDDL) (Brie & Morignot, 2005). Moreover, due to the multiplicity 
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in solutions, GAs have been quite popular for solving the multi-objective optimisation 

problems (Kalyanmoy, 2011). Since a population of solutions is processed in each 

iteration of a GA, the outcome is also a population of solutions. If an optimisation 

problem has a global optimum, then all chromosomes can be expected to converge 

to it. Alternatively, if an optimisation problem has multiple optimal solutions, GAs can 

capture them in its final population (Deb, 2001). 

 

1.5.2. Stochastic and Multi-Objective Approaches 

For multi-objective optimisation problems, two or more objective functions need to be 

evaluated simulatenously. Moreover, these objective functions are often contradictory 

to each other. A solution that is good for one objective function might do so at the cost 

of a less optimal value for another function. Solving multi-objective problems with or 

without the presence of constraints leads to a set of trade-off solutions popularly 

known as a Pareto front. Each optimal solution in the Pareto front is called a non-

dominated solution. For example, in Figure 1.8, solutions A and B are non-dominated. 

A good survery on the history of multi-objective decision analysis and optimisation 

methods is provided by Köksalan et al. (2011). 

 

Figure 1.8. Relationship between the design (x1, x2) and objective (f1, f2) spaces of 

a two-objective optimisation problem (Source: Cui et al., 2017). 

 

The first multi-objective GA, Vector-Evaluated Genetic Algorithm (VEGA), was 

proposed by (Schaffer, 1985). There have been several other multi-objective 

evolutionary algorithms (MOEA) developed over the years such as Niched Pareto 
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Genetic Algorithm (NPGA) (rey Horn et al., 1994), Non-Dominated Sorting Genetic 

Algorithm (NSGA) (Svinivas, 1995), Strength Pareto Evolutionary Algorithm (SPEA) 

(Zitzler & Thiele, 1999) and SPEA2 (Zitzler et al., 2001), Pareto Envelope-based 

Selection Algorithm (PESA) (Corne et al., 2000), Non-Dominated Sorting Genetic 

Algorithm-II (NSGA-II) (Deb et al., 2002), and many others. 

 

One of the most attractive features of heuristics compared to mathematical 

programming is that they can be easily integrated with other methods such as Monte 

Carlo simulation (discussed in Chapter 6) which can be used to represent complex 

problem features and uncertainties that cannot be straightforwardly modelled by 

mathematical equations. A general simulation-based optimization method comprises 

an optimization part that guides the search process and a simulation part used to 

evaluate performances of candidate solutions. Compared with mathematical 

programming techniques, simulation-based optimization methods replace the 

analytical objective function and constraints by one or more simulation models. 

Iteratively the output of the simulation is used by the underlying optimisation algorithm, 

such as GA, to guide the search for the optimal solution(s). A comprehensive review 

of approaches to addressing different uncertainties using EAs is provided by Jin and 

Branke (2005). A more recent survey by Gutjahr and Pichler (2016) includes reviews 

of non-scalarising mathematical programming- and heuristic-based stochastic multi-

objective optimisation. For example, Eskandari et al. (2005) integrated a simulation 

model with a stochastic nondomination-based multi-objective GA and introduced new 

genetic operators to enhance the algorithm’s performance. Ding et al. (2006) 

proposed a multi-objective GA combined with a simulation procedure for supply chain 

optimisation. Amodeo et al. (2009) combined a discrete-event simulation procedure 

with SPEA-II, NSGA-II, and multi-objective PSO to determine the inventory policy of 

a single product supply chain, taking into account the maximization of customer 

service level and the total inventory cost. Syberfeldt et al. (2009) used a multi-
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objective evolutionary algorithm supported by an artificial neural network, combined 

with a simulation routine to improve a manufacturing cell at Volvo Aero in Sweden. 

 

1.5.3. Lot Sizing using Genetic Algorithms 

There have been a number of papers reporting GA-based optimisation approaches 

for solving lot sizing and job-shop scheduling problems. Most of the approaches can 

be broadly divided into two classes depending on the encoding strategy: direct 

representation and indirect representation (Oyebolu et al., 2017). In a direct 

representation, the sequence and lot sizes are encoded in the chromosome directly. 

In an indirect representation, a chromosome typically encodes a set of rules or a 

permutation-based solution. A construction heuristic is then used to derive a schedule 

from the permutation or encoded rules. For example, Kimms (1999) used a two-

dimensional matrix encoding strategy to solve a multi-level, multi-machine 

proportional lot sizing and scheduling problem formulated as a mixed-integer 

programming problem. The matrix contained rules for selecting the set up state for a 

machine at the end of a period. A construction heuristic was used to translate the 

matrix into the solution starting from the end of planning horizon. There have been 

multiple construction heuristics developed for a variety of problems. Branke and 

Mattfeld (2005) demonstrated an approach of penalising early idle times to increase 

scheduling flexibility and enhance overall performance for dynamic job-shop 

scheduling problems. Ho et al. (2006) proposed two construction heuristics for the 

single-level uncapacitated dynamic lot-sizing problem, extending the work of Silver 

(1973). Almada-Lobo et al. (2007) presented a five step heuristic to solve a multi-item 

capacitated lot-sizing problem with sequence-dependent setup times and costs from 

the glass industry. James and Almada-Lobo (2011) developed a general-purpose 

approach combining heuristics and mixed integer programming to find high quality 
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solutions to the single- and parallel-machine capacitated lot sizing and scheduling 

problem with sequence-dependent setup times and costs.  

 

Jans and Degraeve (2008) noted that most of the heuristic-based optimisation 

methods developed for solving lot sizing problems were validated using artificial data 

and were limited in terms of the assumptions made, e.g. unlimited capacity, making 

the application to real-life problems troublesome. This thesis addresses this gap by 

developing scheduling models that address the most common features of 

biopharmaceutical industry, e.g. storage and shelf-life limitations, and are validated 

using industrially-relevant case studies either from real life or from the literature. 

 

1.6. Related Work 

Planning and scheduling of biopharmaceutical manufacture is a complex 

combinatorial optimisation problem further complicated by the unique features of 

biopharmaceutical production. Saraph (2001) noted that the biopharmaceutical 

manufacturing process is a mix of discrete and continuous processes, the size of 

batch and production capacity tend to vary depending on the processing stage, and 

the common utilities, e.g. water, are shared. Furthermore, most companies typically 

have a portfolio of various products manufactured across a network of owned and 

contract manufacturing facilities with wide-ranging production capabilities. 

Biopharmaceutical products may be unstable and thus have specialised and costly 

transportation and storage requirements. Biopharmaceutical companies are also 

required to meet high-quality standards and prove they can deliver a consistent 

manufacturing process. The high-quality standards are achieved by rigorous cleaning 

and sterilisation between individual production campaigns. Based on the report by 

Langer (2009), the top eight factors that create biopharmaceutical production capacity 

constraints are physical capacity of downstream processing equipment as well as 
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fermentation/bioreactor equipment, inability to retain and lack of new experienced 

technical and production staff, lack of financing for production expansion, costs 

associated with downstream purification, inability to optimise overall system and 

general inability to meet demands for finished product. 

 

1.6.1. Process Design and Optimisation 

The area of planning and scheduling in the biopharmaceutical industry has not 

received as much attention as bioprocess design and optimisation (Majozi et al., 

2015). The development of computer-aided design tools for bioprocessing began in 

the mid-1980s (Farid et al., 2007). The vast majority of bioprocess design optimisation 

methods have been based on mathematical programming and simulation techniques.  

 

Simulation-based approaches have been especially popular at modelling the impact 

of uncertainties within a biopharmaceutical manufacturing environment for more 

effective use of resources and improved economic performance. Farid and coworkers 

(Farid et al., 2000, 2001; 2005, and 2007) presented the SimBiopharma software tool 

to evaluate biopharmaceutical manufacturing alternatives in terms of cost, time, yield, 

resource utilisation, and risk. Incorporating uncertainty allowed users to make 

decisions based on both the expected outputs as well as the likelihood of achieving 

them. The key features of the tool included interactive graphics, task-oriented 

representation, bioprocess economics, dynamic simulation, risk analysis and multi-

attribute decision-making. The benefits of this integrated approach were illustrated 

with an evaluation of stainless steel versus single-use or disposable facilities for 

clinical material preparation. Lim et al. (2005 and 2006) and Pollock et al. (2013) built 

on these decisional tools to evaluate the impact of uncertainty in fermentation titres, 

DSP yield, contamination rates on the design and robustness of perfusion culture 

based processes compared to fed-batch processes. Stonier et al. (2012) developed 
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these decisional tools to identify facility limits of legacy mAb facilities in terms of 

downstream capacities, assess the current and future robustness of these facilities to 

increasing cell culture titres and determine robust purification configurations given titre 

fluctuations. Stonier et al. (2013) and Yang et al. (2014) further leveraged the 

stochastic datasets generated from such tools with datamining tools (e.g. principal 

component analysis, clustering algorithms, decision trees) so as to be able to predict 

the root cause of facility fit issues. 

 

Some of the earliest works to address the optimisation of the design structure and 

process variables in biopharmaceutical multi-product facilities with mixed-integer non-

linear programming (MINLP) were presented by Montagna et al. (2000) and Asenjo 

et al. (2000). Vasquez-Alvarez and Pinto (2004) developed a MILP-based 

optimisation model to optimise chromatography unit operations. Brunet et al. (2012) 

created a hybrid simulation-mixed-integer with dynamic optimisation approach for the 

design of USP and DSP units in a single-product process. Simaria et al. (2012) 

proposed a multi-objective GA-based approach for the selection and optimisation of 

purification sequences and chromatography column sizing strategies. Allmendinger 

et al. (2012) presented a GA for the discovery of chromatography equipment sizing 

strategies for antibody purification processes under uncertainty. The optimisation of 

the chromatography column-sizing design in the mAb purification processes was also 

addressed by Liu et al. (2013) who applied MINLP to minimise the total cost. 

 

1.6.2. Portfolio Management and Capacity Planning 

Early work on biopharmaceutical portfolio management and capacity sourcing 

decisions used simulation models. For example, Rajapakse et al. (2005) and (2006) 

presented a Decision Support Tool based on Monte Carlo simulation to predict the 

process and business outcomes for portfolios of biopharmaceutical products in the 
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development pathway. At the time of writing, the literature on the use of alternative 

optimisation techniques such as GAs or hybrid methods in the pharmaceutical and 

biopharmaceutical industry was somewhat limited. Most of the publications focused 

on the optimisation of process design (discussed in the previous section) and the 

management of product portfolios rather than capacity planning and scheduling. The 

few that exist are discussed below. 

 

On the pharmaceutical portfolio management front, Blau et al. (2004) reported a 

hybrid discrete simulation and GA-based approach for selecting a sequence of 

pharmaceutical products that maximises the expected economic returns at an 

acceptable level of risk for a given level of resources in a new product development 

pipeline. Varma et al. (2008) expanded the work accomplished by Blau et al. (2004) 

and proposed an integrated resource management tool to maximise portfolio’s 

expected net present value, while keeping both risk and drug development times 

under control. The framework was based on the combination of a stochastic 

simulation of the pharmaceutical work flow process, a MILP formulation that acted as 

a “resource manager”, and a Genetic Algorithm based “strategy learner” which was 

used to assess how the various strategies of resource allocation affect the financial 

and cycle time performance of the simulated portfolio of drug candidates. On the 

biopharmaceutical portfolio management front, George and Farid (2008) developed a 

stochastic, multi-objective optimisation framework based on probabilistic, model-

building GAs for the optimisation of decisions related to portfolio selection, timing, and 

capacity sourcing decisions. Probabilistic model-building GAs belong to a class of 

EAs known as Estimation of Distribution Algorithms (EDAs). EDAs differ from most 

conventional algorithms by using explicit probability distributions represented by a 

model class, e.g. a Bayesian network or a multivariate normal distribution. Nie et al. 

(2012) presented a stochastic, GA-based decision-support tool to address the 
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decisions involved in portfolio management at both the drug development process 

level and the portfolio level.  

 

Table 1.2. lists all relevant literature on capacity planning and scheduling optimisation 

methods in the biopharmaceutical industry to date. The vast majority of the research 

has focused on discrete-time MILP formulations adapted from the pharmaceutical and 

chemical engineering industries. The problem of task scheduling for new product 

development in the pharmaceutical industry was first developed by Schmidt and 

Grossmann (1996). According to Gatica et al. (2003), the first paper addressing the 

capacity planning problem as well as product selection decisions in the 

pharmaceutical industry appeared in 1999 by Rotstein et al. (1999). They presented 

a stochastic capacity planning model incorporating clinical trials uncertainty. A wide 

range of deterministic and stochastic models addressing such problems in the 

pharmaceutical industry have been developed since then. Gatica et al. (2003) 

presented a realistic approach to optimise a product portfolio subject to the outcome 

of the clinical trials. The proposed model included a multi-stage, multi-scenario case, 

and four outcomes, i.e. high success, target success, low success, and failure. It was 

based on previous pharmaceutical product portfolio optimisation models, such as 

Rotstein et al. (1999) and Papageorgiou et al. (2000), and was capable of considering 

whether it is more beneficial to outsource the manufacturing process or maintain the 

investment in the facility. Brastow and Rice (2003) demonstrated how Monte Carlo 

simulation could be used to identify the probability of having too much or too little 

manufacturing capacity for a network of pharmaceutical facilities. Levis and 

Papageorgiou (2004) presented a systematic mathematical programming approach 

for long-term, multi-site capacity planning under uncertainty in the pharmaceutical 

industry, simultaneously addressing the problem of product management. They also 

provided an extensive review of the publications addressing the problem of portfolio 

optimisation and task scheduling in the pharmaceutical industry. 
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Table 1.2. Resume of biopharmaceutical literature planning and scheduling 

optimisation. Adapted from Majozi et al. (2015) and extended. 

 

Source Model Characteristics Methods  

Samsatli and Shah 

(1996a), 

Samsatli and Shah 

(1996b) 

▪ Two stages 

optimisation: first 

stage, processing 

rates and conditions 

of unit 

operations/equipment 

capacities through 

dynamic optimisation 

(gProms); second 

stage, scheduling 

and design 

adjustments of 

intermediate storage. 

▪ MILP model  

(STN 

framework) 

▪ Discrete-time 

representation 

▪ Cyclic 

schedule  

(48 h/68 h) 

▪ Maximise 

operating 

profit 

Lakhdar et al. (2005) ▪ Medium-term 

planning and 

scheduling (1–2 

years) 

▪ Determines 

campaigns durations 

and sequence, 

production quantities, 

inventories, and 

product sales 

▪ MILP model 

▪ Discrete-time 

representation 

▪ Maximise 

operating 

profit 

Lakhdar et al. (2006) ▪ Medium-term 

planning (1–3 years) 

considering 

uncertainty in the 

fermentation titres 

▪ Considers storage 

constraints 

▪ Results compared 

within deterministic 

model, a two-stage 

programming model 

accompanied by an 

iterative construction 

algorithm, and a 

proposed CCP model 

▪ MILP model 

derived using 

CCP 

▪ Discrete-time 

representation 

▪ Maximise 

operating 

profit 

▪ Multi-scenario 

stochastic 

programming 
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Table 1.2. (continued) Resume of biopharmaceutical literature planning and 

scheduling optimisation. Adapted from Majozi et al. (2015) and extended. 

 
Source Model Characteristics  Methods  

Lakhdar et al. (2007) ▪ Long-term 

planning, first 

solved as a single 

objective problem 

(maximise 

operating profit) 

and capacity 

analysis was 

conducted; then 

extended to allow 

multiple objectives 

through goal 

programming 

▪ MILP model  

▪ Discrete-time 

representation 

▪ Maximise 

operating profit 

▪ Minimise total 

adverse 

deviations to 

targets: cost, 

customer 

service level, 

and capacity 

utilisation 

Lakhdar and 

Papageorgiou (2008) 

▪ Medium-term 

planning under 

uncertain 

fermentation titres 

▪ Storage constraints 

▪ Proposed future 

extension to multi-

stage framework to 

allow uncertainty to 

be revealed 

gradually at any 

time period; further, 

proposed 

decomposition and 

approximation 

solution methods 

▪ MILP model 

▪ Discrete-time 

representation 

▪ Iterative 

algorithm for 

large-scale 

problem 

▪ Maximise 

operating profit 

Miller et al. (2010) ▪ Core mathematical 

programming 

solver designed 

around a uniform 

discretisation 

model and 

customised outer 

layer to address 

biologics process 

behaviour 

▪ VirtECS Scheduler 

Software 

▪ Intermediate 

material storage 

consideration 

▪ MILP model 

(RTN 

framework) 

▪ Discrete-time 

representation 

▪ Monte Carlo 

stochastic 

parameters 
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Table 1.2. (continued) Resume of biopharmaceutical literature planning and 

scheduling optimisation. Adapted from Majozi et al. (2015) and extended. 

 
Source Model Characteristics  Methods  

Gicquel et al. (2012) ▪ Hybrid flow shop 

scheduling problem 

▪ Zero intermediate 

capacity and limited 

waiting time 

between 

processing 

▪ Suggest heuristic 

solution as future 

work 

▪ MILP model  

▪ Discrete-time 

representation 

▪ Minimise total 

weighted 

tardiness 

Kabra et al. (2013) ▪ Unit-specific event-

based continuous-

time representation 

▪ Multi-period 

scheduling of multi-

stage multi-product 

process 

▪ Based on STN 

representation 

▪ MILP model  

▪ Continuous-

time 

representation 

▪ Maximise 

operating profit 

Siganporia et al. (2014) ▪ Long-term planning  

▪ The model 

comprised specific 

features to account 

for products with 

fed-batch or 

perfusion culture 

processes 

▪ Utilised rolling time 

horizon approach 

to obtain greater 

optimality in less 

computational time 

than the full-scale 

model  

▪ MILP model 

▪ Discrete-time 

representation 

▪ Minimise total 

cost 

Vieira et al. (2016) ▪ Multi-period 

scheduling of multi-

stage multi-product 

process 

▪ RTN continuous-

time single-grid 

formulation 

▪ MILP model 

▪ Continuous-

time 

representation 

▪ Maximise 

operating profit 



 

 

Table 1.2. (continued) Resume of biopharmaceutical literature planning and 

scheduling optimisation. Adapted from Majozi et al. (2015) and extended. 

 
Source Model Characteristics  Methods  

Oyebolu et al. (2017) ▪ Inspired by GA 

approaches to job 

shop scheduling 

▪ Proposed a 

problem-tailored 

construction 

heuristic for 

scheduling product 

demands across 

multiple facilities 

▪ GA model 

▪ Maximise 

operating profit 

Jankauskas et al. (2017)* 
▪ Medium-term 

planning 

▪ Multi-period 

scheduling of multi-

stage multi-product 

process 

▪ Developed a 

continuous-time 

scheduling heuristic 

using variable-

length 

chromosomes 

▪ GA model 

▪ Continuous-

time 

representation 

▪ Maximise 

operating profit 

* This work is part of this thesis. 

 

One of the first frameworks for biopharmaceutical capacity planning and scheduling 

was developed by Samsatli and Shah (1996b). They addressed the design and short-

term scheduling of biopharmaceutical processes using MILP and STN formulations. 

The first medium-term capacity planning model for a multi-product, multi-suite 

biopharmaceutical facility was presented by Lakhdar et al. (2005). Their approach 

helped to determine the optimal durations and sequence of production campaigns 

together with product inventory, sales, and late deliveries profiles. Furthermore, the 

proposed MILP based optimisation method was shown to find more optimal solutions 

than the industrial rule-based approach. Kabra et al. (2013) compared this discrete-

time model with a continuous-time multi-period scheduling of multi-stage, multi-

product process based on an STN framework, reporting an improved objective 

function value. Vieira et al. (2016) also compared Lakhdar et al. (2005) discrete-time 
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model with a new MILP model based on RTN continuous-time single-grid formulation. 

They reported even better objective function values. 

 

The randomness of the biopharmaceutical manufacturing environment such as 

uncertain yield and risks of contamination, can cause significant scheduling and 

planning difficulties for the biopharmaceutical manufacturing campaigns. To address 

this, Lakhdar and Papageorgiou (2006) compared a chance-constrained 

programming (CCP) model with a deterministic MILP and two-stage programming 

approach combined with an iterative construction algorithm for medium-term planning 

of biopharmaceutical manufacture under uncertain fermentation titres. The proposed 

methodology was reported to yield better results than a deterministic MILP model. 

Lakhdar and Papageorgiou (2008) improved their work presented in 2005 with an 

iterative algorithm for solving large-scale biopharmaceutical capacity planning and 

scheduling problems with uncertain fermentation titres. 

 

The optimisation of biopharmaceutical manufacturing capacity often involves many 

multiple conflicting criteria and objectives to be considered. Lakhdar et al. (2007) 

addressed the challenge of making long-term (15 years), multi-site capacity planning 

decisions given multiple strategic criteria such as risk, cost, and customer service 

levels. The problem was first solved as a single objective problem to maximise 

operating profit, and then extended using goal programming to allow for multiple 

objectives, i.e. cost, customer service level, and capacity utilisation.  

 

The vast part of the research on biopharmaceutical manufacture planning has been 

limited to either batch or fed-batch processes. However, a more recent, large-scale 

discrete-time MILP model was presented by Siganporia et al. (2014) to optimise long-

term capacity plans for a portfolio of biopharmaceutical products, with either batch or 

perfusion bioprocesses, across multiple facilities to meet quarterly demand. 
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The work presented by Oyebolu et al. (2017) is one of the few GA-based planning 

and scheduling optimisation models for the biopharmaceutical industry. Taking 

inspiration from GA-based approaches to job-shop scheduling, they proposed a 

problem-tailored construction heuristic for scheduling demands of multiple products 

sequentially across several facilities to generate a long-term manufacturing schedule. 

Compared to the aforementioned construction heuristics (Section 1.5.3), theirs is 

different in that it inserts jobs (manufacturing campaigns) in an order of importance 

determined by the GA and not necessarily in any chronological order. The approach 

is based on an indirect representation of the problem using a permutation of all the 

product demands. The sequence of demands encoded in a chromosome determines 

the order by which the construction heuristic schedules production campaigns. The 

construction heuristic explores a number of different scheduling alternatives, e.g. 

schedule as late as possible, schedule next to previous demand, split demand, and 

picks the best one based on feasibility and the smallest additional cost. The approach 

outperformed a related discrete-time MILP model on a single-objective long-term 

biopharmaceutical capacity planning problem from the literature (Lakhdar et al., 

2007). 

 

1.7. Aims and Outline of Thesis 

As discussed earlier, much of process planning and scheduling research for 

biochemical engineering processes has been based on MILP formulations using 

discrete-time representation (Table 1.2). It is acknowledged that the development of 

models for production planning and scheduling of biopharmaceutical processes has 

been fairly unexplored (Vieira et al., 2016). This work is particularly motivated by the 

insufficient research of GA-based capacity planning and scheduling optimisation 

methods in the biopharmaceutical industry. The key objectives of this work are to 

investigate the applicability of GAs for capacity planning and scheduling of 
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biopharmaceutical facilities and to develop a flexible framework that would facilitate 

the biopharmaceutical industry’s strategic and operational decision-making. The 

following areas will be explored: 

 

▪ Medium- and long-term planning 

▪ Discrete- and continuous-time representations 

▪ Single- and multi-objective problems  

▪ Deterministic and stochastic optimisation  

 

Chapter 2 describes a general problem statement and lists the key challenges of 

biopharmaceutical capacity planning and scheduling. It also describes the framework 

and the technical details of the GA-based DST developed in this thesis for tackling 

biopharmaceutical scheduling problems. 

 

Chapter 3 serves as a starting point in understanding the implementation challenges 

of GA-based biopharmaceutical capacity planning and scheduling optimisation. This 

is accomplished by developing GA-based approaches for solving single-objective 

biopharmaceutical capacity planning and scheduling problems using the simpler 

discrete-time representation. The performance of the GA is compared with MILP 

models on industrial case studies of medium- and long-term planning from the 

literature. Moreover, a PSO-based meta-optimisation approach is utilised to 

automatically set the parameters of the GA. With some caveats, such as rolling time 

horizon, the GA is demonstrated to be capable of generating exact or near-optimal 

solutions to discrete-time MILP problems of biopharmaceutical capacity planning and 

scheduling. 

 

The early work of this thesis presented in Chapter 3 identified the shortcomings of 

discrete-time representation such as unutilised production time and unnecessarily 
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high model complexity. Chapter 4 improves upon Chapter 3 by presenting a novel 

variable-length GA (which is the core of the GA-based DST developed in this thesis) 

and a continuous-time scheduling heuristic for efficient and more realistic medium-

term scheduling of biopharmaceutical manufacture. Using the variable-length 

chromosome structure, the GA is capable of adapting to the planning problem from a 

single gene by either growing or shrinking in length. The continuous-time scheduling 

heuristic accounts for constraints and features such as product-dependent 

changeovers, varying manufacturing yields, multiple intermediate demand due dates, 

and storage and shelf-life limits. The performance of the method is evaluated on two 

industrial case studies and contrasted with related discrete- and continuous-time 

MILP models. 

 

Chapter 5 extends the variable-length GA from Chapter 4 with a multi-objective 

component. The continuous-time scheduling heuristic is also adapted to suit a 

different biopharmaceutical facility model with rolling product sequence-dependent 

changeovers and to account for product quality control and assurance (QC/QA) 

checks. The functionality of the multi-objective approahc is highlighted on an industrial 

case study developed together with Eli Lilly & Company. The GA is used to optimise 

both the throughput and monthly product inventory levels of a multi-product 

biopharmaceutical facility over a three year period. 

 

In Chapter 6, Monte Carlo simulation is integrated into the multi-objective variable-

length GA from Chapter 5 for generating production schedules under variable product  

demand. The advantages and performance of the approach are demonstrated on a 

real life industrial case study and contrasted to a deterministic optimisation approach 

that neglects the uncertainty in product demand. Moreover, the chapter describes how 

the computationally intensive Monte Carlo simulation can be accelerated using a GPU 

that achieved a 30-fold speed-up. 
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Chapter 7 contains an implementation plan for commercialisation of the work 

generated in this thesis. It describes not only the architecture and the design details 

of a proposed user interface but also discusses how the application could be priced 

and delivered to clients. Finally, the conclusions of this thesis and the plausible 

directions for future work are provided in Chapter 8. A list of publications (published 

and in progress) resulting from this thesis is given in Appendix A.  
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2. Decision Support Tool: 

Requirements and Design 

The previous chapter provided an overview of the biopharmaceutical industry and the 

existing, mostly MILP-based methods for assisting biopharmaceutical manufacturers 

in making decisions about when, where, and how long they should manufacture a 

product. Despite the number of works available in the literature, the actual adoption 

of MILP-based optimisation models has been relatively slow in the biopharmaceutical 

industry. Due to specialist knowledge, high skill requirements, and lack of 

transparency associated with mathematical programming-based methods (Mustafa et 

al., 2006; Widmer et al., 2008), production scheduling especially short- and medium-

term is still often carried out using mostly manual spreadsheet-based methods. 

Another reason why simpler methods are so widely used is because they can be 

easily explained to and understood by the business stakeholders. Fortunately, the 

research principles at the basis of GAs are generally more accessible to 

inexperienced users making the algorithm an attractive alternative. Moreover, due to 

their inherent flexibility, GAs can be easily adapted or combined with other types of 

methods and applied to a wide-range of problems.  

 

The literature on mathematical programming-based scheduling optimisation methods 

puts a lot of emphasis on the optimality of solutions. It is nearly impossible to measure 

the optimality of solutions generated using heuristic methods such as GA. 

Nevertheless, in most real-life scenarios, it is sufficient to compare the performance 

of a heuristic-based scheduling tool against a benchmark generated using, for 

example, an expert system or industrial rule-based planning. If there are significant 

gains in the objective function values, then the solution does not need to be proven to 

be optimal. 
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In this chapter, the requirements and design of a flexible GA-based DST for efficient 

single- and multi-objective capacity planning and scheduling of multi-product 

biopharmaceutical facilities are presented. Section 2.1 outlines a general statement 

and key challenges of biopharmaceutical capacity planning and scheduling problems 

which will be tackled in the next chapters of this thesis. Section 2.2 lists the high-level 

requirements and defines the components of the tool’s framework needed to meet 

them. 

 

2.1. Problem Statement and Challenges 

Despite the wide variety of biopharmaceutical capacity planning and scheduling 

problem classes, every problem statement can be defined in the following general 

way: 

 

▪ Given: 

o Production facility data such as production capacities, number of USP and 

DSP suites, and availability of utilities. 

o Processing data such as USP and DSP processing times and material 

requirements. 

o Costs (optional), e.g. manufacturing, storage, backlog penalty, and waste 

disposal. 

o Production targets or product demand. 

▪ Determine: 

o An optimal schedule that would satisfy one or several strategic criteria. 

 

Biopharmaceutical facilities can have various manufacturing capabilities and plant 

topologies with multiple USP and DSP suites (see Figure 2.1). For the simple case, 

both USP and DSP can be treated as a monolithic, black-box process without explicit 
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discretisation into individual suites. However, allowing the various biopharmaceutical 

manufacturing stages to be modelled separately can yield more realistic production 

schedules though at the cost of higher computational complexity and increased 

modelling challenges. 

 

 

a) 

 

b)  

 

c)  

 

 

Figure 2.1. Examples of different biopharmaceutical facility topologies (different USP 

to DSP suite number ratios): (a) 1:1, (b) 2:2, (c) 2:3. All three examples will be tackled 

in the later chapters of this thesis. 
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Capacity planning and scheduling problems are often subject to several constraints, 

e.g. biopharmaceutical companies are required to produce a minimum number of 

batches for the regulatory bodies, the product demand must be met on time, and 

product waste needs to be minimised or avoided completely. Furthermore, most real-

life biopharmaceutical capacity planning and scheduling problems have multiple 

objectives. It is generally desirable to maximise the facility throughput and maintain 

the strategic product inventory levels at specific monthly targets. A straightforward 

way to maximise facility throughput is to run fewer but longer manufacturing 

campaigns (Figure 2.2.a) which reduces the number of product changeovers and 

increases the available time for manufacturing. However, having longer and 

infrequent campaigns can lead to uneven product inventory levels and periods where 

the stock is dangerously low (Figure 2.2.b). Therefore, running shorter but more 

frequent manufacturing campaigns (Figure 2.2.c.) would ensure that product 

inventory is re-stocked often and there is enough of it at any point in time to meet the 

product demand for the next 6 or 9 months in case of unplanned facility shutdowns or 

other emergencies (Figure 2.2.d). One of the key challenges that the 

biomanufacturers face is striking a balance between these two objectives. 

 

The capacity planning and scheduling problem of biopharmaceutical manufacture is 

further complicated by other factors such as limited shelf-life, storage capacity 

limitations, and the types and durations of product changeovers. Figure 2.3. depicts 

an example of a biopharmaceutical product changeover that is widely used in the 

capacity planning and scheduling MILP-based models reported in the literature 

(Lakhdar et al., 2005; Lakhdar et al., 2007; Siganporia et al., 2014). During this type 

of product changeover, all tasks of the previous manufacturing campaign need to be 

completed before the clean-up process and the subsequent manufacturing campaign 

can begin. The time required to switch between products includes the time required 

to clean the suites and equipment, and it often depends on the sequence of 
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a) 

 

c) 

 

b) 

 

d) 

 

Figure 2.2. A comparison between two production schedules and the corresponding inventory levels of product D. In (a), a schedule with fewer 

but longer manufacturing campaigns has higher total throughput albeit at the cost of (b) unbalanced product inventory with periods of extremely 

low stock (highlighted by the rectangle). On the other hand, a product schedule in (c) has more frequent but shorter product campaigns and, as 

a result, lower total throughput but also (d) better maintained product inventory levels.
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the product campaigns. Provided that the different stages of biomanufacturing 

process (Figure 1.1) are carried out in separate, self-contained processing suites, a 

more efficient rolling product changeover can be implemented. For example, while 

Figure 2.4.a depicts what looks like two overlapping manufacturing campaigns of 

different products, Figure 2.4.b shows that a rolling changeover takes place between 

the different early manufactured stages while the product is still being produced in 

other suites. In this way, more time is made available for the manufacturing of 

products by minimising the idle waiting times in-between production campaigns. 

 
Figure 2.3. An example of a traditional product changeover. The new manufacturing 

campaign of product C can only take place after all tasks of product A campaign are 

finished. 

 

a) 

 
b) 

 
Figure 2.4. An example of a rolling product changeover. Numbers inside the blocks 

correspond to the duration of the corresponding task while a gap between the different 

task blocks denotes a changeover. 
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Given the unique features of the biopharmaceutical manufacture and the wide variety 

of objectives and constraints, the manual creation of capacity plans can quickly 

become an unsustainable practice. Even for simpler discrete-time based models, the 

complexity of biopharmaceutical capacity planning and scheduling problems grows 

exponentially with the increasing number of products and time periods (see Table 

2.1). 

 

Table 2.1. Minimum number of solutions for different cases over 8 years with a time 

period of one month (Source: Siganporia, 2016). 

 
Number of products Number of facilities Number of solutions 

2 2 1091 

4 4 10289 

6 6 10522 

10 10 101056 

 

There is an obvious, strong need for methods that would help find the best use of 

production resources in order to satisfy production goals, i.e. addressing the 

production capacity requirements and anticipating sales opportunities over a planning 

horizon of choice (Karimi et al., 2003). The three typical types of planning horizons 

are short-term, medium-term and long-term. Short-term planning decisions are 

comprised of every day scheduling of operations, e.g. job sequencing; medium-term 

planning involves making decisions on material requirements planning and lot sizing 

over the planning horizon in order to meet the demand and minimise overall costs; 

long-term planning comprises strategic decisions on product, equipment, process, 

facility location and design choices and resource planning (Karimi et al., 2003). The 

main scope of this thesis is efficient medium-term multi-objective scheduling 

biopharmaceutical manufacture in an existing multi-product facility. 
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2.2. Requirements and Design 

There have been several discrete- and continuous-time MILP-based models for 

biopharmaceutical capacity planning and scheduling reported in the literature. In order 

to be considered as a feasible alternative to these models, a requirements 

specification was developed that describes what the GA-based DST should be able 

to achieve. The tool requirements are outlined below:  

 

▪ Ability to specify multiple objectives and constraints: the tool needs to capture the 

most common objectives and constraints of biopharmaceutical production such 

as maximisation of profit and minimisation of costs. However, the availability of 

cost data is usually a bottleneck thus the tool needs to allow for other objectives 

that are non-monetary, including maximisation of production throughput, 

maintaining strategic inventory targets, meeting all product demands on time, and 

avoiding product waste.  

▪ Ability to specify product-specific characteristics: in order to have practical value 

and reflect the biopharmaceutical manufacturing environment in a realistic way, 

the tool has to address the aforementioned complexities such as varying process 

durations and yields, product sequence-dependent changeovers, QC/QA 

approvals, storage and shelf-life limits. 

▪ Ability to instantiate new models or add new scheduling logic: the description of 

the scheduling problem often changes during the initial stages of implementation. 

It is common for the original problem formulation to be continually modified and 

enhanced as additional information becomes available. Therefore, it is important 

to empower the production scheduler not only with the ability to make non-

structural changes to the scheduling model such as adding new products and 

revising product demand but also with the ability to include different scheduling 

models. The tool needs to be able to cope with a variety of different 
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biopharmaceutical capacity planning and scheduling problems, 

biopharmaceutical facility designs, and manufacturing strategies. 

▪ Ability to achieve solutions in a timely manner: the tool needs to be capable of not 

only generating optimal or close-to-optimal solutions but also do it so in a 

reasonable amount of time. The shorter the time to report a good schedule is, the 

more scenarios can be tested by production schedulers. 

▪ Ability to optimise under uncertainty: the tool needs to be able to address the 

inherent uncertainties of biopharmaceutical manufacture such as product demand 

and to solve the scheduling problem with probability distribution-based input. 

 

The tool generated in this thesis meets all of the aforementioned requirements which 

will be covered in the subsequent chapters. For example, Chapters 4-6 will 

demonstrate how the tool is used to meet a variety of monetary and non-monetary 

scheduling objectives and constraints, including maximisation of profit and 

simultaneous optimisation of throughput and product inventory levels subject to 

various constraints. The ability to specify product-specific characteristics and the 

ability to instantiate new models or add new scheduling logic are demonstrated in 

Chapters 4 and 5. For example, in Chapter 4 the tool is used to generate a 1-year 

long schedule for a biopharmaceutical facility with 2 USP/2 DSP suites manufacturing 

3 products and a 1.5-year long schedule for a biopharmaceutical facility with  

2 USP/3 DSP suites manufacturing 4 products. Moreover, in Chapter 4 the tool is 

used to schedule production for biopharmaceutical facilities with traditional product-

dependent changeovers, whereas in Chapter 5 the tool is applied to a 

biopharmaceutical facility with rolling product sequence-dependent changeovers. 

 

Choosing the right set of technologies and programming languages for the 

development of DSTs is an important decision that can have an impact on the ultimate 

flexibility and usability of the tool. For the DST to receive continuous support and 
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attention in the future from the developers and researchers alike, the chosen 

programming language(s) need to be sufficiently flexible and have a large and active 

community. 

 

According to a popular yearly survey (Stack-Overflow, 2018), Python is the fastest-

growing major programming language. Approximately 40% of over 100,0000 

developers from around the world said Python was their primary programming 

language. Some of the reasons behind such popularity include succinct and intuitive 

language syntax, powerful open source libraries for data analysis and visualisation, 

and web-based application development toolkits which will be crucial to a commercial 

application of the tool (see Chapter 7). However, one of the major drawbacks of 

Python programming language is its performance. For example, multi-threading is not 

available out-of-the-box due to what is known as a Global Interpret Lock (GIL) that 

prevents more than one thread running in the interpreter (Beazley, 2010). Fortunately, 

Python can be easily integrated with other, lower level programming languages such 

as C and C++ that can help improve the performance. Faster execution speeds can 

benefit the user by allowing them to perform more runs and test more scenarios in 

less amount of time. 

 

In thesis, C++ was used to develop most of the work presented, e.g. GAs, scheduling 

heuristics, Monte Carlo simulation. The main reasons for the choice were the 

performance benefits, relatively straightforward shared-memory parallelism using 

OpenMP compiler directives (demonstrated in Algorithm 2.1) (Dagum & Menon, 

1998), and support for CUDA – an Application Programming Interface (API) for 

parallel programming using GPU resources (Nvidia, 2011). According to the survey 

mentioned earlier, C++ is still among the top 10 programming languages despite its 

complexity and relatively low safety. Both Python and C++ have the added benefit of 

being cross-platform development languages. 
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Algorithm 2.1. Parallel fitness assessment in C++ using OpenMP compiler directives. 

#pragma compiler directive tells the compiler to auto-parallelize the for loop with 

OpenMP. If a user is using a quad-core processor, the performance can be expected 

to be increased by up to 300% (in most cases). 

 

#pragma omp parallel for 

for (int i = 0; i < parents.size(); ++i) { 

    fitness_function(parents[i]); 

} 

 

 

 

Figure 2.5. A high-level structure of the GA-based Decision Support Tool framework. 

 

Figure 2.5 illustrates the framework of the GA-based DST developed in this thesis 

from a high level. The scheduling heuristics and GAs are only a piece of the overall 

framework. The framework supporting the execution of the models must be capable 

of communicating with other business applications as well as a number of 

spreadsheets, document files, and databases. Therefore, an API has been developed 

in Python that can be used in a variety of settings, including web-based applications, 
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command line interface (CLI) programs, and integrated development environments 

(IDEs). The API wrap-ups the high-performance extensions written in C++ containing 

the GAs and scheduling heuristics and provides an interface layer written in Python 

for data input/output (I/O) and results analysis and visualisation. The data can be 

stored in and read from either a relational database or document files. API usage 

examples can be found in Appendix B. 

 

Chapter 7 will discuss the commercial application of the tool developed in this work, 

including trend charts for displaying the evolution of product inventory and delivery 

profiles, easy viewing and manipulation of input data, and the reporting on the timings 

of scheduled campaigns. Below are some of the example outputs from the GA-based 

DST. Figures 2.6 and 2.7 show examples of Gantt chart outputs generated for two 

case studies which will be discussed individually in later chapters of this thesis. The 

Gantt charts show the allocation of different product campaigns and allow a user to 

view the exact start and end dates of each campaign as well as the number of batches 

and/or kilograms produced. If needed the GA-based DST can also generate a Gantt 

chart illustrating the allocation of products to different biomanufacturing stages 

allowing user to view the start and finish of each individual batch (Figure 2.8). 

 

 

Figure 2.6. Gantt chart generated with the GA-based Decision Support Tool for a 

biopharmaceutical facility with traditional product changeovers and a 2:2 USP to DSP 

ratio manufacturing three products. 
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Figure 2.7. Gantt chart generated with the GA-based Decision Support Tool for a 

biopharmaceutical facility with rolling product sequence-dependent changeovers and 

a 1:1 USP to DSP ratio manufacturing four products. 

 
 
 

 

Figure 2.8. Production tasks Gantt chart example. 

 

2.3. Summary 

This chapter described the unique features and challenges of the biopharmaceutical 

capacity planning and scheduling problems. It also defined a framework for 

developing the GA-based DST which will be used to tackle single- (Chapter 4) and 

multi-objective problems with deterministic (Chapter 5) and uncertain product 

demand (Chapter 6) to illustrate its value. 
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3. Discrete-Time Biopharmaceutical 

Capacity Planning and Scheduling 

3.1. Introduction 

This chapter presents a fast GA-based approach to both medium- and long-term 

capacity planning and scheduling of single- and multi-site biopharmaceutical 

manufacture using discrete-time models. The proposed GA is demonstrated as a valid 

alternative to MILP to obtain near-exact solutions to close to real-world industrial case 

studies of capacity planning and scheduling of biopharmaceutical manufacture. Other 

contributions presented in this chapter include the chromosome encoding strategy, 

the algorithms describing the single-site/multi-suite and multi-site biopharmaceutical 

manufacture, the rolling horizon approach for solving larger, long-term capacity 

planning problems, and a PSO-based meta-optimisation approach for tuning the GA 

hyperparameters. 

 

The performance of the GA depends on its hyperparameter values. For example, the 

rate of crossover controls the capability of the GA in exploiting the known parts of the 

search space, whereas the mutation rate controls the speed of the GA in exploring of 

new areas (Lin et al., 2003). The values of these parameters are quite often tuned 

one by one, i.e. by trial and error. However, this can be a time consuming process 

leading to suboptimal results, since the interactions between the parameters are 

ignored this way (Eiben et al., 1999). There have been a number of suggestions and 

theoretical investigations into the optimal values of crossover, mutation, and 

population size (e.g. Schaffer & Morishima, 1987; Goldberg & Deb, 1991; Back, 1993; 

Chipperfield & Fleming, 1995). The typical values of crossover and mutation rate have 

been reported to lie in the range 0.5-1.0 and 0.001-0.05 respectively. However, most 
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investigations were based on simple function optimisation problems with traditional 

chromosome encoding strategies and genetic operators. Therefore, their applicability 

for other types of problems and custom genetic operators is quite limited. An 

alternative to manual parameter tuning is meta-optimisation, i.e. the use of another 

optimisation algorithm to tune the GA hyperparameters. For example, Grefenstette 

(1986) applied a meta-GA to optimise the hyperparameters of another GA. An 

approach to automatically set the parameters of evolutionary algorithms can also be 

considered as antecedents of hyper-heuristics – a set of approaches that are 

motivated by the goal of automating the design of heuristic methods to solve hard 

computational search problems (Burke et al., 2013). 

 

In this work, a PSO algorithm is used to tune the GA. Meta-PSO was chosen due to 

its simplicity and relatively low computational overhead (compared to using another 

GA) (Pandey et al., 2010) and suitability for the optimisation of functions with 

continuous inputs (Hassan et al., 2004). 

 

3.2. Notation 

3.2.1. Case Study 1 

SETS 

i  USP suites 

j  DSP suites 

p  products 

t, θ  time periods 

 

PARAMETERS 

Cp  USP storage capacity of product p [batches] 

Fp  DSP storage capacity of product p [batches] 

CRp   USP production rate of product p [batches/day] 

FRp  DSP production rate of product p [batches/day] 

CTp
min

  min production time for product p in USP suite i [days] 

CTp
max

  max production time for product p in USP suite i [days] 

FTp
min

  min production time for product p in DSP suite j [days] 
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FTp
max

  max production time for product p in DSP suite j [days] 

αp  USP lead time of product p [days] 

βp  DSP lead time of product p [days] 

ρp  USP storage cost of product p [RMU/batch] 

ωp  DSP storage cost of product p [RMU/batch] 

ζp  USP product lifetime p [time periods] 

σp  DSP shelf-life of product p [time periods] 

λp  correspondence factor for USP to DSP production of product p 

ηp  manufacturing cost of product p [RMU/batch] 

ψp  changeover cost of product p [RMU / changeover]  

τp  waste disposal cost of product p [RMU/batch] 

νp  sales price of product p [RMU/batch]  

δp  backlog penalty of product p [RMU/batch]  

Dpt  demand of product p at time period t [batches] 

 

INTEGER VARIABLES 

productit part of the chromosome containing product labels allocated at time 

period t to USP suite i  

productjt part of the chromosome containing product labels allocated at time 

period t to DSP suite j 

timeit part of the chromosome containing the number of production days 

allocated at time period t to USP suite i  

timejt part of the chromosome containing the number of production days 

allocated at time period t to DSP suite i  

Bipt number of batches of product p produced at time period t in USP 

suite i 

Bjpt  number of batches of product p produced at time period t in DSP 

suite j 

CIpt  number of batches of USP product p stored at time period t 

FIpt  number of batches of DSP product p stored at time period t 

CWpt  number of batches of USP product p wasted at time period t 

FWpt  number of batches of DSP product p wasted at time period t 

Spt  number of batches of product p sold at time period t  

Δpt  number of batches of product p in backlog at time period p  

 

BINARY VARIABLES 

Yipt 1 if product p is produced in USP suite i at time period t; 0 otherwise 

Yjpt 1 if product p is produced in DSP suite j at time period t; 0 otherwise 

Zipt 1 if a new campaign of product p is produced in USP suite i at time 

period t; 0 otherwise 

Zjpt 1 if a new campaign of product p is produced in DSP suite j at time 

period t; 0 otherwise 

 

CONTINUOUS VARIABLES 

CTipt production time for product p in USP suite i during time period t [days] 

FTjpt production time for product p in DSP suite j during time period t [days] 

Profit total profit (objective function) [RMU] 
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3.2.2. Case Study 2 

SET 

i  facilities  

p  products 

t, θ, ξ  time periods 

PIi  set of products that can be produced by facility i 

TIi  set of time periods in which facility i is available 

 

PARAMETERS 

Cp  storage capacity of product p [kg] 

Tip
min

  min production time for product p in facility i [days] 

Tip
max

  max production time for product p in facility i [days] 

rip   production rate of product p at facility i [batches/day] 

α  lead time [days] 

ζ  shelf-life of product [time periods] 

ηip  manufacturing cost of product p at facility i [RMU/batch] 

ρ  storage cost [RMU/kg]  

ψ  changeover cost [RMU/changeover]  

ν  sales price [RMU/kg]  

δ  lateness penalty [RMU/kg]  

ζ  product lifetime [time periods] 

π  backlog decay factor 

ydip  yield conversion factor for product p in facility i [kg/batch] 

Dpt  demand of product p at time period t [kg] 

 

INTEGER VARIABLES 

productit part of the chromosome containing product labels allocated at time 

period t to facility i  

timeit part of the chromosome containing the number of production days 

allocated at time period t to facility i 

Bipt number of batches of product p produced at time period t in facility i  

 

BINARY VARIABLES 

Yipt 1 if product p is produced in facility i at time period t; 0 otherwise 

Zipt 1 if a new campaign of product p is produced in facility i at time 

period t; 0 otherwise 

 

CONTINUOUS VARIABLES 

Tipt  production time for product p at facility i during time period t [days] 

Kipt   amount of product p produced in facility i at time period t [kg] 

Ipt  amount of product p stored at time period t [kg] 

Wpt  amount of product p wasted in at time period t [kg] 

Spt  amount of product p sold at time period t [kg]  

Δpt  amount of product p in backlog at time period p [kg] 

Profit total profit – objective function [RMU] 
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3.3. Problem Definition 

In this section, the industrial case studies of capacity planning and scheduling of 

biopharmaceutical manufacture from two different literature sources are described. In 

case study 1, a medium-term capacity planning and scheduling problem of a multi-

suite, multi-product biopharmaceutical manufacture from Lakhdar et al. (2005) is 

presented. In case study 2, a long-term capacity planning and scheduling problem of 

multi-site, multi-product bio-manufacture from Lakhdar et al. (2007) is solved. 

 

3.3.1. Case Study 1 

The objective of the planning problem presented here is to generate a yearlong 

production schedule that would maximise the manufacturing profits of multi-suite 

biopharmaceutical facility. The topology of this facility is illustrated in Figure 3.1. All 

relevant parameters and product demand profiles for case study 1 are listed in Tables 

3.1 and 3.2, respectively. The problem statement adapted from Lakhdar et al. (2005) 

is as follows: 

 

▪ Given: 

o Biopharmaceutical products p = { p1, p2, p3 } 

o USP suites i = { i1, i2 } and DSP suites j = { j1, j2 } 

o A planning horizon of 360 days made of equal time periods  

T = { t1, t2, …, t6 } 

o Product-dependent production rates, lead times, and production 

throughputs (correspondence factors) 

o USP and DSP product shelf-life, storage capacities and costs 

o Product demands, sales price and backlog penalty costs 

o Manufacturing and campaign changeover costs 
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o Minimum and maximum campaign durations 

▪ Determine: 

o Duration and sequence of campaigns 

o Production quantities along with inventory profiles 

o Product sales and late deliveries profile 

▪ To: 

o Maximise the profitability of the schedule 

 

Table 3.1. All relevant parameters used in case study 1. 

 
 Product 

 p1 p2 p3 

USP production rate CRp [batches / day] 0.05 0.045 0.08 

USP lead time αp [days] 30 32 22.5 

USP product lifetime ζp [time periods] 1 1 1 

USP storage capacity Cp [batches / time period] 10 10 10 

USP minimum campaign length CTp
min

 [days] 20 21 12.5 

USP minimum campaign length CTp
max

 [days] 60 60 60 

DSP production rate FRp [batches/days] 0.1 0.1 0.1 

DSP lead time βp [days] 40 42 34.5 

DSP product lifetime σp [time periods] 3 3 3 

DSP storage capacity Fp [batches / time period] 40 40 40 

DSP minimum campaign length FTp
min

 [days] 10 10 10 

DSP minimum campaign length FTp
max

 [days] 60 60 60 

Production factor λp  1 1 1 

Sales price νp [RMU / batch] 20 20 20 

Production cost ηp [RMU / batch] 2 2 2 

Backlog penalty δp [RMU / batch] 20 20 20 

Changeover cost ψp [RMU / changeover] 1 1 1 

Waste disposal cost τp [RMU / batch] 5 5 5 

USP storage cost ρp [RMU / batch] 5 5 5 

DSP storage cost ωp [RMU / batch] 1 1 1 

 
  



3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling 

65 
 

Table 3.2. Product demand profile [batches] for case study 1. 

 
 Time period (each period represents 60 days) 

Product t1 t2 t3 t4 t5 t6 

p1 0 0 0 6 0 6 

p2 0 0 6 0 0 0 

p3 0 8 0 0 8 0 

 

 

 

Figure 3.1. Biopharmaceutical facility topology for the case study 1. 

 

 

3.3.2. Case Study 2 

The goal of the planning problem presented in this case study is to generate a 15-

yearlong production schedule to maximise manufacturing profits. The problem 

presented here is a single-objective problem adapted from Lakhdar et al. (2007). All 

relevant data, e.g. demand profile, parameters, are listed in Tables 3.3-3.8. The 

following is a brief problem statement: 

 

▪ Given:  

o A network of multi-product facilities i = { i1, i2, …, i10 } 

o Biopharmaceutical products p = { p1, p2, …, p15  } 

o A planning horizon of 15 years with equal time periods  

t = { t1, t2, …, t60 } 

o Production rates, yields, and lead times 

o Product lifetimes and storage capacities 

o Product demands and sales prices 
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o Backlog decay factor 

o Manufacturing, changeover, storage costs, and late delivery penalties 

o Minimum and maximum campaign durations 

▪ Determine: 

o Campaign durations and sequence of campaigns 

o Production quantities along with inventory profiles  

o Product sales and late deliveries profile 

▪ To: 

o Maximise manufacturing profits 

 
Table 3.3. Parameter data for case study 2. 

 

Parameter Value 

Production lead time α [days] 14 

Product lifetime ζ [time periods] 8 

Sales price ν [RMU / kg] 2.5 

Storage cost ρ [RMU / kg] 0.01 

Backlog penalty δ [RMU / kg] 0.1 

Changeover cost ψ [RMU / changeover] 2 

Backlog decay π 0.5 

 

 

Table 3.4. Production yields ydip [kg / batch] for industrial case study 2. 

 
 Product 

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 

i1 10 1 0 8 0 6 0 10 2 9 7 1 0 12 12 

i2 9 0 0 8 0 6 0 9 0 8 10 0 10 12 11 

i3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 

i4 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 

i5 0 0 0 10 0 0 0 10 0 8 8 0 0 11 11 

i6 0 0 0 12 0 0 0 10 0 8 17 0 0 17 14 

i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0 

i8 0 0 36 0 19 0 0 0 0 0 0 0 0 0 0 

i9 10 0 0 12 0 5 0 0 0 8 16 0 0 12 13 

i10 9 1 0 12 0 5 0 10 2 8 14 1 10 12 12 
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Table 3.5. Product demand profile [kg] for case study 2. 

 
 Time period (each period represents 87 days) 

Product t4 t8 t12 t16 t20 t24 t28 t32 t36 t40 t44 t48 t52 t56 t60 

p1 21 32 18 28 61 104 153 156 164 163 161 162 162 163 165 

p2 6 5 4 4 4 3 3 3 3 3 3 3 2 2 2 

p3 12 43 38 5 22 52 97 132 133 135 137 118 109 100 90 

p4 583 628 655 687 758 921 989 941 993 649 621 573 521 468 421 

p5 12 12 11 10 9 7 6 5 4 3 2 2 2 2 3 

p6 211 200 245 246 257 266 284 274 226 180 166 151 137 123 110 

p7 4 5 5 7 6 5 8 9 8 9 7 7 6 5 5 

p8 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5 

p9 15 15 15 13 12 9 8 6 5 4 3 3 2 2 2 

p10 72 99 104 102 111 120 130 139 188 120 106 93 81 69 58 

p11 552 615 699 737 743 733 684 572 518 471 424 381 342 307 274 

p12 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5 

p13 211 252 290 298 286 216 169 153 150 145 110 100 93 84 102 

p14 2 2 4 3 3 3 16 11 13 16 16 16 16 17 17 

p15 4 4 5 6 16 11 24 32 37 40 41 42 42 43 44 
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Table 3.6. Production rates rip [kg / day] for case study 2. 

 
 Product 

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 

i1 0.35 0.39 0 0.45 0 0.29 0 0.35 0.25 0.39 0.41 0.39 0 0.12 0.35 

i2 0.6 0 0 0.61 0 0.6 0 0.6 0 0.43 0.56 0 0.6 0.6 0.6 

i3 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 

i4 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0 

i5 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45 

i6 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45 

i7 0 0 0 0 0 0 0.45 0 0 0.45 0 0 0 0 0 

i8 0 0 0.58 0 0.45 0 0 0 0 0 0 0 0 0 0 

i9 0.45 0 0 0.45 0 0.45 0 0 0 0.45 0.45 0 0 0.45 0.49 

i10 0.45 0.45 0 0.45 0 0.45 0 0.45 0.45 0.45 0.49 0.45 0.45 0.45 0.45 
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Table 3.7. Production costs ηip  [RMU / kg] for case study 2. 

 
 Product 

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 

i1 1 1 0 10 0 3 0 1 1 1 3 1 0 1 1 

i2 10 0 0 5 0 2 0 5 0 10 2 0 2 5 2 

i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

i5 0 0 0 20 0 0 0 20 0 20 20 0 0 5 20 

i6 0 0 0 10 0 0 0 10 0 10 10 0 0 1 10 

i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0 

i8 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 

i9 10 0 0 10 0 10 0 0 0 10 8 0 0 1 10 

i10 15 15 0 15 0 15 0 15 15 15 15 15 15 15 15 

 

 

Table 3.8. Facility capability PIi [boolean value] for case study 2. 

 
 Product 

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 

i1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 

i2 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 

i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

i5 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 

i6 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 

i7 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

i8 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

i9 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 

i10 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 

 

 

In their paper, Lakhdar et al. (2007) stated that the presented MILP model was an 

extension of the one already discussed in case study 1 described earlier. The core 

mathematical formulation for the single-objective problem remained mostly the same 

with the only most noticeable change being the lack of explicit model of separation 

between USP and DSP suites. Nevertheless, the complexity of the problem in case 

study 2 is much higher compared to case study 1 due to a greater number of products, 

facilities, and time periods (refer to Table 3.9 for a comparison). A 15-year time 

horizon is assumed comprising 60 time periods. Each individual time period t is 87 

days long compared to 60 in case study 1. There are 15 products that need to be 
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allocated to 10 facilities. Additional subsets are introduced to define facility capability 

and availability: PIi, the set of products that can be manufactured in facility i (Table 

3.8), and TIi, the set of time periods during which facility i is available for use. All 

facilities are assumed to be available throughout the time horizon, apart from facility 

i6 which is unavailable until time period t5, and facility i9 which is unavailable until time 

period t41. Minimum Tip
min

 and maximum Tip
max campaign durations are assumed to be 

0 and 87, respectively. Production yield ydip (Table 3.4), rate rip (Table 3.6), and cost 

ηip (Table 3.7) of each product p depend on facility i it is being manufactured in. 

 

Table 3.9. The comparison of MILP model complexity between case study 1 and 2. 

 
  Case Study 1 Case Study 2 

Single equations  535 19,430 

Single variables  457 25,018 

Discrete variables  252 9,382 

Non-zero elements  1,750 72,244 

 

3.4. Methods 

The implementation of mathematical models using algebraic modelling systems such 

as GAMS is very different compared to general-purpose programming languages 

such as C++. GAMS allows the mathematical models to be implemented in a way that 

is similar to their mathematical notation, while the general-purpose programming 

languages require an explicit definition of every expression. Another critical challenge 

of developing an efficient GA-based approach was identifying the smallest number of 

independent variables so as to maintain the dimensionality of the problem low and 

the shortest sequence of steps needed to evaluate the candidate solutions for the 

case studies to ensure good performance.  

 

In this section, the structure of the proposed GA-based approach and the steps of the 

algorithms that captured capacity planning objectives for multiple products across 
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multiple suites and facilities are outlined. Most of the GA methods is explained in the 

methods section for case study 1. In case study 2, the focus is on the rolling horizon 

strategy taken to improve the performance of the standard GA for solving the long-

term capacity planning problem. The relative complexity of the optimisation problems 

is illustrated by the summary of the MILP model statistics shown in Table 3.1. The 

MILP models were recreated in GAMS 23.9.5 and solved with a CPLEX 12.4.0.1 

solver. GA and PSO algorithms were implemented using C++ programming language 

and compiled using the Microsoft Visual C++ Compiler v14 (MSCV). The 

mathematical models are summarised in Appendices C and D; however, the reader 

is advised to refer to the original papers for a more in-depth explanation. Both case 

studies were performed on an Intel i5-6500 based Windows 10 system with 16GB of 

RAM. 

 

3.4.1. GA Parameter Tuning 

The process of identifying the optimal parameters for an optimisation algorithm or a 

machine learning one is usually costly, involves the search of a large, possibly infinite, 

space of candidate parameter sets, and may not guarantee optimality (Camilleri et al., 

2014). A simple PSO algorithm is implemented as a meta-optimiser to automatically 

tune the crossover and mutation parameter values in both case studies of this chapter 

(and throughout this thesis). Each particle, i.e. a potential solution, is initiated with 

randomised position and velocity vectors. The particle’s position in a decision space 

is defined by its position vector comprising the parameter values of the crossover and 

mutation. The particle’s velocity is the speed and direction at which the particle is 

traversing the decision space during each epoch. The fitness of each particle is 

assessed by running the GA using the parameter values encoded in the position 

vector for a specified number of independent algorithm runs with a fixed population 

size measuring the average of the best objective function values achieved at the end 
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of each run. The concept of the meta-optimisation is illustrated in Figure 3.2 while 

Algorithm 3.1 lists a pseudocode for it. The parameter values of PSO algorithm (Table 

3.2) were chosen based on the studies performed by Eberhart and Shi (2000) and 

Trelea (2003). Meta-optimisation is also applied in other chapters of this thesis (mainly 

Chapter 4) to automatically set the parameters of the GAs. 

 

 

Figure 3.2. The meta-optimisation approach. Adapted from Camilleri et al. (2014). 

 

Table 3.10. Meta-optimisation parameters used in case study 1 and 2 to find the 

optimal crossover and mutation parameter values for the GA. 

 
  Case Study 1 Case Study 2 

PSO swarm size1  20 

Number of PSO epochs2  200 

PSO inertia weight w3  0.729 

PSO local weight c1
4  1.494 

PSO global weight c2
5  1.494 

Number of GA runs  100 50 

GA population size  100 200 
1 The number of candidate solutions, i.e. particles. 
2 An equivalent of generations in the GA. 
3 Determines how much of the original velocity is retained. 
4 Determines how much the personal best position of a particle affects the global search process. Larger 

local weights drive the particles towards their own personal bests thus breaking the swarm apart. 
5 Determines how much the global best position affects the global search process. Larger global weights 

tend to keep the swarm tighter turning it into one large hill-climber. 

 

  

Meta-Optimisation Algorithm
(Particle Swarm Optimisation)

Meta-Optimisation Problem
(find optimal GA crossover and mutation values)

Genetic Algorithm

Capacity Planning Problem
(e.g. maximise operating profit)
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Algorithm 3.1. PSO-based meta-optimisation of the GA. 

 
  1    swam = ∅ 

  2    epoch = 0               ▻ epochs counter 

  3    best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = <>          ▻ placeholder for best position vector 

  4    for swarm_size times 

  5        x⃗  = A position vector with random values from 0.0 to 1.0 for each GA parameter 

  6        v⃗  = A velocity vector with random values from 0.0 to 1.0 for each GA parameter 

  7        particle = { x⃗ , v⃗  } 

  8        swarm = swarm U { particle } 

  9    end for 

10    while epoch < epochs 

11        for each particle x⃗  in swarm 

12            particle’s fitness = n-run performance of the GA using parameter values encoded in x⃗  

13            if best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   == <> or particle’s fitness > best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   fitness 

14                best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = x⃗  

15            end if 

16        end for 

17        for each particle x⃗  and v⃗  in swarm 

18            x⃗ + = previous fittest location of the current particle 

19            for each dimension i               ▻ update particle’s position x⃗  and velocity v⃗  vectors 

20                r1 = random number from 0.0 to 1.0 inclusive 

21                r2 = random number from 0.0 to 1.0 inclusive 

22                vi = wvi + c1r1(xi
+ – xi) + c2r2(besti – xi)  

23                xi = xi + vi 

24                Ensure xi is in 0.0-1.0 range         ▻ can be either reinitialised or set to the closest bound 

25            end for 

26        end for 

27        epoch += 1 

28    end while 

29    return best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

 

 

3.4.2. Case Study 1 

3.4.2.1. Chromosome Structure 

In case study 1, the GA-based approach uses a semi-direct representation, i.e. only 

the USP part of the schedule is encoded. Each chromosome is an | i |-by-| t | array of 

tuples where i is a set of USP suites, and t is a set of discrete-time periods (illustrated 

in Figure 3.3). Each tuple comprises a product label p and production time CTipt in 

USP suite i at time period t measured in days. Both variables are randomly generated 

at the beginning of the GA during the initial population generation. The variable CTipt 

is generated randomly within the minimum CTip
min

 and maximum CTip
max

 production 



3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling 

 
 

74 

time range. The DSP part of the schedule is constructed during fitness evaluation 

using the USP variables. 

 

  t1 t2 … tn 

U
S

P
 

s
u

it
e
s

 i1 (p, CTipt) (p, CTipt) … (p, CTipt) 

i2 (p, CTipt) (p, CTipt) … (p, CTipt) 

… … … … … 

in (p, CTipt) (p, CTipt) … (p, CTipt) 

 
Figure 3.3. Chromosome encoding strategy for case study 1. Each (p, CTipt) pair 

represents a gene encoding which product p and how many days CTipt have been 

allocated to USP suite i at a time period t. 

 

3.4.2.2. Genetic Algorithm 

The GA comprises the following steps: fitness evaluation, tournament selection, 

crossover, mutation, and replacement. In case study 1, chromosomes for crossover 

and mutation are selected using a binary tournament with replacement strategy which 

favours individuals with a higher objective function value, i.e. schedules with a larger 

profit value. A uniform crossover operator with a rate of pC is used to exchange the 

tuples between the chromosomes. Each tuple is also mutated with a rate pM to avoid 

premature convergence and improve the quality of the final solution. During mutation, 

the product label is changed by replacing it with a different random value from the set 

of available products P. The length of production is varied by adding or subtracting a 

random number of days, ensuring the allocated campaign time is within the 

constrained range, CTip
min

 and CTip
max

. If the length of production after mutation 

happens to fall outside of the constrained range, it is set to the value of the closest 

bound. In both case studies, the GAs are augmented with elitism (the term was 

originally coined by De Jong (1988)) which is a highly exploitative method of 

preserving the fittest chromosomes from the previous population (Luke, 2013). In 

case study 1, a single best chromosome is re-inserted into the population whenever 
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it is lost. Finally, the GA is set to terminate early if the fitness of the best individual has 

not improved for 100 consecutive generations. 

 

3.4.2.3. Fitness Evaluation 

In both case studies, the fitness evaluation procedures contain algorithmic 

adaptations of the MILP models (Lakhdar et al., 2005; Lakhdar et al., 2007) of multi-

product biopharmaceutical manufacture. In case study 1, the fitness evaluation 

procedure generates a complete production schedule (fills the DSP part) and 

estimates the values of binary and continuous variables, e.g. Zipt, Bipt, CIpt, which are 

used in the objective function to calculate the profitability of the schedule (Equation 

3.1). The pseudo algorithm of the fitness evaluation procedure for case study 1 is 

presented in Algorithm 3.2. 

 

Algorithm 3.2. Pseudocode for fitness evaluation in case study 1 

 
  1    for each time period t 

  2        for each upstream suite i 

  3            p = productsit 

  4            CTipt = timeit 

  5            Zipt = 1 – (t > 0 and p == productsi,t-1) 

  6            Bipt = Zipt + CRp(CTipt – αpZipt) 

  7            CIpt = CIpt + Bipt 

  8        end for 

  9        for each product p  

10            if t > ζp 

11                CWpt = CIp,t-ζ
p

-1 – ( ∑ ∑ Bjpθ + 
ζ

p

θ=t-ζ
p

j ∑ CWpθ

ζ
p

θ=t-ζ
p

 ) 

12            end if 

13            CIpt = CIpt + CIp,t-1  – CWpt 

14            if CIpt > Cp 

15                CWpt = CWpt + CIpt – Cp 

16                CIpt = Cp 

17            end if 

18            for each downstream suite j 

19                if productsjt == 0 

20                    Bjpt = λpCIpt 

21                    Zjpt = 1 – (t > 0 and p == productsj,t-1) 

22                    while (FTipt= β
p
Zjpt + 

Bjpt-Zjpt

FRp
)> FTp

max
  

23                        Bjpt = Bjpt – 1 
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Algorithm 3.2. (continued) Pseudocode for fitness evaluation in case study 1 

 
24                    end while 

25                    CIpt = CIpt −
Bjpt

  λp
 

26                    FIpt = FIpt + Bjpt 

27                    productsjt = p 

28                    timejt = FTjpt 

29                end if 

30            end for 

31            if t > σp  

32                FWpt = FIp,t-σ
p

-1 – (∑ Spθ + 
σp

θ=t-σp
∑ FWpθ

σp

θ=t-σp
 ) 

33            end if 

34            FIpt = FIpt + FIp,t-1  – FWpt 

35            if FIpt > Fp 

36                FWpt = FWpt + FIpt – Fp 

37                FIpt = Fp 

38            end if 

39            if Dpt > 0 

40                if Dpt ≤ FIpt 

41                   Spt = Dpt 

42                   FIpt = FIpt – Spt  

43                else 

44                    Spt = FIpt 

45                    FIpt = 0 

46                    Δpt = Dpt – Spt 

47                end if 

48            end if 

49            if Δp,t-1  > 0 

50                if Δp,t-1  ≤ FIpt  

51                    Spt = Spt + Δp,t-1 

52                    FIpt = FIpt – Δp,t-1 

53                else 

54                    Spt = Spt + FIpt 

55                    FIpt = 0 

56                    Δpt = Δpt + Δp,t-1  – Spt 

57                end if 

58            end if 

59        end for 

60    end for 

 

In Algorithm 3.2, Lines 3 and 4 retrieve the product label p and the number of 

production days allocated to USP suite i at time period t, CTipt, from the chromosome 

which is an | i |-by-| t | array. Lines 5 and 6 calculate the number of changeovers and 

batches produced in USP suite i at time period t. In Line 5, the value of the changeover 

variable Zipt will be equal to 1 if and only if product p has not been produced in USP 
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suite i at a previous time period t – 1. Line 7 accumulates the production from all USP 

suites. Lines 10-12 calculate the amount of product p wasted in USP suites at time 

period t which is equal to the number of batches left unprocessed from ζp periods ago. 

The amount of USP inventory of product p at time period t is calculated in Line 13 by 

adding the cumulative value obtained in Line 7 from time period t – 1 and subtracting 

the amount of waste CWpt. Lines 14-17 ensure that the USP inventory level CIpt does 

not exceed the storage limit Cp. Any excess inventory of product p during time period 

t is calculated as waste CWpt (Line 15). 

 

Line 19 ensures that the assignment of product p to DSP suite j at time period t is 

performed only once. Line 20 calculates how many batches will be produced in a DSP 

suite j at time period t. This is performed by multiplying the USP inventory value CIpt 

by the production correspondence factor λp which specifies the respective 

throughputs from USP and DSP suites. For example, a factor of 0.5 signifies that for 

every two USP batches one DSP batch is produced. Line 21 evaluates the number of 

changeovers in DSP suites similarly to Line 5. Line 22 estimates the campaign 

duration FTjpt of product p at DSP suite j during time period t. It also checks whether 

the DSP campaign length does not exceed the allowed maximum FTp
max

. If it does, 

the value of variable Bjpt is iteratively decremented until the production time FTjpt is 

below or equal to FTp
max

 (Line 23). Line 25 updates the value of USP inventory of 

product p at time period t by subtracting the number of batches that are processed in 

DSP suite j. Line 26 accumulates the production from all DSP suites. Lines 27 and 28 

assign the product p and DSP production time FTjpt to the DSP part of the 

chromosome. 

 

The amount of DSP waste FWpt and inventory levels FIpt of final product p at time 

period t are calculated in Lines 31-38 similarly to Lines 10-17. In Lines 39-48, if there 
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is a demand Dpt for product p at time period t, then the amount of product sold Spt is 

calculated based on the number of batches stored in DSP inventory FIpt. If there are 

more batches in storage than there are in demand (Line 40), the variable Spt will be 

equal to the value of demand (Line 41). Otherwise, Line 44 assigns the value of DSP 

storage FIpt to Spt, and the backlog is recorded using variable Δpt for that time period 

in Line 46. If the inventory allows it (Line 50), the backlog from a previous time period 

Δp,t-1 is sold in Line 45. Otherwise, it is accumulated in Line 51. 

 

The fitness of each chromosome is equal to the profit achieved by the schedule which 

is calculated with the same objective function (Equation 3.1) as presented by Lakhdar 

et al. (2005) using the aforementioned binary and continuous variables. The objective 

function value is equal to the difference between the total sales ∑ ∑ 𝜈𝑝𝑆𝑝𝑡𝑡𝑝  and the 

total costs of manufacturing ∑ ∑ (∑ 𝜂𝑝𝐵𝑖𝑝𝑡𝑖𝑡𝑝 + ∑ 𝜂𝑝𝐵𝑗𝑝𝑡)𝑗 , product changeovers 

∑ ∑ (∑ 𝜓𝑝𝑍𝑖𝑝𝑡𝑖𝑡𝑝 + ∑ 𝜓𝑝𝑍𝑗𝑝𝑡𝑗 ), intermediate and final product storage 

∑ ∑ (𝜌𝑝𝐶𝐼𝑝𝑡− 𝜔𝑝𝐹𝐼𝑝𝑡𝑡𝑝 ), late deliveries ∑ ∑  𝛿𝑝𝛥𝑝𝑡𝑡𝑝 , and waste disposal 

∑ ∑ (τpCWpt − τpFWpt𝑡𝑝 ). 

 

𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ ∑ (𝜈𝑝𝑆𝑝𝑡 − ∑ 𝜂𝑝𝐵𝑖𝑝𝑡𝑖𝑡𝑝 − ∑ 𝜓𝑝𝑍𝑖𝑝𝑡𝑖 − ∑ 𝜂𝑝𝐵𝑗𝑝𝑡 −𝑗

∑ 𝜓𝑝𝑍𝑗𝑝𝑡𝑗 −𝜌𝑝𝐶𝐼𝑝𝑡− 𝜔𝑝𝐹𝐼𝑝𝑡− 𝛿𝑝𝛥𝑝𝑡 − 𝜏𝑝𝐶𝑊𝑝𝑡 − 𝜏𝑝𝐹𝑊𝑝𝑡)          Equation 3.1. 
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3.4.3. Case Study 2 

3.4.3.1. Chromosome Structure 

The increased complexity of the planning problem in case study 2 presented a 

challenge for the GA-based approach. Encoding the chromosomes as full-scale  

| i |-by-| t | arrays was found to be computationally costly. A rolling time horizon method 

was taken to explore the large search space in a more efficient manner by dividing 

the 15-yearlong planning problem into 15 equal sub-problems solved consecutively. 

In order to accomplish this, each chromosome encoded a sub-problem as an | i |-by-

| τ | array of product p and the length of production Tipt values where τ ⊂ t and | τ | = 

4. τ represents the extent of the rolling time horizon, i.e. a dynamic subset of 4 time 

periods which correspond to the timeline of the sub-problem being solved. For 

example, τ = { t1, t2, t3, t4 } and τ = { t57, t58, t59, t60 } contain the time periods for the first 

and last sub-problems, respectively. The best solution from each sub-problem is 

stored in the final, full-scale | i |-by-| t | solution, before proceeding to solve the 

following sub-problem. The values of the variables corresponding to the best solution 

such as the number of batches Bipt of product p produced in each facility i during time 

period t are fixed so they would not need to be recalculated for the next sub-problem. 

To distinguish the rolling time horizon approach-based GA from the standard one , 

which uses a direct full-scale encoding strategy, it will be referred to it as the dynamic 

GA. 

 

3.4.3.2. Genetic Algorithm 

This section explains the dynamic GA procedure. Algorithm 3.3 lists the pseudocode 

for the dynamic GA. Figure 3.4 illustrates the concept of it. 
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Algorithm 3.3. Pseudocode for the dynamic GA applied in case study 2. 

 
  1    for each subproblem 

  2        parents = ∅  

  3        gen = 0            ▻ subproblem generation counter 

  4        num_restarts = 0            ▻ tracks the number of times the GA was restarted 

  5        subproblem_best = □         ▻ placeholder for the best solution to the current subproblem 

  6        Generate new parent population 

  7        while gen < max_gens 

  8            if gen ≥ x and subproblem_best == subproblem_best from x generations ago 

  9                if num_restarts < desired number of GA restarts 

10                    Generate new parent population 

11                    num_restarts += 1 

12                else  

13                    break 

14                end if 

15            end if 

16            for each parent in parents 

17                EvaluateFitness(parent) 

18                if subproblem_best = □ or fitness of parent > fitness of subproblem_best 

19                    subproblem_best = parent 

20                end if 

21            end for 

22            offspring = { top n of the fittest individuals in parents, breaking ties at random } 

23            for (|parents| – | offspring |) / 2 times 

24                parenta = BinaryTournament(parents) 

25                parentb = BinaryTournament(parents) 

26                offspringa, offspringb = Crossover(parenta, parentb) 

27                offspring = offspring U { Mutate(offspringa), Mutate(offspringb) } 

28            end if 

29            parents = offspring 

30            gen += 1 

31        end while 

32        Extend the full-scale solution with subproblem_best               ▻fix solved variables 

33    end for 

 

A new parent population is generated for every sub-problem with the values of product 

p for each facility i selected randomly from the set of allowable products for that facility, 

PIi, making sure the facility i is also available for use at time period t ∈ TIi. A product  

label with a value of 0 is also included in the set to denote facility i idling at time period 

t. The parent population of gen + 1 is made up of the top 5% of the fittest individuals 

from the previous parent population and the offspring (recombined parents) (see 

Lines 22-29, Algorithm 3.3). A uniform crossover operator with a probability pC is used 

to create two offspring from two parent chromosomes. The product label p  

and production time encoded in each chromosome are mutated independently with  
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Figure 3.4. An illustration of how the long-term capacity planning problem from case study 2 can be divided into smaller sub-problems. The full 

solution and each sub-problem are | i |-by-| t | and | I |-by-| τ | arrays respectively. When | τ | = 4, the sub-problems overlap with one another on 

the parts that are shaded in grey. For example, once the first sub-problem is solved { t1, t2, t3, t4 }, some of the fixed binary and continuous variables 

from time period t4 will be used to estimate the variable values over time period t5 for the second sub-problem { t5, t6, t7, t8 }. The dynamic GA 

generates a solution to the full-scale problem by solving the sub-problems in a chronological order and concatenating the best solutions from 

each one.
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probabilities pMutP and pMutT, respectively. Provided that the facility i is available for 

use at time period t, the value of product label p is mutated by assigning 0 or a random 

value from the subset PIi (products that can be manufactured in facility i). Production 

time is mutated by adding or subtracting a random number of days, similarly to the 

mutation procedure employed in case study 1. A completely new parent population is 

generated when the best fitness value remains unchanged for a specified number of 

consecutive generations (Lines 8-16, Algorithm 3.3). When this repeats, the GA stops 

solving the sub-problem (Line 13, Algorithm 3.3) and extends the full-scale solution 

with the best solution to the most recent sub-problem (Line 32, algorithm 3.3). 

 

3.4.3.3. Fitness Evaluation 

The fitness evaluation procedure in the dynamic GA of case study 2 is very similar to 

that of case study 1. In Algorithm 3.4, the variable ξ is used to iterate through the 

values of the | i |-by-| τ | array encoded by each chromosome. The product label p and 

production time Tipt  are retrieved from the chromosomes in Lines 4 and 5. The value 

of the binary changeover variable Zipt is set to 1 in Line 6 if variable Bip,t-1, the number 

of batches of product p produced in facility i in the previous time period slot, is 0. The 

value of the number of batches variable Bipt during time period t is calculated in Line 

7 and converted into kilograms Kipt using the yield conversion factor ydip in Line 8. The 

value of ydip depends on the facility i which the product p is being manufactured in. 

Line 9 accumulates the value of Kipt into the variable Ipt – the amount of product p in 

kilograms stored at time period t. The amount of product waste Wpt is estimated in 

Lines 13-15. The value of this variable is equal to the amount of product p that was 

not sold and remained in storage for more than ζ time periods. The rest of the 

pseudocode logic in Algorithm 3.4, i.e. from Line 17 and onwards is nearly identical 

to Lines 39-58 in Algorithm 3.2 (fitness evaluation for case study 1). The only notable 
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differences are the lack of storage capacity constraints and the addition of backlog 

decay factor π which diminishes the importance of the backlogged orders over time. 

 

Algorithm 3.4. Pseudocode for fitness evaluation in case study 2. 

 
  1    ξ = 0 

  2    for each time period t in subproblem              ▻or for ξ from 0 to | τ | 

  3        for each facility i 

  4            p = productsiξ 

  5            Tipt = timeiξ  

  6            Zipt = 1 – (t > 0 and Bip,t-1 == 0) 

  7            Bipt = Zipt + rip(Tipt – αZipt) 

  8            Kipt = Biptydip 

  9            Ipt = Ipt + Kipt 

10        end for 

11        ξ = ξ + 1 

12        for each product p  

13            if t > ζ 

14               Wpt = Ip,t-ζ-1 – ( ∑ Spθ+ζ

θ=t-ζ
∑ Wpθ ζ

θ=t-ζ ) 

15            end if 

16            Ipt = Ipt + Iip,t-1 – Wpt 

17            if Dpt > 0 

18                if Dpt ≤ Ipt 

19                    Spt = Dpt 

20                    Ipt = Ipt – Spt  

21                else 

22                    Spt = Ipt 

23                    Ipt = 0 

24                    Δpt = Dpt – Spt 

25                end if 

26            end if 

27            if Δp,t-1 ≥ 0 

28                if Δp,t-1  ≤ Ipt  

29                    Spt = Spt + Δp,t-1  

30                    Ipt = Ipt – Δp,t-1  

31                else 

32                    Spt = Spt + Ipt 

33                    Ipt = 0 

34                    Δpt = Δpt + πΔp,t-1  – Spt 

35                end if 

36            end if 

37        end for 

38    end for 
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The fitness of each chromosome is evaluated using the objective function of profit 

maximisation (Equation 3.2) defined by Lakhdar et al. (2007). The objective function 

value is equal to the difference between the total sales ∑ ∑ ν𝑆𝑝𝑡𝑡∈𝑇𝐼𝑖𝑝  and the total 

operating costs which include the costs of manufacturing and changeovers 

∑ ∑ ∑ (𝜂𝑖𝑝𝐵𝑖𝑝𝑡 + 𝜓𝑍𝑖𝑝𝑡)𝑖∈𝐼𝑃𝑖𝑡∈𝑇𝐼𝑖𝑝 , storage ∑ ∑ 𝜌𝐼𝑝𝑡𝑡∈𝑇𝐼𝑖𝑝 , and late deliveries 

∑ ∑ 𝛿𝛥𝑝𝑡𝑡∈𝑇𝐼𝑖𝑝 .  

 

𝑃𝑟𝑜𝑓𝑖𝑡 =   ∑ ∑ (𝜈𝑆𝑝𝑡 − 𝜌𝐼𝑝𝑡− 𝛿𝛥𝑝𝑡 − ∑ (𝜂𝑖𝑝𝐵𝑖𝑝𝑡𝑖∈𝐼𝑃𝑖𝑡∈𝑇𝐼𝑖𝑝 + 𝜓𝑍𝑖𝑝𝑡) )             Equation 3.2. 

 

3.5. Results  

In this section, the results to the case studies of capacity planning and scheduling of 

biopharmaceutical manufacture from the literature are presented. In case study 1, the 

problem consists of a multi-suite facility, with 2 USP { i1, i2 } and 2 DSP { j1, j2 } suites 

to produce 3 products { p1, p2, p3 } with multiple intermediate demand dates due over 

a 360-day long production time horizon. The horizon is discretised into 6 time periods 

{ t1, t2, …, t6 } of 60 days. In case study 2, the problem consists of 10 facilities { i1, i2, 

…, i10 } with different manufacturing capabilities PIi (subset of facilities capable of 

producing product p) and availability TIi (subset of facilities available at time period t) 

to produce 15 products { p1, p2, …, p15 } due annually over a 15-yearlong production 

time horizon. The horizon consists of 60 discrete time periods { t1, t2, …, t60 } of 87 

days. 

 

The GAs discussed in the previous sections for case study 1 and case study 2 are 

used to solve the respective scheduling problems, and the results are compared with 

the recreated MILP models in Tables 3.11 and 3.13. A comparison between the 

production schedules generated using MILP and a GA is also provided in Figures 3.5 

and 3.6. 
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3.5.1. Case Study 1 

The proposed GA developed in this chapter was first applied to case study 1 on 

medium-term capacity planning for a single-site, multi-suite, multi-product 

biopharmaceutical facility. Initially, a MILP model was developed for the problem as a 

benchmark for comparison with the GA performance. In their original MILP work, 

Lakhdar et al. (2005) reported an objective function value of 487 relative monetary 

units (RMU) with a 5% optimality gap for this problem. The margin of optimality (also 

known as a relative optimality gap) is defined as the relative distance between the 

relaxed MILP solution and the current best integer MILP solution (Brooke et al., 1998). 

In other words, it is the relative difference between the “best estimate” solution and 

“the best integer” solution that satisfies all integer requirements/constraints. Lakhdar 

et al. (2005) reported that it took 16 seconds to solve the optimisation problem. Using 

the reproduced MILP model an objective function value of 490 RMU was achieved 

with 0% optimality gap indicating a global optimum.  

 

Table 3.11. Case study 1 results and model statistics for MILP and GA models. 

 
 MILP GAa GAb 

Max obj. function value 490 4901 4901 

Solution time (s) 0.22 0.072 0.072 

Optimality gap 0% 0%3 0%3 

Avg. obj. function value4 - 490 ± 0 489 ± 5 

Population size - 100 

Crossover rate, pC5 - 0.710 

Mutation rate, pM5 - 0.070 

Termination6 - 100 
a Results obtained using the same random number generator seed from the meta-optimisation. 
b Results obtained using a different random number generator seed. 
1 Max objective function value obtained from 100 independent GA runs 
2 An average solution time of a single GA run 
3 An optimality estimate relative to the global optimal obtained using the recreated MILP model 
4 Mean objective function value of 100 independent GA runs (mean ± 1 standard deviation). 
5 The parameter values were selected using the PSO algorithm. 
6 Each run was terminated when the fitness had not improved for 100 generations or maximum 

generation limit (1000) had been reached. 
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In contrast to the mathematical programming approaches, such as MILP, GA is not 

guaranteed to converge on the same value every time it is run. As a result, the search 

process for the optimal value(s) is typically performed by running the GA for a number 

of independent runs (generating a new population for each one). Literature suggests 

values in the range of 20 and 50 runs, e.g. Taherdangkoo et al. (2013), Allmendinger 

et al. (2014). In case study 1, because of the fast execution speeds of the GA, i.e. 

less than a second per single run, the number of runs was set to 100. Each run was 

terminated when the fitness had not improved for 100 generations or maximum 

generation limit (1000) had been reached. 

 

 

 

 
Figure 3.5. Production schedule for case study 1 with an objective function value of 

490 RMU and 0% optimality gap. Both the MILP model and the proposed GA 

generated the same schedule. The first number in each cell denotes the number of 

batches produced which is followed by the production time [days] in brackets. The 

shading of the box indicates which product is being manufactured. 

 

The aforementioned PSO-based meta-optimisation approach was used to tune the 

crossover and mutation parameter values, pC and pM. Using this approach, the 

optimal values of crossover rate (pC = 0.710) and mutation rate (pM = 0.070) were 

identified, and the GA achieved the global optimum of 490 RMU for 100 consecutive, 

independent algorithm runs. The GA also generated a production schedule with the 

product allocation pattern identical to the one from the recreated MILP model (Figure 

3.5). The average solution time of the GA was 0.07 s. In contrast, MILP took an 

average of 0.22 s to find the global optimum (even though MILP is a deterministic 

t1 t2 t3 t4 t5 t6

USP 1 4 (60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)

USP 2 2 (54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)

DSP 1 3 (55) 5 (50) 2 (50) 3 (30) 2 (20) 5 (50)

DSP 2 2 (52) 2 (20) 2 (20) 3 (55) 5 (50)

Time periods (tn = 60 days)

Su
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e
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technique, the running time can be affected by the background processes thus the 

MILP model was run 10 times to obtain a more accurate estimate). 

 

Given the fast performance of the proposed GA-based method and the optimality of 

the results, it can be considered as a viable alternative for addressing medium-term 

capacity planning and scheduling problems similar in structure and complexity to case 

study 1. 

 

3.5.2. Case Study 2 

Having tackled medium-term, single-site facility scheduling, the GA was then 

extended to address long-term planning across multi-site, multi-product 

biopharmaceutical manufacturing facilities in case study 2. To set the benchmark for 

the GA, the recreated single-objective MILP model was used to achieve an objective 

function value of 66,360 RMU with a 0% optimality gap for this problem. It took 

approximately 16.7 min to find the global optimum. With the optimality gap increased 

to 1%, the MILP model achieved an objective function value of 65,940 RMU in 8.77 

s. 

 

As discussed earlier, two versions of a GA (standard and dynamic) were applied to 

solve the long-term capacity planning problem presented in case study 2. Using the 

standard version, each chromosome encoded the full-scale problem as an | i |-by-| t | 

array (where | i | = 10 and | t | = 60), and the GA was set to terminate after 1000 

generations had elapsed. In the dynamic version, a rolling time horizon approach was 

utilised to break down the full-scale 15-yearlong scheduling problem into 15 sub-

problems. Each chromosome encoded only a part of the full schedule as an  

| i |-by-| τ | array (where τ ∈ t and | τ | = 4) corresponding to the sub-problem being 

solved. Both GA versions were run 50 times. The crossover, mutation, and elitism 

operators were identical in both standard and dynamic versions. 
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The PSO-based meta-optimisation was applied to tune both the standard and 

dynamic GAs to ensure a fair comparison of the two versions. The dynamic GA was 

restarted once the fitness value remained unchanged for a set number of consecutive 

generations defined by a termination criterion. In an attempt to achieve a higher 

objective function value using the dynamic GA, different population sizes (100, 200, 

300) and termination criteria (25, 50, 75) were tested (see Table 3.12).  

 

Table 3.12. Case study 2 results and model statistics for the dynamic GA model using 

different population sizes and termination criteria. 

 

Avg. obj. 

function value1 

Max obj. 

function 

value 2 

Avg. solution 

time 

Population 

size 

Termination  

criterion3 

65,399 ± 131 65,653 3.91 s 100 25 

65,518 ± 144 65,799 6.11 s 100 50 

65,543 ± 144 65,818 8.30 s 100 75 

65,652 ± 112 65,849 8.09 s 200 25 

65,755 ± 105 65,934 12.87 s 200 50 

65,797 ± 92 65,987 17.20 s 200 75 

65,806 ± 66 65,921 12.66 s 300 25 

65,855 ± 86 65,997 19.86 s 300 50 

65,883 ± 92 66,068 26,85 s 300 75 
1 Average of best objective function values from 50 independent GA runs 

(mean ± 1 standard deviation) 
2 Max objective function value obtained from 50 independent GA runs. 
3 If the best objective function value remained unchanged for a given number of consecutive 

generations, the GA is restarted with a new parent population. The second time the best objective 

function value stayed the same for the same number of generations, the GA was terminated. 

 

As expected, increasing the population size and termination criterion had a positive 

impact on the maximum and mean objective function values. For example, with a 

population size of 300 and a termination criterion of 75, the mean and maximum 

objective function values achieved with the dynamic GA after 50 runs were 65,883 ± 

92 and 66,068, respectively. In comparison, the global optimum achieved with MILP 

was 66,360. However, the improvements to the objective function value came at the 

cost of longer execution times, i.e. upwards of 15 s for a single run on average. 

Therefore, for the best trade-off between the solution quality, i.e. the objective function 
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value, and the performance of the dynamic GA, the population size and the 

termination criterion were set to 200 and 25, respectively. 

 

The comparison of the results between the MILP and the two GA versions is 

summarised in Table 3.13. After 50 runs, the mean best objective function value using 

the standard GA was 61,186 ± 437 while the dynamic GA (with a population size of 

200 and a termination criterion of 25 generations) achieved 65,652 ± 112. The rolling 

time horizon approach led to significant performance gains. Not only the mean 

objective function value obtained with the dynamic GA was higher and had lower 

standard deviation than the standard GA, but also the execution time was 

approximately 2.7 times faster (8.09 s vs 21.56 s). The dynamic GA was also 

comparable to the relaxed MILP model both in terms of the speed (8.09 s vs 8.77 s) 

and solution quality. Using the known global optimum of 66,360 as an upper bound, 

the average and the lowest optimality gaps achieved with the dynamic GA (with a 

population size of 200 and a termination criterion of 25 generations) were estimated 

to be 1.1% and 0.8%, respectively. In comparison, the relaxed MILP model returned 

an objective function value of 65,940 with a 0.6% optimality gap. The comparison of 

the Gantt charts in Figure 3.6 shows that the scheduling pattern of the dynamic GA 

(Figure 3.6.b) is similar to that of the relaxed MILP model (Figure 3.6.a), for example:  

 

▪ Facilities i1 and i2 run with little to no idle time and with a variety of different products 

allocated to them. 

▪ Facility i3 is busier in the first half of the scheduling table with more product 

allocations. 

▪ Product p4 is almost exclusively produced in the facility i4. 

▪ Facility i4 has no idle time periods. 

▪ Certain facilities such as i5 and i10 are completely idle. 
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Table 3.13. Case study 2 results and model statistics for MILP and GA models. 

 
 MILP GA 

 Global optimum Relaxed Dynamica Dynamicb Standarda Standarda 

Max obj. function value 66,360 65,940 65,8491 65,8771 61,8801 62,1931 

Time (s) 1000.36 8.77 8.092 8.182 21.562 24.082 

Optimality gap3 0% 0.6% 0.8%3 0.7%3 7.8%3 7.43 

Avg. obj. function value4 - 65,652 ± 112  65,686 ± 105 61,186 ± 437  61,490 ± 469 

Population size - 200 200 

Crossover rate, pC5 - 0.935 0.597 

Mutation rate, pMutP5 - 0.018 0.001 

Mutation rate, pMutT5 - 0.867 0.295 

Elitism - 70% 5% 

Termination - 256 1000 

a Results obtained using the same random number generator seed from the meta-optimisation. 
b Results obtained using a different random number generator seed. 
1 Max obj. function value obtained from 50 independent GA runs. 
2 An average solution time of a single GA run. 
3 An optimality estimate relative to the global optimum obtained using the  recreated MILP model, i.e. 1 – obj. function value / global optimum 
4 Average of best objective function values from 50 independent GA runs  

(mean ± 1 standard deviation) 
5 The parameter values were selected using the PSO algorithm. 
6 If the best objective function value remained unchanged for 25 consecutive generations, the GA was restarted with a new parent population. The second time the best 

objective function value stayed the same for the same number of generations, the GA was terminated. The maximum generation limit was set to 1000. 
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Figure 3.6. Production schedules for case study 2. Each product p ∈ { p1, p2, …, p15 } is denoted by a color label displayed in the legend below 

the schedules. The numbers of batches of each product produced have been removed for clarity purposes. 

(a) generated using the MILP model. An objective function value of 65,940 RMU was obtained with 0.6% optimality margin (based on the known 

global optimum as the upper bound). 

(b) generated using the dynamic GA. An objective function value of 65,849 RMU was obtained (0.8% estimated optimality margin)
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3.6. Summary 

This chapter has demonstrated how a GA can be applied to solve medium- and long-

term biopharmaceutical capacity planning problems formulated as discrete-time 

mixed integer programs in a fast and efficient manner. The key enabling features of 

the GA-based approaches included a chromosome encoding strategy, a rolling time 

horizon approach to improving the performance of the GA for tackling the long-term 

planning problem, and algorithms that captured capacity planning objectives for 

multiple products across multiple suites and facilities. A PSO-based meta-

optimisation method was also presented for automatically setting crossover and 

mutation parameter values based on the average best objective function value 

achieved with the GA. The viability of the GA-based scheduling optimisation 

approaches was demonstrated on two industrially-relevant case studies from the 

literature. 

 

In case study 1, a medium-term capacity planning problem of a single-site, multi-suite 

biopharmaceutical facility was solved. The proposed GA obtained the global optimum 

faster than a related MILP model. In case study 2, a more computationally complex, 

long-term capacity planning problem of a multi-site biopharmaceutical manufacture 

was solved. Using the rolling horizon approach, the full-scale problem was divided 

into 15 sub-problems which were solved consecutively. Using the parameters for the 

best trade-off between the performance and solution quality, the average run time of 

the dynamic GA was 8.09 s whereas the average optimality gap of the solutions was 

1.1%, according to the known global optimum. 
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4. Continuous-Time Biopharmaceutical 

Capacity Planning and Scheduling 

4.1. Introduction 

In the preceding chapter, GA approaches were compared with MILP for discrete-time 

based optimisation of biopharmaceutical capacity plans. In the first case study, both 

GA and MILP models generated a globally optimal solution. The discretisation of the 

time horizon into a number of time intervals of uniform durations was advantageous 

in terms of making it simpler to model the planning problem but it also had several 

shortcomings. The key one was the inability to meet the product demand on time 

(Figure 4.1). This was because of the inherent limitation of the discrete-time 

representations adopted in the original MILP formulation by Lakhdar et al. (2005) in 

their biopharmaceutical capacity planning model. The constraints of fixed time periods 

and the manufacturing of at most one product at any given time period irrespective of 

the sufficient time available for further production resulted in several days of unutilised 

production time (see Figure 4.2). For example, the USP1 and USP2 suites were 

occupied for approximately 89% and 84% of the total available production time, 

respectively. So, the demand for product p1 at time period t4 was not met even though 

the facility had spare capacity. 

 

Other shortcomings of discrete-time based models have been reported in the 

literature. These include inaccuracy, due to the aforementioned approximation of the 

time horizon, as well as unnecessary increases in of the overall size of the resulting 

mathematical programming problems, due to the introduction of a large number of 

binary variables associated with each discrete time interval have been reported in the 

literature (Floudas & Lin, 2004). To address these drawbacks, methods based on 
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continuous-time representations have received a substantial amount of attention. 

They provide greater potential for the development of more efficient and realistic 

modeling and solution approaches. In the continuous-time models, the manufacturing 

campaigns (more broadly referred to as events) are allowed to take place at any point 

in the continuous domain of time. This kind of flexibility is accomplished using variable 

event times that can be either made to be specific to each unit/product or defined 

globally. Using the continuous-time approach, the mathematical programming 

problems can sometimes end up being smaller in size and easier to solve because of 

the elimination of the inactive time periods.  

 

 
Figure 4.1. Supply (bar) and demand (line) profile of the globally optimal solution to 

the case study 1. The demand for product p1 at time period t4 was not met on time. 

 

a) 

 

b) 

 

  

 
Figure 4.2. Unutilised production time. (b) The numbers in the cells indicate how many 

days were left unutilised by (a) the globally optimal solution. 

t1 t2 t3 t4 t5 t6

USP 1 4 (60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)

USP 2 2 (54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)

DSP 1 3 (55) 5 (50) 2 (50) 3 (30) 2 (20) 5 (50)

DSP 2 2 (52) 2 (20) 2 (20) 3 (55) 5 (50)

Time periods (tn = 60 days)

Su
it
e
s

USP 1 10 10 20

USP 2 6 16 16 10 10

DSP 1 5 10 10 30 40 10

DSP 2 8 40 20 5 10

Su
it
e
s

Product 1 Product 2 Product 3
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However, due to the variable and more flexible nature it becomes more difficult to 

model scheduling problems and the continuous-time based MILP models often tend 

to have even more complicated formulations than the discrete-time based 

alternatives. Moreover, the usefulness and computational efficiency of the 

continuous-time formulation depend on the number of predefined event points 

(Méndez et al., 2006). If the global optimum of the scheduling problem requires at 

least n points then fewer points will lead to sub-optimal or even infeasible solutions 

whereas a large number of points will lead to long computation times. Since the 

number of points is not known in advance, it is usually determined iteratively by 

increasing it until there is no improvement in the objective function. In certain cases, 

a substantial number of model instances need to be solved for each scheduling 

problem. Furthermore, this stopping criterion does not guarantee the optimality of the 

schedule and may terminate with a sub-optimal solution. 

 

Inspired by the NeuroEvolution strategies, e.g. Stanley and Miikkulainen (2002) , this 

chapter presents a novel variable-length chromosome structure and a set of new 

genetic operators to automatically determine the optimal permutation, number, and 

length of production campaigns to satisfy the capacity planning problem objectives 

and constraints. This variable-length GA-based scheduling optimisation method is 

validated on two industrially-relevant case studies adapted from the literature and 

compared with related discrete- and continuous-time MILP models. 

 

This chapter is organised as follows: Section 4.2 defines the scheduling problems of 

the two examples in more detail. Section 4.3 describes the key components of the 

novel continuous-time GA-based approach for biopharmaceutical capacity planning. 

Section 4.3.1 explains the variable-length chromosome structure and encoding 

strategy. Section 4.3.2 introduces new genetic operators and Section 4.3.3 explains 

the scheduling heuristic used for evaluating the fitness of each candidate solution and 
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constructing the Gantt charts. Case study 1 and 2 results are presented in Section 

4.4. The flexible GA-based approach is compared with discrete- and continuous-time 

based MILP models on the example 1 in Section 4.3.1. In Section 4.3.2, a discrete-

time MILP model is used to benchmark the performance of the flexible GA-based 

approach on the example 2. 

 

4.2. Problem Definition 

In this chapter, the novel variable-length GA is validated on two examples adapted 

from Lakhdar et al. (2005). Both examples are based on industrially-relevant data and 

cover the most common aspects of the biopharmaceutical manufacturing.  

 

4.2.1. Case Study 1 

This case study has been already presented in the first case study of the previous 

chapter. This particular scheduling problem was first solved by Lakhdar et al. (2005) 

using a discrete-time based MILP model, then later by Kabra et al. (2013) using a 

continuous-time MILP model based on an STN framework, and finally by Vieira et al. 

(2016) using a continuous-time MILP model based on RTN framework. In the original 

problem statement in Lakhdar et al. (2005), the planning horizon was discretised into 

time periods of uniform durations (60 days). Therefore, the problem data and most of 

the constraints were time period-based. In this chapter, the problem statement and 

the original data are adjusted to suit the continuous-time domain. The rightmost 

boundary of each time period is assigned as a due date for product demand. For 

example, any product demand due in the first time period in the discrete-time model 

is equivalent to being due on the 60th day from the beginning of the schedule in the 

continuous-time model. It is assumed that overproduction is not allowed, sales are 

possible only at the demand date, and the backlog can be sold by the next 60th day. 
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For example, if the delivery on the first 60th day from the start of schedule was missed, 

that late order can be sold after the next 60 days, i.e. on the 120th day. Additional 

adjustments include the conversions of the time period-based shelf-life durations and 

the continuous rates of USP and DSP production into an actual number of days. Both 

Kabra et al. (2013) and Vieira et al. (2016) had to make similar assumptions and 

adjustments to suit their continuous-time MILP-based models. The problem statement 

for case study 1 is as follows: 

 

▪ Given: 

o 3 biopharmaceutical products p = { p1, p2, p3 } 

o A biopharmaceutical facility with 2 USP suites i = { i1, i2 } and 2 DSP suites 

j = { j1, j2 } 

o A continuous planning horizon of 360 days  

o Product-dependent production and changeover durations. 

o Finite product shelf-life and storage capacity 

o Product demand with multiple intermediate due dates 

o Manufacturing, storage, waste disposal, backlog, and changeover costs 

▪ Determine: 

o The number, duration, and sequence of manufacturing campaigns 

o Production quantities along with sales and inventory profiles 

▪ To: 

o Maximise total profit 

 

Table 4.1. Product demand profile [batches] for case study 1. The due date is the nth 

day from the start of the schedule. 

 
 Due date 

Product 60 120 180 240 300 360 

p1 0 0 0 6 0 6 

p2 0 0 6 0 0 0 

p3 0 8 0 0 8 0 
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Table 4.2. All relevant parameters for case study 1. 

 
 Product 

 p1 p2 p3 

USP duration [days] 20 22.2 12.5 

USP lead time [days] 10 10 10 

DSP duration [days] 10 10 10 

DSP lead time [days] 10 10 12.5 

Shelf-life [days] 180 180 180 

Storage limit [batches] 40 40 40 

Sell price [RMU / batch] 20 20 20 

USP production cost [RMU / batch] 2 2 2 

DSP production cost [RMU / batch] 2 2 2 

Storage cost [RMU / batch] 1 1 1 

Waste disposal cost [RMU / batch] 5 5 5 

Backlog penalty [RMU / batch] 20 20 20 

USP changeover cost [RMU / batch] 1 1 1 

DSP changeover cost [RMU / batch] 1 1 1 

 
 

4.2.2. Case Study 2 

To further demonstrate the features of the variable-length GA-based scheduling 

optimisation approach developed in this chapter, case study 2 introduces a more 

complex scheduling problem with more products, more DSP suites, and a planning 

horizon that is nearly twice as long. The topology of the multi-product, multi-suite 

biopharmaceutical facility in case study 2 is shown in Figure 4.3 and the problem 

statement is as follows: 

 

▪ Given: 

o 4 biopharmaceutical products p = { p1, p2, p3, p4 } 

o A biopharmaceutical facility with 2 USP suites i = { i1, i2 } and 3 DSP suites 

J = { j1, j2, j3 } 

o A continuous planning horizon of 540 days and 

o Product-dependent production and changeover durations. 

o Finite product shelf-life and storage capacity 

o Product demand with multiple intermediate due dates 

o Manufacturing, storage, waste disposal, backlog, and changeover costs 
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▪ Determine: 

o The number, duration, and sequence of manufacturing campaigns 

o Production quantities along with sales and inventory profiles 

▪ To: 

o Maximise total profit 

 

 

Figure 4.3. Biopharmaceutical facility topology for the example 2. 

 

Table 4.3. Production data for example 2. 

 
 Product 
 p1 p2 p3 p4 

USP duration [days] 20 22.2 12.5 12.5 

USP lead time [days] 10 10 10 10 

DSP duration [days] 10 10 10 10 

DSP lead time [days] 10 10 12.5 12.5 

Shelf-life [days] 180 180 180 180 

Storage limit [batches] 40 40 40 40 

Sell price [RMU / batch] 25 20 17 17 

USP production cost [RMU / batch] 5 2 1 1 

DSP production cost [RMU / batch] 5 2 1 1 

Storage cost [RMU / batch] 1 1 1 1 

Waste disposal cost [RMU / batch] 5 5 5 5 

Backlog penalty [RMU / batch] 20 20 20 20 

USP changeover cost [RMU / batch] 1 1 1 1 

DSP changeover cost [RMU / batch] 1 1 1 1 
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Table 4.4. Product demand profile [batches] for case study 2. The due date is the nth 

day from the start of the schedule. 

 
 Due date 

Product 60 120 180 240 300 360 420 480 540 

p1 0 0 0 6 0 4 0 0 4 

p2 0 4 0 0 0 0 4 0 0 

p3 0 0 0 0 10 0 0 0 10 

p4 0 6 0 8 0 0 0 0 0 

 

4.3. Methods 

In this section, the key components of the GA such as chromosome structure, 

crossover, and mutation are described. The details of the continuous-time scheduling 

heuristic for evaluating the fitness of each chromosome and constructing schedules 

are also outlined. The GA parameters have been tuned using the PSO-based meta-

optimisation approach which has been described earlier in Section 3.4.1 of Chapter 

3. The fitness of the PSO particle, i.e. GA parameter vector, was assessed by 

measuring the mean best objective function value achieved after 20 GA runs with a 

population size of 100 for 100 generations using that parameter vector.  

 

The GA-based DST discussed in Chapter 2 was applied in this chapter to solve the 

industrially-relevant case studies of multi-suite, multi-product biopharmaceutical 

manufacture. Python API developed in this thesis provided with the methods for data 

I/O and visualisation, e.g. to generate Gantt charts and inventory profiles. The 

variable-length GA with its components and the scheduling heuristic have been 

implemented in C++ programming language and compiled using a g++-8 compiler. 

Appendix B discusses the technical details and demonstrates an example of the GA-

based DST application using Python API. The discrete-time MILP model was 

recreated in GAMS 23.9.5 and solved with a CPLEX 12.4.0.1 solver. Both case 

studies have been solved on an Intel i5-6500 based Ubuntu 16.04 LTS system with 

16GB of RAM. 
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4.3.1. Chromosome Structure 

In the previous chapter, the chromosomes encoded the product labels and production 

time into a table of fixed dimensions which were defined by the problem statement, 

i.e. the number of products, time periods, facilities/USP suites. Unlike a discrete-time 

representation, a continuous-time one does not have such a grid that is well-defined 

by the problem variables, e.g. divided by the number of products and time periods of 

uniform durations. Without the discretised planning horizon, it becomes more 

challenging to encode the candidate solutions. However, it is still possible to use fixed-

length chromosomes in the continuous-time domain, but this approach would have 

the same aforementioned limitations as continuous-time based MILP models – the 

number of genes encoding the events, i.e. the chromosome length, would have to be 

determined iteratively thus adding another hyper-parameter that needs to be tuned 

and possibly worsening the overall GA performance. To eliminate the need for this 

variable, a variable-length GA is developed to explore the decision space by 

simultaneously varying both the number as well as the length of individual product 

campaigns. 

 

The key to the flexible GA-based approach presented in this chapter is a variable-

length chromosome structure. At the time of writing, there were not any known works 

in the literature using variable-length chromosomes to solve process design or 

capacity planning problems in the biopharmaceutical industry. However, they were 

applied in other domains such as finding the optimal number, types, and positions of 

wireless transmitters to meet the objectives of maximum coverage and minimum cost 

(Ting et al., 2009) and creating an interpreter capable of solving Artificial Intelligence 

(AI) planning problems described in the standardised Planning Domain Definition 

Language (PDDL) (Brie & Morignot, 2005). The main source of inspiration for the 

variable-length chromosome structure presented in this chapter is NeuroEvolution of 
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Augmenting Topologies (NEAT) method developed by Stanley and Miikkulainen 

(2002). The artificial evolution of neural networks using a GA has shown great promise 

in reinforcement learning tasks outperforming standard methods in many benchmark 

tasks. NEAT enables the neural networks to evolve not only their weights but also the 

connections and the overall topology from basic elements. This is achieved by 

employing a flexibile encoding strategy and a set of special genetic operators. This 

chapter adapts the idea of evolution from the most basic, unit element into a complex 

solution to create a variable-length chromosome structure for continuous-time 

scheduling. 

 

In this chapter, every variable-length chromosome comprises the most basic, unit 

elements called genes. Each gene encodes a single USP manufacturing campaign 

with a product label p, a USP suite i the product campaign would take place in, and 

the number of batches to be produced. Since the DSP campaigns are dependent on 

the output from the USP suites, it is not necessary to encode the DSP campaigns 

information into the variable-length chromosomes. This information can be inferred 

from the USP campaigns when a chromosome is decoded into a production schedule 

using a continuous-time scheduling heuristic. Figure 4.4.a illustrates the gene and 

chromosome structures using UML diagrams whereas Figure 4.4.b visualises the 

overall variable-length chromosome structure at the start and end of a GA. More 

detailed UML diagrams and C++ implementations of the gene and chromosome are 

provided and explained in Appendix B. 

 

Even though it is possible to set how many genes within each chromosome would be 

generated at the beginning of the GA, the algorithm presented in this chapter is 

designed to evolve the candidate solutions from a single gene, i.e. a single USP 

manufacturing campaign of one batch of a random product assigned to a random 

USP suite. This is accomplished by modifying certain traditional genetic operators, 
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e.g. uniform crossover, as well as introducing a few new ones to add a new random 

gene at the end of every GA generation and to mutate the old ones. 

 

a) 

 

b) 

 

Figure 4.4. Variable-length chromosome: 

(a) UML diagram representations of the gene and chromosome structures 

(b) An example of a variable-length chromosome at the start (GEN 0) and end of the 

GA (GEN 100). The values in the boxes correspond to the USP suite label followed 

by the number of batches produced. The product label is denoted by the colour. 

 

In Figure 4.4.a, chromosome’s Mutate() method would call gene’s Mutate() method 

which comprises individual mutation operators that are discussed in Section 4.3.2.2. 

 

4.3.2. Genetic Algorithm 

The search process, i.e. the evolution of the variable-chromosomes, is based on a 

standard generational scheme using parent and offspring populations. The parent 

population is not only used to create an offspring population through binary 

tournaments with replacement, a modified uniform crossover, and a set of special 
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mutation genetic operators but also to keep a memory of the fittest individuals found 

by the GA. The offspring replace the parents only if they have a better objective 

function value. In other words, the parent and offspring populations are combined and 

the new parent population of gen + 1 is created by selecting the best solutions from 

the combined pool. 

 

4.3.2.1. Crossover 

The traditional uniform crossover is adapted to suit the variable-length chromosome 

structure. Before the crossover is applied, the chromosomes are sorted according to 

the number of genes they possess. This way the crossover operator is performed on 

similar individuals. Provided that both parent chromosomes have a sufficient number 

of genes (at least 3), the genes are exchanged with a rate of 0.5 until the end of the 

shorter chromosome is reached. The extra genes from a longer parent are copied to 

the shorter one with a rate of 0.5. The crossover operator is illustrated by Figure 4.5. 

 

 

Figure 4.5. An example of a modified uniform crossover between two variable-length 

chromosomes: genes 2 and 3 are exchanged between the parent chromosomes and 

gene 5 from the first parent chromosome is copied to the second one. 

 

4.3.2.2. Mutation 

Several special gene- and chromosome-level mutation operators are introduced (see 

Figures 4.4.a and Figure 4.6) to perform the following in an order:  



4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling 

105 
 

1. MutateProductNum(): to mutate product label mutation with a rate of pMutP. 

2. MutateSuiteNum(): to mutate USP suite label with a rate of pMutS. 

3. MutateNumBatches(): to increase or decrease the number of batches by one with 

a rate of pPosB and pNegB, respectively. 

4. MakeNewGene(): to add a new random gene to the end of the chromosome 

(occurs unconditionally). 

5. SwapGenes(): to swap two genes within the same chromosome with a rate of 

pSwap. 

 

 

Figure 4.6. Variable-length mutation steps. pMutP, pMutS, pPosB, and pNegB denote 

the rate of each gene undergoing the corresponding mutation. The addition of a new 

gene and swap mutation occur once per chromosome. 
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4.3.3. Continuous-Time Scheduling Heuristic 

In both case studies, the fitness of each chromosome is equal to the total profit 

achieved by the schedule encoded in the variable-length chromosome. However, 

before the profit can be calculated the schedule and the resulting product inventory, 

sales, backlog, and waste profiles need to be constructed. One of the main challenges 

of developing the continuous-time scheduling heuristic of this chapter was finding a 

way to track the values of various variables over time. In Chapter 3, fitness evaluation 

was made easier because of the discrete-time representation. The values of binary 

and continuous variables were stored in arrays of a fixed size that was defined by the 

problem e.g. number of products and time periods. Therefore, it was relatively simple 

to “look up” the value of any variable over any given time period. 

 

In order to be able to accurately track information such as the expiry date of each 

individual batch and how many batches are available for any given demand, the 

continuous-time scheduling heuristic was developed using Object Oriented 

Programming (OOP)-based approach. The heuristic is based on three key objects: 

Batch, Campaign, and Schedule (see Figure 4.6). The ability to keep track of 

individual batches makes it possible to generate very detailed production schedules. 

 

 

Figure 4.6. UML diagrams of the key objects used in the scheduling heuristic to 

construct a schedule from a variable-length chromosome. 

 



4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling 

107 
 

The Batch object represents one whole batch of a specific product and it contains 

information when the batch was stored (or manufactured) and when it is expected to 

expire. The Campaign object represents the product campaign of a specific product 

in one of the available processing suites and it contains the following: the start date, 

end date, and the list of batches (Batch objects) produced. The Schedule object 

characterises the final decoded solution or schedule which also comprises the 

objective function value, i.e. total profit in this chapter, as well as the costs of 

production, product changeovers, storage, waste disposal, and backlog penalty. The 

product inventory is implemented using a priority queue data structure. A priority 

queue is a data structure containing elements, e.g. batches, such that each one has 

been assigned a priority based on a specific attribute, e.g. the expiry date. A batch 

with a higher priority (imminent expiry date) will be processed (or sold) before any 

batch with lower priority. This way the amount of product wasted due to expired shelf-

life is minimised. Each product has an individual priority queue for every demand due 

date. Schedule is constructed and evaluated in the following four core steps (see 

Figure 4.7). 

 

Figure 4.7. Scheduling heuristic. A high-level illustration of how the  

continuous-time scheduling heuristic is used to decode and evaluate a variable-length 

chromosome containing two genes. 
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4.3.3.1. Step 1 

First, a schedule of USP campaigns is constructed for each USP suite based on the 

production data and the information encoded by the genes within the variable-length 

chromosome. Each gene is mapped to a Campaign object by assigning the product 

and USP suite labels and the number of batches to it. The order of the genes within 

the chromosome determines the chronological order of the campaigns. The start date 

of a campaign is equal to the end of the previous one (0 if it is the very first campaign) 

plus the number of days needed for the equipment set-up and cleaning, i.e. the USP 

lead time (see Table 4.2). The end date of a USP production campaign is estimated 

by adding the product of the total number of batches of that campaign and the number 

of days needed to produce one batch to the start date. It is ensured that all USP 

campaigns are set to end within the planning horizon defined by the scheduling 

problem, i.e. 360 days for case study 1 and 540 days for case study 2. Genes 

encoding the USP campaigns beyond the planning horizon are removed from the 

chromosomes. Algorithm 1 lays out a brief pseudocode for Step 1. 

 

Algorithm 4.1. Pseudocode of the step 1 of the scheduling heuristic. 

 
  1 procedure CreateUSPSchedule(chromosome, schedule) 

  2    for each gene in chromosome 

  3        Create a campaign object 

  4        Map the values encoded in the gene (product, suite, no. batches) to the campaign 

  5        if this is the first campaign in the corresponding USP suite 

  6            campaign.start = USP lead time of the corresponding product 

  7        else 

  8            Get the prev_campaign in the current USP suite from the schedule 

  9             if prev_campaign.product == campaign.product 

10                Continue prev_campaign 

11                if prev_campaign.end > planning horizon 

11                    Adjust the prev_campaign.num_batches so that prev_campaign.end ≤ planning horizon 

12                end if 

12                continue 

13            end if 

14            campaign.start = prev_campaign.end + USP lead time of the corresponding product  

15        end if 

16        campaign.end = campaign.start + USP no. days to produce the gene.num_batches 

17        if campaign.end > planning horizon 

18            Adjust the campaign.num_batches so that campaign.end ≤ planning horizon 

19        end if 
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Algorithm 4.1. (continued) Pseudocode of the step 1 of the scheduling heuristic. 

 
20        if campaign.num_batches == 0 

21            Remove the corresponding gene from the chromosome 

22        else 

23            Add campaign to schedule.campaigns for the corresponding USP suite 

24        end if 

25    end for 

26 end procedure 

 

4.3.3.2. Step 2 

Using the information from the previous step, a schedule of DSP campaigns is created 

for each DSP suite. The earliest USP campaigns are assigned to the DSP suites with 

the earliest availability. The start of each DSP campaign depends on the day the first 

USP batch becomes available and whether it is necessary to allocate extra time to 

set-up a DSP campaign. For example, if the USP batch becomes available on the 10th 

day for DSP but the lead time of a DSP campaign is 15 days then the DSP campaign 

will start on the 15th day. It is quite common in the biopharmaceutical industry to take 

the intermediate product through the DSP processing stage as soon as it leaves the 

USP stage generally due to the low stability of the intermediate molecules. Therefore, 

the scheduling model schedules every DSP campaign to start immediately once the 

batch from the USP stage is ready. Similarly to Step 1, every DSP manufacturing 

campaign is represented by a Campaign object which, in addition to the product label, 

the number of batches, the start and end dates, also contains a list of Batch objects 

for each batch of final product. Algorithm 4.2 lists brief pseudocode for Step 2. 

 

Algorithm 4.2. Pseudocode of the step 2 of the scheduling heuristic. 

 
  1 procedure CreateDSPSchedule(schedule) 

  2    for each earliest usp_campaign in schedule.campaigns 

  3        Create a dsp_campaign object  

  4        dsp_campaign.product = usp_campaign.product 

  5        Find a DSP suite with the earliest availability 

  6        if this is the first campaign in the corresponding DSP suite 

  7           if DSP lead time > the day the first USP batch is available 

  8               dsp_campaign.start = DSP lead time 

  9           else 

10                dsp_campaign.start = the day the first USP batch is available 
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Algorithm 4.2. (continued) Pseudocode of the step 2 of the scheduling heuristic. 

 
11            end if 

12        else 

13            Get previous_dsp_campaign in the current DSP suite from the schedule.campaigns 

14            if previous_dsp_campaign.end + DSP lead time > the day the first USP batch is available 

15                dsp_campaign.start = previous_dsp_campaign.end + DSP lead time 

16            else 

17                dsp_campaign.start = the day the first USP batch is available 

18        end if 

19        dsp_campaign.end = dsp_campaign.start + DSP duration 

20        Create a dsp_batch object 

21        dsp_batch.product = dsp_campaign.product 

22        dsp_batch.stored_on = dsp_campaign.end 

23        dsp_batch.expires_on = dsp_batch.stored_on + shelf-life of the corresponding product 

24        dsp_campaign.num_batches = 1 

25        Add dsp_batch to dsp_campaign.batches list  

26        Add dsp_batch to schedule.inventory for the earliest demand due date 

27        for each remaining usp_batch in usp_campaign 

28            if the day usp_batch is available + DSP duration > planning horizon 

29                break 

30            end if 

31            dsp_campaign.end = the day usp_batch is available + DSP duration 

32            Create another dsp_batch object 

33            dsp_batch.product = dsp_campaign.product 

34            dsp_batch.stored_on = dsp_campaign.end 

35            dsp_batch.expires_on = dsp_batch.stored_on + shelf-life of the corresponding product 

36            dsp_campaign.num_batches += 1 

37            Add batch to dsp_campaign.batches list 

38            Add dsp_batch to schedule.inventory for the earliest demand due date 

39        end for 

40     end for 

41 end procedure 

 

4.3.3.3. Step 3 

Having both the USP and DSP schedules constructed in Steps 1 and 2, the next step 

is to create the profiles for how many batches will be sold, stored, in backlog, and 

wasted due to expired shelf-life or overproduction, e.g. exceeded storage limits. The 

product profiles are later used in Step 4 to evaluate the objective function value. 

 

Algorithm 4.3. Pseudocode of the step 3 of the scheduling heuristic. 

 
  1 procedure CreateProductProfiles(schedule) 

  2    S ∈ ℤ|p|×|d|              ▻ supply profile 

  3    B ∈ ℤ|p|×|d|             ▻ backlog profile 

  4    W ∈ ℤ|p|×|d|                ▻ waste profile 

  5    I ∈ ℤ|p|×|d|          ▻ inventory profile 

  6    for each product p 
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Algorithm 4.3. (continued) Pseudocode of the step 3 of the scheduling heuristic. 

 
  7        for each p demand due date d 

  8            Get the inventory queue for p and d from schedule.inventory 

  9            Add the leftover inventory of p from the last demand due date d – 1 to the current one 

10            Count the backlog from the last demand due date d – 1, i.e. Bpd += Bp,d – 1 

11            Remove any expired and excess batches of p from the inventory and add the count to Wpd 

12            if the number of batches in the inventory ≥ p demand on d 

13                Spd = p demand on d 

14                if there are any batches of p remaining in the inventory 

15                    Use the remainder to fill the backlog orders Bpd and update Spd 

16                end if 

17            else 

18                Spd = all available batches in the inventory 

19                Add the count of late deliveries to backlog Bpd 

20            end if 

21            Add the count of the remaining p batches in the inventory to Ipd 

22        end for 

23    end for 

24    Assign S, B, W, I to schedule 

25 end procedure 

 

The sales, backlog, waste, and inventory profiles are created on the basis of product 

demand due dates, i.e. the product profiles are integer arrays of | p |-by-| d | 

dimensions where | p | is the number of products and | d | is the number of due dates. 

The inventory profile is not the same as the inventory of final product. The former is 

used to record how many batches were left in storage on any given due date d and 

the later is a priority queue which gives the highest sales or delivery priority to the 

older batches. All batches are sold in the order of the date they were stored on, which 

in return minimises the amout of waste due to expired shelf-life. Any extra amount of 

unsold product incurs inventory costs which effectively penalises overproduction in 

the objective function of profit maximisation. Backlog is penalised until it is cleared. 

Both backlog and inventory costs are cumulative. Step 3 procedure is summarised in 

Algorithm 4.3. 

 

4.3.3.4. Step 4 

The final step evaluates the objective function value by calculating the profit which is 

equal to the difference between the total revenue, i.e. sales, and the total costs of 
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USP and DSP production, product changeovers, storage, waste disposal, and 

backlog. The objective function from the original discrete-time Lakhdar et al. (2005) 

model (see Equation 1 in Section 3.4.2.3) was modified slightly to suit the proposed 

approach. The production and changeover costs are estimated on the basis of a 

manufacturing campaign. The costs of storage, waste disposal, and backlog penalty 

are estimated on the basis of a product demand due date. 

 

Algorithm 4.4. Pseudocode of the step 4 of the scheduling heuristic. 

 
 1 procedure EvaluateSchedule(chromosome, schedule) 

 2    for each usp_campaign in schedule.campaigns 

 3        schedule.production_cost += usp_campaign.num_batches × USP production cost per batch 

 4        schedule.changeover_cost += USP changeover cost 

 5    end for 

 6    for each dsp_campaign in schedule.campaigns 

 7        schedule.production_cost += dsp_campaign.num_batches × DSP production cost per batch 

 8        schedule.changeover_cost += DSP changeover cost 

 9    end for 

10    S, B, W, I = CreateProductProfiles(schedule) 

11    for each product p 

12        for each p demand due date d 

13            schedule.revenue += Spd × sales price of p 

14            schedule.backlog_penalty += Bpd × backlog penalty of p 

15            schedule.waste_disposal_cost += Wpd × waste disposal cost of p 

16            schedule.storage_cost += Ipd × storage cost of p 

17        end for 

18    end for 

19    schedule.profit = ( 

20        schedule.revenue – 

21        schedule.production_cost – 

22        schedule.changeover_cost – 

23        schedule.backlog_penalty – 

24        schedule.waste_disposal_cost – 

25        schedule.storage_cost 

26    ) 

27    chromosome.objective = schedule.profit 

28 end procedure 

 

4.4. Results 

In this section, the validity of the variable-length GA-based scheduling optimisation 

method is demonstrated on two industrially-relevant case studies adapted from the 

literature. In case study 1, the GA-based optimisation method is compared with a 
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recreated discrete-time (Lakhdar et al., 2005) and reported continuous-time MILP 

models (Kabra et al., 2013; Vieira et al., 2016). The problem consists of a multi-suite 

facility with 2 USP and 2 DSP suites producing 3 products with multiple intermediate 

demands due over a 360-day (1 year) planning horizon. In example 2, the GA is 

compared with a recreated discrete-time MILP model only. The problem consists of a 

multi-suite facility with 2 USP and 3 DSP suites producing 4 products with multiple 

intermediate demands due over a 540-day (1.5 year) planning horizon. 

 

As mentioned earlier, the original input data has been adapted from Lakhdar et al. 

(2005) to suit the continuous-time domain and the scheduling heuristic presented in 

this chapter. The continuous production rates are converted from batches per day into 

production days per batch. The lead times as used in discrete-time model in Lakhdar 

et al. (2005) include not only the cleaning and set-up time but also the time for the 

production of the first batch of the product. Therefore, they are adjusted to account 

for the cleaning and set-up time only. Product lifetime variables are also converted 

from time periods to the corresponding number of days. 

 

4.4.1. Case Study 1 

The model statistics and the comparison of the results between the flexible GA-based 

approach and the MILP-based models are provided in Table 4.5 for the industrial case 

study of multi-product, multi-suite biopharmaceutical production. The Gantt charts 

from the different models are shown in Figure 4.9. In their original work, Lakhdar et 

al. (2005) reported an objective function value of 487 with 5% optimality gap in 16 s; 

in contrast the recreated model achieved an objective function value of 490 by solving 

the problem to zero gap in 0.22 s. Due to the aforementioned limitations of the 

discrete-time model, the product demand for product p1 was not met on time during 

time period t5 (see Figure 4.8.b). 
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Kabra et al. (2013) solved the example 1 problem using a continuous-time MILP 

formulation based on an STN representation and reported an objective function value 

of 517 with 0% optimality gap, zero backlogs, and zero wastage (Table 4.5.b). Vieira 

et al. (2016) proposed a continuous-time MILP formulated based on an RTN 

representation. They solved the problem to zero gap and achieved an objective 

function value of 519 with no wastage and all product demands met on time (Table 

4.5.c). Both models were reported to take more CPU time to solve the example 1 

problem (85.5 s and 46.9 s respectively) than the discrete-time MILP due to a large 

number of constraints needed for accurate monitoring of storage tasks and product 

changeovers. 

 

It is important to note that both Kabra et al. (2013) and Vieira et al. (2016) made 

several assumptions about the case study 1 problem. For example, Vieira et al. (2016) 

had to relax certain storage constraints in order to compare the results with Lakhdar 

et al. (2005). Furthermore, the number of batches in both continuous-time MILP 

models was set as a continuous variable in contrast to the original Lakhdar et al. 

(2005) model. This is also reflected by the continuous values in Gantt charts shown 

in Figure 4.9.b and Figure 4.9.c. Without the continuous variable assumption, Vieira 

et al. (2016) reported a lower objective function value of 513. In comparison, the GA 

achieved an objective function value of 518 maintaining the integer constraints.  

 

The GA-based scheduling optimisation approach developed in this chapter achieved 

an objective function value of 518 during every single one of the 20 independent runs 

in 0.05 s on average (the parameters of the GA are listed in Table 4.5.a). The best 

solution met all product demands on time (Figure 4.8) with zero wastage and had a 

better objective function value than the discrete-time MILP (490), Kabra et al. (2013) 

(517), and Vieira et al. (2016) (513) using an integer batch-extent variable. 
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Table 4.5. Case study 1 scheduling problem: comparison of results from the novel 

continuous-time GA approach with other discrete-time and continuous-time models. 

 
 Model type 

 GAa MILP (STN)b MILP (RTN)c MILPd 

Time representation Continuous Continuous Continuous Discrete 

Best obj. function value 5181 517b 513 (519)c 490 (487)d 

Mean. obj. function value 518 ± 02 - - - 

Optimality gap - 0%b 0%c 0% (5%)d 

Run time (s) 0.053 85.5b 2.2 (46.9)c 0.22 (16)d 

No. runs 20 - 

No. generations 100 - 

No. chromosomes 100 - 

Starting length 14 - 

pC 0.027 - 

pMutP 0.005 - 

pMutS 0.016 - 

pPosB 0.900 - 

pNegB 0.854 - 

pSwap 0.403 - 
1 Best obj. function value achieved out of 20 runs  

2 Mean best obj. function value ± its standard deviation of 20 runs 
3 Mean running time of a GA single run 
4 Number of genes per chromosomes at the beginning of the GA  

a Continuous-time GA presented in this chapter 
b Reported by Kabra et al. (2013) 
c Reported by Vieira et al. (2016) using an integer batch-extent variable and continuous batch-extent 

variable in brackets 
d Recreated model result and the reported one by Lakhdar et al. (2005) in brackets 

 

 

Figure 4.8. Supply (bar) and demand (line) profile of the best case study 1 solution 

generated with the continuous-time GA-based approach (obj. function value of 518). 

 

In the biopharmaceutical industry, the term batch is typically used to denote a 

complete biopharmaceutical process (see Figure 1.1). If the number of batches is 

continuous then this could mean either an unfinished process or lower than typical 

yield. Either way, it is uncommon to have the number of batches set as a continuous  
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a) 

 

b)  

 

c) 

 

d) 

 

Figure 4.9. Gantt charts generated for the case study 1: 

(a) continuous-time GA-based approach (obj. function value of 518). Each box displays the number of batches followed by the campaign length. 

(b) discrete-time MILP (obj. function value of 490). Each box displays the number of batches produced and production time. 

(c) RTN-based continuous-time MILP (Vieira et al., 2016) (obj. function value of 519, CO indicates a changeover) 

(d) STN-based continuous-time MILP (Kabra et al., 2013) (obj. function value of 517) 

t1 t2 t3 t4 t5 t6

USP 1 4 (60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)

USP 2 2 (54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)

DSP 1 3 (55) 5 (50) 2 (50) 3 (30) 2 (20) 5 (50)

DSP 2 2 (52) 2 (20) 2 (20) 3 (55) 5 (50)

Time periods (tn = 60 days)

Su
it
e
s

Product 1 Product 2 Product 3
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variable as it makes the interpretation of the result and Gantt charts (see Figure 4.9.c 

and Figure 4.9.d) more difficult. 

 

The gaps between the campaigns in Figure 4.9.a correspond to the lead time needed 

to set-up a new campaign or to switch between two different ones. Using the novel 

GA-based scheduling optimisation approach, the capacity utilisation of USP1 and 

USP2 suites was 94% and 79%, respectively. In contrast, using an integer batch-

extent variable, Vieira et al. (2016) reported utilisation rates of 96% and 80%.  

 

It is interesting to see that the scheduling pattern of the novel variable-length GA 

presented in this chapter (Figure 4.9.a) is very similar to that of the discrete-time MILP 

model (Figure 4.9.b). For example, there are 6 batches of product p2 and 8 batches 

of product p3 scheduled for manufacture at the beginning of both schedules. 

Moreover, both models achieved the same average USP capacity utilisation of 86.5%. 

Nevertheless, the variable-length GA enabled by the continuous-time scheduling 

heuristic was more effective at utilising the available production time which made it 

possible not only to meet all product demands on time but also presented an 

opportunity for additional production capacity. 

 

 

Figure 4.10. Supply (bar) and demand (line) profile of the best solution (obj. function 

value of 562) generated using the continuous-time GA for the case study 1 with an 

increased demand for product p1. 
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The variable-length GA was further tested by increasing the demand for product p1 at 

the end of planning horizon by 3 batches, i.e. from 6 to 9 on 540th day. Using the same 

hyper-parameter values (Table 4.5), the variable-length GA generated a production 

schedule (see Figure 4.11) with an objective function value of 562 and all product 

demands met on time (displayed in Figure 4.10). The capacity utilisation of USP1 and 

USP2 suites increased to approximately 97% and 96%, respectively. 

 

Figure 4.11. Gantt chart generated using the continuous-time GA-based approach for 

the case study 1 with an increased demand for product p1. 

 

4.4.2. Case Study 2 

In this section, a more complex case study of multi-product, multi-suite 

biopharmaceutical manufacture is used to demonstrate that the novel variable-length 

GA-based scheduling optimisation approach can be extended for facilities with more 

manufacturing suites, more products, and longer demand profiles. In case study 2, 

the proposed GA was used to generate a 1.5 production plan for biopharmaceutical 

facility with 2 USP and 3 DSP suites manufacturing 4 distinct products. 

 

The comparison of the results and schedules between the GA and the discrete-time 

MILP is provided in Table 4.6 and Figures 4.12 and 4.13. The discrete-time MILP 

model solved the case study 2 problem to 0% optimality gap achieving an objective 
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function value of 598 in approximately 11 s. Despite the global optimality, due to the 

aforementioned inherent limitations of the discrete-time domain, the model was only 

capable of meeting approximately 86% of all product demands on time (see Figure 

4.10.b). The capacity utilisation rate was 88% for both USP suites. 

 

The GA-based scheduling optimisation approach, on the other hand, significantly 

outperformed the discrete-time MILP model achieving mean and best objective 

function values of 725 ± 37 and 801 respectively. Additionally, the best solution 

generated using the GA met all of the product demands on time (see Figure 4.12) 

(compared to 8 late deliveries in the MILP solution) without product waste. The 

capacity utilisation rates of the USP suites were 97% and 99%. The GA was also 

approximately 14 times faster on average than the discrete-time MILP model. 

 

a) 

 

b) 

 

Figure 4.12. Supply (bar) and demand (line) profile of the best case study 2 solution 

generated with (a) continuous-time GA-based approach (obj. function value of 801) 

and (b) discrete-time MILP (obj. function value of 598) 
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Table 4.6. Case study 2 scheduling problem: comparison of results from the novel 

continuous-time GA approach with discrete-time MILP model. 

 
 Model type 

 GAa MILPb 

Time representation Continuous Discrete 

Best obj. function value 8011 598 

Mean obj. function value 725 ± 372 - 

Optimality gap - 0% 

Run time (s) 0.793 11.03 

No. runs 20 - 

No. generations 1000 - 

No. chromosomes 100 - 

Starting length 14 - 

pC 0.027 - 

pMutP 0.005 - 

pMutS 0.016 - 

pPosB 0.900 - 

pNegB 0.854 - 

pSwap 0.403 - 

1 Best obj. function value achieved out of 20 runs  

2 Mean best obj. function value ± its standard deviation of 20 runs 
3 Mean running time of a single GA run 
4 Number of genes per chromosomes at the beginning of the GA 

 

a) 

  

b) 

 

 

 
Figure 4.13. Gantt charts generated for the case study 2 using different models:  

(a) continuous-time GA-based approach  

(b) discrete-time MILP 

t1 t2 t3 t4 t5 t6 t7 t8 t9

USP 1 2 (54) 2 (44) 2 (50) 3 (60) 4 (60) 4 (50) 2 (54) 2 (44) 4 (60)

USP 2 2 (35) 4 (50) 4 (50) 4 (50) 4 (60) 2 (50) 3 (60) 3 (60) 4 (60)

DSP1 2 (50) 3 (30) 2 (30) 3 (30) 3 (30)

DSP 2 2 (52) 2 (20) 6 (60) 4 (40) 2 (52) 2 (20) 2 (54.5)

DSP 3 2 (54.5) 4 (40) 4 (40) 4 (40) 2 (54.5) 6 (60)

Su
it
e
s

Time periods (tn = 60 days)

Product 1 Product 2 Product 3 Product 3
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4.4. Summary 

In this chapter, a new variable-length GA-based optimisation approach has been 

developed for the optimisation of medium-term capacity plans of multi-product, multi-

suite biopharmaceutical facilities. The flexible GA-based approach accounts for the 

same features as its discrete- and continuous-time MILP-based counterparts 

including but not limited to product-dependent changeovers, multiple intermediate 

demand due dates, backlogs, limited storage capacity, shelf-life, and waste disposal. 

The validity of the new approach has been demonstrated on two industrially-relevant 

case studies previously solved using both discrete- and continuous-time based MILP 

models from the literature. In case study 1, the proposed GA-based scheduling 

optimisation approach generated a solution that had higher objective function value 

than the globally optimal medium-term schedules created related using discrete- and 

continuous-time MILP models. In example 2, the continuous-time GA-based approach 

was tested on a problem with a more complex facility topology as well as a longer 

demand profile. The GA solution met all of the product demands on time significantly 

outperforming the discrete-time MILP solution, which despite the global optimality and 

available production capacity only met approximately 86% of all product demands on 

time.  
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5. Multi-Objective Biopharmaceutical 

Capacity Planning and Scheduling 

5.1. Introduction 

In the previous chapter, a novel variable-length GA-based optimisation approach was 

developed for continuous-time medium-term capacity planning and scheduling of 

multi-suite, multi-product biopharmaceutical facility. The novel variable-length GA was 

demonstrated to be an efficient and flexible optimisation approach outperforming both 

discrete- and continuous-time MILP models on literature-based industrial case 

studies. However, both case studies were single-objective while in reality 

biopharmaceutical companies have to consider multiple objectives and constraints 

that are often conflicting. 

 

Hence this chapter builds upon the variable-length GA and scheduling heuristic 

described earlier by incorporating multiple objectives, including  maximising the total 

production throughput, minimising the cumulative deviations from the strategic 

product inventory targets whilst satisfying demands on time and avoiding product 

waste over a 3-year period. The continuous-time scheduling heuristic described in the 

previous chapter is extended with additional constraints and features such as rolling 

product sequence-dependent changeovers, varying manufacturing yields, and 

product QC/QA approval times. The functionality of the multi-objective variable-length 

GA is illustrated on an industrially-relevant case study. The GA-based scheduling 

optimisation approach developed in this chapter is demonstrated to generate a set of 

production schedules with optimal number and length of manufacturing campaigns to 

satisfy the aforementioned objectives and constraints. The importance of the genetic 
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operators introduced in Chapter 4 and the impact of the starting number of genes on 

the performance of the GA are also investigated. 

 

This chapter is organised as follows: Section 5.2 lists the input data and describes 

the multi-objective biopharmaceutical scheduling problem in more detail. The 

methods of this chapter are described in Section 5.3. Section 5.3.1 explains how the 

variable-length chromosome structure described in Chapter 4 was modified to suit the 

scheduling problem of this chapter. Section 5.3.2 describes the key parts of the GA 

with a focus on multi-objective selection and constraint satisfaction components. 

Section 5.3.3 presents the extended continuous-time scheduling heuristic for 

evaluating the objective values of each candidate solution and decoding 

chromosomes into production schedules. The results and discussion are given in 

Section 5.4. Section 5.4.1 defines the bounds of the objective space and sets a 

benchmark for the multi-objective GA by first solving the scheduling problem of this 

chapter with a single-objective GA. Section 5.4.2 evaluates the individual impact of 

the population size and the number of generations on the performance of the multi-

objective GA. Section 5.4.3 investigates the importance of each genetic operator. 

Section 5.4.4 evaluates the impact of the starting number of genes. Finally, the 

results of the multi-objective GA are discussed and compared with the single-

objective GA in Section 5.4.5.  

 

5.2. Problem Definition 

The focus of this chapter is on multi-objective capacity planning and scheduling of a 

multi-product biopharmaceutical facility with 1 USP and 1 DSP suite. The topology of 

the facility is illustrated in Figure 5.1. The problem statement of the industrial case 

study is as follows: 
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▪ Given: 

o A start date (1-Dec-2016) and a planning horizon of 3 years 

o A set of biopharmaceutical products { A, B, C, D } 

o USP and DSP processing times  

o Product-dependent manufacturing yields 

o Product sequence-dependent changeovers 

o Varying amounts of product stock available at the beginning of the 

schedule 

o Desired minimum and maximum number of batches per individual product 

campaign 

o Unique manufacturing requirements to produce the batches in multiples of 

a specified number 

o QC/QA approval times 

o 3-year profile of strategic product inventory targets 

o 3-year profile of uncertain monthly product demand 

▪ Determine: 

o A set of production schedules and the number and length of manufacturing 

campaigns for each one 

o Production quantities along with inventory and late delivery profiles 

▪ So as to (constrained deterministic multi-objective problem): 

o Maximise the total production throughput 

o Minimise the total inventory deficit, i.e. cumulative differences between the 

monthly product inventory levels and the strategic inventory targets 

▪ Subject to: 

o The total backlog being no greater than 0 kg, i.e. meet all product demands 

without delays 

o The total waste being no greater than 0 kg 

 

The demand forecast comprises a planning horizon of 3 years (1096 days) with 

realistic monthly due dates. It is often not enough just to be able to meet the product 

demand on time. In order to be able to deal with unforeseen events and uncertainties 

such as unplanned facility shutdowns or higher-than-anticipated product demands, 

biopharmaceutical companies strive to meet specific strategic product inventory 
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targets. The strategic inventory targets are listed alongside product demand in Table 

5.3. 

 

 

Figure 5.1. Biopharmaceutical facility topology. 

 

The facility is assumed to be available for the entirety of the 1096-day planning 

horizon. Before the biopharamceutical products can be shipped to meet the demand, 

they have to pass the 90-day QC/QA process. For example, if a demand for a certain 

product is due on the 31 March 2018, then the material must be manufactured by the 

31 December 2017. Product sequence-dependent changeover time (Table 5.1) is 

incurred only when there is a switch between different product manufacturing 

campaigns. Any excess or expired product is considered as wasted material which 

must be avoided/minimised. Each product has a different manufacturing yield which 

determines how many kilograms are produced in a single batch. Additionally, due to 

specific DSP requirements, product D needs to be produced in multiples of 3 batches. 

The complete process data for the industrial case study is provided in Table 5.2. 

 

Table 5.1. Product-dependent changeovers [days]. 

 
  To product 
  A B C D 

F
ro

m
  

p
ro

d
u

c
t A 0 10 16 20 

B 16 0 16 20 

C 16 10 0 20 

D 18 10 18 0 
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Table 5.2. Process data for the industrial case study. 

 
 Product 

 A B C D 

Inoculation duration [days] 20 15 20 26 

Seed duration [days] 11 7 11 9 

Production duration [days] 14 14 14 14 

USP duration [days]1 45 36 45 49 

DSP duration [days] 7 11 7 7 

QC/QA duration 90 90 90 90 

Shelf-life [days] 730 730 730 730 

Yield per batch [kg] 3.1 6.2 4.9 5.5 

Storage limit [kg] 250 250 250 250 

Opening stock [kg] 18.6 0 19.6 32.0 

Minimum batch throughput per campaign 2 2 2 3 

Maximum batch throughput per campaign 50 50 50 30 

Produce batches per campaign in multiples of 1 1 1 3 
1 USP duration is a sum of inoculation, seed, and production durations 

 

The first objective is to maximise the total kilogram throughput of the production 

schedule. It is calculated as the sum of throughputs from individual manufacturing 

campaigns. The second objective is to minimise the total inventory deficit – a 

cumulative difference between the inventory level and the corresponding strategic 

target whenever the latter is greater than the former. The multi-objective optimisation 

problem is also subject to the following constraints: the total amount of backlog and 

product waste must be ≤ 0 kg. The way the constraints were handled in the model will 

be explained in the subsequent sections. 
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Table 5.3. Product demand followed by the strategic inventory targets inside the 

brackets. 

 
 Product 

Due date A B C D 

1-Jan-17 0 (6.2) 0 (0) 0 (0) 0 (22) 

1-Feb-17 0 (6.2) 0 (0) 0 (4.9) 5.5 (27.5) 

1-Mar-17 3.1 (9.3) 0 (0) 0 (9.8) 5.5 (27.5) 

1-Apr-17 0 (9.3) 0 (0) 0 (9.8) 0 (27.5) 

1-May-17 0 (12.4) 0 (0) 0 (9.8) 5.5 (27.5) 

1-Jun-17 3.1 (12.4) 0 (0) 0 (9.8) 5.5 (33) 

1-Jul-17 0 (15.5) 0 (0) 4.9 (19.6) 5.5 (33) 

1-Aug-17 3.1 (21.7) 0 (0) 4.9 (19.6) 5.5 (27.5) 

1-Sep-17 3.1 (21.7) 0 (0) 0 (14.7) 5.5 (27.5) 

1-Oct-17 3.1 (24.8) 0 (0) 0 (19.6) 0 (27.5) 

1-Nov-17 0 (21.7) 0 (0) 0 (19.6) 11 (38.5) 

1-Dec-17 6.2 (24.8) 0 (0) 9.8 (19.6) 5.5 (33) 

1-Jan-18 6.2 (27.9) 0 (0) 4.9 (14.7) 0 (33) 

1-Feb-18 3.1 (21.7) 0 (0) 0 (19.6) 5.5 (33) 

1-Mar-18 6.2 (24.8) 0 (0) 4.9 (19.6) 5.5 (33) 

1-Apr-18 0 (24.8) 0 (0) 0 (14.7) 11 (33) 

1-May-18 3.1 (24.8) 0 (0) 0 (14.7) 5.5 (27.5) 

1-Jun-18 9.3 (27.9) 0 (6.2) 4.9 (19.6) 5.5 (33) 

1-Jul-18 0 (27.9) 0 (6.2) 9.8 (19.6) 0 (33) 

1-Aug-18 6.2 (27.9) 0 (6.2) 0 (9.8) 5.5 (33) 

1-Sep-18 6.2 (31) 0 (6.2) 0 (19.6) 5.5 (38.5) 

1-Oct-18 0 (31) 0 (6.2) 0 (19.6) 5.5 (33) 

1-Nov-18 6.2 (34.1) 6.2 (6.2) 4.9 (19.6) 11 (38.5) 

1-Dec-18 9.3 (34.1) 0 (6.2) 4.9 (19.6) 5.5 (33) 

1-Jan-19 0 (27.9) 0 (6.2) 0 (24.5) 0 (33) 

1-Feb-19 9.3 (27.9) 0 (6.2) 9.8 (34.3) 11 (33) 

1-Mar-19 6.2 (27.9) 0 (6.2) 0 (24.5) 0 (33) 

1-Apr-19 3.1 (27.9) 0 (6.2) 0 (29.4) 11 (44) 

1-May-19 6.2 (34.1) 6.2 (6.2) 4.9 (39.2) 5.5 (33) 

1-Jun-19 3.1 (34.1) 0 (6.2) 9.8 (39.2) 5.5 (33) 

1-Jul-19 0 (31) 0 (6.2) 9.8 (29.4) 0 (33) 

1-Aug-19 9.3 (31) 0 (6.2) 0 (19.6) 11 (33) 

1-Sep-19 6.2 (21.7) 0 (6.2) 4.9 (19.6) 11 (22) 

1-Oct-19 9.3 (15.5) 0 (6.2) 9.8 (14.7) 0 (11) 

1-Nov-19 6.2 (6.2) 0 (6.2) 4.9 (4.9) 5.5 (11) 

1-Dec-19 0 (0) 6.2 (6.2) 0 (0) 5.5 (5.5) 

 

 

5.3. Methods 

Chapter 2 defined a list of key requirements for the GA-based scheduling optimisation 

tool including the flexibility and applicability to a wide range of biopharmaceutical 
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facility models. In order to accomplish this, it is important to continue developing such 

a framework that could be used to solve a variety of biopharmaceutical scheduling 

problems without having to make significant changes to it. Therefore, the work of this 

chapter re-uses a lot of the methods described in Chapter 4, i.e. variable-length 

chromosome structure, genetic operators, scheduling heuristic. The focus of this 

section is on the changes and the additional features added to the GA and the 

scheduling heuristic, e.g. the multi-objective optimisation, the handling of constraints, 

rolling product changeovers.  

 

Similarly to Chapter 4, the GA-based DST was applied in this chapter to solve the 

industrially-relevant multi-objective scheduling problem of multi-product 

biopharmaceutical manufacture. The API developed in Python was used for data I/O 

and visualisation such as plotting of Gantt charts and Pareto fronts. The variable-

length multi-objective GA and the continuous-time scheduling heuristic were both 

implemented in C++ programming language and compiled with a gcc-8 compiler. 

Appendix B discusses the technical details and demonstrates an example of the GA-

based DST application using Python API. The scheduling problem of this chapter has 

been solved on an Intel i7-4770HQ based macOS 10.13.5 system 16GB of RAM. 

 

5.3.1. Chromosome Structure 

The biopharmaceutical facilities described in the scheduling problem examples in 

Chapter 4 had relatively complex topologies with multiple USP and DSP suites. Each 

variable-length chromosome consisted of genes encoding USP suite and product 

labels and the number of batches produced. According to the problem definition of 

this chapter, the biopharmaceutical facility has only 1 USP and 1 DSP (Figure 5.1). 

Hence, the amount of information that needs to be encoded by each gene can be 

reduced by removing the USP suite labels (see Figure 5.2.a). 
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In order to demonstrate the flexibility of the novel encoding strategy developed earlier, 

the core idea behind the variable-length chromosome structure is preserved in this 

chapter: a 1-D list of genes is used to encode a production schedule. Every gene in 

the list contains a product label { A, B, C, D } and a number of batches. Figure 5.2.b 

displays an example of what a variable-length chromosome looks like at the start 

(GEN 0) and after 100 generations (GEN 100) of the GA have elapsed.  

 

a) 

 

b) 

 

Figure 5.2. Variable-length chromosome: 

(a) UML diagram representations of the gene and chromosome structures 

(b) An example of a variable-length chromosome at the start (GEN 0) and end of the 

GA (GEN 100). The values in the boxes correspond to the number of batches 

produced. The product label is denoted by the color. 

 

The order of the genes (from left to right) defines the timing of each manufacturing 

campaign. e.g. the second gene in the chromosome encodes the second 

manufacturing campaign in the production schedule. The initial population is created 

by generating a pool of random chromosomes containing a single gene. With the aid 

of special genetic operators described in Chapter 4, the chromosomes are enabled to 
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grow and shrink in length over the course of the GA. The impact of the starting number 

of genes on the algorithm’s performance is assessed in detail in the results section. 

 

5.3.2. Genetic Algorithm 

With the exception of the USP suite mutation operator, all other genetic operators 

described in Chapter 4 and the aforementioned variable-length chromosome 

representation are integrated into a multi-objective GA that is based on NSGA-II. 

NSGA-II is well-know for its effectiveness at solving a wide variety of multi-objective 

problems, e.g. see Raisanen and Whitaker (2005) and Hamdy et al. (2016). The multi-

objective variable-length GA employs a generational reproduction scheme using two 

populations (parents and offspring) with a fixed number of chromosomes. Parent 

population is used to keep track of the best solutions found, i.e. provides elitism, while 

the offspring population is a result of crossover, mutation, and selection operators. 

Figure 5.3 displays a high-level schematic of the key steps of the multi-objective GA 

developed in this chapter. After the initial population of single-gene chromosomes is 

created and evaluated, the steps are performed continuously until the maximum 

number of generations is reached. For completeness, the descriptions of the genetic 

operators described in Chapter 4 have also been included in the schematic. 

 

The scheduling problem of this chapter is a constrained multi-objective optimisation 

problem. An area of the objective space where the corresponding solutions do not 

meet the constraint requirements is known as infeasible region. Production schedules 

that are not able to meet all product demands on time and/or result in a certain amount 

of product waste (either due to expired shelf-life or exceeded storage limits) would 

belong to the infeasible region. Constraint handling and representation in heuristic-

based optimisation is a difficult issue (Harjunkoski et al., 2014). Simpler constraints 

such as the fact that a valid schedule has to be a permutation of jobs or product  
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Figure 5.3. Schematic of the core steps of the multi-objective GA developed in 

Chapter 5. Assuming the initial population has been created and evaluated, the steps 

are looped through until the maximum number of generations is reached. 
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demands can be mapped into the problem representation and into the choice of 

genetic operators. However, such implicit representation becomes harder with the 

increasing number and complexity of constraint.  

 

The most basic methods of constraint handling are to discard all infeasible solutions 

or to apply a penalty function. More sophisticated methods include the use of repair 

mechanisms to convert infeasible solutions into feasible ones during the search 

process or the handling of only some of the degrees of freedom by the meta-heuristic 

search strategy and fixing the remaining ones during the evaluation of the solution 

(Harjunkoski et al., 2014), e.g. by using local priority rules (Piana & Engell, 2010).  

 

In this work, repairing infeasible schedules was deemed to be too computationally 

expensive. The penalty-based constraint handling was rejected to avoid introducing 

additional parameters into the model. Moreover, according to Sand et al. (2008), 

incorrectly applied penalty, e.g. too large, may prevent the heuristic from traversing 

infeasible sub-regions in disjoint search spaces. 

 

There have been several other constraint-handling approaches for the multi-objective 

problems reported in the literature, e.g. Fonseca and Fleming (1998) and Ray et al. 

(2001). For its simplicity and computational efficiency, a constraint-handling approach 

proposed by Deb et al. (2002) is used together with a binary tournament selection to 

choose more optimal, non-dominated solutions. The pseudocode for this procedure 

is listed in Algorithm 5.1. Using this approach, the solutions which do not satisfy the 

constraints of the problem, i.e. with a total amount of backog and/or product waste 

greater than 0 kg, will not be selected, i.e. will be ranked lower by the NSGA-II ranking 

algorithm, even if the values of the objectives are better than those of the solutions 

which fully satisfy the constraints. Therefore, the GA initially selects the chromosomes 

based on the extent of constraint statisfaction. 
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Algorithm 5.1. Procedure for binary tournament multi-objective selection based on 

constrained-domination (Deb et al., 2002). DetermineDominance procedure returns 

an integer flag of 1 if solution q dominates p, -1 if p dominates q, and 0 if both solutions 

are non-dominated. 

 
  1 procedure Select(q, p) 

  2    flag = DetermineDominance(q, p) 

  3    if flag == 1 

  4        return q 

  5    else if flag == -1 

  6        return p 

  7    end if 

  8    if q.d > p.d ▻ if both q and p are non-dominated select the solution with a larger crowding distance 

  9        return q 

10    else if p.d > q.d 

11        return p 

12    end if 

13    Randomly select between q and p if both solutions have the same crowding distance 

14 end procedure 

15 

16 procedure DetermineDominance(q, p) 

17    if q.constraints != p.constraints    ▻ constraints variable is equal to the sum of all constraint violations 

18        if q.constraints < p.constraints 

19            return 1 

20        return -1 

21    end if 

22    q_dominates = false  

23    p_dominates = false 

24    for each objective            ▻ all objectives are assumed to be minimised 

25        if q.objective < p.objective 

26            q_dominates = true 

27        else if p.objective < q.objective 

28            p_dominates = true 

29        end if 

30    end for 

31    if q_dominates == true and p_dominates == false 

32        return 1 

33    else if p_dominates == true and q_dominates == false 

34        return -1 

35    end  if 

36    return 0 

37 end procedure 

 

 

5.3.3. Continuous-Time Scheduling Heuristic 

The variable-length chromosomes are decoded into production schedules using a 

continuous-time scheduling heuristic adapted from Chapter 4. In this chapter, the 

scheduling heuristic describes the biopharmaceutical manufacturing model of a multi-

product biopharmaceutical facility with 1 USP and 1 DSP suite operating in a fed-
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batch mode with staggered bio-reactors and rolling product sequence-dependent 

changeovers. For completeness, Figure 5.4 provides UML diagrams of the key 

objects used by the continuous-time scheduling heuristic. Algorithm 5.2 lists a brief 

pseudocode explaining the schedule construction logic. 

 

 

Figure 5.4. UML diagrams of the key objects used in the scheduling heuristic of this 

chapter to construct a schedule from a variable-length chromosome. 

 

Algorithm 5.2. Pseudocode of the continuous-time scheduling heuristic part that builds 

a schedule in this chapter. 

 
  1 procedure CreateSchedule(chromosome, schedule_start_date) 

  2    Create a new schedule object 

  3    if AddFirstCampaign(first gene in chromosome, schedule, schedule_start_date) == true 

  4        for each remaining gene in chromosome 

  5            if prev_gene.product != gene.product 

  6                if AddNewCampaign(gene, schedule) == false           ▻ product changeover 
  7                    break 

  8                end if 

  9            else  

10                if ContinuePreviousCampaign(gene, schedule) == false 

11                    break 

12                end if 

13            end if 

14        end for  

15    end if 

16    return schedule 

17 end procedure 

18 

19 procedure AddFirstCampaign(gene, schedule, schedule_start_date) 

20    Create a new campaign object 

21    campaign.product = gene.product 

22    campaign.start = schedule_start_date 

23    campaign.first_harvest = campaign.start + USP duration of campaign.product 

24    if AddFirstBatch(campaign) == false 

25        return false 

26    else  

27        AddRemainingBatches(gene, campaign) 

28    end if 

29    Add campaign to schedule.campaigns list 
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Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic 

part that builds a schedule in this chapter. 

 

30    return true             ▻ will signal to CreateSchedule procedure to continue building the schedule 

31 end procedure 

32 

33 procedure AddNewCampaign(gene, schedule) 

34    Create a new campaign object 

35    prev_campaign = last most recent campaign in schedule.campaigns list 

36    campaign.product = gene.product 

37    campaign.first_harvest = prev_campaign.end + changeover duration            ▻ see Figure 5.6.c 

38    campaign.start = campaign.first_harvest – USP time of campaign.product 

39    if AddFirstBatch(campaign) == false 

40        return false 

41    else  

42        AddRemainingBatches(gene.num_batches – 1, campaign) 

43    end if 

44    Add campaign to schedule.campaigns 

45    return true 

46 end procedure 

47 

48 procedure ContinuePreviousCampaign(gene, schedule) 

49    prev_campaign = last most recent campaign in schedule.campaigns list 

50    return AddRemainingBatches(gene.num_batches, prev_campaign) 

51 end procedure 

52 

53 procedure AddFirstBatch(campaign) 

54    Create a new batch object 

55    batch.product = campaign.product 

56    batch.harvested_on = campaign.first_harvest 

57    batch.stored_on = batch.first_harvest + DSP duration of batch.product  

58    if batch.stored_on > planning horizon  

59        return false         ▻ this will send a signal to CreateSchedule procedure to stop 

60    end if 

61    batch.kg = manufacturing yield of batch.product 

62    batch.start = campaign.start 

63    batch.approved_on = batch.stored_on + QC/QA approval time of batch.product 

64    Add batch to campaign.batches list 

65    Add batch to schedule.inventory for the appropriate batch.product demand due date 

66    campaign.kg += batch.kg 

67    return true 

68 end procedure 

69 

70 procedure AddRemainingBatches(num_batches, campaign) 

71    Ensure num_batches is within the minimum and maximum batch throughput bounds 

72    Ensure num_batches is a multiple of the given number for gene.product 

73    while num_batches > 1 

74        Create a new batch object 

75        prev_batch = last most recent batch in campaign.batches list 

76        batch.product = campaign.product 

77        batch.harvested_on = previous_batch.stored_on 

78        batch.stored_on = batch.harvested_on + DSP time of batch.product 

79        if batch.stored_on > planning horizon  

80            return false         ▻ this will send a signal to CreateSchedule procedure to stop 

81        end if 

82        batch.kg = manufacturing yield of batch.product 

83        batch.start = batch.harvested_on – USP duration of batch.product 
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Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic 

part that builds a schedule in this chapter. 

 
84        batch.approved_on = batch.stored_on + QC/QA approval time of batch.product 

85        Add batch to campaign.batches list 

86        Add batch to schedule.inventory for the appropriate batch.product demand due date 

87        campaign.kg += campaign.kg + batch.kg 

88        num_batches = num_batches – 1 

89    end while 

90    last_batch = last most recent batch in campaign.batches list 

91    campaign.end = last_batch.stored_on 

92 end procedure 

 

Figure 5.5 explains the concept of rolling product changeovers with a simple 

illustrative example of how a two-gene chromosome is decoded into a production 

schedule of two manufacturing campaigns. In Figure 5.5.a, the chromosome contains 

two genes: one represents a manufacturing campaign of one batch of product A and 

another – a manufacturing campaign of one batch of product C. The length of each 

production campaign is determined based on the number of batches within each gene 

and the number of USP and DSP days for the corresponding product. For example, it 

takes 52 days in total (45 for USP and 7 for DSP) to produce 1 batch of product A. 

The order of the genes within the variable-length chromosome determines the timings 

of the manufacturing campaigns. Hence, the campaigns are scheduled in sequence 

one after another. At the first glance, it might seem that the two manufacturing 

campaigns in Figure 5.5.b overlap with each other. However, it only looks so because 

of the aforementioned rolling product sequence-dependent changeovers. Figure 5.5.c 

illustrates how the rolling changeovers are implemented. For example, once the 

Inoculation stage of product A is complete, a changeover process can begin to 

prepare the stage for product C while product A is in Seed stage. The rolling product 

changeovers have the obvious benefit of making the utilisation of the available 

production time more efficient. However, not every biopharmaceutical facility design 

can allow this especially if the individual manufacturing stages do not take place in 

separate rooms. 
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The product sequence-dependent changeover time is used to determine the start date 

of the new campaign. This is illustrated by the black and white striped box which 

separates the DSP stages of products A and C in Figure 5.5.c (see also Lines 37 and 

38 in Algorithm 5.2). The manufacturing campaign of product C is scheduled in such 

a way that its production stage ends 16 days, i.e. the number of changeover days 

(see Table 5.1), after the end of the manufacturing campaign of product A.  

 

a) 

 
b) 

 
c) 

 
Figure 5.5. An example of the relationship between (a) the genes (b), the decoded 

production schedule displayed at a product campaign level, and (c) at a manufacturing 

stage level. 

 

Every finished batch of each product is added to an inventory that is also implemented 

using a priority queue which ensures that the oldest batches are delivered first. 

Similarly to the continuous-time scheduling heuristic described in the preceding 

chapter, every product is assigned an individual priority queue for each due date. 

Additional check is introduced to ensure that every batch of product has been 
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approved by the QC/QA before it can be delivered. The scheduling heuristic maintains 

that each chromosome encodes a production schedule which starts and ends within 

the set planning horizon. Genes encoding production campaigns beyond the planning 

horizon are removed from the chromosome. 

 

The crossover and mutation operators can sometimes cause multiple, consecutive 

genes encode manufacturing campaigns of the same product. After the schedule has 

been constructed, the heuristic combines the consecutive genes encoding the 

campaigns of the same product into one. Figure 5.6. illustrates an example of this. 

 

a) 

 
b) 

 
c) 

 
 

Figure 5.6. Correction of the mapping of genes to the production campaigns. In (a), 

the genes 2 and 3 correspond to the same product. The continuous-time scheduling 

heuristic combines them into (b) one contiguous manufacturing campaign and re-

maps it to (c) a single a gene. 
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5.4. Results 

In this section, the novel multi-objective variable-length GA developed earlier in this 

chapter is used to generate 3-year production schedules for a multi-product 

biopharmaceutical facility. The objectives and constraints of the capacity planning and 

scheduling problem are to maximise the total kilogram throughput, minimise the total 

kilogram inventory deficit whilst avoiding product waste and meeting all product 

demands on time. The multi-objective results are discussed in Section 5.4.5 by 

comparing the trade-offs between the best non-dominated solutions. Sections 5.4.2-

5.4.4 study the relationship between the GA, its genetic operators, and their 

parameter values by varying them one at a time, keeping all the others unchanged, 

i.e. by performing ablation studies. It is acknowledged this is not the most optimal way 

because it does not account for the interactions between the operators (Eiben et al., 

1999). Nevertheless, this approach can given some useful insights about the relative 

importance of each parameter and genetic operator. The following experiments are 

performed: 

 

▪ In Section 5.4.2, the impact of the number of chromosomes on the GA’s 

performance is investigated while keeping the number of generations constant 

and vice versa. 

▪ Section 5.4.3 assesses the importance of each genetic operator by comparing 

the performance of the GA when the corresponding rate value is set to 0. 

▪ Section 5.4.4 evaluates the effect of the starting number of genes on the GA’s 

performance. Moreover, it investigates how the length of the chromosomes in the 

best Pareto front changes as a function of the number of generations. 

 

Every experiment is performed for 50 independent GA runs. The top Pareto fronts 

from each individual run are combined and sorted again using the non-dominated sort 
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method (Deb et al., 2002) to obtain the best Pareto front. The performance of the 

multi-objective GA is evaluated on the basis of the maximum and mean hypervolume 

achieved after 50 runs. The hypervolume indicator measures the size of the area 

between a reference point (worst possible objective functions values) and the Pareto 

front. In this work, the maximum hypervolume is equal to the area between a 

reference point and the best Pareto front whereas the mean hypervolume correspond 

to the mean area size between a reference point and a Pareto front from a individual 

GA run.  

 

Using unary performance indicators to assess the performance of multi-objective 

algorithms can be problematic (Zitzler et al., 2003). Nevertheless, the hypervolume 

indicator is often used for assessing the performance of many multi-objective 

evolutionary algorithms (Knowles et al., 2003; Zitzler & Künzli, 2004; Fonseca et al., 

2006). In this work, an improved dimension-sweep algorithm proposed by (Fonseca 

et al., 2006) and provided by the DEAP framework (Fortin et al., 2012) is used to 

estimate the hypervolume indicator. 

 

5.4.1. Objective Space 

In order to set a benchmark for the multi-objective GA and get a better understanding 

of what the objective space looks like, the scheduling problem was first solved as a 

single-objective optimisation problem. A single-objective GA with 1000 chromosomes 

was run for 1000 generations 50 times (50 independent runs). In other words, a total 

of 50M objective function evaluations were performed to find the best value of each 

objective subject to the constraints of the scheduling problem (the total amount of 

backlog and product waste must be equal to 0 kg). 
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The worst possible values of the objectives (when the total production throughput is 

0 kg and when the inventory deficit is equal to the sum of all strategic product inventory 

target values, i.e. 2651.7 kg) were used as a reference point for estimating the 

hypervolume indicator. The best values of the objectives (total production throughput 

of 630.4 kg and total inventory deficity of 184.8 kg) obtained with a single-objective 

GA were combined to create an ideal point which together with a reference point were 

used to make an assumption about the boundaries of the objective space for the 

problem of this chapter. The total area of the objective space was also used to 

normalise the hypervolume indicator to lie in the 0.0-1.0 range. Figure 5.7 displays 

the reference and ideal points, the single-objective solutions, and the objective space 

of the scheduling problem of this chapter. The results and statistics of the single-

objective optimisation are also provided in Table 5.4. 

 

 

Figure 5.7. The objective space (dashed line) of the scheduling problem described in 

this chapter. The objectives are to maximise the total production throughput and to 

minimise the total inventory deficit subject to the sum of total backlog and product 

waste being equal to 0 kg. The single-objective solutions were obtained with a single-

objective GA after 50 independent runs of 1000 generations with 1000 chromosomes. 
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Table 5.4. The best individual objective values (bold) obtained with a single-objective 

GA. 

 
 Single-objective solution 

 
1. Maximise total 

throughput 

2. Minimise total 

inventory deficit 

Total throughput [kg] 630.4 513.1 

Total inventory deficit [kg] 469.3 184.8 

Total backlog [kg] 0 0 

Total waste [kg] 0 0 

Starting length1 1 

No. runs 50 

No. generations 1000 

No. chromosomes 1000 

pC 0.108 

pMutP 0.041 

pPosB 0.608 

pNegB 0.766 

pSwap 0.471 

Run time2 12.6 s 13.7 s 
1 The starting number of genes per chromosome in the initial population. 
2 Mean run time of a single GA run. 

 

5.4.2. The Impact of The Number of Chromosomes and The 

Number of Generations 

This section assesses the sensitivity of the multi-objective GA to the increasing 

number of chromosomes while the number of generations is set to a sufficiently large 

number and vice versa. The parameter values of genetic operators and the starting 

number of genes used during the single-objective optimisation (Table 5.4) are also 

applied here to the multi-objective GA. 

 

Figures 5.8.a and 5.8.b illustrate how the maximum and mean hypervolume values 

as well as the mean time of a single GA run are affected by the number of 

chromosomes and generations, respectively. Tables 5.5 and 5.6. contain a more 

detailed summary of the results and statistics of the experiments such as the objective 

function values of the boundary solutions X and Y from the best Pareto front and the 

number of unique non-dominated solutions in the best Pareto front. The best 
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attainment surfaces together with all non-dominated solutions collected from every 

GA run using different parameter combinations are displayed in Figures 5.9 and 5.10. 

 

Overall, the performance of the GA, i.e. maximum and mean hypervolume values, 

improves with the increasing number of chromosomes and generations. Based on the 

comparison between Figures 5.8.a and 5.8.b, it is apparent that the number of 

chromosomes has a greater impact on the maximum and mean hypervolume than 

the number of generations. For example, after 50 runs of 1000 generations with 100 

chromosomes, the values of maximum and mean hypervolume are 0.992 and 0.982 

± 0.011 respectively, whereas, when the number of generations is set to 100 and the 

number of chromosomes is set to 1000, the maximum and mean values increase to 

0.994 and 0.991 ± 0.005, respectively.  

 

a) b) 

  

Figure 5.8. The impact of the number of (a) chromosomes and (b) generations on the 

performance of the multi-objective variable-length GA. In (a), the number of 

generations was fixed at 1000 whereas in (b) the number of chromosomes was set to 

1000. The vertical lines denote the standard deviation of mean hypervolume. The 

black dashed line marks the highest maximum hypervolume achieved. 
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Table 5.5. The impact of the number of chromosomes on the performance of the multi-objective variable-length GA. 

 
 No. chromosomes 

 100 200 300 600 900 1200 

Max hypervolume 0.992 0.990 0.992 0.994 0.994 0.994 

Mean hypervolume1 0.982 ± 0.011 0.973 ± 0.008 0.989 ± 0.008 0.994 ± 0.000 0.991 ± 0.006 0.994 ± 0.000 

No. solutions2 35 31 35 35 37 35 

Solution X3 [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] 

Solution Y3 [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] 

Run time4 [s] 2.14 4.74 8.32 19.20 36.10 52.8 

No. runs 50 

No. generations 1000 

Starting length5 1 

 
Table 5.6. The impact of the number of generations on the performance of the multi-objective variable-length GA. 
 
 No. generations 

 100 200 300 600 900 1200 

Max hypervolume 0.994 0.994 0.994 0.994 0.994 0.994 

Mean hypervolume1 0.991 ± 0.005 0.993 ± 0.004 0.993 ± 0.001 0.994 ± 0.000 0.994 ± 0.000 0.994 ± 0.000 

No. solutions2 35 35 36 35 36 37 

Solution X3 [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] 

Solution Y3 [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] 

Run time4 [s] 5.5 10.5 18.7 32.3 52.1 71.2 

No. runs 50 

No. chromosomes 1000 

Starting length5 1 
1 Mean ± 1 standard deviation. 
2 The number of solutions in the best Pareto front. 
3 The boundary solutions of the best Pareto front. 
4 Average time elapsed for each of the 50 runs. 
5 The starting number of genes per chromosome in the initial population. 
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a) 

 

b) 

 

c) 

 

Figure 5.9. All non-dominated solutions (black circles) and the best Pareto front (red crosses) with (a) 100, (b) 600, and (c) 1200 chromosomes. 

 

a) 

 

b) 

 

c) 

 

Figure 5.10. All non-dominated solutions and the best Pareto front (red crosses) after (a) 100, (b) 600, and (c) 1200 generations. 
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However, the relationship between the GA’s performance and the number of 

chromosomes is not perfectly linear, e.g. the maximum and mean hypervolume 

values are actually higher when the number of chromosomes is 100 rather than 200 

(Figure 5.8.a). The performance trend appears to be much more consistent with the 

number of generations, i.e. increasing this number leads to an improvement. In both 

cases, the maximum hypervolume stops improving once the total number of objective 

function evaluations ≥ 30M (50 runs of 1000 generations with 600 chromosomes or 

50 runs of 600 generations with 1000 chromosomes). 

 

The mean time of single GA run increases linearly with both the number of 

chromosomes and the number of generations. Nevertheless, the computational 

performance of the multi-objective variable-length GA developed in this chapter is 

more affected by the number of chromosomes rather than generations. It takes longer 

to run a GA with 1000 chromosomes for 100 generations than the other way around. 

The reason for this is because the evaluation of the chromosomes is parallelised. 

 

5.4.3. The Importance of Genetic Operators 

In the previous chapter, a set of new genetic operators was introduced to give the 

variable-length GA the means to search for the optimal number and permutation of 

production campaigns manufacturing the right amounts of the product. In this section, 

a series of ablation experiments is performed with a purpose of evaluating the relative 

importance of the following genetic operators: 

 

▪ Modified uniform crossover which takes place with a rate of pC. 

▪ Product label mutation that affects each gene individually with a rate of pMutP. 

▪ Positive (+1) and negative (-1) mutations of the number of batches encoded in 

each gene with the rates of pPosB and pNegB respectively. 
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▪ Swap mutation – two genes are made to swap their positions once per 

chromosome with a rate of pSwap. 

 

First, a benchmark was established by performing 50 runs of the multi-objective GA 

with 1000 chromosomes for 600 generations with all genetic operator parameter 

values set to 0.5 (see Table 5.7.a). The number of chromosomes and the number of 

generations were selected based on the findings from the previous section: out of all 

the combinations studied, this one gave the best tradeoff between the maximum 

hypervolume, the consistency of top non-dominated solutions from run to run, and the 

computational performance. The impact of each genetic operator on the GA’s 

performance was evaluated by setting the corresponing rate to 0. The results and 

statistics of the experiments are provided in Table 5.7. The impact of disabling each 

operator is also illustrated by displaying the best Pareto fronts and all non-dominated 

solutions collected from the individual GA runs in Figure 5.11. 

 

With the exception of product label mutation, individually disabling all other genetic 

operators had a negative impact on the mean hypervolume. Assuming the importance 

of each genetic operator can be quantified by the increase/decrease in mean 

hypvervolume when it is disabled, then, according to the results of ablation 

experiments, the operators can be ranked in the following order (from the most to the 

least important): 

 

1. Negative mutation of the number of batches. Disabling this operator reduced the 

base case mean hypervolume from 0.930 ± 0.009 to 0.844 ± 0.061. Moreover, the 

consistency of the GA’s performance was signficantly reduced. In Figure 5.11.e, 

the non-dominated solutions collected from the individual runs are a lot more 

widely scattered compared to the base case (Figure 5.11.a). 
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2. Positive mutation of the number of batches. Without this operator, the base case 

mean hypervolume dropped from 0.930 to 0.912 whereas the standard deviation 

increased from 0.009 to 0.016. Compared to the negative mutation of the number 

of batches, the impact was not as severe because the GA had other means of 

increasing the number of batches. For example, several consecutive genes can 

sometimes end up encoding the same product label because of the crossover, 

swap mutation or the addition of a new gene. The continuous-time scheduling 

heuristic combines the consecutive genes with the same product label summing 

up the number of batches from each gene.  

3. Swap mutation. Compared to disabling the uniform crossover, the impact of 

disabling the swap mutation on the mean hypervolume was only slighty more 

negative. However, the variability in non-dominated solutions from run to run was 

nearly four times larger. 

4. Modified uniform crossover. Disabling this genetic operator had negligible impact 

on the maximum and mean hypervolume values. 

5. Product label mutation. The GA is capable of varying the product labels through 

crossover, swap mutation, and the addition of a new gene. Therefore, disabling 

this operator likely made the overall search process more directed which is also 

relfected by the improved maximum and mean hypervolume values. 

 

Therefore, the recommendation for selecting the starting parameter values for solving 

biopharmaceutical scheduling problems similar to the one of this chapter would be to 

set pNegB, pPosB, and pSwap high with pNegB > pPosB > pSwap > 0.5 and set pC 

and pMutP low (0.0-0.1 range) or disable altogether. 
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Table 5.7. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f) 

swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case when the parameters of all genetic 

operators are set to 0.5. 

 
 a) b) c) d) e) f) 

Maximum hypervolume 0.957 0.959 0.994 0.958 0.960 0.946 

Mean hypervolume1 0.930 ± 0.009 0.923 ± 0.007 0.993 ± 0.003 0.912 ± 0.016 0.844 ± 0.061 0.920 ± 0.026 

No. solutions2 17 13 37 22 12 18 

Run time3 [s] 29.0 28.9 29.1 29.1 28.9 29.2 

No. runs 50 

No. generations 600 

No. chromosomes 1000 

Starting length4 1 

pC 0.5 0     

pMutP 0.5  0    

pPosB 0.5   0   

pNegB 0.5    0  

pSwap 0.5     0 
1 Mean ± 1 standard deviation. 
2 The number of solutions in the best Pareto front. 
3 Average time elapsed for each of the 50 runs. 
4 The starting number of genes per chromosome in the initial population. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 5.11. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and 

(f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case when the parameters of all genetic 

operators are set to 0.5.
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5.4.4. The Impact of The Starting Number of Genes 

This section evaluates how the starting number of genes in the variable-length 

chromosome affects the performance of the multi-objective variable-length GA. A total 

of 5 experiments were performed: when the starting number of genes is 1 (a base 

case), 3, 6, 9, and 12. Each experiment was performed by running the GA with 1000 

chromosomes for 600 generations and 50 runs with all genetic operator parameter 

values set to 0.5. 

 

According to the results displayed in Figure 5.12 and listed Table 5.8, increasing the 

starting number of genes does not have a significant positive or negative impact on 

the maximum and mean hypervolume achieved with the multi-objective variable-

length GA. Nevertheless, there was a slight improvement in the performance when 

the starting number of genes was increased from 1 to 3 (the base case maximum and 

mean hypervolume increased from 0.957 and 0.930 ± 0.009 to 0.966 and 0.933 ± 

0.009) and from 1 to 6 (the base case maximum and mean hypervolume increased 

from 0.957 and 0.930 ± 0.009 to 0.963 and 0.933 ± 0.009). However, increasing the 

starting number of genes beyond 6 decreased the performance slightly. 

 

 

Figure 5.12. The impact of the starting number of genes on the maximum and mean 

hypervolume. Vertical lines denote the standard deviation of mean hypervolume.
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Table 5.8. The impact of the starting number of genes on the maximum and mean hypervolume. 

 
 a) b) c) d) e) 

Maximum hypervolume 0.957 0.966 0.963 0.958 0.954 

Mean hypervolume1 0.930 ± 0.009 0.933 ± 0.009 0.933 ± 0.009 0.929 ± 0.012 0.927 ± 0.01 

No. solutions2 17 18 18 21 18 

Run time3 [s] 29.9 29.8 29.9 29.9 30.0 

No. runs 50 

No. generations 600 

No. chromosomes 1000 

Starting length4 1 3 6 9 12 

pC 0.5 

pMutP 0.5 

pPosB 0.5 

pNegB 0.5 

pSwap 0.5 
1 Mean ± 1 standard deviation. 
2 The number of solutions in the best Pareto front. 
3 Average time elapsed for each of the 50 runs. 
4 The starting number of genes per chromosome in the initial population. 
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5.4.5. Multi-Objective GA Results 

This section highlights the advantages of the multi-objective approach for optimising 

the production schedules of a multi-product biopharmaceutical facility by comparing 

the boundary solutions X and Y of the best Pareto front with one another and with the 

single-objective solutions. The reason for selecting the solutions for comparison from 

the extreme ends of the Pareto front was to illustrate the trade-off between the two 

objectives more clearly. As it was discussed earlier, the best Pareto front is generated 

by re-sorting combined Pareto fronts collected from individual GA runs.  

 

Figure 5.13 displays the total objective space that was determined with a single-

objective GA and the best Pareto front generated with a multi-objective GA side-by-

side. Table 5.9 provides the details about the Pareto front boundary solutions X and 

Y. 

 

a) b) 

  

Figure 5.13. Multi-objective optimisation results: 

(a) Objective space determined with a single-objective GA. 

(b) The best Pareto front (red crosses) and all non-dominated solutions (black circles) 

collected from individual runs of the multi-objective variable-length GA (maximum and 

mean hypervolume of 0.994 and 0.944 ± 0.000). 
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Table 5.9. The boundary solutions X and Y of the best Pareto front generated with the 

multi-objective variable-length GA. 

 
 Pareto front boundary solution 

 X Y 

Total throughput [kg] 574.4 630.4 

Total inventory deficit [kg] 191.4 469.4 

Total backlog [kg] 0 0 

Total waste [kg] 0 0 

Starting length1 1 

No. runs 50 

No. generations 600 

No. chromosomes 1000 

pC 0.108 

pMutP 0.000 

pPosB 0.608 

pNegB 0.766 

pSwap 0.471 

Run time2 20.0 s 20.0 s 
1 The starting number of genes per chromosome in the initial population. 
2 Mean run time of a single GA run. 

 

According to Figure 5.13 and Table 5.9, the multi-objective variable-length GA is 

capable of finding solutions which meet all product demands on time and avoid 

product waste and, at the very least, non-dominate the single-objective solutions. For 

example, the total inventory deficit of solution X is only slightly larger than that of the 

single-objective solution 2 (191.3 vs 184.8 kg) but it also has a larger total production 

throughput (513.1 kg vs 574.4 kg). On the other hand, solution Y matches the single-

objective solution 1, i.e. the total production throughput and total inventory deficit are 

the same for both (630.3 kg and 469.4 kg respectively). The key advantage of the 

multi-objective GA over the single-objective one is that it provides more options. A 

total of 36 unique non-dominated solutions were generated. Every production 

schedule in the best Pareto front offers close-to-optimal (if not optimal) trade-off 

between maximising the manufacturing capacity of a facility and maintaining a 

balanced product inventory. A single production schedule can be selected from the 

non-dominated solutions using, for example, a weighted sum method, Euclidean 

distance (finding a production schedule that is closest to the ideal point in the objective 
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space) or using a more sophisticated Monte Carlo simulation-based sensitivity 

analysis to evaluate the robustness of the schedule to the variations in product 

demand. 

 

a) 

 

b) 

 

Figure 5.14. Production schedules of (a) solution X and (b) solution Y from the best 

Pareto front. The numbers in the boxes show how many kilograms are being 

manufactured, followed by the production time (days). 

 

Figure 5.14 compares the production schedule of solution X with that of solution Y. 

Every campaign in both solutions has a batch throughput that is within the minimum 
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and maximum bounds of the corresponding product. The special requirement of 

product D to be produced in multiples of 3 batches has also been met. All campaigns 

of product D in either solution has a number of batches that is evenly divisible by 3. 

The production schedule of solution X has 11 manufacturing campaigns which are 

124-day long and produce 11 batches or 52 kg on average. In contrast, the production 

schedule of solution Y comprises 7 manufacturing campaigns with an average 

duration of 180 days, and average throughput of 19 batches and 90 kg. This difference 

follows the overall pattern of the non-dominated solutions: shorter but more frequent 

campaigns scheduled appropriately will lead to better balanced product inventory, i.e. 

lower inventory deficit, but at the cost of lower total production throughput due to more 

changeovers taking place. In Figure 5.16, the gaps between the strategic inventory 

targets and the product inventory levels of solution Y are wider and more frequent 

than those displayed in Figure 5.15 for solution X. The product inventory levels profile 

of solution X has a more balanced, sawtooth-like pattern, i.e. the inventory tends 

increase and decrease at a more even rate , compared to those of solution Y. For 

example, the monthly mean inventory level of product D for solution X is 52.2 ± 20.7 

kg; in contrast, the monthly mean inventory level of product D for solution Y is 61.9 ± 

41.2 kg. 

 

This comparison illustrates the value of the variable-length chromosome structure for 

multi-objective scheduling problems. First, it enables the scheduling optimisation to 

take place in continuous-time. Second, it allows the GA to evolve a set of non-

dominated solutions with varying total numbers of production campaigns. 



5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling 

157 
 

 

Figure 5.15. Product (     A      B      C      D) inventory levels of solution X. 

 

 

Figure 5.16. Product (     A      B      C      D) inventory levels of solution Y. 
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5.5. Summary 

This chapter considered a real-life capacity planning and scheduling problem of multi-

product biopharmaceutical manufacture featuring multiple objectives and constraints, 

product-dependent changeovers, QC/QA checks, and storage and shelf-life limits. An 

adaptable, variable-length multi-objective GA and a continuous-time scheduling 

heuristic were adapted from Chapter 4 to tackle the aformentioned scheduling 

problem. The problem was first solved using a single objective GA to determine the 

objective space and set a benchmark for the multi-objective optimisation. The 

variable-length multi-objective GA achieved on average 99.4% of the total objective 

space hypervolume and generated a Pareto front that, at the very least, non-

dominated the solutions obtained with a single-objective GA. Furthermore, all 

solutions met the constraints of the planning problem including the special 

manufacturing requirements. In the next chapter, the proposed approach will be 

extended to generate production plans under uncertainty of the biopharmaceutical 

environment.  
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6. Multi-Objective Biopharmaceutical 

Capacity Planning Under Uncertainty 

6.1. Introduction 

In the previous chapter, the single-objective variable-length GA developed in Chapter 

4 was extended with a multi-objective component for continuous-time optimisation of 

total production throughput and monthly inventory levels of a multi-product 

biopharmaceutical facility given a 3-year long product demand profile with multiple 

intermediate due dates. Adding the ability to optimise several objectives 

simultaneously was shown to be advantageous compared to the single-objective GA-

based approach. The multi-objective variable-length GA was used to generate a set 

of production schedules that not only met all product demands on time without 

exceeding storage and shelf-life limits but also provided a trade-off between 

maximising the utilisation of the biopharmaceutical facility’s capacity and having a 

more balanced product inventory. Nevertheless, the presented approach did so 

deterministically without the consideration for an inherent feature of 

biopharmaceutical manufacture which is the uncertainty of conditions in this 

environment. 

 

Meeting product demand in the biopharmaceutical industry is a highly sensitive issue 

owing to the high value and importance of the products. However, the market demand 

is often not known in advance and must be estimated. In case the demand uncertainty 

is neglected during the planning process, the obtained production schedules may be 

costly or even infeasible. For example, in the 1990s, Wyeth and Immunex (now 

Amgen) developed Enbrel for the treatment of rheumatoid arthritis. When Enbrel was 

finally launched in 1998, the demand was higher than what it was anticipated. Even 
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after increasing volume with their existing Enbrel CMO, both Wyeth and Immunex 

were unable to satisfy the higher than expected market demand (Kamarck, 2006). 

Malik et al. (2002) estimated that the lack of manufacturing capacity for the highly 

successful arthritis drug, Enbrel, cost the company more than $200M in lost revenue 

in 2001. Therefore, the biopharmaceutical companies must ensure an adequate 

supply of the product. 

 

Production plans created based on the assumption that the average product demand 

scenarios will occur can be flawed. Savage (2002) called this phenomenon The Flaw 

of Averages stating that whenever an average is used to represent an uncertain 

quantity it ends up distorting the results as it neglects the impact of the inevitable 

fluctuations. A decision to produce the amount equal to an average product demand 

will lead to the profit that will be on average less than the profit associated with 

average demand. Lower-than-average demand will lead to higher inventory costs and 

increased chance of product waste while greater demand will exceed the capacity of 

the facility and result in late deliveries. A better way to make plans under demand 

uncertainty is by utilising Monte Carlo simulation which can be used to generate 

hundreds of demand scenarios based on the whole range of possible values and their 

likelihood of occurring. 

 

The term Monte Carlo simulation (or method) was coined by Metropolis and Ulam 

(1949) in reference to games of chance, a popular attraction in Monte Carlo, Monaco. 

It was a codename for the simulations performed during the 1930s and 1940s to 

estimate the probability that the chain reaction needed for an atom bomb to detonate 

would be successful. The key idea behind Monte Carlo simulation is to use 

randomness by generating draws from a probability distribution. Monte Carlo 

simulation performs risk analysis by building models of possible results by substituting 

a probability distribution for any factor that has inherent uncertainty. It then calculates 



6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty 

161 
 

results over and over, each time using a different set of random values from the 

probability functions. Depending upon the number of uncertainties and the ranges 

specified for them, a Monte Carlo simulation could involve thousands or tens of 

thousands of recalculations before it is complete. Monte Carlo simulation produces 

distributions of possible outcome values. 

 

In this chapter, the multi-objective variable-length GA from the previous chapter is 

extended with a Monte Carlo simulation component to generate medium-term 

production schedules that are robust to the variations in product demand. For the sake 

of brevity, the integrated Monte Carlo simulation and multi-objective GA approach will 

be referred to as the stochastic GA while the multi-objective GA without Monte Carlo 

simulation will be referred to as the deterministic GA. The advantages of the 

stochastic GA over the deterministic one will be demonstrated by comparing the 

production schedules generated when the uncertainty in demand is ignored by using 

only the most likely demand values and when it is accounted for by characterising it 

with a probability distribution. 

 

The chapter is organised as follows: Section 6.2 contains the input data and the 

definition of the biopharmaceutical scheduling problem with uncertain product 

demand. Section 6.3 describes how Monte Carlo simulation is integrated with the 

multi-objective variable-length GA presented in the previous chapter and how the 

combined approach is used to generate production schedules under the product 

demand uncertainty. Additionally, the section explains how the stochastic GA is made 

more efficient by accelerating the computationally expensive Monte Carlo simulations 

using GPU resources. The results and discussion are given in Section 6.4. Similarly 

to Section 5.4.1, Section 6.4.1 first defines the stochastic objective space and then 

presents the best Pareto front generated using a stochastic multi-objective GA. The 

trade-offs between the boundary solutions X and Y of the best Pareto front are 
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explored in Section 6.4.2. Section 6.4.3 shows the impact of neglecting the 

uncertainty in product demand by comparing the production schedules generated 

using the stochastic GA (GA with Monte Carlo simulation embedded in the 

optimisation) and deterministic GA. Deterministic GA outcomes were tested with 

Monte Carlo simulation post-optimisation. 

 

6.2. Problem Definition 

The scheduling problem from the previous chapter has been adapted to demonstrate 

the features of the integrated multi-objective variable-length GA and Monte Carlo 

simulation approach. For completeness, the problem statement is as follows: 

 

▪ Given: 

o A start date (1-Dec-2016) and a planning horizon of 3 years 

o A set of biopharmaceutical products { A, B, C, D } 

o USP and DSP processing times  

o Product-dependent manufacturing yields 

o Product sequence-dependent changeovers 

o Varying amounts of product stock available at the beginning of the 

schedule 

o Desired minimum and maximum number of batches per individual product 

campaign 

o Unique manufacturing requirements to produce the batches in multiples of 

a specified number 

o QC/QA approval times 

o 3-year profile of strategic product inventory targets 

o 3-year profile of uncertain monthly product demand 

▪ Determine: 

o A set of production schedules 

o The number and length of manufacturing campaigns 

o Production quantities along with inventory and late delivery profiles 

▪ So as to (constrained stochastic multi-objective problem): 

o Maximise the total production throughput 
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o Minimise the median total inventory deficit, i.e. cumulative differences 

between the monthly product inventory levels and the strategic inventory 

targets 

▪ Subject to: 

o The median total backlog being no greater than 0 kg 

 

It is assumed that the biopharmaceutical facility is available during the entire 3-year 

(1096-day) period. The product demand is assumed to be due on the first day of each 

month. The products must undergo a 90-day QC/QA process before they can be 

delivered which must be taken into consideration when meeting the product demand. 

Product sequence-dependent changeover time (Table 6.1) is incurred only when 

there is a switch between different product campaigns. Each product has a different 

manufacturing yield which determines how many kilograms are produced in a single 

batch. Due to the QC/QA approval process, there is a certain amount of product stock 

made available at the beginning of the schedule to meet the product demand during 

the first 90 days. The complete process data for the industrial case study is provided 

in Table 6.2. The strategic product inventory monthly targets are listed in Table 6.3. 

 

In the last chapter, one of the objectives was to minimise the total inventory deficit 

which was defined as the cumulative sum of the differences between the product 

inventory levels and the corresponding strategic monthly targets whenever the latter 

were greater than the former. In this chapter, the product demand is characterised by 

a triangular probability distribution based on the specifications of minimum, maximum, 

and most likely amounts for each due date (see Table 6.4 and Figure 6.1). Therefore, 

the total inventory deficit and total backlog will have a corresponding distribution of 

different values depending on the randomly generated product demand scenarios 

during Monte Carlo simulation.  
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The goal of the stochastic GA is to generate a set of schedules that are the most 

robust to the variations in product demand, e.g. with a high probability of meeting all 

product demands on time. This is accomplished by maximising the total production 

throughput and minimising the median total inventory deficit subject to the median 

total backlog being no greater than 0 kg. The objective of the total production 

throughput maximisation remains unchanged from the previous chapter as the 

throughput from each individual manufacturing campaign is the same regardless of 

the product demand scenario. 

 

Table 6.1. Product sequence-dependent changeovers [days]. 

 
  To product 
  A B C D 

F
ro

m
  

p
ro

d
u

c
t A 0 10 16 20 

B 16 0 16 20 

C 16 10 0 20 

D 18 10 18 0 

 

Table 6.2. Process data for the industrial case study. 

 
 Product 

 A B C D 

USP duration [days] 45 36 45 49 

DSP duration [days] 7 11 7 7 

QC/QA duration 90 90 90 90 

Yield per batch [kg] 3.1 6.2 4.9 5.5 

Opening stock [kg] 18.6 0 19.6 110 

Minimum batch throughput per campaign 2 2 2 3 

Maximum batch throughput per campaign 50 50 50 30 

Produce batches per campaign in multiples of 1 1 1 3 

 

 

Due to the skewness of product demand distributions (Figure 6.1) and the expected 

non-symmetrical distributions of the stochastic multi-objective optimisation outcomes, 

median was chosen as a measure of central tendency. Later in this chapter, non-

parametric statistical tests are applied to analyse the stochastic optimisation results 

and compare them with the results from the deterministic optimisation. 
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Table 6.3. Strategic inventory targets. 

 
 Product 

Due date A B C D 

1-Jan-17 6.2 0 0 22 

1-Feb-17 6.2 0 4.9 27.5 

1-Mar-17 9.3 0 9.8 27.5 

1-Apr-17 9.3 0 9.8 27.5 

1-May-17 12.4 0 9.8 27.5 

1-Jun-17 12.4 0 9.8 33 

1-Jul-17 15.5 0 19.6 33 

1-Aug-17 21.7 0 19.6 27.5 

1-Sep-17 21.7 0 14.7 27.5 

1-Oct-17 24.8 0 19.6 27.5 

1-Nov-17 21.7 0 19.6 38.5 

1-Dec-17 24.8 0 19.6 33 

1-Jan-18 27.9 0 14.7 33 

1-Feb-18 21.7 0 19.6 33 

1-Mar-18 24.8 0 19.6 33 

1-Apr-18 24.8 0 14.7 33 

1-May-18 24.8 0 14.7 27.5 

1-Jun-18 27.9 6.2 19.6 33 

1-Jul-18 27.9 6.2 19.6 33 

1-Aug-18 27.9 6.2 9.8 33 

1-Sep-18 31 6.2 19.6 38.5 

1-Oct-18 31 6.2 19.6 33 

1-Nov-18 34.1 6.2 19.6 38.5 

1-Dec-18 34.1 6.2 19.6 33 

1-Jan-19 27.9 6.2 24.5 33 

1-Feb-19 27.9 6.2 34.3 33 

1-Mar-19 27.9 6.2 24.5 33 

1-Apr-19 27.9 6.2 29.4 44 

1-May-19 34.1 6.2 39.2 33 

1-Jun-19 34.1 6.2 39.2 33 

1-Jul-19 31 6.2 29.4 33 

1-Aug-19 31 6.2 19.6 33 

1-Sep-19 21.7 6.2 19.6 22 

1-Oct-19 15.5 6.2 14.7 11 

1-Nov-19 6.2 6.2 4.9 11 

1-Dec-19 0 6.2 0 5.5 
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Table 6.4. Product demand uncertainty for a 3-year period.  

 
 Product 

Due date A B C D 

1-Jan-17 0 0 0 0 

1-Feb-17 0 0 0 Tr(4.5, 5.5, 8.25) 

1-Mar-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25) 

1-Apr-17 0 0 0 0 

1-May-17 0 0 0 Tr(4.5, 5.5, 8.25) 

1-Jun-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25) 

1-Jul-17 0 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Aug-17 Tr(2.1, 3.1, 4.65) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Sep-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25) 

1-Oct-17 Tr(2.1, 3.1, 4.65) 0 0 0 

1-Nov-17 0 0 0 Tr(10, 11, 16.5) 

1-Dec-17 Tr(5.2, 6.2, 9.3) 0 Tr(8.8, 9.8, 14.7) Tr(4.5, 5.5, 8.25) 

1-Jan-18 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) 0 

1-Feb-18 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25) 

1-Mar-18 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Apr-18 0 0 0 Tr(10, 11, 16.5) 

1-May-18 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25) 

1-Jun-18 Tr(8.3, 9.3, 13.95) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Jul-18 0 0 Tr(8.8, 9.8, 14.7) 0 

1-Aug-18 Tr(5.2, 6.2, 9.3) 0 0 Tr(4.5, 5.5, 8.25) 

1-Sep-18 Tr(5.2, 6.2, 9.3) 0 0 Tr(4.5, 5.5, 8.25) 

1-Oct-18 0 0 0 Tr(4.5, 5.5, 8.25) 

1-Nov-18 Tr(5.2, 6.2, 9.3) Tr(5.2, 6.2, 9.3) Tr(3.9, 4.9, 7.35) Tr(10, 11, 16.5) 

1-Dec-18 Tr(8.3, 9.3, 13.95) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Jan-19 0 0 0 0 

1-Feb-19 Tr(8.3, 9.3, 13.95) 0 Tr(8.8, 9.8, 14.7) Tr(10, 11, 16.5) 

1-Mar-19 Tr(5.2, 6.2, 9.3) 0 0 0 

1-Apr-19 Tr(2.1, 3.1, 4.65) 0 0 Tr(10, 11, 16.5) 

1-May-19 Tr(5.2, 6.2, 9.3) Tr(5.2, 6.2, 9.3) Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Jun-19 Tr(2.1, 3.1, 4.65) 0 Tr(8.8, 9.8, 14.7) Tr(4.5, 5.5, 8.25) 

1-Jul-19 0 0 Tr(8.8, 9.8, 14.7) 0 

1-Aug-19 Tr(8.3, 9.3, 13.95) 0 0 Tr(10, 11, 16.5) 

1-Sep-19 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(10, 11, 16.5) 

1-Oct-19 Tr(8.3, 9.3, 13.95) 0 Tr(8.8, 9.8, 14.7) 0 

1-Nov-19 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25) 

1-Dec-19 0 Tr(5.2, 6.2, 9.3) 0 Tr(4.5, 5.5, 8.25) 
Note: Tr(x, y, z) denotes a triangular distribution where x, y, and z are the minimum, mode (most likely), 

and maximum values. 
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Figure 6.1. Min, median, and max product (     A      B      C      D) demand values for each due date after 1,000 Monte Carlo simulation trials using 

the corresponding triangular distribution from Table 6.4 as an input. 
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6.3. Methods 

The multi-objective variable-length GA and the scheduling heuristic have been 

implemented in C++ programming language and compiled with MSVC14 compiler to 

run on a CPU. The Monte Carlo simulation component was developed using C++ and 

CUDA 8.0 API and compiled with NVCC v8.0 compiler to run on a GPU. The 

industrially-relevant capacity planning and scheduling problem of medium-term multi-

product biopharmaceutical manufacture under uncertainty has been solved on Intel 

i5-6500 (CPU) and NVIDIA GTX-1060 (GPU) based Windows 10 system with 16GB 

of RAM and 6 GB of VRAM. 

 

The chromosome encoding strategy, genetic operators, NSGA-II based multi-

objective optimisation, constraint handling, and the scheduling heuristic remain 

largely unchanged from the previous chapter. Therefore, for the sake of brevity, the 

focus of this section is placed on the implementation details of Monte Carlo simulation 

integration with the multi-objective GA and steps taken to improve the performance of 

the stochastic multi-objective GA-based framework.  

 

Figure 6.2 provides a flowchart illustrating of how Monte Carlo simulation fits into the 

GA-based scheduling optimisation framework from a high-level. First, a continuous-

time scheduling heuristic is applied to decode the variable-length chromosomes into 

production schedules (the heuristic logic has been discussed in Chapters 4 and 5). 

This is accomplished using the product sequence-dependent changeovers and 

process data just the same way as it was described in the previous chapter. After the 

schedule has been constructed, its robustness to the variations in product demand is 

then tested by conducting Monte Carlo simulation trials. Hundreds of demand 

scenarios are generated for each individual production schedule based on the 

provided triangular probability distributions for each product and its every demand due 
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date. The performance of production schedule, e.g. total inventory deficit, total 

amount of backlog, is evaluated on each randomly generated demand scenario. For 

each Monte Carlo simulation trial t, the calculated values of total inventory deficit and 

total amount of backlog are stored in | t |-dimensional arrays (see Lines 9 and 10 in 

Figure 6.2). After the simulation trials are completed, the medians of the total inventory 

deficit and total backlog distributions are assigned to the corresponding chromosome 

as the objective and constraints values. 

 
Figure 6.2. Objective function evaluation of the chromosome using the continuous-

time scheduling heuristic and Monte Carlo simulation. 
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One the major drawbacks of Monte Carlo simulation is the associated computational 

overhead. In this chapter, 1000 Monte Carlo simulation trials were applied for the 

evaluation of each chromosome and the impact of this on the execution performance 

can be seen in Figure 6.3.a. The average time elapsed for a single run of stochastic 

GA with Monte Carlo simulation embedded into the optimisation was approximately 

100-fold longer than that of a deterministic GA without Monte Carlo simulation. 

Reducing the number of Monte Carlo simulation trials to improve the performance is 

not ideal as the error of the simulation estimates is inversely proportional to the 

number of trials. The larger the number of trials is, the more confident the estimates 

are. Hence, it was necessary to find a way to improve the performance, i.e. execution 

speed, without sacrificing the accuracy and confidence of the results. 

 
a) b) 

  

Figure 6.3. Average elapsed time for each of the 50 GA runs with 100 chromosomes 

for 1000 generations: 

(a) deterministic GA vs. CPU-only stochastic GA 

(b) Stochastic GA with Monte Carlo simulation performed on a GPU vs. CPU-only 

stochastic GA 

Note: fitness evaluations deterministic and CPU-only stochastic GAs were performed 

in parallel  

 

Since the individual Monte Carlo simulation trials are independent form each other in 

this study, the overall simulation process can be made more efficient through the use 
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of Single Instruction Multiple Data (SIMD)-based architectures. Modern GPUs are 

optimised for SIMD type processing with massive parallelism. For example, compared 

to an average consumer-grade Central Processing Unit (CPU) which typically has 

from 4 to 8 cores, a single GPU can have over 2000 cores (Vanek et al., 2017). Figure 

6.4 illustrates the difference between the high-level architectures of GPU and CPU. 

Each individual Monte Carlo trial can be assigned to a single core on a GPU thus 

enabling hundreds of trials to be performed in parallel with substantial savings in 

computational power and time.  

 

 

Figure 6.4. Comparison of a high-level architecture between a Central Processing 

Unit (CPU) and a Graphics Processing Unit (GPU). 

 

In this work, only the Monte Carlo simulation component from the stochastic multi-

objective GA-based framework was made to run on a GPU since it was found to be 

the biggest performance bottleneck compared to other components. The execution of 

the program was transferred from CPU to GPU every time 

MonteCarloSimulationKernel (see Lines 3, 8-18 in Figure 6.2) was invoked during the 

objective function evaluation. Once the simulation finished, the execution of the 

program was transferred back to CPU to continue running the GA. 

 

Accelerating Monte Carlo simulation with a GPU reduced the mean running time of a 

single stochastic GA run by approximately 30 times (see Figure 6.3.b). In other words, 

in the time it takes to complete a single run of a CPU-only stochastic GA, 30 runs of 
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a GPU-accelerated stochastic GA could be completed. As it was outlined in the 

requirements section of Chapter 2, the ability to achieve solutions in a timely manner 

is very valuable as it would enable the production schedulers to test more scenarios 

and perform more case studies with different inputs in less amount of time. 

 

6.4. Results 

In this section, the validity of stochastic multi-objective GA outlined earlier is 

demonstrated on an industrially-relevant case study of multi-objective 

biopharmaceutical capacity planning and scheduling. The problem requires to 

produce a set of optimal 3-year schedules for a multi-product biopharmaceutical 

facility manufacturing 4 products under uncertain monthly demand. The objectives of 

the capacity planning and scheduling problem are to maximise the total kilogram 

throughput, minimise the median total kilogram inventory deficit. The optimisation 

problem is subject to the constraint of 0 kg median total kilogram backlog.  

 

First, Section 6.4.1 defines the objective space of the stochastic optimisation problem 

using a single-objective GA with integrated Monte Carlo simulation The results 

obtained using a stochastic, multi-objective GA with Monte Carlo simulation 

embedded into the optimisation are discussed in Section 6.4.2 by comparing the 

trade-offs between two non-dominated solutions selected from the extreme ends of 

the best Pareto front. Section 6.4.3 strengthens the argument for stochastic 

optimisation with a comparison of the production schedules generated using the 

stochastic and deterministic GAs. The schedules generated with the deterministic GA 

are tested using Monte Carlo simulation post-optimisation to show the impact of 

optimisation using only the most likely values, ignoring the uncertainty in product 

demand. 
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6.4.1. Stochastic Objective Space 

In the preceding chapter, a single-objective GA was applied to obtain an ideal point 

(a combination of the best objective function values) which together with a reference 

point (a combination of the worst possible objective function values) was used to 

assume the boundaries of the objective space. Knowing the total hypervolume of the 

objective space, made it more convenient to gauge the performance of the multi-

objective GA using a hypervolume indicator normalised to 0.0-1.0 range (the higher, 

the better). Moreover, this also made it easier to interpret and compare the different 

Pareto fronts to one another. 

 

Table 6.5. The best values of each objective (bold) obtained with the stochastic single-

objective GA. 

 
 Stochastic single-objective solution 

 1. Maximise total 

throughput 

2. Minimise median total 

inventory deficit 

Total throughput [kg] 602.1 514.3 

Median total inventory deficit [kg] 555.2 423.1 

Median total backlog [kg] 0.0 0.0 

No. Monte Carlo simulation trials1 1000 

No. runs 50 

No. generations 1000 

No. chromosomes 100 

Starting length2 1 

pC 0.108 

pMutP 0.041 

pPosB 0.608 

pNegB 0.766 

pSwap 0.471 

Run time3 [s] 8.94 9.13 
1 Number of Monte Carlo simulations for each chromosome evaluation. 
2 The starting number of genes per chromosome in the initial population. 
3 Mean run time of a single GA run 

 
 
The same methodology is also applied in this chapter. The scheduling problem with 

uncertain demand is first solved using a single-objective GA that also has Monte Carlo 

simulation embedded into the objective function evaluation. The highest total 

production throughput and the lowest median total inventory deficit values are used 
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to create an ideal point (see Table 6.5) to define the limits of the stochastic objective 

space for the scheduling problem of this chapter (see Figure 6.5.a). 

 

a) b) 

  

Figure 6.5. (a) Stochastic objective space and (b) the best Pareto front generated 

using the stochastic multi-objective GA (hypervolume of 0.997). The gray shaded area 

is used for illustrative purposes to show the area of the objective space that is 

dominated by the Pareto front solutions. 

 

Table 6.6. Boundary solutions X and Y of the best Pareto front generated using the 

stochastic multi-objective GA (hypervolume of 0.997). 

 
 Stochastic Pareto solution 

 X Y 

Total throughput [kg] 539.3 601.5 

Median total inventory deficit [kg] 424.4 551.7 

Median total backlog [kg] 0 0 

No. Monte Carlo simulation trials1 1000 

No. runs 50 

No. generations 1000 

No. chromosomes 100 

Starting length2 1 

pC 0.108 

pMutP 0.041 

pPosB 0.608 

pNegB 0.766 

pSwap 0.471 

Run time3 [s] 10.81 
1 Number of Monte Carlo simulations for each chromosome evaluation. 
2 The starting number of genes per chromosome in the initial population. 
3 Mean run time of a single GA run 
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The goal of the GA in this chapter is to generate a Pareto front of unique non-

dominated solutions with the maximum hypervolume value, i.e. as optimal as possible 

in terms of the specified objectives and constraints. However, as it was described 

earlier, the GA is an optimisation technique that is not guaranteed to converge on the 

same solution(s) every time. Therefore, the top Pareto front is saved at the end of 

each individual GA run. After all 50 runs are completed, the fronts are combined and 

sorted again using the non-dominated sorting algorithm described by Deb et al. (2002) 

to create the best Pareto front containing a set of top non-dominated solutions. Such 

front of non-dominated solution with a hypervolume of 0.997 is displayed in Figure 

6.5.b alongside the single-objective solutions and the ideal point. 

 

6.4.2. Stochastic Multi-Objective GA Results 

This section compares the solutions X and Y selected from the extreme end of the 

best Pareto front generated after 50 stochastic GA runs with a population size of 100 

for 1000 generations (see Figure 6.5.b and Table 6.6). 

 

The production schedule of solution X (Figure 6.6.a) has a greater number of 

manufacturing campaigns than solution Y (Figure 6.6.b). The average production time 

per campaign of solution X is 117 days compared to 161 days for solution Y. Similar 

to the previous chapter, the model predicted that more frequent but shorter 

manufacturing campaigns scheduled according to a recurring pattern would lead to 

better optimised product inventory levels but at the cost of lower total production 

throughput because of the lost production time due to more frequent product 

changeovers.  

 

According to the Mann-Whitney U test, the difference between the total inventory 

deficit distributions of the solutions X and Y (Figure 6.7.a) was found to be statistically  
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a) 

 

b) 

 

Figure 6.6. Production schedules of (a) solution X and (b) Y from the best Pareto front 

after 50 runs generated using the stochastic GA. The numbers in the boxes show how 

many kilograms are being manufactured, followed by the production time (days). 

 

significant with a two-tailed p value of 0. Mann-Whitney U test is a non-parametric 

alternative to independent samples t-test. The null hypothesis H0 of the test is that the 

probability of a random observation from distribution X exceeding a random 

observation from distribution Y is the same, i.e. P(X > Y) == P(Y > X). While Mann-

Whitney U test helps to evaluate the probability of the effect, it does not reveal any 

details about its size. However, this can be evaluated by calculating the point estimate 
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of the Hodges-Lehmann’s median difference Δ which is equal to the median of all 

pairwise differences between the two distributions (Hodges Jr & Lehmann, 1963). The 

value of Δ between the total inventory deficit distributions of the solutions X and Y is 

equal to 126 kg. This value can also be interpreted in the following way: the total 

inventory deficit of the solution Y is 126 kg higher on average than that of the solution 

X. 

a) b) 

  

Figure 6.7. Comparison of (a) the total inventory deficit and (b) total backlog 

distributions between the solutions X and Y from the best Pareto front generated using 

the stochastic GA. 

 

The median total backlog is equal to 0 kg for both solutions (Table 6.7). Nevertheless, 

solution X has a greater probability of meeting the product demand compared to the 

solution Y (0.82 vs 0. 0.50). Using Mann-Whitney U test, the difference between the 

total backlog distributions in Figure 6.7.b is also found to be statistically significant 

(two-tailed p value of 0) with Δ of 0.1 kg. 

 

The results of the stochastic multi-objective GA show that depending on the chosen 

objectives and constraints, there can be multiple alternative solutions to a scheduling 

problem even in the presence of uncertainty. The stochastic GA generates a set of 

equally good alternative production schedules. Depending on the business strategy, 
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decision-makers can decide whether it is more acceptable to choose a production 

schedule that would result in higher total throughput but also a higher risk of not being 

able to meet the inventory targets and product demands on time or vice versa. 

 

Table 6.7. Comparison of the solutions X and Y from the best Pareto front generated 

using the stochastic GA. 

 
 Stochastic Pareto front solution 

 X Y 

Total throughput [kg] 539.3 601.5 

   

Max total backlog [kg] 8.2 16.0 

Mean total backlog [kg] 0.2 ± 0.6 7.1 ± 4.3 

Median total backlog [kg] 0 0 

Min total backlog [kg] 0 0 

P(total backlog ≤ 0 kg) 0.82 0.50 

   

Max total inventory deficit [kg] 683.4 786.0 

Mean total inventory deficit [kg] 432.6 ± 58.6 558.6 ± 59.0 

Median total inventory deficit [kg] 424.4 551.7 

Min total inventory deficit [kg] 259.4 355.6 

 

6.4.3. Comparison with the Deterministic GA 

This section of the results will discuss the merits of integrating Monte Carlo simulation 

into the multi-objective variable-length GA for creating production schedules under 

demand uncertainty. As mentioned earlier, the advantages will be illustrated by 

comparing the stochastic optimisation results with a deterministic GA-based 

approach.  

 

The scheduling problem presented in this chapter was solved again but the 

uncertainty in product demand was ignored and instead of the probability distributions 

(Table 6.4) only the most likely product demand values were used as an input. First, 

the objective space was defined using a deterministic single-objective GA without 

Monte Carlo simulation. Then, a multi-objective GA, also without Monte Carlo 
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simulation, was used to generate the best Pareto front of deterministic solutions in a 

similar way that was described in earlier in the last paragraph of Section 6.4.1. 

 
a) b) 

  

Figure 6.8. (a) Deterministic objective space and (b) the best Pareto front generated 

using the deterministic multi-objective GA (hypervolume of 0.996). 

 

Table 6.8. The best values of each objective (bold) obtained with a deterministic single 

objective GA. 

 

 Deterministic single-objective solution 

 
1. Maximise total 

throughput 

2. Minimise total 

inventory deficit 

Total throughput [kg] 630.4 488.2 

Total inventory deficit [kg] 464.3 174.8 

Total backlog [kg] 0 0 

No. runs 50 

No. generations 1000 

No. chromosomes 100 

Starting length1 1 

pC 0.108 

pMutP 0.041 

pPosB 0.608 

pNegB 0.766 

pSwap 0.471 

Run time2 [s] 0.78 0.86 
1 The starting number of genes per chromosome in the initial population. 
2 Mean run time of a single GA run 

 

Table 6.8 lists the best single-objective values obtained with a deterministic single-

objective GA (without Monte Carlo simulation) whereas Figure 6.8.a shows the 
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boundaries of the deterministic objective space defined by the reference and ideal 

points. The solution X (refer to Figure 6.8.b and Table 6.9) from the best Pareto front 

generated with the deterministic multi-objective GA, i.e. without Monte Carlo 

simulation, is compared to the solution X (see Figure 6.5.b and Table 6.6) from the 

best Pareto front generated using the stochastic GA. For convenience, the two 

solutions will be referred to as deterministic and stochastic solution respectively. To 

be able to compare the deterministic solution with the stochastic one, Monte Carlo 

simulation is used to conduct a stochastic analysis to assess its robustness to the 

variability of product demand. 

 

Table 6.9. The boundary solutions X and Y of the best Pareto front generated using 

the deterministic multi-objective GA without the embedded Monte Carlo simulation-

based optimisation.  

 
 Deterministic Pareto front solution 

 X Y 

Total throughput [kg] 498.5 630.4 

Total inventory deficit [kg] 175.4 461.4 

Total backlog [kg] 0 0 

No. runs 50 

No. generations 1000 

No. chromosomes 100 

Starting length1 1 

pC 0.108 

pMutP 0.041 

pPosB 0.608 

pNegB 0.766 

pSwap 0.471 

Run time2 [s] 3.07 
1 The starting number of genes per chromosome in the initial population. 
2 Mean run time of a single GA run 

 

Using only the most likely demand values, the deterministic solution (solution X from 

Figure 6.8.b and Table 6.9) achieved the total throughput and total inventory deficit 

values of 498.5 kg and 175.4 kg respectively. The production schedules of the 

deterministic (Figure 6.9.a) and stochastic solution (Figure 6.9.b) are very similar: both 

contain short but frequent recurring manufacturing campaigns. Therefore, at the first 
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glance, it might seem like the production schedule generated deterministically would 

perform similarly to the production schedule generated using a stochastic GA under 

uncertain product demand, i.e. have a similar median total inventory deficit and a 

median total backlog equal to 0 kg.  

 

a) 

 

b) 

 

 

Figure 6.9. Production schedules of (a) the deterministic solution X and (b) stochastic 

solution X from the respective best Pareto fronts. The numbers in the boxes show 

how many kilograms are being manufactured, followed by the production time (days). 

 



6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty 

 
 

182 

However, after Monte Carlo simulation was applied post-optimisation to evaluate the 

robustness of the deterministic solution to the variability of demand, it was found that 

the corresponding production schedule had a significantly lower probability of meeting 

product demands on time.  

a) b) 

  

Figure 6.10. A comparison of (a) the total inventory deficit (a) and (b) total backlog 

distributions between the stochastic and deterministic solutions. after the stochastic 

analysis with Monte Carlo simulation 

 

Table 6.8. A comparison between the stochastic and the deterministic solutions. 

 
 Solution 

 Stochastic Deterministic 

Total throughput [kg] 539.3 498.5 

   

Max total backlog [kg] 8.2 27.1 

Mean total backlog [kg] 0.2 ± 0.6 7.1 ± 4.3 

Median total backlog [kg] 0 6 

Min total backlog [kg] 0 0 

P(total backlog ≤ 0 kg) 0.82 0.01 

   

Max total inventory deficit [kg] 683.4 776.5 

Mean total inventory deficit [kg] 432.6 ± 58.6 504.8 ± 74.1 

Median total inventory deficit [kg] 424.4 501 

Min total inventory deficit [kg] 259.4 238.4 

Note: the stochastic solution was generated using a multi-objective GA with Monte Carlo 

simulation embedded into the optimisation of the objectives. The deterministic solution was 

obtained using a multi-objective GA without the integrated Monte Carlo simulation. Instead, Monte 

Carlo simulation was used to perform a post-optimisation sensitivity analysis of the solution was 

performed using it. 
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Figure 6.10 and Table 6.8 illustrate and list the results of the Monte Carlo simulation-

based sensitivity analysis of the deterministic solution and the comparison with the 

stochastic solution generated using the multi-objective GA with Monte Carlo 

simulation embedded into the objective function evaluation. The production schedule 

generated using the deterministic multi-objective GA was capable of meeting all 

product demands in only 14 randomly generated product demand scenarios out of 

1000 in total (1.4%). Moreover, the median total inventory deficit level was also higher 

(501 kg vs 424.4 kg) than that of the production schedule generated using the 

stochastic GA with integrated Monte Carlo simulation. 

 

 

Figure 6.11. Individual product (   A    B   C   D) inventory profiles of the  

deterministic solution after the stochastic analysis with Monte Carlo simulation. The 

negative inventory levels highlighted by the red ovals indicate the median amount of 

unmet product demand. 

 

Using the Mann-Whitney U-test, the difference between the total inventory 

distributions of the deterministic and stochastic solutions is statistically significant 
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(two-tailed p value of 0) with Δ of 71.4 kg. The difference between the total backlog 

distributions is also statistically significant (two-tailed p value of 0) with Δ of 6.4 kg. 

More importantly, the deterministic solution has only 0.01 probability of meeting all 

product demands on time compared to 0.82 probability of the stochastic solution. 

According to Figure 6.11, the deterministic production schedule is expected to be 

unable to meet the demand on time for products A and C on 6 separate due dates. In 

comparison, the stochastic solution meets all product demands on time on average 

(Figure 6.12).  

 

 

Figure 6.12. Individual product (   A    B   C   D) inventory profiles of the  

stochastic solution. 

 

Based on the comparison between the deterministic and stochastic solutions, the 

advantages of the stochastic GA are evident. The difference between the total 

inventory deficit and total backlog distributions of the two solutions is statistically 

significant. The stochastic solution has a much greater chance of meeting all product 
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demands on time despite the variations. Moreover, the monthly product inventory 

levels of the stochastic solution are expected to be closer to the set strategic targets. 

 

6.5. Summary 

In this chapter, the novel continuous-time GA-based scheduling optimisation 

approach described in Chapters 4 and 5 was extended with Monte Carlo simulation 

to address an inherent and very important feature of biopharmaceutical industry –

uncertainty in product demand. The monthly demand for each product was 

characterised with a triangular distribution defined by the minimum, most likely, and 

maximum quantities. Integrating Monte Carlo simulation into the multi-objective GA 

permitted the identification of more robust production schedules better suited to 

handle product demand fluctuations. The benefits of an integrated GA and Monte 

Carlo simulation approach were demonstrated by comparing it with a deterministic 

approach. The production schedules generated with a deterministic GA were based 

on the most likely demand values and did not account for the variability in product 

demand. Hence, in scenarios where the product demand was higher than expected 

the solution was shown as not able to meet all product demands on time on average.  
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7. Commercialisation 

7.1. Introduction 

This chapter outlines a plan for potential commercialisation of the work generated 

during this PhD. A minimum viable product (MVP) has been developed to 

demonstrate the viability of the commercialisation plan. The following areas are 

discussed: 

 

▪ Delivery model – best way to deliver the software so that benefits both the clients 

and the software developers. 

▪ Architecture – the overall design of the software including database schema, user 

experience (UX), and user interface (UI). 

▪ Revenue model – strategies for pricing the software based on its features. 

 

7.2. Delivery Model 

Traditionally, businesses would buy software, install it and maintain it on their own 

machines. That software delivery model is giving way to a modern one known as 

Software as a Service (SaaS). 

 

The concept of SaaS is relatively simple: just like e-mails or social media applications, 

business applications can also be accessed with a Web browser over the Internet. 

Instead of buying a license and installing the software on individual machines, a 

business buys a subscription to use the application and services hosted in a cloud 

environment. Cloud computing has become so popular that it was introduced as a 

new word in the English language in 2012 (Dutt et al., 2017). According to the forecast 

by the International Data Corporation (IDC, 2018), worldwide public cloud services 
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spending is expected to reach $203.4B by 2020 and SaaS solutions are estimated to 

account for about 60% of this spending. 

 

SaaS model offers multiple benefits to software developers and buyers alike. For 

buyers, the advantages include easier and more frequent upgrades, lower cost of 

ownership, and better support from vendors as they have to be more responsive to 

customers or risk losing subscription revenues (Dubey & Wagle, 2007). Moreover, the 

investment in SaaS product development tends to be higher which also results in 

higher software quality compared to perpetual licensing (Choudhary, 2007). For 

software developers, the benefits of a SaaS approach include reduced deployment 

time, streamlined software building and testing cycles using, for example, continuous 

integration (CI) systems, and the ability to monitor software usage which can be used 

to enhance it. Countering the advantages of SaaS are the risks of reliability and 

security of the service. For example, some of the biopharmaceutical companies might 

have concerns about data privacy. 

 

SaaS model is especially attractive for deploying the GA-based DST developed 

during this PhD. Using high-performance cloud computing environments, it is possible 

to make the computationally demanding features, e.g. GPU-accelerated integrated 

Monte Carlo simulation for stochastic optimisation, accessible to all users on virtually 

any platform (including tablets, mobile phones, different Operating Systems – 

anything that can run a Web browser). In contrast, using the traditional delivery model, 

clients would be most likely restricted to one platform and would not be able to access 

such complex features unless they invest in building the IT infrastructure and buying 

specialist hardware with high-performance CPUs and GPUs. 

 

Therefore, this chapter proposes to build and deliver the GA-based DST as a SaaS 

application. 
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7.3. Architecture 

This section explains the proposed architecture of the SaaS solution for capacity and 

scheduling of biopharmaceutical facilities using snapshots of an actual MVP. 

 

7.3.1. Overview 

The GA-based DST has been developed according to most of the requirements and 

specifications outlined in Chapter 2. The tool comprises the following three core parts: 

 

▪ High-performance, multi-threaded C++ implementations of the work that was 

presented in the previous chapters, i.e. GA-based scheduling optimisation 

algorithms and biopharmaceutical scheduling models. 

▪ Python API which wraps up the C++ components, provides methods for data input 

and output, results reporting and visualisation, Gantt charts generation, and also 

makes the integration with other libraries or applications much more streamlined. 

▪ Django (Django, 2018) open source web framework which provides a user-friendly 

platform to view and manage input data and scheduling optimisation results. 

There are a number of different web frameworks available, but Django is the most 

popular Python web framework that encourages rapid development, clean, 

pragmatic design, and offers a very wide range of features available out-of-the-

box, including but not limited to a web server, extensible authentication system, 

and an object relational mapping (ORM) tool for storing and retrieving data from a 

relational database. 

 

Figure 7.1 displays a high-level architecture of a SaaS application (GA-based DST) 

that is hosted in a cloud environment and accessible over the Internet using a Web 

browser. Django web framework is responsible for handling client’s requests using 

Models, Views, Templates, and a Uniform Resource Locator (URL) Dispatcher, 
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Models. A URL Dispatcher maps the requested URL to a View function and calls it. 

For example, if a client requested to enter new or edit the existing data, a URL 

Dispatcher would map that request to a corresponding View function which would 

perform one or several Create, Read, Update, and Delete (CRUD) operations in the 

relational database.  

 

 

Figure 7.1. High-level architecture of the GA-based Decision Support Tool 

implemented as a SaaS application. 

 

In an example scenario, if a client requests to create production schedules for a 

specific facility, the URL Dispatcher would call a matching View function to retrieve 
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the input data comprised of Facility, Product, Changeover, Demand, and 

InventoryTarget tables (Figure 7.2) from the database using user_id and facility_id. 

The input data is passed to Python API (see Figure 7.1) which connects the web 

framework and the high-performance C++ implementations of the variable-length GAs 

and scheduling models described in the earlier chapters. Python API is responsible 

not only for transferring the data back and forth from the C++ components but also for 

formatting, analytics, and reporting the results back to the web framework. After the 

request is complete, the View function would save the output data in the Schedule, 

Campaign, Batch, and Inventory tables (Figure 7.2), create a Template – an HTTP 

object with tables, figures, and Gantt charts from the scheduling optimisation – and 

render it using a Web browser. 

 

 

Figure 7.2. Database schema utilised by the GA-based Decision Support Tool.  

 

 

7.3.2. Input Data Setup 

Before the SaaS application can be accessed, a new client would need to create a 

user account first (Figure 7.3). A user account allows the client to write and save data 

that is protected with a password. Moreover, the user account type determines how 
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much the client will be charged for using the service (pricing is discussed in Section 

7.4). Once a user account is created, a client can start entering the input data for the 

scheduling problem. 

 

 

Figure 7.3. Sign up (Register) page view. 

 

a) 

 

b) 

 

c) 

 

d) 

 

 
Figure 7.4. Entering facility data into the application. (a) and (b) display the different 

ways of gaining access to (c) a facility form whereas (d) displays a facility data table. 
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The first step is to enter data about the biopharmaceutical facility that needs to be 

optimised. This can be accomplished by filling in the facility form (Figure 7.4.c) that is 

accessible from the Facilities > New Facility tab (Figure 7.4.a). The form can also be 

accessed by selecting the Facilities > Saved Facilities tab and then clicking the “+ 

New Facility” button (Figure 7.4.b). 

 

a) 

 

b) 

 

c) 

 

Figure 7.5. Entering product data into the application. (a) displays how to access (b) 

the form (only a portion of it is shown here) for entering data about an individual 

product. (c) displays a product data table. 

 

Once the data about the facility is set up (Figure 7.4.d), a client can then begin 

assigning products to the facility. All forms for entering product-related data, including 
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process data (7.5.b), product sequence-dependent changeovers, and product 

demand, can be accessed from the Products > New Product tab (Figure 7.5.a).  

 

a) 

 

b) 

 

 

Figure 7.6. Entering product sequence-dependent changeover data into the 

application. (a) shows the form for entering the data whereas (b) displays the product 

changeover table with the data filled-in. 

 

When all of the products are defined for a given facility (Figure 7.5.c), a client can 

enter data about the product sequence-dependent changeovers. This is 

accomplished by going over to the Products > Product Changeovers tab which gives 

access to a product changeovers form (7.6.a). The changeovers data is set up by 

adding individual rows specifying the product sequence (from-to), the duration (days), 

and the facility since the changeovers are inherently dependent not only on the 

product but also on the design and capabilities of a biopharmaceutical facility. The 

product changeover data table is displayed in Figure 7.6.b. Finally, the product 

demand and strategic inventory targets can be added to the database of the 
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application by uploading CSV files containing the data. When the right file is added 

and uploaded (Figure 7.7.a), a client is presented with a graphical output and a 

message informing of success (Figure 7.7.b). 

 

a) 

 

b) 

 

Figure 7.7. Uploading product demand data into the application: (a) before and (b) 

after the upload. 

 

 

7.3.3. Optimisation Setup 

Once all of the required input data is in the database, the scheduling optimisation 

dashboard for a specific facility can be accessed by clicking the Plan icon (Figure 7.8). 

 

 

Figure 7.8. Accessing scheduling optimisation dashboard. 
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After having clicked the icon, a client is presented with a minimalistic dashboard that 

displays only the key problem settings such as objectives, constraints, and the start 

date of the schedule (Figure 7.9.a). The advanced settings such as the number of 

runs, generations, and chromosomes, the rates of crossover and mutation operators 

are also available and can be accessed by clicking the Advanced Settings icon (Figure 

7.9.b). 

a) 

 

b) 

 

Figure 7.9. Scheduling optimisation setup in the application. (a) lists only the key 

scheduling optimisation settings whereas (b) displays an expanded list of advanced 

mostly GA-related parameters. 

 

Once all the parameters are set, the scheduling optimisation can be initiated by 

clicking the Run scheduler button. When this button is pressed, the web framework 

instructs the scheduling optimisation process to start running in the background. This 

way the web page remains responsive and a client can continue interacting with it 
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while the optimisation is running. In certain cases, the optimisation process can take 

longer than a few seconds to complete. Therefore, a progress bar is used to inform of 

the application status (Figure 7.10). 

 

 

Figure 7.10. Scheduling optimisation in progress. 

 

7.3.4. Visualisation of Results 

When the scheduling optimisation is finished, the best non-dominated solutions 

generated with the GA are transferred to the web framework using Python API for 

display (Figure 7.11). First, a client will be presented with an interactive table of 

solutions and, if the scheduling optimisation problem has two objectives, an 

interactive graph of the best Pareto front (Figure 7.11.a). 

 

a) 

 

 
Figure 7.11. Scheduling optimisation results view. In (a), if the optimisation problem 

has two objectives, an interactive chart of the best Pareto will be displayed. In (b), 

every row in the table represents a unique schedule that can be inspected by clicking 

the corresponding View schedule icon in the Actions column. 
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b) 

 

 
Figure 7.11. (continued) Scheduling optimisation results view. In (a), if the 

optimisation problem has two objectives, an interactive chart of the best Pareto will 

be displayed. In (b), every row in the table represents a unique schedule that can be 

inspected by clicking the corresponding View schedule icon in the Actions column. 

 

Each row in the table corresponds to a unique production schedule which can be 

inspected by clicking the View schedule icon in the Actions column (7.11.b). Clicking 

this icon will bring up a detailed view of the schedule which includes an interactive 

Gantt chart and an interactive table listing the production throughput, and the start 

and end dates of each manufacturing campaign (Figure 7.12). 

 

a) 

 

 
Figure 7.12. Detailed view of a selected production schedule. In (a), manufacturing 

campaigns can be inspected by hovering over them in the Gantt chart. In (b), 

individual product profiles can be viewed by selecting the View inventory icon in the 

Actions column of the production schedule table. 
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b) 

 

 
Figure 7.12. (continued) Detailed view of a selected production schedule. In (a), 

manufacturing campaigns can be inspected by hovering over them in the Gantt chart. 

In (b), individual product profiles can be viewed by selecting the View inventory icon 

in the Actions column of the production schedule table. 

 

The inventory profile, strategic targets, and demand of each product (Figure 7.13) can 

be inspected by clicking the View inventory icon in the Actions column of the 

production schedule table (Figure 7.12.a). Clicking this icon would return a web page 

with interactive charts that display the quantities for each due date. 

 

 

Figure 7.13. Product inventory profile. 

 

  



7. Commercialisation 

199 
 

7.4. Pricing 

Unlike the traditional software development and delivery model, SaaS model has the 

potential of reaching a broader range of users and building a relationship between a 

producer and a customer that creates and captures value where the customer 

participates actively. The relationship with them shapes the service and determines 

which features are essential and which are not. Hence, it is important to let the 

customers know that they are buying a highly customizable service that can be 

improved with their feedback. The experience gained from a relationship with one 

customer will also help bring new ones onboard. Therefore, the pricing of a SaaS 

application can be quite complicated compared to on-premise software with perpetual 

licenses.  

 

Fortunately, with a SaaS model it is possible to charge for usage. The modularity of 

the GA-based DST enables different pricing strategies. It is not necessary to pack all 

of the application’s value into one single (and often large) number that can put off a 

lot of smaller scale clients. For starters, clients could select one of three different 

subscription plans priced proportionally to the number of features made available (see 

Figure 7.14). A Free subscription plan would allow the users to test the basic features 

of the platform at no cost which would provide some organic growth for the business. 

A free user account can be thought of as the first step towards building a relationship 

between a client and a SaaS provider. Free users can be later convinced to switch to 

a paying subscription by showing them the value of the platform. The biggest 

downside of Free subscription plan is its scalability. Too many free users can put a 

strain on resources, e. g. storage space and processing speed, with a marginal benefit 

to the service provider. A better alternative to a Free subscription plan would be a 

limited trial period. 
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Figure 7.14. Monthly subscriptions plans priced proportionally to the number of 

features provided by the service. 

 

A client would have to pay for Basic and Premium subscription plans but also would 

get access to a broad range of useful features such as the ability to create schedules 

for a larger number of products and longer planning horizons, the ability to perform 

sensitivity analysis and stochastic optimisation, and have the SaaS provider create a 

scheduling model that is tailored to their biopharmaceutical facility. The main purpose 

of a Basic subscription plan is to provide a reliable but moderate stream of revenue 

from the customers who might not necessarily require customisation or complex 

features but would like to use the tool to estimate the available capacity of the facility 

or to evaluate the impact of shorter product changeovers or increased product 

demand. A Premium plan with a high-level of customisation would suit customers who 

operate uniquely designed facilities with distinct manufacturing capabilities and 

deliver biopharmaceuticals in unpredictable markets. They are likely to benefit from 

features such as multi-objective scheduling optimisation under uncertainty, e.g. 

production yields and product demand, the most.  

 

While the pre-defined and readily-available subscription plans are a good starting 

point, it is better to understand the exact features that the customers value the most. 

In addition to asking for a customer’s feedback directly, this can also be accomplished 

by collecting and analysing usage data (especially from free or trial users). This would 
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identify which group certain types of customers fall into and help determine the right 

subscription plans. 

 

7.5. Summary 

This chapter described an implementation plan of the GA-based DST generated 

during this PhD thesis. An MVP was developed to demonstrate the practical value of 

the tool and the viability of the plan. It was proposed to deliver it as a SaaS application 

because of the lower development and deployment costs, and a subscription-based 

pricing model which would facilitate building stronger, mutually beneficial relationships 

with the customers.  

 

Once the SaaS application starts generating revenue, it could be expanded further to 

include not only the models and algorithms for scheduling optimisation but also other 

features such as process economics models (Farid, 2007), tools for assessing 

process robustness (Stonier et al., 2012) and algorithms for process design and 

optimisation (Allmendinger et al., 2012; Simaria et al., 2012). Additional features 

would increase the value of the application, help retain the existing and attract the 

new customers. 
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8. Conclusions and Future Work 

8.1. Introduction 

Suboptimal scheduling of biopharmaceutical manufacturing campaigns can have 

significant financial implications such as increased variable costs incurred by holding 

too much inventory or loss of profit due to insufficient or underutilised capacity to meet 

the product demand. In order to create a cost-effective production plan, 

biopharmaceutical companies need to consider a wide range of factors including but 

not limited to: 

 

▪ Product-dependent yields and process durations of individual manufacturing 

stages. 

▪ Manufacturing capabilities of the facility, e.g. the number of USP and DSP suites. 

▪ Amount of time required for setup and clean-up between the manufacturing 

campaigns. The duration of a changeover can depend not only on the products 

but also on the sequence they are manufactured in. 

▪ Product and process-dependent constraints, e.g. finite storage space and product 

shelf-life, minimum and maximum production throughput limits. 

▪ Multiple concurrent and often conflicting objectives, e.g. maximisation of profit, 

minimisation of costs, maximisation of production throughput and capacity 

utilisation, meeting all product demands on time, avoiding product waste, 

minimisation of the differences between the monthly product inventory levels and 

the corresponding strategic targets etc. 

▪ Lengthy QC/QA approval times. The manufacturing campaigns have to be 

scheduled in a such way that the product material is made available several weeks 

or even months in advance of the delivery due date. 
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▪ Uncertain variables inherent in the biopharmaceutical manufacturing environment 

such as product demand. 

 

This thesis has addressed all of these features of biopharmaceutical capacity 

planning and scheduling. Moreover, a flexible Decision Support Tool (DST) (including 

not only the Application Programming Interface but also a more user friendly web-

based interface) based on a Genetic Algorithm (GA) was developed to help the 

biopharmaceutical companies tackle the said challenges and make better scheduling 

decisions faster. The reasons for taking a GA-based approach were several: 

 

▪ Most of the optimisation methods for biopharmaceutical capacity planning and 

scheduling reported utilise discrete-time modelling and Mixed Integer Linear 

Programming (MILP). There have been multiple MILP-model reported for single- 

and multi-objective optimisation of biopharmaceutical capacity plans using 

discrete- and continuous-time representations. In comparison, the number of 

scheduling optimisation methods based on a GA or other alternatives is much 

more limited. Therefore, there is significant potential for new research exploring 

alternative optimisation methods for biopharmaceutical capacity planning and 

scheduling. 

▪ The tools for mathematical programming typically require high level of expertise 

(Mustafa et al., 2006). There is also reported lack of transparency associated with 

certain exact methods which often requires intervention from the specialists 

(Widmer et al., 2008). In contrast, the core features of a GA are relatively simple 

to implement (Deb, 2001) and combine with other methods such as Monte Carlo 

simulation. 

 

Briefly, the GA-based DST brings the following benefits to both academia and 

industry: 
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▪ A variable-length chromosome structure for continuous-time scheduling which 

makes it possible to create accurate and realistic production schedules. The 

validity of the variable-length GA was first demonstrated in Chapter 4 on two 

industrial case studies adapted from the literature and compared with discrete- 

and continuous-time MILP models. The same variable-length chromosome 

structure was also applied in Chapters 5 and 6 to solve entirely new deterministic 

and stochastic multi-objective case studies. 

▪ Flexible multi-objective optimisation. The advantages of a GA-based multi-

objective optimisation were demonstrated in Chapter 5. Instead of a single 

solution, the multi-objective GA presents a biopharmaceutical strategist with a set 

of non-dominated solutions to choose from. 

▪ Integrated Monte Carlo simulation, i.e. stochastic GA, for generating production 

schedules under product demand uncertainty. The benefits of stochastic GA were 

demonstrated in Chapter 6. It identified production schedules which had high 

probabilities of meeting all product demands on time despite the large variations. 

In comparison, the production schedules generated with a deterministic approach, 

i.e. GA without the integrated Monte Carlo simulation, had only < 2% probability 

of meeting the product demands on time according to the post-optimisation Monte 

Carlo simulation-based sensitivity analysis. 

 

8.2. Contribution of This Thesis 

The following Sections 8.2.1-8.2.5 outline the contributions of this thesis and briefly 

describe the work undertaken to create a flexible and user-friendly DST for realistic 

medium-term scheduling of a multi-product biopharmaceutical facility that could tackle 

multiple conflicting objectives and the uncertainty of biopharmaceutical environment. 
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8.2.1. Discrete-Time Biopharmaceutical Capacity 

Planning and Scheduling 

At the time of writing Chapter 3 there were not any relevant papers on GA-based 

methods for biopharmaceutical capacity planning and scheduling. Therefore, the goal 

was to fill in the knowledge gap by developing GA-based alternatives to the discrete-

time MILP-based models reported in the literature. The GA-based scheduling 

optimisation was evaluated on two cases studies adapted from the literature. In the 

first case study, a medium-term capacity planning problem of a single-site, multi-suite 

biopharmaceutical facility was solved. The GA-based approach obtained the global 

optimum faster than a MILP model. In the second case study, a more complex, long-

term capacity planning problem of a multi-site biopharmaceutical manufacture was 

solved. A rolling time horizon approach was implemented to improve the GA 

performance. Using this approach, the average optimality gap achieved with the GA 

was 1.1%. 

 

A Particle Swarm Optimisation (PSO) algorithm was used to automatically tune the 

GA parameters. The objective of the PSO algorithm was to maximise the mean best 

GA objective function value achieved after a given number of independent runs using 

the parameters encoded in a particle’s position.  

 

Other key contributions of Chapter 3 include a chromosome encoding strategy, 

algorithmic adaptations that captured capacity planning objectives for multiple 

products across multiple suites and facilities, and a rolling time horizon approach to 

improve the GA performance. 
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8.2.2. Continuous-Time Biopharmaceutical Capacity 

Planning and Scheduling 

The challenges and limitations encountered in Chapter 3 provided the motivation for 

the development of unique GA-based scheduling optimisation methods that leveraged 

the GA’s flexibility instead of attempting to solve the scheduling problems by adapting 

the mathematical models. 

 

Chapter 4 introduced a novel variable-length chromosome structure and an entirely 

new continuous-time scheduling heuristic for decoding the chromosomes into full-

solutions, i.e. production schedules. The heuristic included a wide-range of 

biopharmaceutical manufacture features such as product-dependent changeovers, 

multiple intermediate demand due dates, backlogs, limited storage capacity, shelf-life, 

and waste disposal. The validity of the new approach was demonstrated on two 

literature-based examples of medium-term biopharmaceutical capacity planning and 

scheduling problems. In the first example, the variable-length GA was applied to a 

scheduling problem involving a single, multi-suite (2 USP and 2 DSP suites) 

biopharmaceutical facility manufacturing three products. The GA-based approach met 

all of the product demands on time and achieved a higher objective function value 

than the discrete- and continuous-time MILP-based solutions reported in the 

literature. In the second example, the variable-length GA was compared with a 

discrete-time MILP-based model on a problem involving a longer demand profile and 

a single, multi-suite (2 USP and 3 DSP suites) biopharmaceutical facility producing 

four products. The GA solution met all of the product demands on time and achieved 

an objective function value that was 33% greater than that of the globally optimal 

discrete-time MILP solution which met approximately 86% of all product demands on 

time. 
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8.2.3. Multi-Objective Biopharmaceutical Capacity 

Planning and Scheduling 

Chapter 5 continued with the development of the variable-length GA for continuous-

time biopharmaceutical capacity planning and scheduling by adding a multi-objective 

component. The variable-length chromosome structure and the new genetic 

operators introduced in Chapter 4 were integrated with NSGA-II. A completely new, 

real-life capacity planning and scheduling problem of multi-product biopharmaceutical 

manufacture was used to demonstrate the advantages of the multi-objective 

optimisation. The problem featured a single biopharmaceutical facility manufacturing 

four products to meet a demand profile based on realistic due dates, multiple 

objectives and constraints, rolling product sequence-dependent changeovers, QC/QA 

times, storage and shelf-life limits. The objectives of the problem were to maximise 

the total kilogram throughput and to minimise the sum of differences between the 

inventory level and the corresponding strategic targets. The production schedules that 

did not meet product demand on time or resulted in product waste were treated as 

infeasible. The scheduling problem was first solved using a single objective GA to 

determine the objective space and set a benchmark for the multi-objective 

optimisation. The variable-length multi-objective GA achieved on average 99.4% of 

the total objective space and generated a Pareto front that, at the very least, non-

dominated the solutions obtained with a single-objective GA. 

 

8.2.4. Multi-Objective Biopharmaceutical Capacity 

Planning and Scheduling Under Uncertainty 

Chapter 6 expanded upon the ideas presented in Chapters 4 and 5 by integrating 

Monte Carlo simulation with a multi-objective variable-length GA to tackle production 

scheduling under uncertain product demand. The integrated Monte Carlo simulation 
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and GA approach, i.e. stochastic GA, was applied to the biopharmaceutical capacity 

planning and scheduling problem adapted from Chapter 5. The product demand 

uncertainty was quantified using a triangular distribution defined by the minimum, 

most likely, and maximum product demand quantities for each due date. The benefits 

of the stochastic GA were demonstrated by comparing it with a deterministic approach 

(a GA without Monte Carlo simulation). The stochastic GA permitted the identification 

of more robust production schedules with much higher probabilities of meeting all 

product demands on time and lower expected cumulative deviations from the strategic 

inventory targets. On the other hand, the production schedules generated with a 

deterministic GA ignored the variability in product demand thus in scenarios where 

the product demand was higher than expected the solutions were shown to have close 

to 0% probability of meeting product demands on time. 

 

8.2.5. Commercialisation 

Chapter 7 outlined a plan for commercialising the work generated during this PhD. A 

minimum viable product (MVP) was developed to demonstrate the viability of the plan 

and the various features of the GA-based DST. A Software-as-a-Service (SaaS)-

based delivery model of the product was discussed highlighting many benefits to both 

the developer(s) as well as the users of the tool or clients. A subscription pricing model 

was proposed to charge the users or clients according to the usage of tool. Finally, it 

was suggested that the GA-based DST could be used as a platform to include other 

decisional frameworks reported in the literature, e.g. process economics models 

(Farid, 2007), tools for assessing process robustness (Stonier et al., 2012), and 

algorithms for process design and optimisation (Allmendinger et al., 2012; Simaria et 

al., 2012). 
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8.3. Future Work 

This PhD thesis demonstrated how GA-based scheduling optimisation can be used 

to tackle continuous-time, multi-objective, deterministic and stochastic 

biopharmaceutical capacity planning problems. This section lists a number of ways 

the work conducted in this PhD thesis could be improved and expanded. 

 

8.3.1. Additional Constraints and Features 

The continuous-time scheduling heuristics presented in this thesis assumed that the 

biopharmaceutical facilities were available for the entire planning horizon. However, 

in reality, biopharmaceutical companies often have to regularly shut down their 

facilities for maintenance or inspection. The variable-length chromosome could 

include several special genes encoding a facility shut-down taking place. This way 

the GA could generate production schedules with optimised start and end dates of 

the facility shut-down(s) without compromising the objectives and constraints of the 

problem. Moreover, an integrated Monte Carlo simulation and GA approach could be 

applied to evaluate the impact of unplanned facility shut-downs which can occur, for 

example, due to contamination or equipment breakdown.  

 

In Chapter 6, the stochastic GA was applied to create production schedules under 

demand uncertainty. The novel stochastic scheduling optimisation approach could be 

taken further to tackle other uncertainties inherent in the biopharmaceutical 

manufacturing process such as variable fermentation titres and process yields, 

contamination risks, QC/QA rejection rates, and clinical attrition rates. The integrated 

Monte Carlo simulation and multi-objective variable-length GA could be used to 

generate production schedules that have the highest probabilities of meeting the 

specified objectives and constraints under the aforementioned uncertainties and risks. 
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This PhD work considered objectives and constraints including total profit, total 

production throughput, maintaining strategic inventory targets, meeting all product 

demands on time, and avoiding product waste. It would be interesting to evaluate 

other objectives such as minimisation of product changeovers. Furthermore, it could 

also be of interest to test whether the biopharmaceutical facility has sufficient capacity 

to accommodate the production of an additional product by minimising the total 

manufacturing time whilst meeting all product demands on time. The GA would need 

to not only determine the timings and durations of the manufacturing campaigns but 

also when the facility can remain idle. In this work, each gene corresponded to a real 

manufacturing campaign. The start and end dates of every manufacturing campaign 

were inferred from the order of the genes in the variable-length chromosome and the 

product-dependent process durations and changeovers. A straightforward fix to 

enable the minimisation of manufacturing time would be to allow the genes to encode 

dummy campaigns that do not have a product label associated with them. The number 

of batches of a dummy campaign could be used to encode the idle time duration in 

the facility. The timings of the real and dummy manufacturing campaigns can be 

implicitly encoded by the order of genes within the chromosome. 

 

Finally, the variable-length chromosome could be extended to address capacity 

planning and scheduling of multiple biopharmaceutical facilities. For example, the 

continuous-time scheduling described in Chapter 4 could be adapted for multi-site 

biopharmaceutical manufacture by changing the USP suites to biopharmaceutical 

facilities. Each gene could encode biopharmaceutical facility and product labels, and 

the number of batches to be manufactured. 
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8.3.2. Improved GA-based Optimisation 

This PhD thesis focused on a generational single-objective GA and a multi-objective 

GA based on NSGA-II. It would be beneficial to investigate how the variable-length 

chromosome structure would perform with other GA types, e.g. compare the 

generational GA with a steady-state one.  

 

One of the major limitations of NSGA-II is that its performance degrades with an 

increasing number of objectives and constraints (Ishibuchi et al., 2008). Therefore, for 

many-objective scheduling problems the variable-length chromosome structure could 

be integrated with more sophisticated MOEAs such as NSGA-III (Yuan et al., 2014) 

or Unified (U)-NSGA-III (Seada & Deb, 2015).  

 

It would also be interesting to see whether the work developed in this thesis could be 

combined and enhanced with Reinforcement Learning, e.g. for tuning and controlling 

the GA, creating a hyper-heuristic, or for improving the scheduling models. 

Allmendinger (2012) provided a good review of Reinforcement Learning applications 

in Evolutionary Optimisation and the development of hyper-heuristics. Zhang (1996) 

studied Reinforcement Learning applications in short-term job-shop scheduling with 

the aim to learn a repair-based scheduler capable of repairing a set of temporal and 

resource constraint violations.  

 

In summary, this PhD thesis presents novel GA-based methods that are relatively 

easy to implement and provides a strong foundation for future work developing 

advanced stochastic multi-objective capacity planning and scheduling optimisation 

methods for the biopharmaceutical industry. 
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Appendix B 

This appendix provides the technical details of the core flexible GA-based DST 

components developed during this PhD thesis. 

 

B.1. Gene 

A gene class/structure was created for encapsulating problem-specific information, 

e.g. encoded variables and methods for mutating them. This way, the variable-length 

chromosome (see the next Appendix) can be used to solve different 

biopharmaceutical scheduling problems just by plugging in a corresponding gene 

encoding the minimum required variables. For example, the SingleSiteSimpleGene 

displayed in Figure B.1.b does not have fields and methods associated with the USP 

suites, e.g. usp_suite_num and mutate_usp_suite_num(), as this was not mandated 

by the scheduling problems described in Chapters 5 and 6. 

 

a) b) 

 

 

 

Figure B.1. Structure of a single variable-length chromosome gene: 

(a) Gene structure utilised in Chapter 4 

(b) Gene structure utilised in Chapters 5 and 6 



Appendix 

223 
 

Algorithm B.1. C++ implementation of a gene used in Chapter 4. 

 
#include <utility> 
#include "utils.h" 
 
struct SingleSiteMultiSuiteGene 
{ 
    SingleSiteMultiSuiteGene() {} 
 
    SingleSiteMultiSuiteGene( 
        int num_products, 
        int num_usp_suites, 
        double p_product_mut, 
        double p_usp_suite_mut, 
        double p_plus_batch_mut, 
        double p_minus_batch_mut 
    )  
    { 
        this->num_products = num_products, 
        this->num_usp_suites = num_usp_suites, 
        this->p_product_mut = p_product_mut, 
        this->p_usp_suite_mut = p_usp_suite_mut, 
        this->p_plus_batch_mut = p_plus_batch_mut, 
        this->p_minus_batch_mut = p_minus_batch_mut, 
        this->num_batches = 1; 
        this->product_num = utils::random_int(1, num_products); 
        this->usp_suite_num = utils::random_int(1, num_usp_suites); 
    } 
 
    SingleSiteMultiSuiteGene make_new() 
    { 
        return std::move( 
            SingleSiteMultiSuiteGene( 
                num_products,  
                num_usp_suites,  
                p_product_mut,  
                p_usp_suite_mut,  
                p_plus_batch_mut,  
                p_minus_batch_mut 
            ) 
        ); 
    } 
 
    inline void Mutate() 
    { 
        mutate_product_num(); 
        mutate_usp_suite_num(); 
        mutate_num_batches(); 
    } 
 
    int product_num; 
    int usp_suite_num; 
    int num_batches; 
 
private: 
    inline void mutate_product_num() 
    { 
        if (utils::random() >= p_product_mut) { 
            return; 
        } 
 
        int random_product_num = 0; 
        do { random_product_num = utils::random_int(1, num_products); } 
        while (product_num == random_product_num); 
        product_num = random_product_num; 
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    } 
 
    inline void mutate_usp_suite_num() 
    { 
        if (utils::random() >= p_usp_suite_mut) { 
            return; 
        } 
 
        int random_usp_suite_num = 0; 
        do { random_usp_suite_num = utils::random_int(1, num_usp_suites); }  
        while (usp_suite_num == random_usp_suite_num); 
        usp_suite_num = random_usp_suite_num; 
    } 
 
    inline void mutate_num_batches() 
    { 
        if (utils::random() < p_plus_batch_mut) { 
            num_batches += 1; 
        } 
 
        if (num_batches > 0 && utils::random() < p_minus_batch_mut) { 
            num_batches -= 1; 
        } 
    } 
 
    int num_products; 
    int num_usp_suites; 
    double p_product_mut; 
    double p_usp_suite_mut; 
    double p_plus_batch_mut; 
    double p_minus_batch_mut; 
}; 

 

Algorithm B2. C++ implementation of a gene used in Chapter 5. 
 
#include <utility> 
#include "utils.h" 
 
struct SingleSiteSimpleGene 
{ 
    SingleSiteSimpleGene() {} 
 
    SingleSiteSimpleGene( 
        int num_products, 
        double p_product_mut, 
        double p_plus_batch_mut, 
        double p_minus_batch_mut 

    ) 
    { 
        this->num_products = num_products; 
        this->num_batches = 1; 
        this->p_product_mut = p_product_mut; 
        this->p_plus_batch_mut = p_plus_batch_mut; 
        this->p_minus_batch_mut = p_minus_batch_mut; 
        this->product_num = utils::random_int(1, num_products); 
    } 
 
    SingleSiteSimpleGene make_new() 
    { 
        return std::move( 
            SingleSiteSimpleGene( 
                num_products, 
                p_product_mut,  
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                p_plus_batch_mut,  
                p_minus_batch_mut 
            ) 
        ); 
    } 
 
    inline void Mutate() 
    { 
        mutate_product_num(); 
        mutate_num_batches(); 
    } 
 
    int product_num; 
    int num_batches; 
 
private: 
    inline void mutate_product_num() 
    { 
        if (utils::random() >= p_product_mut) { 
            return; 
        } 
 
        int random_product_num = 0; 
        do { random_product_num = utils::random_int(1, num_products); } 
        while (product_num == random_product_num); 
        product_num = random_product_num; 
    } 
 
    inline void mutate_num_batches() 
    { 
        if (utils::random() < p_plus_batch_mut) { 
            num_batches += 1; 
        } 
 
        if (num_batches > 1 && utils::random() < p_minus_batch_mut) { 
            num_batches -= 1; 
        } 
    } 
 
    int num_products; 
    double p_product_mut; 
    double p_plus_batch_mut; 
    double p_minus_batch_mut; 
}; 
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B.2. Variable-length Chromosome 

The variable-length chromosome described in Chapter 4 and later used in Chapters 

5 and 6 has been implemented using a template class (see BaseChromosome in 

Figure B.2). Templates in C++ programming language make classes more abstract 

by letting the user define the behavior of the class without specifically knowing what 

datatype will be handled by the operators/methods of the class. This way the variable-

length chromosome can be compatible with genes comprising varying number of 

mutation operators, parameters, and encoded variables. The ability to have a single 

class that can handle several different gene types means the codebase is easier to 

maintain and more reusable. The same variable-length chromosome base can be 

applied to different biopharmaceutical capacity planning and scheduling problems, 

e.g. Chapter 4 and 5, by specifying a problem-specific gene datatype. Gene 

parameter values are passed from the chromosome using a variadic parameter pack 

which improves the abstraction even further. 

 

 

Figure B.2. Variable-length chromosome. 

 

NSGAChromosome and SingleObjectiveChromosome classes extend the 

BaseChromosome class with GA-specific attributes, e.g. NSGAChromosome add 

attributes required by the NSGA-II algorithm. 
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Algorithm B.3. C++ implementation of the variable-length chromosome base. 

 

#include <vector> 
#include <cstdlib> 
#include <utility> 
#include <algorithm> 
#include <functional> 
#include "utils.h" 
 
template<class Gene> 
class BaseChromosome 
{ 
public: 
    typedef std::vector<Gene> Genes; 
 
    explicit BaseChromosome() {} 
 
    template<class... GeneParams> 
    explicit BaseChromosome( 
        int starting_length, 
        double p_xo, 
        double p_gene_swap, 
        GeneParams... params 
    ) : 
        p_xo(p_xo), 
        p_gene_swap(p_gene_swap) 
 
    { 
        while (starting_length-- > 0) { 
            genes.push_back(std::move(Gene(params...))); 
        } 
    } 
 
    inline void Cross(BaseChromosome &other) 
    { 
        if (utils::random() > p_xo) { 
            return; 
        } 
 
        if (genes.size() < 2 || other.genes.size() < 2) { 
            return; 
        } 
 
        int i; 
 
        if (genes.size() < other.genes.size()) { 
            for (i = 0; i != genes.size(); ++i) { 
                if (utils::random() <= 0.50) { 
                    std::swap(genes[i], other.genes[i]); 
                } 
            } 
            for (; i != other.genes.size(); ++i) { 
                if (utils::random() <= 0.50) { 
                    genes.push_back(other.genes[i]); 
                } 
            } 
        } 
        else { 
            for (i = 0; i != other.genes.size(); ++i) { 
                if (utils::random() <= 0.50) { 
                    std::swap(genes[i], other.genes[i]); 
                } 
            } 
            for (; i != genes.size(); ++i) { 
                if (utils::random() <= 0.50) { 
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Algorithm B.3. (continued) C++ implementation of the variable-length chromosome 

base. 
 
                    other.genes.push_back(genes[i]); 
                } 
            } 
        } 
    } 
 
    inline void Mutate()  
    { 
        for (auto &gene : genes) { 
            gene.Mutate(); 
        } 
         
        AddGene(); 
        SwapGenes(); 
    } 
 
    Genes; 
 
private: 
    inline void AddGene() 
    { 
        genes.push_back(genes.back().make_new()); 
    } 
 
    inline void SwapGenes() 
    { 
        if (utils::random() >= p_gene_swap) { 
            return; 
        } 
 
        int g1 = 0, g2 = 0; 
        do { 
            g1 = utils::random_int(0, genes.size() - 1); 
            g2 = utils::random_int(0, genes.size() - 1); 
        } while (g1 == g2); 
 
        std::swap(genes[g1], genes[g2]); 
    } 
 
    double p_xo; 
    double p_gene_swap; 
}; 
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B.3. Genetic Algorithm 

A base GA class was developed to improve the re-usability of the codebase and to 

provide a standardised interface for single- and multi-objective GAs. It was also 

implemented as a template class to make it possible to specify different scheduling 

heuristics, i.e. as FitnessFunction (see Figure B.3 below). This way the codebase for 

the GA could be re-used to solve the various biopharmaceutical scheduling problems 

applying different scheduling heuristics. 

 

  

Figure B.3. Diagrams of Genetic Algorithms developed in this thesis. 
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B.4. API Usage Examples 

This section provides practical examples (Algorithm B.4 and B.5) of how the GA-

based DST is used to solve the case studies described in Chapters 4 and 5 using the 

Python API designed in this thesis. 

 

Algorithm B.4. Demonstration of how the GA-based Decision Support Tool is used to 

solve a single-objective scheduling problem described in the case study 1 of Chapter 

4 using Python Application Programming Interface designed in this work. 

 
# Import Python Pandas library for data I/O 
import pandas as pd  
 
# Import the desired model from the GA-based DST 
from biopharma_scheduling.single_site.deterministic import DetSingleSiteMultiSuite  
 
# Data setup 
start_date = '2016-11-02' 
demand = pd.read_csv('demand.csv', index_col='date') 
product_data = pd.read_csv('product_data.csv') 
usp_changeover_days = pd.read_csv('usp_changeover_days.csv') 
dsp_changeover_days = pd.read_csv('dsp_changeover_days.csv') 
num_usp_suites = 2 
num_dsp_suites = 2 
 
# Specify which objective or objectives to optimise. 
# The objectives are pre-defined by the imported model 
# For example, calling DetSingleSiteMultiSuite.AVAILABLE_OBJECTIVES  
# will list all available objectives which can be minimised or  
# maximised by specifing the coefficient of -1 or 1, respectively 
# { 
#     'total_backlog_penalty', 
#     'total_batch_backlog', 
#     'total_batch_supply', 
#     'total_batch_throughput', 
#     'total_batch_waste', 
#     'total_changeover_cost', 
#     'total_cost', 
#     'total_production_cost', 
#     'total_profit', 
#     'total_revenue', 
#     'total_storage_cost', 
#     'total_waste_cost' 
#  } 
objectives = { 
    'total_profit': 1 # Coefficient of 1 indicates maximisation 
} 
 
# Specify the GA parameters 
ga_params = { 
    'num_runs': 20, 
    'popsize': 100, 
    'num_gens': 100,  
    'starting_length': 1, 
    'p_xo': 0.026776,  
    'p_product_mut': 0.004667, 
    'p_usp_suite_mut': 0.015991, 
    'p_plus_batch_mut': 0.896385, 
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Algorithm B.4. (continued) Demonstration of how the GA-based Decision Support 

Tool is used to solve a single-objective scheduling problem described in the case 

study 1 of Chapter 4 using Python Application Programming Interface designed in this 

work. 
 
    'p_minus_batch_mut': 0.853790, 
    'p_gene_swap': 0.403328 
} 
 
# Create an instance of the model 
model = DetSingleSiteMultiSuite( 
    **ga_params, # unpacks GA parameters set-up earlier 
    random_state=7, # fix the seed for random number generator 
    num_threads=-1, # will evaluate solutions in parallel using all available cores 
    verbose=True, # will report progress status to the user 
) 
 
# Fit the model using the GA params and the data defined earlier 
model.fit( 
    start_date, 
    objectives, 
    num_usp_suites, 
    num_dsp_suites, 
    demand, 
    product_data, 
    usp_changeover_days, 
    dsp_changeover_days 
) 
 
# After the model has been fit, the solutions, i.e. schedules, 
# will be contained in model.schedules list. If only one objective 
# was specified for the scheduling problem then it was solved using  
# a single-objective GA.  
# 
# model.schedules will contain a single best solution that was found  
# during the specified number of GA runs. 
schedule = model.schedules[0] 
 
# Will list the estimated values of all objectives 
schedule.objectives 
 
# Will list a production schedule table for campaigns 
schedule.campaigns 
 
# Will list a production schedule table for individual batches 
schedule.batches 
 
# Will display a Gantt chart 
schedule.campaigns_gantt() 
 
# Will display product inventory, supply, waste, and backlog profiles 
schedule.batch_inventory 
schedule.batch_supply 
schedule.batch_waste 
schedule.batch_backlog 
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Algorithm B.5. Demonstration of how the GA-based Decision Support Tool is used to 

solve a multi-objective biopharmaceutical scheduling problem with constraints 

described in Chapter 5 using Python Application Programming Interface designed in 

this work. 
 
# Import Python Pandas library for data I/O 
import pandas as pd  
 
# Import the desired model from the GA-based DST 
from biopharma_scheduling.single_site.deterministic import DetSingleSiteSimple  
 
# Data setup 
start_date = '2016-12-01' 
demand = pd.read_csv('demand.csv', index_col='date') 
inventory_targets = pd.read_csv('inventory_targets.csv', index_col='date') 
product_data = pd.read_csv('product_data.csv') 
changeover_days = pd.read_csv('changeover_days.csv') 
 
# Specify which objective or objectives to optimise. 
# The objectives are pre-defined by the imported model 
# For example, calling DetSingleSiteSimple.AVAILABLE_OBJECTIVES  
# will list all available objectives which can be minimised or  
# maximised by specifing the coefficient of -1 or 1, respectively: 
# { 
#     'total_backlog_penalty', 
#      'total_cost', 
#      'total_inventory_penalty', 
#      'total_kg_backlog', 
#      'total_kg_inventory_deficit', 
#      'total_kg_supply', 
#      'total_kg_throughput', 
#      'total_kg_waste', 
#      'total_production_cost', 
#      'total_profit', 
#      'total_revenue', 
#      'total_storage_cost', 
#      'total_waste_cost' 
# } 
objectives = { 
    'total_kg_throughput': 1, # maximise 
    'total_kg_inventory_deficit': -1 # minimise 
} 
 
constraints = { 
    'total_kg_backlog': [-1, 0], # total_kg_backlog <= 0 
    'total_kg_waste': [-1, 0] # total_kg_waste <= 0 
} 
 
# Specify the GA parameter 
ga_params = { 
    'num_runs': 50, 
    'num_gens': 1000, 
    'popsize': 600, 
    'starting_length': 1, 
    'p_xo': 0.108198, 
    'p_product_mut': 0.0, 
    'p_plus_batch_mut': 0.608130, 
    'p_minus_batch_mut': 0.765819, 
    'p_gene_swap': 0.471346, 
} 
 
# Create an instance of the model 
model = DetSingleSiteSimple( 
    **ga_params, # unpacks GA parameters set-up earlier 



Appendix 

233 
 

Algorithm B.5. (continued) Demonstration of how the GA-based Decision Support 

Tool is used to solve a multi-objective biopharmaceutical scheduling problem with 

constraints described in Chapter 5 using Python Application Programming Interface 

designed in this work. 
 

    random_state=7, # fix the seed for random number generator 
    num_threads=-1, # will evaluate solutions in parallel using all available cores 
    verbose=True, # will report progress status to the user 
) 
 
# Fit the model using the GA params and the data defined earlier 
model.fit( 
    start_date, 
    objectives, 
    kg_demand, 
    product_data, 
    changeover_days, 
    kg_inventory_target, 
    constraints 
) 
 
# After the model has been fit, the solutions, i.e. schedules, 
# will be contained in model.schedules list. Since more than one 
# objective is specified, the scheduling problem will be solved 
# as a multi-objective problem. 
# 
# model.schedules will contain a single best Pareto 
# front which is a result of the best Pareto fronts from each 
# individual run combined together and sorted again using a  
# non-dominated  sorting algorithm.  
#  
# Sorting the Pareto objective using either one of the two 
# objectives, will make it easier to obtain the boundary  
# solutions X and Y 
sorted_schedules = sorted(model.schedules, key=lambda schedule: 
schedule.objectives['total_kg_throughput'].values[0]) 
solution_x = sorted_schedules[0] 
solution_y = sorted_schedules[-1] 
 
# Will list the estimated values of all solution X objective 
solution_x.objectives 
 
# Will list a solution X production schedule table 
solution_x.campaigns 
 
solution_x.batches 
 
# Will display a Gantt chart for solution X campaigns 
solution_x.campaigns_gantt() 
 
# Will display a Gantt chart for solution X tasks, e.g. inoculation, USP, DSP 
solution_x.tasks_gantt() 
 
# Solution X inventory, supply, waste, and backlog profiles 
solution_x.kg_inventory 
solution_x.kg_supply 
solution_x.kg_waste 
solution_x.kg_backlog 
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Appendix C 

This appendix summarises the mathematical model presented by Lakhdar et al. 

(2005).  

 

C.1. Production Constraints 

Constraints 1 and 2 represent the manufacture of product in USP and DSP suites. 

Upstream production, Bipt, and downstream production, Bjpt, are represented by 

continuous rates of production, CRp and FRp, which are combined with their respective 

USP and DSP lead times, αp and βp, and USP and DSP production times, CTipt and 

FTjpt. Constraints 3 and 4 activate lead time in USP suite i and DSP suite j if the same 

product p has not been manufactured in the preceding time period, t – 1. Constraints 

5 and 6 ensures that only one product p is produced in any USP suite i and DSP suite 

j at any time period t.    

 

𝐵𝑖𝑝𝑡 = 𝑍𝑖𝑝𝑡 + 𝐶𝑅𝑝(𝐶𝑇𝑖𝑝𝑡 − 𝛼𝑝𝑍𝑖𝑝𝑡)    ∀ 𝑖, 𝑝, 𝑡      (1) 

𝐵𝑗𝑝𝑡 = 𝑍𝑗𝑝𝑡 + 𝐹𝑅𝑝(𝐹𝑇𝑗𝑝𝑡 − 𝛽𝑝𝑍𝑗𝑝𝑡)    ∀ 𝑗, 𝑝, 𝑡        (2) 

𝑍𝑖𝑝𝑡 ≥ 𝑌𝑖𝑝𝑡 − 𝑌𝑖𝑝,𝑡−1    ∀ 𝑖, 𝑝, 𝑡        (3) 

𝑍𝑗𝑝𝑡 ≥ 𝑌𝑗𝑝𝑡 − 𝑌𝑗𝑝,𝑡−1    ∀ 𝑗, 𝑝, 𝑡         (4) 

∑ 𝑌𝑖𝑝𝑡 ≤ 1    ∀ 𝑖, 𝑡𝑝            (5) 

∑ 𝑌𝑗𝑝𝑡 ≤ 1    ∀ 𝑗, 𝑡𝑝            (6) 

 

C.2. Timing Constraints 

Constraints 7 and 8 represent the appropriate minimum and maximum production 

times for USP and DSP suites, which are only activated when Yipt and Yjpt are equal 

to 1. Constraints 9 and 10 ensure that the total USP or DSP time does not exceed the 

specified production time horizon, Ht. 
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𝐶𝑇𝑝
𝑚𝑖𝑛𝑌𝑖𝑝𝑡 ≤ 𝐶𝑇𝑖𝑝𝑡 ≤ 𝐶𝑇𝑝

𝑚𝑎𝑥𝑌𝑖𝑝𝑡  ∀ 𝑖, 𝑝, 𝑡      (7) 

𝐹𝑇𝑝
𝑚𝑖𝑛𝑌𝑗𝑝𝑡 ≤ 𝐹𝑇𝑗𝑝𝑡 ≤ 𝐹𝑇𝑝

𝑚𝑎𝑥𝑌𝑗𝑝𝑡  ∀ 𝑗, 𝑝, 𝑡      (8) 

∑ 𝐶𝑇𝑖𝑝𝑡 ≤ 𝐻𝑡     ∀𝑖, 𝑡𝑝          (9) 

∑ 𝐹𝑇𝑗𝑝𝑡 ≤ 𝐻𝑡     ∀𝑗, 𝑡𝑝                   (10) 

 

C.3. Storage Constraints 

Constraints 11 and 12 enforce an inventory balance in upstream and downstream 

production and force the total downstream production to meet the product demand. 

Constraints 13 and 14 ensure that the amount of upstream and downstream product 

stored over timer period t is positive and below the maximum available storage 

capacities, Cp and Fp. Both upstream and downstream product inventory is 

constrained by the limited product shelf-life. Constraints 15 and 16 ensure the total 

amount of stored upstream product and downstream product is used after the next ζp 

or σp time periods, respectively. 

 

𝐶𝐼𝑝𝑡 = 𝐶𝐼𝑝,𝑡−1 + ∑ 𝐵𝑖𝑝𝑡 −
1

𝜆𝑝
∑ 𝐵𝑗𝑝𝑡𝑗 − 𝐶𝑊𝑝𝑡    ∀ 𝑝, 𝑡𝑖               (11) 

𝐹𝐼𝑝𝑡 = 𝐹𝐼𝑝,𝑡−1 + ∑ 𝐵𝑗𝑝𝑡 − 𝑆𝑝𝑡 − 𝐹𝑊𝑝𝑡   ∀ 𝑝, 𝑡𝑗                          (12) 

0 ≤ 𝐶𝐼𝑝𝑡 ≤ 𝐶𝑝    ∀ 𝑝, 𝑡                  (13) 

0 ≤ 𝐹𝐼𝑝𝑡 ≤ 𝐹𝑝     ∀ 𝑝, 𝑡                                   (14) 

𝐶𝐼𝑝𝑡 ≤ ∑ ∑ 𝐵𝑗𝑝𝜃
𝑡+𝜁𝑝

𝜃=𝑡+1𝑗     ∀ 𝑝, 𝑡                   (15) 

𝐹𝐼𝑝𝑡 ≤ ∑ 𝑆𝑝𝜃
𝑡+𝜎𝑝

𝜃=𝑡+1
    ∀ 𝑝, 𝑡                 (16) 

 

C.4. Backlog Constraints 

Constraint 17 penalises the amount of product p that was late for delivery at time 

period t, Δpt.  
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Δ𝑝𝑡 = Δ𝑝,𝑡−1 + 𝐷𝑝𝑡 − 𝑆𝑝𝑡     ∀ 𝑝, 𝑡                (17) 

 

C.5. Objective Function 

The objective function is to maximise profit which is equal to the difference between 

total sales and total operating costs. All costs and prices are in relative monetary units 

(RMU). 

 

max𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ ∑ (𝜈𝑝𝑆𝑝𝑡 − ∑ 𝜂𝑝𝐵𝑖𝑝𝑡𝑖𝑡𝑝 − ∑ 𝜓𝑝𝑍𝑖𝑝𝑡𝑖 − ∑ 𝜂𝑝𝐵𝑗𝑝𝑡 −𝑗

∑ 𝜓𝑝𝑍𝑗𝑝𝑡𝑗 −𝜌𝑝𝐶𝐼𝑝𝑡− 𝜔𝑝𝐹𝐼𝑝𝑡− 𝛿𝑝𝛥𝑝𝑡 − 𝜏𝑝(𝐶𝑊𝑝𝑡 + 𝐹𝑊𝑝𝑡))                            (18) 
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Appendix D 

This appendix summarises the mathematical model presented by Lakhdar et al. 

(2007). 

 

D.1. Production Constraints 

Constraint 1 represents biopharmaceutical production. The number of batches 

produced in facility i of product p at time period t, Bipt, is represented by a continuous 

production rate, rip, production lead time, αip, and production time Tipt. Constraint 2 

converts the integer number of batches, Bipt, into kilograms, Kipt, using a yield 

conversion factor, ydip. Constraint 3 activates lead time in facility i if the same product 

p has not been manufactured in the preceding time period, t – 1. Constraint 4 ensures 

that only one product p is produced in any facility i at any time period t.    

 

𝐵𝑖𝑝𝑡 = 𝑍𝑖𝑝𝑡 + 𝑟𝑝𝑡(𝑇𝑖𝑝𝑡 − 𝛼𝑖𝑝𝑍𝑖𝑝𝑡)    ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖      (1) 

𝐾𝑖𝑝𝑡 = 𝐵𝑖𝑝𝑡𝑦𝑑𝑖𝑝    ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈  𝑇𝐼𝑖        (2) 

𝑍𝑖𝑝𝑡 ≥ 𝑌𝑖𝑝𝑡 − 𝑌𝑖𝑝,𝑡−1    ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖      (3) 

∑ 𝑌𝑖𝑝𝑡 ≤ 1    ∀ 𝑖, 𝑡 ∈ 𝑇𝐼𝑖𝑝∈𝑃𝐼𝑖         (4) 

 

D.2. Timing Constraints 

Constraints 5 and 6 represent the appropriate minimum and maximum campaign 

durations, Tip
min

 and Tip
max

, which are only activated when Yipt is equal to 1.  

 

𝑇𝑖𝑝
𝑚𝑖𝑛𝑌𝑖𝑝𝑡 ≤ 𝑇𝑖𝑝𝑡     ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈  𝑇𝐼𝑖       (5) 

𝑇𝑖𝑝𝑡 ≤ min{𝑇𝑖𝑝
𝑚𝑎𝑥 , 𝐻𝑡} 𝑌𝑖𝑝𝑡    ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖      (6) 

 



Appendix 

 
 

238 

D.3. Storage Constraints 

Constraint 7 enforces inventory balance for production and forces the total production 

to meet the product demand. Constraint 9 enforces that the amount of product p in 

inventory at time period t is below the maximum storage capacity, Cp, while the 

constraint 10 ensures that the global storage capacity, Cp
tot

, is not exceeded. The 

duration a product can be is stored in inventory is limited by the constraint 10. 

 

𝐼𝑝𝑡 = 𝐼𝑝,𝑡−1 + ∑ 𝐾𝑖𝑝𝑡 − 𝑆𝑝𝑡 − 𝑊𝑝𝑡     ∀ 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖𝑖      (7) 

0 ≤ 𝐼𝑝𝑡 ≤ 𝐶𝑝    ∀ 𝑝, 𝑡         (8) 

0 ≤ ∑ 𝐼𝑝𝑡 ≤ 𝐶𝑝
𝑡𝑜𝑡

𝑝     ∀ 𝑡         (9) 

𝐼𝑝𝑡 ≤ ∑ 𝑆𝑝𝜃
𝑡+𝜁𝑝

𝜃=𝑡+1
    ∀ 𝑝, 𝑡                 (10) 

 

D.4. Backlog Constraints 

Constraint 11 penalises the amount of product p that was late for delivery at time 

period t, Δpt.  

 

Δ𝑝𝑡 = 𝜋𝑝Δ𝑝,𝑡−1 + 𝐷𝑝𝑡 − 𝑆𝑝𝑡     ∀ 𝑝, 𝑡                (11) 

 

D.5. Objective Function 

The objective function is to maximise profit which is equal to the difference between 

total sales and total operating costs. All costs and prices are in relative monetary units 

(RMU). 

 

max𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ ∑ (𝜈𝑝𝑆𝑝𝑡 − 𝜌𝑝𝐼𝑝𝑡 − 𝛿𝑝Δ𝑝𝑡 − ∑ (𝜂𝑖𝑝𝐵𝑖𝑝𝑡 + ψ𝑖𝑝𝑍𝑖𝑝𝑡))𝑖∈𝐼𝑃𝑝𝑡∈𝑇𝐼𝑖𝑝                (12) 
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