

Biopharmaceutical Scheduling

Using a Flexible Genetic

Algorithm Approach

A thesis submitted to University College London (UCL)

for the degree of

Doctor of Philosophy (PhD)

by

Karolis Jankauskas, MEng (Hons)

The Advanced Centre for Biochemical Engineering

Department of Biochemical Engineering

UCL

London, United Kingdom

September, 2018

Declaration

2

Declaration

I, Karolis Jankauskas, confirm that this thesis is my own. Where information has been

derived from other sources, I confirm that this has been indicated in the thesis.

Abstract

3

Abstract

The goal of biopharmaceutical capacity planning and scheduling is to identify an

optimal production schedule (solution) that would satisfy multiple financial and

operational objectives. It is a complex combinatorial optimisation problem

characterised by features such as multi-product portfolios, variable process durations

and yields, long product lead and approval times, and uncertain market forecasts. The

bulk of research in the area of biopharmaceutical capacity planning and scheduling

has focused on Mixed Integer Linear Programming (MILP) formulations. Heuristic

optimisation methods such as Genetic Algorithms (GAs) have received very little

attention even though they are reportedly more flexible, easier to implement and, in

certain cases, have the potential of outperforming mathematical programming

models. Therefore, this thesis addresses this knowledge gap by describing the

development of a flexible GA-based Decision Support Tool (DST) for single- and

multi-objective biopharmaceutical capacity planning and scheduling under

deterministic and uncertain product demand.

This thesis makes four broad contributions. Firstly, a GA is designed for solving

biopharmaceutical capacity planning and scheduling problems using a discrete-time

representation. The effectiveness of the algorithm is demonstrated on two industrial

case studies and compared with discrete-time MILP models from the literature. A

rolling time horizon strategy is applied to improve solution quality and the performance

of the GA. A Particle Swam Optimisation (PSO) algorithm is utilised as a meta-

optimiser to automatically tune the parameters of the GA. Secondly, a novel variable-

length chromosome structure and an entirely new continuous-time scheduling

heuristic are developed for more realistic and efficient medium-term scheduling of

biopharmaceutical manufacture. The variable-length chromosome enables the GA to

generate production schedules from a single gene. The novel variable-length GA with

Abstract

4

an embedded continuous-time scheduling heuristic is shown to outperform related

discrete- and continuous-time MILP models on two literature-based examples.

Thirdly, a multi-objective component is added to the variable-length GA and the

continuous-time scheduling heuristic is extended with additional constraints and

features, including rolling product sequence-dependent changeovers and lengthy

product quality control and assurance (QC/QA) checks. A real-life industrial case

study is used to demonstrate the functionality and benefits of the multi-objective

optimisation. The multi-objective variable-length GA is used to optimise both the total

production throughput and monthly product inventory levels of a multi-product

biopharmaceutical facility. Finally, the multi-objective variable-length GA is combined

with a Graphics Processing Unit (GPU)-accelerated Monte Carlo simulation for

biopharmaceutical capacity planning and scheduling under uncertain product

demand. The merits of the approach are highlighted by comparing the production

schedules generated when the uncertainty in demand is ignored and when it is

accounted for by characterising it with a probability distribution. In the final sections of

this thesis an example of a commercial application of this work is presented.

Impact Statement

5

Impact Statement

Capacity planning and scheduling plays a very important role in the biopharmaceutical

industry. Improper planning decisions can lead to high costs and loss of profit.

Ransohoff (2004) estimated that for a typical 500 kg/year mAb facility 50%

underutilisation could cost $2-3 M/month whereas 50% under capacity would likely

result in a monthly profit loss of $40-50M. When Amgen launched Enbrel, an arthritis

drug, in 1998, the demand for it was higher than anticipated. Malik et al. (2002)

estimated that the lack of manufacturing capacity for Enbrel cost the company more

than $200M in lost revenue in 2001. Hence, this work describes a flexible, GA-based

DST developed in collaboration with industry experts for multi-objective capacity

planning and scheduling of biopharmaceutical manufacture bringing several benefits

to both academia and industry. A special focus is placed on deployability of the tool

which is something that is very rarely discussed in production planning and scheduling

literature.

This thesis addresses the research gap in heuristic-based biopharmaceutical capacity

planning and scheduling optimisation by describing a framework based on a novel

variable-length GA embedded with a continuous-time scheduling heuristic. The

framework has been applied to a variety of literature-based and real life industrial case

studies The results were presented during the 28th European Conference on

Operational Research (EURO), the 253rd American Chemical Society (ACS) National

Meeting (Jankauskas, Long, et al., 2017), and a keynote lecture at the 27th European

Symposium on Computer Aided Process Engineering (ESCAPE) (Jankauskas,

Papageorgiou, et al., 2017).

Even though there have been multiple biopharmaceutical capacity planning and

scheduling optimisation models reported in the literature, companies still rely mostly

Impact Statement

6

on manual, spreadsheet-based scheduling methods mostly due to a steep learning

curve and a high level of expertise associated with mathematical programming

models (Mustafa et al., 2006; Widmer et al., 2008). Using more accessible research

principles, the GA-based DST developed during this PhD helps the biopharmaceutical

companies understand the impact of constraints and uncertainties on key operational

and risk metrics and allows to make better scheduling decisions faster. A commercial

application of the framework was demonstrated to the industrial sponsor in

Indianapolis, USA, during August 1-3, 2018.

Acknowledgements

7

Acknowledgements

I would like to express my gratitude to Prof. Suzanne Farid, my academic supervisor,

for her guidance and support. I would also like to thank my industrial supervisor Dr.

Graham McCartney for his consistent positive attitude and feedback.

I am eternally grateful to my family and friends. I would not be where I am today

without them.

Financial support provided by the Engineering and Physical Sciences Research

Council (EPSRC) and Eli Lilly & Company is gratefully acknowledged.

Contents

8

Contents

Declaration 2

Abstract 3

Impact Statement 5

Acknowledgements 7

Contents 8

1. Background 11

1.1. Biopharmaceutical Industry Overview 12

1.2. Biopharmaceutical Manufacture 14

1.3. Planning and Scheduling Overview 15

1.4. Mathematical Programming 18

1.5. Heuristics 23

1.5.1. Introduction to Genetic Algorithms 25

1.5.2. Stochastic and Multi-Objective Approaches 29

1.5.3. Lot Sizing using Genetic Algorithms 31

1.6. Related Work 32

1.4.1. Process Design and Optimisation 33

1.4.2. Portfolio Management and Capacity Planning 34

1.7. Aims and Outline of Thesis 42

2. Decision Support Tool: Requirements and Design 46

2.1. Problem Statement and Challenges 47

2.2. Requirements and Design 53

2.3. Summary 58

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling 59

3.1. Introduction 59

3.2. Notation 60

3.2.1. Case Study 1 60

3.2.2. Case Study 2 62

3.3. Problem Definition 63

3.3.1. Case Study 1 63

3.3.2. Case Study 2 65

3.4. Methods 70

3.4.1. GA Parameter Tuning 71

3.4.2. Case Study 1 73

Contents

9

3.4.3. Case Study 2 79

3.5. Results 84

3.6. Summary 92

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling 93

4.1. Introduction 93

4.2. Problem Definition 96

4.2.1. Case Study 1 96

4.2.2. Case Study 2 98

4.3. Methods 100

4.3.1. Chromosome Structure 101

4.3.2. Genetic Algorithm 103

4.3.3. Continuous-Time Scheduling Heuristic 106

4.4. Results 112

4.4.1. Case Study 1 113

4.4.2. Case Study 2 118

4.4. Summary 121

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling 122

5.1. Introduction 122

5.2. Problem Definition 123

5.3. Methods 127

5.3.1. Chromosome Structure 128

5.3.2. Genetic Algorithm 130

5.3.3. Continuous-Time Scheduling Heuristic 133

5.4. Results 139

5.4.1. Objective Space 140

5.4.2. The Impact of The Number of Chromosomes and The Number of Generations 142

5.4.3. The Importance of Genetic Operators 146

5.4.4. The Impact of The Starting Number of Genes 151

5.4.5. Multi-Objective GA Results 153

5.5. Summary 158

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty 159

6.1. Introduction 159

6.2. Problem Definition 162

6.3. Methods 168

6.4. Results 172

6.4.1. Stochastic Objective Space 173

Contents

10

6.4.2. Stochastic Multi-Objective GA Results 175

6.4.3. Comparison with the Deterministic GA 178

6.5. Summary 185

7. Commercialisation 186

7.1. Introduction 186

7.2. Delivery Model 186

7.3. Architecture 188

7.3.1. Overview 188

7.3.2. Input Data Setup 190

7.3.3. Optimisation Setup 194

7.3.4. Visualisation of Results 196

7.4. Pricing 199

7.5. Summary 201

8. Conclusions and Future Work 202

8.1. Introduction 202

8.2. Contribution of This Thesis 204

8.2.1. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling 205

8.2.2. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling 206

8.2.3. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling 207

8.2.4. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling Under
Uncertainty 207

8.2.5. Commercialisation 208

8.3. Future Work 209

8.3.1. Additional Constraints and Features 209

8.3.2. Improved GA-based Optimisation 211

References 212

Appendix 221

Appendix A 221

Appendix B 222

Appendix C 234

Appendix D 237

1. Background

11

1. Background

The environment of biopharmaceutical manufacture is vastly dynamic and complex.

Its business landscape is defined by expensive, long-term research and development

(R&D) process and high risks of clinical failure. Biopharmaceutical products are also

immensely sophisticated requiring substantial investment of capital, human

resources, and technological expertise to produce them. Depending on the scale,

biopharmaceutical facilities cost approximately $40-500M and can take several years

to build. Moreover, they are costly to operate, with long process durations, relatively

low yields, and the need for highly skilled experts to run them (Otto et al., 2014).

Nevertheless, due to success and general efficiency of biopharmaceutical products

in treating complex health diseases, the industry has experienced constant and

enormous growth since its inception in 1982 (Siganporia, 2016). For example, the

number of biotech patent applications every year has been growing at 25% annually

since 1995, the global revenues of biopharmaceuticals were reported to be over

$100B in 2010 (Walsh, 2010) and over $150B in 2014 (Otto et al., 2014). The overall

annual industry growth has been estimated at 14-15% (Langer & Rader, 2017).

Managing manufacturing facility assets for these growing and dynamic

biopharmaceutical portfolios requires careful capacity planning. Essential to achieving

this are agile capacity planning algorithms that can reconcile multiple conflicting

objectives and deal with inherent uncertainty. Hence, this thesis presents the

development of a flexible planning and scheduling tool for optimising the

manufacturing capacity in an existing multi-product facility using a stochastic multi-

objective GA.

1. Background

12

This chapter will discuss the risks and costs of biopharmaceutical drug development

(Section 1.1), describe what a typical biopharmaceutical manufacturing process

looks like (Section 1.2), overview the concepts of planning and scheduling (Section

1.3) and the most common optimisation approaches (Sections 1.4 and 1.5), and

review related work carried out on capacity planning and scheduling in

pharmaceutical and biopharmaceutical industry (Section 1.6). Finally, the aims and

the overall structure of this thesis are discussed in Section 1.7.

1.1. Biopharmaceutical Industry Overview

For a biopharmaceutical product to make it into the market, it must first pass a series

pre-clinical tests and clinical trials (Figure 1.1). An investigational new drug application

can be filed with the Food and Drug Administration (FDA) for drugs that pass the pre-

clinical testing. If the application is successful, phase I of clinical trials can begin.

During this phase the drug product is administered to a small number of healthy

volunteers to study its safety and pharmacology, i.e. absorption, metabolic effect,

excretion, and toxicity. The next phase, i.e. phase II, of clinical trials examines the

effectiveness of the compound on subjects with the target disease. Phase III is the

final stage before a new drug application (NDA) can be submitted to the FDA and the

drug can be sold to the market (Friedman et al., 2015).

The characteristics of biopharmaceutical drug development are vastly different

compared to most of the chemical engineering industry: high costs of development,

high risks of failure during drug discovery, clinical trials that take years to complete,

time sensitive compounds, limited product shelf-life, stringent current good

manufacturing practices (cGMP), unique process validation requirements, and

intense competition from generics after the end of a 20-year patent (Laínez et al.,

2012; Majozi et al., 2015).

1. Background

13

Figure 1.1. Traditional drug development value chain (Source: Sabatier et al., 2010).

The likelihood of a new biopharmaceutical drug product gaining approval for

marketing and the rate of approval for new products have been getting lower over the

years. According to Kaitin and DiMasi (2010), only one in six new drugs that entered

clinical trials in the United States during 1993-1998 and the 1999-2004 sub-periods

were successfully approved for marketing. Shanley (2014) reported that only 12% of

the candidate drugs get approved for use. According to a more recent study by DiMasi

et al. (2016), the likelihood that a drug that enters clinical testing is also about 12%.

Figure 1.2 highlights the risks and costs associated with the development process.

Figure 1.2. The costs of biopharmaceutical drug development pathway (Source: Nie,

2015).

The cost of development of a single drug entering human trials between 1989 and

2002 was estimated to be in excess of $800M (DiMasi et al., 2003). Based on the

data collected at University College London (UCL) (Farid, 2007), the costs of

investment for antibody manufacturing facilities with total site capabilities in the range

of 20,000–200,000L were reported to be $7,130–$17,000/m2 and $1,765–$4,220/L.

1. Background

14

The development costs have been rising continuously for years. For example, in an

analysis by Paul et al. (2010), the cost of a new molecular entity was reported to be

in excess of $1B whereas DiMasi et al. (2016) revised this figure to $2.8B.

1.2. Biopharmaceutical Manufacture

A biopharmaceutical refers to any pharmaceutical drug product for therapeutic or in

vivo diagnostic purposes produced from biological sources such as microbial, e.g. E.

coli or P. pastoris, mammalian, e. g. Chinese hamster ovary (CHO) cells, and plant

cell cultures. The unique and complex macromolecular structure of

biopharmaceuticals distinguishes them from conventional chemical products.

Biopharmaceutical production platforms can be operated in a batch, fed-batch, or

perfusion mode. Fed-batch mode, where nutrients are periodically added to the

bioreactor over the course of cell fermentation, is preferable to a regular batch mode

mostly due to higher yields. In perfusion mode, the product is harvested throughout

the culture rather than at the end of it. Perfusion mode is favoured when the product

is unstable and the purification of it is time sensitive. Most biopharmaceutical

production platforms are fed-batch-based (Fike, 2009; Jiang et al., 2012).

Regardless of the mode of operation, a biopharmaceutical production process is

typically divided into two broad manufacturing stages: upstream processing (USP)

and downstream processing (DSP) (Figure 1.3). In USP, cells are derived from culture

banks and nurtured in progressively larger bioreactors to express the

biopharmaceutical product. In DSP, the raw product is extracted from the cells and

purified using a series of processing steps such as centrifugation, microfiltration,

chromatography, ultrafiltration, and viral clearance. Additionally, every step in both

USP and DSP comprises several ancillary unit operations for cleaning, sterilisation,

1. Background

15

preparation of intermediate materials such as culture media and buffer solutions, and

product quality control and assurance (QC/QA).

Figure 1.3. Typical biopharmaceutical production process flowsheet. Adapted from

Tait (1998).

Biopharmaceutical production is performed in a series of manufacturing campaigns.

Determining the duration of each campaign is a difficult challenge that requires careful

consideration of the tradeoff between two different kinds of risks and costs. For

example, due to costs, risks of cross-contamination, and considerable amount of time

associated with setup and cleaning during a campaign changeover, some companies

prefer long campaigns with uninterrupted series of batches (Lakhdar et al., 2005).

However, in order to meet uncertain demand, it can be safer for the biopharmaceutical

facilities to operate multiple smaller scale bioreactors that are scheduled appropriately

(Simaria et al., 2012).

1.3. Planning and Scheduling Overview

Planning and scheduling can have a substantial impact on production performance

and cost-effectiveness of manufacturing operations. A good production schedule can

result in significant savings through better capacity utilisation. For example, Ransohoff

1. Background

16

(2004) reported that a typical mammalian cell-culture facility could increase its annual

revenue by $380M with a 25% increase in plant utilisation. Planning and scheduling

appear in a wide range of industries, including Pulp and Paper, Metals, Oil and Gas,

Chemicals, Food and Beverages, Pharmaceuticals, Transportations, Service, and

Military, because of a substantial impact on production performance and the cost-

effectiveness of manufacturing operations.

Production planning refers to the preparation of manufacture: specifying what

components are needed to manufacture a product, determining optimal sourcing of

raw materials, clarifying what processes and unit operations are necessary to

transform those raw materials into a final product, and defining the distribution

network. Production scheduling, on the other hand, involves decisions regarding

optimal allocation, sequencing, and timing of resources or capacity across a broad

number of competing tasks to satisfy one or more objectives and constraints. Figure

1.4 illustrates three major decisions in scheduling of batch processes: batching (lot-

sizing), assignment, and sequencing.

Despite the variety of business environments, the type and goals of scheduling

problems are usually defined by four major factors: market environment, interaction

with other planning functions, production environment, and specific processing

characteristics (Harjunkoski et al., 2014).

Figure 1.4. Major decisions in batch process scheduling (Source: Harjunkoski et al.,

2014).

1. Background

17

The variability and volume of product demand dictates the regularity and frequency of

production campaigns. For example, the typical strategy for scheduling the production

of high-volume products is to generate a cyclic schedule in order to maintain the

product inventory at certain strategic levels, i.e. make-to-stock. In contrast, products

with infrequent demand orders are usually scheduled as needed, i.e. make-to-order

(Pochet & Wolsey, 2006). Manufacturing capacity also plays an important role in

determining planning and scheduling objectives. If a production facility has

manufacturing capacity to spare, then the goal of planning and scheduling is usually

to minimise the total cost or earliness. On the other hand, when the product demand

is higher than the manufacturing capacity, the goal is to maximise the total profit or

throughput and/or minimise backlogs. It is common for companies to have multiple

make-to-stock and make-to-order products manufactured in the same facility.

Production scheduling also depends on the outcomes from other supply chain

management functions such as procurement, distribution, and demand planning. For

example, the availability of raw materials and the estimated quantities and due dates

of product demand orders are key inputs to scheduling. Other factors influencing

production scheduling decisions include the type of manufacturing process, e.g. batch

or continuous, and the type of facility, e.g. single-stage or multi-stage. The more

intricate the facility design is, the more complex a scheduling problem will be. The

scheduling of a facility is also affected by the specific processing characteristics such

as utilities, setup and changeover requirements, and storage and resource

constraints.

Traditionally, planning and scheduling has been carried out manually by specialists

using spreadsheets, industry experience, and rule-based scheduling, e.g. first come

first serve (FCFS), schedule the job with the shortest processing time (SPT), earliest

due date first (EDD) (Panwalkar & Iskander, 1977; Haupt, 1989). However, due to

1. Background

18

increasing production volumes, greater number of products, different manufacturing

scenarios, and uncertain markets, it is difficult to ensure a cost-effective production

plan without any optimisation support. Scheduling problems are NP-hard (Bitran &

Yanasse, 1982) which is to say that finding the optimal solution to scheduling

optimisation problems, especially the large-scale ones, is very difficult. Therefore, the

general problem of planning and scheduling has received a considerable amount of

attention in the literature. Ever since the introduction of the first basic lot sizing

problem in 1958 (Wagner & Whitin, 1958), a number of papers have been written

across different scientific communities. Due to the variety of problems, a number of

approaches have been developed, including expert systems, decomposition-based

methods, and optimisation algorithms based on mathematical programming or

heuristics. Useful reviews of the development of planning and scheduling optimisation

approaches over the last 10-20 years can be found in Shah (1998), Pinto and

Grossmann (1998), Kallrath (2002), Floudas and Lin (2004), Méndez et al. (2006),

Widmer et al. (2008), Majozi et al. (2015), and Copil et al. (2017).

The subsequent sections will review mathematical programming and heuristic (mostly

GA-based) optimisation approaches and the related work.

1.4. Mathematical Programming

The vast majority of the capacity planning and scheduling optimisation models are

based on a branch of mathematical programming – mixed-integer linear programming

(MILP) which is a variation of linear programming (LP) for combinatorial optimisation

problems. Programming in this context refers to planning and logistics instead of

computer programming. LP is a technique for the optimisation of a linear objective

function subject to linear equality and inequality constraints. Despite the assumptions

of linearity, both LP and MILP have been shown to be effective at solving problems in

1. Background

19

a variety of domains including not only capacity planning (e.g. Lazaros G

Papageorgiou et al., 2001) and scheduling (e.g. Lorigeon et al., 2002) but also

transportation (e.g. Abara, 1989).

The problem of solving a system of linear inequalities can be dated back to as far as

Jean-Babtiste Joseph Fourier who published a method for solving such a system in

1827 (Sierksma, 2001). However, the first LP formulation as well as a method for

solving it are attributed to Leonid Kantorovich, a Soviet economist, who used it to

reduce the costs of the Red Army in 1939 (Schrijver, 1998). Around the same time,

Tjalling Koopmans formulated classical economic problems as LP problems. As a

result, Kantorovich and Koopmans shared the Nobel prize in economics in 1975

(Sierksma, 2001).

Figure 1.5. A polytope defined as a feasible region by the constraints applied to the

objective function. The simplicial cones are the corners (vertices) of a polytope.

The early LP methods were improved by George B. Dantzig who independently

developed a general LP formulation and invented the simplex method for solving LP

problems (Dantzig, 1951). The name of the algorithm comes from the idea that it

operates on simplicial cones which become simplices with additional constraints

(Stone & Tovey, 1991). In Figure 1.5, the simplex method explores the feasible region

by moving from corner to corner (or vertex) until the optimal solution is found. Only

the corners of the polytope need to be explored since no other point on the line will

1. Background

20

ever be optimal. The performance of the simplex method is highly dependent on the

number of constraints, i.e. the number of constraints is proportional to the number of

corner points (vertices) in the polytope that need to be explored. Alternative methods

were developed for tackling more complex problems with a large number of

constraints.

Karmarkar (1984) developed an interior point method for solving large-scale LP

problems. The name “interior” comes from the fact that the best solution is reached

by traversing the interior of the feasible region, i.e. the polytope. This method, also

known as Karmarkar’s algorithm, was proven to run in polynomial time and enabled

solutions of LP problems that were beyond the capabilities of the simplex method.

Nevertheless, Paparrizos et al. (2003) reported that on small and medium-sized LP

problems, the simplex algorithm actually performs better.

Many practical problems require discrete variables, e.g. explicit decisions are usually

modelled using binary variables. One of the critical limitations of the simplex method

is that it is only applicable to continuous variables. LP problems with discrete

variables, i.e. MILP problems, could be solved by enumerating the solutions for every

possible integer value. However, the brute-force method is only feasible when the

scale of the problem is relatively small. Large MILP problems are typically solved

using techniques that are based on divide-and-conquer algorithmic approaches such

as branch and bound (B&B) algorithm. LP relaxations are first solved using the B&B

algorithm to bound the objective function, and then branches are created by adding

constraints that eliminate non-integer values.

The mathematical programming models for capacity planning and scheduling

optimisation can be classified according to the following four main aspects: time

representation, material balances, event representation, and objective function

1. Background

21

(Méndez et al., 2006). Time representation is the first and most important issue. The

optimisation methods typically utilise discrete- or continuous-time representation.

Discrete-time representation is based on the discretisation of planning horizon into a

number of time periods with predefined durations. The start and end times of tasks

can only take place at the boundaries of these periods. Since the time points are

known, the overall model structure becomes simpler and easier to solve. However,

the computational efficiency of the model and its size depend on the number of time

periods defined as a function of the input data and desired accuracy of the solution.

Furthermore, the reduction of the domain of timing decisions can often yield sub-

optimal or even infeasible solutions. Nevertheless, optimisation models using

discrete-time representation have been widely used in the literature.

Continuous-time representation has been adopted to overcome the aforementioned

limitations and build data-independent optimisation models. Using this representation,

timing decisions are represented as a set of continuous variables defining the timings

of events. While the variable time handling allows for more flexible solutions and

results in models with fewer variables, more complicated constraints with big-M (large

number associated with the artificial variables) terms are required to model resource

and inventory limitations which negatively impacts the complexity of the model and

the capabilities of the overall method.

Mathematical planning and scheduling models can be further classified based on how

batches and their sizes are managed. There are two broad categories: models which

assume that the number of batches of each size is known in advance and monolithic

models that simultaneously address the optimal number and size of batches,

allocation and sequencing of resources, and the timing of processing operations. The

first category uses an approximate two-stage approach, i.e. batching and batch

scheduling, to address larger practical problems. The second category of models

1. Background

22

typically employ the state-task network (STN) (Kondili et al., 1993) or the resource-

task network (RTN) (Pantelides, 1994) to represent the problem. The STN is a

directed graph that consists of state nodes, task nodes that represent processing

operations, and arcs that indicate the flow of materials between the states and tasks.

The STN-based optimisation approaches assume that processing events produce

and consume states, e.g. raw materials, intermediate and final products. The RTN-

based formulation assumes that processing and storage tasks consume and release

resource at their start and end times. STN- or RTN-based formulations are able to

handle arbitrary network processes but are mostly limited to a small number of

processing tasks and short planning horizons.

Méndez et al. (2006) defined five different types of event representations. Figure 1.6

illustrates the same schedule of fives batches (a, b, c, d, e) allocated to two units (J1

and J2) generated using the alternative event representations.

Figure 1.6. Different time representations used in scheduling problems (Source:

Méndez et al., 2006).

For discrete-time representations, the definition of global time periods is the only

option for general network (processed materials can be mixed and split) and

sequential (no mixing of the processed materials, the same batch is assumed to be

processed in different stages) processes. A common fixed time grid valid for all shared

1. Background

23

resources is predefined and events are scheduled to start and finish exactly at the

grid points. The main advantage of a fixed time grid is its simplicity. Continuous-time

formulation involves extensive alternative event representations that focus on

different types of processes. For sequential processes, time slots and batch

precedence-based approaches can be used, whereas in the case of general network

processes, global time points and unit-specific time events are employed. The global

time period representation corresponds to a generalisation of global time periods

where the timing of time periods is modelled as a new variable. Based on the detailed

comparison of various continuous-time models for short-term scheduling of batch

plant performed by Shaik et al. (2006), the unit-specific event-based models always

require fewer event points and yield favourable computational performance compared

to both slot-based and global event-based models due to heterogeneous locations of

event points used.

Different criteria of solution quality can be used for scheduling problems. The six most

commonly used are: makespan, earliness, tardiness, profit, inventory, and cost. The

choice of the objective function has a direct effect on the computational performance

of the optimisation model. A review of relevant literature on mathematical

programming-based biopharmaceutical capacity planning and scheduling is provided

in section 1.6.

1.5. Heuristics

While mathematical programming is often the optimisation method of choice, heuristic

approaches have also been investigated to address certain limitations of these

methods. These include dealing with non-linearities, uncertain parameters, and

generating feasible solutions for industrial-sized problems in a reasonable amount of

time. The word “heuristic” originates from Ancient Greek word for “find” or “discover”.

1. Background

24

Generally, heuristic refers to any approximate problem-solving method that unlike

mathematical programming does not guarantee optimality. Instead of being dedicated

to the solution of a particular problem, heuristics are typically designed with the aim

of being flexible enough to handle as many different combinatorial problems as

possible. Despite the lack of guarantee of solution optimality, heuristics provide a

number of advantages compared to classical optimisation, including flexibility, lack of

assumptions about the problem, and ease-of-implementation in most cases. There

have been many papers reporting success stories of applying heuristics to a wide-

range of NP-hard problems. Heuristic problem-solving methods can be broadly

classified into local search methods and population-based search techniques

(Widmer et al., 2008).

In local search methods, the solution space is explored at each step by moving from

one solution to a more optimal one in its neighbourhood. According to Hertz and

Widmer (2003), local search can be thought of as a traversal of a directed graph G =

(S, A) where S is a set of solutions to a particular problem and A is a set of arcs (s,

s’) if and only if s’ is in the neighbourhood of s. The neighbourhood of a solution s is

defined as the set of solutions that can be obtained from s by making simple

modifications to it. Some of the better-known local search techniques are simulated

annealing (Kirkpatrick et al., 1983) and tabu search (Glover, 1986).

Population-based search techniques differ from the previous methods in that they

keep a sample of solutions rather than a single candidate solution. The solution

population is usually randomly generated and then iteratively tweaked and assessed

in the direction of better solutions according to a certain set of rules. Most such

methods are based on concepts borrowed from biology. For example, Particle Swarm

Optimisation (PSO) algorithm, developed by James Kennedy and Russel Eberhart in

the mid-1990s (James & Russell, 1995; Luke, 2013), was inspired by swarming and

1. Background

25

flocking behaviours in animals. In PSO, every solution (or particle) is assigned

randomised velocity and position vectors which are used to traverse the decision

space. A more detailed description of the algorithm can be found in an overview by

Poli et al. (2007). Other particularly popular set of optimisation techniques is known

collectively as Evolutionary Optimisation (EO), Evolutionary Computation (EC) or

Evolutionary Algorithms (EAs).

1.5.1. Introduction to Genetic Algorithms

GAs, invented by John J. H. Holland (1975) at the University of Michigan, are the most

widely used class of EAs. Due to the relationship to biology and evolution theory,

many biological terms have been used to describe GAs (Table 1.1).

Table 1.1. Most common terms used to describe Genetic Algorithms. Adapted from

Luke (2009)

Term Meaning

Gene
A slot position in a chromosome and a smallest unit of an

encoded solution that represents a decision

Chromosome Encoded solution represented as a string of genes

Individual A candidate solution

Population A collection of chromosomes

Fitness
Determines the reproductive success Represents the

quality of an encoded solution

Objective function Function that estimates the fitness of a chromosome

Crossover
Process of combining two chromosomes to create one or

more new individuals

Mutation Random changes made to the encoded solutions

Reproduction/Recombination Crossover and mutation

Parent Individual used to generate new solutions (offspring)

Offspring
New solutions generated by applying crossover and

mutation to parents

Selection
Process of determining which parent solutions will undergo

crossover and mutation

Generation
One iteration of GA which includes selection, crossover,

and mutation

Genetic operator
Operator that guides the algorithm towards a solution to a

given a problem, e.g. selection, crossover, and mutation

1. Background

26

GAs can be divided into generational and steady-state algorithms. Generational

algorithms, which are more common, update the entire or most of the sample whereas

steady-state algorithms update the same sample a few individuals at a time. Algorithm

1.1 describes a procedure of a basic generational GA. The algorithm initiates from a

pool of typically randomly generated chromosomes. Parent chromosomes with a

higher objective function value or fitness are selected for crossover and mutation to

create new and hopefully better solutions for each new generation of the GA.

Algorithm 1.1. Pseudocode of a basic GA.

 1 procedure GeneticAlgorithm(popsize, max_gen, objective_function)

 2 parents = ∅

 3 gen = 0 ▻ generation counter

 4 best = □ ▻ placeholder for best individual

 5 Generate new parent population of popsize

 6 while gen < max_gens

 7 for each parent in parents

 9 Evaluate parent fitness with objective_function

10 if best = □ or fitness of parent > fitness of best

11 best = parent

12 end if

13 end for

14 offspring = ∅

15 for |parents| / 2 times

16 parenta = SelectWithReplacement(parents)

17 parentb = SelectWithReplacement (parents)

18 offspringa, offspringb = Crossover(parenta, parentb)

19 offspring = offspring U { Mutate(offspringa), Mutate(offspringb) }

20 end if

21 parents = offspring

22 gen += 1

23 end while

24 return best

25 end procedure

The most common selection operators are fitness-proportional selection (also known

as roulette-wheel selection) and tournament selection. As the name suggests, fitness-

proportional operator selects parent chromosomes with a probability that is

proportional to their fitness. Tournament selection picks the best solution from a

random population sample of size t (tournament size). Tournament selection with

samples comprising two individuals is often referred to as binary tournament. It has

1. Background

27

been extensively used due to its computational efficiency and better or equivalent

convergence when compared to other selection methods that are available in the

literature (Goldberg & Deb, 1991; Melanie, 1996). After the selection, the parent

chromosomes are crossed over with a certain probability pC to create one or more

offspring chromosomes. Commonly used crossover operators include a uniform

crossover, which swaps each of the parent genes with a probability of 0.5, a single-

point crossover, which selects a random point and swaps all genes beyond that point

in either parent’s chromosome between the two parents, and a multi-point crossover,

which is a generalisation of a single-point crossover (Allmendinger, 2012).

Figure 1.7. A cube formed by three-dimensional vectors (black circles) which

represent positions of parent chromosomes in the decision space (Luke, 2009)

The original motivation for crossover was building-block hypothesis (BBH) (Holland &

Goldberg, 1989) or, more formally, schema theory (Reeves, 2003). The basic premise

of BBH is that highly fit individuals often share certain traits, i.e. building blocks, which

are defined as a collection of genes set to certain alleles, i.e. positions in the

chromosome. Crossover works by spreading these building blocks throughout the

population. However, with the crossover alone, the search capabilities of a GA are

severely limited. For example, if parent chromosomes were three-dimensional

vectors, they would form a cube in a decision space (Figure 1.7). Crossover of these

vectors will result in offspring that would lie at other corners of the cube. Therefore,

conventional crossover operators are limited to search inside the bounding box

1. Background

28

surrounding the parents (Luke, 2009). Moreover, repeated crossover and selection

often eliminate certain genes, create copies of the same individual, and cause the GA

to prematurely converge.

The usefulness of crossover operator has been extensively debated which led to the

emergence of new recombination operators and Naïve Evolution algorithms that run

without crossover (Fogel & Atmar, 1990; Senaratna, 2005). For example, Spears and

Anand (1991) reported that for neural network modules and their control circuits GAs

performed better without crossover. Naïve Evolution algorithms are supported by the

many examples in nature of complex organisms which evolved without crossover, e.g.

Bdelloidea – a class of microscopic pseudocoelomate freshwater animals (Senaratna,

2005). Furthermore, biologists consider mutation, not crossover, as the main source

of new “raw genetic material” (Hartl, 1988). Commonly used mutation operators in

GAs are ones that change each gene in a chromosome independently with some

probability pM. It is worth noting that the variety of GAs is vast. There are many

different strategies for performing selection, crossover, mutation, and even the

underlying algorithm.

Unlike classical optimisation methods which make assumptions about the

relationships between the variables, constraints, and the objective, GAs are flexible

optimisers making minimal assumptions about the problem. Therefore, despite the

lack of guarantee of finding the global optimum and the difficulty of designing the

objective function, chromosome structure, and operators, GAs have been used to

obtain approximate solutions to a wide range of complex linear and non-linear

problem such as training neural networks (Chen & Liao, 1998), finding the optimal

number, types, and positions of wireless transmitters (Ting et al., 2009), and creating

a program capable of solving planning problems described in Planning Domain

Definition Language (PDDL) (Brie & Morignot, 2005). Moreover, due to the multiplicity

1. Background

29

in solutions, GAs have been quite popular for solving the multi-objective optimisation

problems (Kalyanmoy, 2011). Since a population of solutions is processed in each

iteration of a GA, the outcome is also a population of solutions. If an optimisation

problem has a global optimum, then all chromosomes can be expected to converge

to it. Alternatively, if an optimisation problem has multiple optimal solutions, GAs can

capture them in its final population (Deb, 2001).

1.5.2. Stochastic and Multi-Objective Approaches

For multi-objective optimisation problems, two or more objective functions need to be

evaluated simulatenously. Moreover, these objective functions are often contradictory

to each other. A solution that is good for one objective function might do so at the cost

of a less optimal value for another function. Solving multi-objective problems with or

without the presence of constraints leads to a set of trade-off solutions popularly

known as a Pareto front. Each optimal solution in the Pareto front is called a non-

dominated solution. For example, in Figure 1.8, solutions A and B are non-dominated.

A good survery on the history of multi-objective decision analysis and optimisation

methods is provided by Köksalan et al. (2011).

Figure 1.8. Relationship between the design (x1, x2) and objective (f1, f2) spaces of

a two-objective optimisation problem (Source: Cui et al., 2017).

The first multi-objective GA, Vector-Evaluated Genetic Algorithm (VEGA), was

proposed by (Schaffer, 1985). There have been several other multi-objective

evolutionary algorithms (MOEA) developed over the years such as Niched Pareto

1. Background

30

Genetic Algorithm (NPGA) (rey Horn et al., 1994), Non-Dominated Sorting Genetic

Algorithm (NSGA) (Svinivas, 1995), Strength Pareto Evolutionary Algorithm (SPEA)

(Zitzler & Thiele, 1999) and SPEA2 (Zitzler et al., 2001), Pareto Envelope-based

Selection Algorithm (PESA) (Corne et al., 2000), Non-Dominated Sorting Genetic

Algorithm-II (NSGA-II) (Deb et al., 2002), and many others.

One of the most attractive features of heuristics compared to mathematical

programming is that they can be easily integrated with other methods such as Monte

Carlo simulation (discussed in Chapter 6) which can be used to represent complex

problem features and uncertainties that cannot be straightforwardly modelled by

mathematical equations. A general simulation-based optimization method comprises

an optimization part that guides the search process and a simulation part used to

evaluate performances of candidate solutions. Compared with mathematical

programming techniques, simulation-based optimization methods replace the

analytical objective function and constraints by one or more simulation models.

Iteratively the output of the simulation is used by the underlying optimisation algorithm,

such as GA, to guide the search for the optimal solution(s). A comprehensive review

of approaches to addressing different uncertainties using EAs is provided by Jin and

Branke (2005). A more recent survey by Gutjahr and Pichler (2016) includes reviews

of non-scalarising mathematical programming- and heuristic-based stochastic multi-

objective optimisation. For example, Eskandari et al. (2005) integrated a simulation

model with a stochastic nondomination-based multi-objective GA and introduced new

genetic operators to enhance the algorithm’s performance. Ding et al. (2006)

proposed a multi-objective GA combined with a simulation procedure for supply chain

optimisation. Amodeo et al. (2009) combined a discrete-event simulation procedure

with SPEA-II, NSGA-II, and multi-objective PSO to determine the inventory policy of

a single product supply chain, taking into account the maximization of customer

service level and the total inventory cost. Syberfeldt et al. (2009) used a multi-

1. Background

31

objective evolutionary algorithm supported by an artificial neural network, combined

with a simulation routine to improve a manufacturing cell at Volvo Aero in Sweden.

1.5.3. Lot Sizing using Genetic Algorithms

There have been a number of papers reporting GA-based optimisation approaches

for solving lot sizing and job-shop scheduling problems. Most of the approaches can

be broadly divided into two classes depending on the encoding strategy: direct

representation and indirect representation (Oyebolu et al., 2017). In a direct

representation, the sequence and lot sizes are encoded in the chromosome directly.

In an indirect representation, a chromosome typically encodes a set of rules or a

permutation-based solution. A construction heuristic is then used to derive a schedule

from the permutation or encoded rules. For example, Kimms (1999) used a two-

dimensional matrix encoding strategy to solve a multi-level, multi-machine

proportional lot sizing and scheduling problem formulated as a mixed-integer

programming problem. The matrix contained rules for selecting the set up state for a

machine at the end of a period. A construction heuristic was used to translate the

matrix into the solution starting from the end of planning horizon. There have been

multiple construction heuristics developed for a variety of problems. Branke and

Mattfeld (2005) demonstrated an approach of penalising early idle times to increase

scheduling flexibility and enhance overall performance for dynamic job-shop

scheduling problems. Ho et al. (2006) proposed two construction heuristics for the

single-level uncapacitated dynamic lot-sizing problem, extending the work of Silver

(1973). Almada-Lobo et al. (2007) presented a five step heuristic to solve a multi-item

capacitated lot-sizing problem with sequence-dependent setup times and costs from

the glass industry. James and Almada-Lobo (2011) developed a general-purpose

approach combining heuristics and mixed integer programming to find high quality

1. Background

32

solutions to the single- and parallel-machine capacitated lot sizing and scheduling

problem with sequence-dependent setup times and costs.

Jans and Degraeve (2008) noted that most of the heuristic-based optimisation

methods developed for solving lot sizing problems were validated using artificial data

and were limited in terms of the assumptions made, e.g. unlimited capacity, making

the application to real-life problems troublesome. This thesis addresses this gap by

developing scheduling models that address the most common features of

biopharmaceutical industry, e.g. storage and shelf-life limitations, and are validated

using industrially-relevant case studies either from real life or from the literature.

1.6. Related Work

Planning and scheduling of biopharmaceutical manufacture is a complex

combinatorial optimisation problem further complicated by the unique features of

biopharmaceutical production. Saraph (2001) noted that the biopharmaceutical

manufacturing process is a mix of discrete and continuous processes, the size of

batch and production capacity tend to vary depending on the processing stage, and

the common utilities, e.g. water, are shared. Furthermore, most companies typically

have a portfolio of various products manufactured across a network of owned and

contract manufacturing facilities with wide-ranging production capabilities.

Biopharmaceutical products may be unstable and thus have specialised and costly

transportation and storage requirements. Biopharmaceutical companies are also

required to meet high-quality standards and prove they can deliver a consistent

manufacturing process. The high-quality standards are achieved by rigorous cleaning

and sterilisation between individual production campaigns. Based on the report by

Langer (2009), the top eight factors that create biopharmaceutical production capacity

constraints are physical capacity of downstream processing equipment as well as

1. Background

33

fermentation/bioreactor equipment, inability to retain and lack of new experienced

technical and production staff, lack of financing for production expansion, costs

associated with downstream purification, inability to optimise overall system and

general inability to meet demands for finished product.

1.6.1. Process Design and Optimisation

The area of planning and scheduling in the biopharmaceutical industry has not

received as much attention as bioprocess design and optimisation (Majozi et al.,

2015). The development of computer-aided design tools for bioprocessing began in

the mid-1980s (Farid et al., 2007). The vast majority of bioprocess design optimisation

methods have been based on mathematical programming and simulation techniques.

Simulation-based approaches have been especially popular at modelling the impact

of uncertainties within a biopharmaceutical manufacturing environment for more

effective use of resources and improved economic performance. Farid and coworkers

(Farid et al., 2000, 2001; 2005, and 2007) presented the SimBiopharma software tool

to evaluate biopharmaceutical manufacturing alternatives in terms of cost, time, yield,

resource utilisation, and risk. Incorporating uncertainty allowed users to make

decisions based on both the expected outputs as well as the likelihood of achieving

them. The key features of the tool included interactive graphics, task-oriented

representation, bioprocess economics, dynamic simulation, risk analysis and multi-

attribute decision-making. The benefits of this integrated approach were illustrated

with an evaluation of stainless steel versus single-use or disposable facilities for

clinical material preparation. Lim et al. (2005 and 2006) and Pollock et al. (2013) built

on these decisional tools to evaluate the impact of uncertainty in fermentation titres,

DSP yield, contamination rates on the design and robustness of perfusion culture

based processes compared to fed-batch processes. Stonier et al. (2012) developed

1. Background

34

these decisional tools to identify facility limits of legacy mAb facilities in terms of

downstream capacities, assess the current and future robustness of these facilities to

increasing cell culture titres and determine robust purification configurations given titre

fluctuations. Stonier et al. (2013) and Yang et al. (2014) further leveraged the

stochastic datasets generated from such tools with datamining tools (e.g. principal

component analysis, clustering algorithms, decision trees) so as to be able to predict

the root cause of facility fit issues.

Some of the earliest works to address the optimisation of the design structure and

process variables in biopharmaceutical multi-product facilities with mixed-integer non-

linear programming (MINLP) were presented by Montagna et al. (2000) and Asenjo

et al. (2000). Vasquez-Alvarez and Pinto (2004) developed a MILP-based

optimisation model to optimise chromatography unit operations. Brunet et al. (2012)

created a hybrid simulation-mixed-integer with dynamic optimisation approach for the

design of USP and DSP units in a single-product process. Simaria et al. (2012)

proposed a multi-objective GA-based approach for the selection and optimisation of

purification sequences and chromatography column sizing strategies. Allmendinger

et al. (2012) presented a GA for the discovery of chromatography equipment sizing

strategies for antibody purification processes under uncertainty. The optimisation of

the chromatography column-sizing design in the mAb purification processes was also

addressed by Liu et al. (2013) who applied MINLP to minimise the total cost.

1.6.2. Portfolio Management and Capacity Planning

Early work on biopharmaceutical portfolio management and capacity sourcing

decisions used simulation models. For example, Rajapakse et al. (2005) and (2006)

presented a Decision Support Tool based on Monte Carlo simulation to predict the

process and business outcomes for portfolios of biopharmaceutical products in the

1. Background

35

development pathway. At the time of writing, the literature on the use of alternative

optimisation techniques such as GAs or hybrid methods in the pharmaceutical and

biopharmaceutical industry was somewhat limited. Most of the publications focused

on the optimisation of process design (discussed in the previous section) and the

management of product portfolios rather than capacity planning and scheduling. The

few that exist are discussed below.

On the pharmaceutical portfolio management front, Blau et al. (2004) reported a

hybrid discrete simulation and GA-based approach for selecting a sequence of

pharmaceutical products that maximises the expected economic returns at an

acceptable level of risk for a given level of resources in a new product development

pipeline. Varma et al. (2008) expanded the work accomplished by Blau et al. (2004)

and proposed an integrated resource management tool to maximise portfolio’s

expected net present value, while keeping both risk and drug development times

under control. The framework was based on the combination of a stochastic

simulation of the pharmaceutical work flow process, a MILP formulation that acted as

a “resource manager”, and a Genetic Algorithm based “strategy learner” which was

used to assess how the various strategies of resource allocation affect the financial

and cycle time performance of the simulated portfolio of drug candidates. On the

biopharmaceutical portfolio management front, George and Farid (2008) developed a

stochastic, multi-objective optimisation framework based on probabilistic, model-

building GAs for the optimisation of decisions related to portfolio selection, timing, and

capacity sourcing decisions. Probabilistic model-building GAs belong to a class of

EAs known as Estimation of Distribution Algorithms (EDAs). EDAs differ from most

conventional algorithms by using explicit probability distributions represented by a

model class, e.g. a Bayesian network or a multivariate normal distribution. Nie et al.

(2012) presented a stochastic, GA-based decision-support tool to address the

1. Background

36

decisions involved in portfolio management at both the drug development process

level and the portfolio level.

Table 1.2. lists all relevant literature on capacity planning and scheduling optimisation

methods in the biopharmaceutical industry to date. The vast majority of the research

has focused on discrete-time MILP formulations adapted from the pharmaceutical and

chemical engineering industries. The problem of task scheduling for new product

development in the pharmaceutical industry was first developed by Schmidt and

Grossmann (1996). According to Gatica et al. (2003), the first paper addressing the

capacity planning problem as well as product selection decisions in the

pharmaceutical industry appeared in 1999 by Rotstein et al. (1999). They presented

a stochastic capacity planning model incorporating clinical trials uncertainty. A wide

range of deterministic and stochastic models addressing such problems in the

pharmaceutical industry have been developed since then. Gatica et al. (2003)

presented a realistic approach to optimise a product portfolio subject to the outcome

of the clinical trials. The proposed model included a multi-stage, multi-scenario case,

and four outcomes, i.e. high success, target success, low success, and failure. It was

based on previous pharmaceutical product portfolio optimisation models, such as

Rotstein et al. (1999) and Papageorgiou et al. (2000), and was capable of considering

whether it is more beneficial to outsource the manufacturing process or maintain the

investment in the facility. Brastow and Rice (2003) demonstrated how Monte Carlo

simulation could be used to identify the probability of having too much or too little

manufacturing capacity for a network of pharmaceutical facilities. Levis and

Papageorgiou (2004) presented a systematic mathematical programming approach

for long-term, multi-site capacity planning under uncertainty in the pharmaceutical

industry, simultaneously addressing the problem of product management. They also

provided an extensive review of the publications addressing the problem of portfolio

optimisation and task scheduling in the pharmaceutical industry.

1. Background

37

Table 1.2. Resume of biopharmaceutical literature planning and scheduling

optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods

Samsatli and Shah

(1996a),

Samsatli and Shah

(1996b)

▪ Two stages

optimisation: first

stage, processing

rates and conditions

of unit

operations/equipment

capacities through

dynamic optimisation

(gProms); second

stage, scheduling

and design

adjustments of

intermediate storage.

▪ MILP model

(STN

framework)

▪ Discrete-time

representation

▪ Cyclic

schedule

(48 h/68 h)

▪ Maximise

operating

profit

Lakhdar et al. (2005) ▪ Medium-term

planning and

scheduling (1–2

years)

▪ Determines

campaigns durations

and sequence,

production quantities,

inventories, and

product sales

▪ MILP model

▪ Discrete-time

representation

▪ Maximise

operating

profit

Lakhdar et al. (2006) ▪ Medium-term

planning (1–3 years)

considering

uncertainty in the

fermentation titres

▪ Considers storage

constraints

▪ Results compared

within deterministic

model, a two-stage

programming model

accompanied by an

iterative construction

algorithm, and a

proposed CCP model

▪ MILP model

derived using

CCP

▪ Discrete-time

representation

▪ Maximise

operating

profit

▪ Multi-scenario

stochastic

programming

1. Background

38

Table 1.2. (continued) Resume of biopharmaceutical literature planning and

scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods

Lakhdar et al. (2007) ▪ Long-term

planning, first

solved as a single

objective problem

(maximise

operating profit)

and capacity

analysis was

conducted; then

extended to allow

multiple objectives

through goal

programming

▪ MILP model

▪ Discrete-time

representation

▪ Maximise

operating profit

▪ Minimise total

adverse

deviations to

targets: cost,

customer

service level,

and capacity

utilisation

Lakhdar and

Papageorgiou (2008)

▪ Medium-term

planning under

uncertain

fermentation titres

▪ Storage constraints

▪ Proposed future

extension to multi-

stage framework to

allow uncertainty to

be revealed

gradually at any

time period; further,

proposed

decomposition and

approximation

solution methods

▪ MILP model

▪ Discrete-time

representation

▪ Iterative

algorithm for

large-scale

problem

▪ Maximise

operating profit

Miller et al. (2010) ▪ Core mathematical

programming

solver designed

around a uniform

discretisation

model and

customised outer

layer to address

biologics process

behaviour

▪ VirtECS Scheduler

Software

▪ Intermediate

material storage

consideration

▪ MILP model

(RTN

framework)

▪ Discrete-time

representation

▪ Monte Carlo

stochastic

parameters

1. Background

39

Table 1.2. (continued) Resume of biopharmaceutical literature planning and

scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods

Gicquel et al. (2012) ▪ Hybrid flow shop

scheduling problem

▪ Zero intermediate

capacity and limited

waiting time

between

processing

▪ Suggest heuristic

solution as future

work

▪ MILP model

▪ Discrete-time

representation

▪ Minimise total

weighted

tardiness

Kabra et al. (2013) ▪ Unit-specific event-

based continuous-

time representation

▪ Multi-period

scheduling of multi-

stage multi-product

process

▪ Based on STN

representation

▪ MILP model

▪ Continuous-

time

representation

▪ Maximise

operating profit

Siganporia et al. (2014) ▪ Long-term planning

▪ The model

comprised specific

features to account

for products with

fed-batch or

perfusion culture

processes

▪ Utilised rolling time

horizon approach

to obtain greater

optimality in less

computational time

than the full-scale

model

▪ MILP model

▪ Discrete-time

representation

▪ Minimise total

cost

Vieira et al. (2016) ▪ Multi-period

scheduling of multi-

stage multi-product

process

▪ RTN continuous-

time single-grid

formulation

▪ MILP model

▪ Continuous-

time

representation

▪ Maximise

operating profit

Table 1.2. (continued) Resume of biopharmaceutical literature planning and

scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods

Oyebolu et al. (2017) ▪ Inspired by GA

approaches to job

shop scheduling

▪ Proposed a

problem-tailored

construction

heuristic for

scheduling product

demands across

multiple facilities

▪ GA model

▪ Maximise

operating profit

Jankauskas et al. (2017)*
▪ Medium-term

planning

▪ Multi-period

scheduling of multi-

stage multi-product

process

▪ Developed a

continuous-time

scheduling heuristic

using variable-

length

chromosomes

▪ GA model

▪ Continuous-

time

representation

▪ Maximise

operating profit

* This work is part of this thesis.

One of the first frameworks for biopharmaceutical capacity planning and scheduling

was developed by Samsatli and Shah (1996b). They addressed the design and short-

term scheduling of biopharmaceutical processes using MILP and STN formulations.

The first medium-term capacity planning model for a multi-product, multi-suite

biopharmaceutical facility was presented by Lakhdar et al. (2005). Their approach

helped to determine the optimal durations and sequence of production campaigns

together with product inventory, sales, and late deliveries profiles. Furthermore, the

proposed MILP based optimisation method was shown to find more optimal solutions

than the industrial rule-based approach. Kabra et al. (2013) compared this discrete-

time model with a continuous-time multi-period scheduling of multi-stage, multi-

product process based on an STN framework, reporting an improved objective

function value. Vieira et al. (2016) also compared Lakhdar et al. (2005) discrete-time

1. Background

41

model with a new MILP model based on RTN continuous-time single-grid formulation.

They reported even better objective function values.

The randomness of the biopharmaceutical manufacturing environment such as

uncertain yield and risks of contamination, can cause significant scheduling and

planning difficulties for the biopharmaceutical manufacturing campaigns. To address

this, Lakhdar and Papageorgiou (2006) compared a chance-constrained

programming (CCP) model with a deterministic MILP and two-stage programming

approach combined with an iterative construction algorithm for medium-term planning

of biopharmaceutical manufacture under uncertain fermentation titres. The proposed

methodology was reported to yield better results than a deterministic MILP model.

Lakhdar and Papageorgiou (2008) improved their work presented in 2005 with an

iterative algorithm for solving large-scale biopharmaceutical capacity planning and

scheduling problems with uncertain fermentation titres.

The optimisation of biopharmaceutical manufacturing capacity often involves many

multiple conflicting criteria and objectives to be considered. Lakhdar et al. (2007)

addressed the challenge of making long-term (15 years), multi-site capacity planning

decisions given multiple strategic criteria such as risk, cost, and customer service

levels. The problem was first solved as a single objective problem to maximise

operating profit, and then extended using goal programming to allow for multiple

objectives, i.e. cost, customer service level, and capacity utilisation.

The vast part of the research on biopharmaceutical manufacture planning has been

limited to either batch or fed-batch processes. However, a more recent, large-scale

discrete-time MILP model was presented by Siganporia et al. (2014) to optimise long-

term capacity plans for a portfolio of biopharmaceutical products, with either batch or

perfusion bioprocesses, across multiple facilities to meet quarterly demand.

1. Background

42

The work presented by Oyebolu et al. (2017) is one of the few GA-based planning

and scheduling optimisation models for the biopharmaceutical industry. Taking

inspiration from GA-based approaches to job-shop scheduling, they proposed a

problem-tailored construction heuristic for scheduling demands of multiple products

sequentially across several facilities to generate a long-term manufacturing schedule.

Compared to the aforementioned construction heuristics (Section 1.5.3), theirs is

different in that it inserts jobs (manufacturing campaigns) in an order of importance

determined by the GA and not necessarily in any chronological order. The approach

is based on an indirect representation of the problem using a permutation of all the

product demands. The sequence of demands encoded in a chromosome determines

the order by which the construction heuristic schedules production campaigns. The

construction heuristic explores a number of different scheduling alternatives, e.g.

schedule as late as possible, schedule next to previous demand, split demand, and

picks the best one based on feasibility and the smallest additional cost. The approach

outperformed a related discrete-time MILP model on a single-objective long-term

biopharmaceutical capacity planning problem from the literature (Lakhdar et al.,

2007).

1.7. Aims and Outline of Thesis

As discussed earlier, much of process planning and scheduling research for

biochemical engineering processes has been based on MILP formulations using

discrete-time representation (Table 1.2). It is acknowledged that the development of

models for production planning and scheduling of biopharmaceutical processes has

been fairly unexplored (Vieira et al., 2016). This work is particularly motivated by the

insufficient research of GA-based capacity planning and scheduling optimisation

methods in the biopharmaceutical industry. The key objectives of this work are to

investigate the applicability of GAs for capacity planning and scheduling of

1. Background

43

biopharmaceutical facilities and to develop a flexible framework that would facilitate

the biopharmaceutical industry’s strategic and operational decision-making. The

following areas will be explored:

▪ Medium- and long-term planning

▪ Discrete- and continuous-time representations

▪ Single- and multi-objective problems

▪ Deterministic and stochastic optimisation

Chapter 2 describes a general problem statement and lists the key challenges of

biopharmaceutical capacity planning and scheduling. It also describes the framework

and the technical details of the GA-based DST developed in this thesis for tackling

biopharmaceutical scheduling problems.

Chapter 3 serves as a starting point in understanding the implementation challenges

of GA-based biopharmaceutical capacity planning and scheduling optimisation. This

is accomplished by developing GA-based approaches for solving single-objective

biopharmaceutical capacity planning and scheduling problems using the simpler

discrete-time representation. The performance of the GA is compared with MILP

models on industrial case studies of medium- and long-term planning from the

literature. Moreover, a PSO-based meta-optimisation approach is utilised to

automatically set the parameters of the GA. With some caveats, such as rolling time

horizon, the GA is demonstrated to be capable of generating exact or near-optimal

solutions to discrete-time MILP problems of biopharmaceutical capacity planning and

scheduling.

The early work of this thesis presented in Chapter 3 identified the shortcomings of

discrete-time representation such as unutilised production time and unnecessarily

1. Background

44

high model complexity. Chapter 4 improves upon Chapter 3 by presenting a novel

variable-length GA (which is the core of the GA-based DST developed in this thesis)

and a continuous-time scheduling heuristic for efficient and more realistic medium-

term scheduling of biopharmaceutical manufacture. Using the variable-length

chromosome structure, the GA is capable of adapting to the planning problem from a

single gene by either growing or shrinking in length. The continuous-time scheduling

heuristic accounts for constraints and features such as product-dependent

changeovers, varying manufacturing yields, multiple intermediate demand due dates,

and storage and shelf-life limits. The performance of the method is evaluated on two

industrial case studies and contrasted with related discrete- and continuous-time

MILP models.

Chapter 5 extends the variable-length GA from Chapter 4 with a multi-objective

component. The continuous-time scheduling heuristic is also adapted to suit a

different biopharmaceutical facility model with rolling product sequence-dependent

changeovers and to account for product quality control and assurance (QC/QA)

checks. The functionality of the multi-objective approahc is highlighted on an industrial

case study developed together with Eli Lilly & Company. The GA is used to optimise

both the throughput and monthly product inventory levels of a multi-product

biopharmaceutical facility over a three year period.

In Chapter 6, Monte Carlo simulation is integrated into the multi-objective variable-

length GA from Chapter 5 for generating production schedules under variable product

demand. The advantages and performance of the approach are demonstrated on a

real life industrial case study and contrasted to a deterministic optimisation approach

that neglects the uncertainty in product demand. Moreover, the chapter describes how

the computationally intensive Monte Carlo simulation can be accelerated using a GPU

that achieved a 30-fold speed-up.

1. Background

45

Chapter 7 contains an implementation plan for commercialisation of the work

generated in this thesis. It describes not only the architecture and the design details

of a proposed user interface but also discusses how the application could be priced

and delivered to clients. Finally, the conclusions of this thesis and the plausible

directions for future work are provided in Chapter 8. A list of publications (published

and in progress) resulting from this thesis is given in Appendix A.

2. Decision Support Tool: Requirements and Design

46

2. Decision Support Tool:

Requirements and Design

The previous chapter provided an overview of the biopharmaceutical industry and the

existing, mostly MILP-based methods for assisting biopharmaceutical manufacturers

in making decisions about when, where, and how long they should manufacture a

product. Despite the number of works available in the literature, the actual adoption

of MILP-based optimisation models has been relatively slow in the biopharmaceutical

industry. Due to specialist knowledge, high skill requirements, and lack of

transparency associated with mathematical programming-based methods (Mustafa et

al., 2006; Widmer et al., 2008), production scheduling especially short- and medium-

term is still often carried out using mostly manual spreadsheet-based methods.

Another reason why simpler methods are so widely used is because they can be

easily explained to and understood by the business stakeholders. Fortunately, the

research principles at the basis of GAs are generally more accessible to

inexperienced users making the algorithm an attractive alternative. Moreover, due to

their inherent flexibility, GAs can be easily adapted or combined with other types of

methods and applied to a wide-range of problems.

The literature on mathematical programming-based scheduling optimisation methods

puts a lot of emphasis on the optimality of solutions. It is nearly impossible to measure

the optimality of solutions generated using heuristic methods such as GA.

Nevertheless, in most real-life scenarios, it is sufficient to compare the performance

of a heuristic-based scheduling tool against a benchmark generated using, for

example, an expert system or industrial rule-based planning. If there are significant

gains in the objective function values, then the solution does not need to be proven to

be optimal.

2. Decision Support Tool: Requirements and Design

47

In this chapter, the requirements and design of a flexible GA-based DST for efficient

single- and multi-objective capacity planning and scheduling of multi-product

biopharmaceutical facilities are presented. Section 2.1 outlines a general statement

and key challenges of biopharmaceutical capacity planning and scheduling problems

which will be tackled in the next chapters of this thesis. Section 2.2 lists the high-level

requirements and defines the components of the tool’s framework needed to meet

them.

2.1. Problem Statement and Challenges

Despite the wide variety of biopharmaceutical capacity planning and scheduling

problem classes, every problem statement can be defined in the following general

way:

▪ Given:

o Production facility data such as production capacities, number of USP and

DSP suites, and availability of utilities.

o Processing data such as USP and DSP processing times and material

requirements.

o Costs (optional), e.g. manufacturing, storage, backlog penalty, and waste

disposal.

o Production targets or product demand.

▪ Determine:

o An optimal schedule that would satisfy one or several strategic criteria.

Biopharmaceutical facilities can have various manufacturing capabilities and plant

topologies with multiple USP and DSP suites (see Figure 2.1). For the simple case,

both USP and DSP can be treated as a monolithic, black-box process without explicit

2. Decision Support Tool: Requirements and Design

48

discretisation into individual suites. However, allowing the various biopharmaceutical

manufacturing stages to be modelled separately can yield more realistic production

schedules though at the cost of higher computational complexity and increased

modelling challenges.

a)

b)

c)

Figure 2.1. Examples of different biopharmaceutical facility topologies (different USP

to DSP suite number ratios): (a) 1:1, (b) 2:2, (c) 2:3. All three examples will be tackled

in the later chapters of this thesis.

2. Decision Support Tool: Requirements and Design

49

Capacity planning and scheduling problems are often subject to several constraints,

e.g. biopharmaceutical companies are required to produce a minimum number of

batches for the regulatory bodies, the product demand must be met on time, and

product waste needs to be minimised or avoided completely. Furthermore, most real-

life biopharmaceutical capacity planning and scheduling problems have multiple

objectives. It is generally desirable to maximise the facility throughput and maintain

the strategic product inventory levels at specific monthly targets. A straightforward

way to maximise facility throughput is to run fewer but longer manufacturing

campaigns (Figure 2.2.a) which reduces the number of product changeovers and

increases the available time for manufacturing. However, having longer and

infrequent campaigns can lead to uneven product inventory levels and periods where

the stock is dangerously low (Figure 2.2.b). Therefore, running shorter but more

frequent manufacturing campaigns (Figure 2.2.c.) would ensure that product

inventory is re-stocked often and there is enough of it at any point in time to meet the

product demand for the next 6 or 9 months in case of unplanned facility shutdowns or

other emergencies (Figure 2.2.d). One of the key challenges that the

biomanufacturers face is striking a balance between these two objectives.

The capacity planning and scheduling problem of biopharmaceutical manufacture is

further complicated by other factors such as limited shelf-life, storage capacity

limitations, and the types and durations of product changeovers. Figure 2.3. depicts

an example of a biopharmaceutical product changeover that is widely used in the

capacity planning and scheduling MILP-based models reported in the literature

(Lakhdar et al., 2005; Lakhdar et al., 2007; Siganporia et al., 2014). During this type

of product changeover, all tasks of the previous manufacturing campaign need to be

completed before the clean-up process and the subsequent manufacturing campaign

can begin. The time required to switch between products includes the time required

to clean the suites and equipment, and it often depends on the sequence of

2. Decision Support Tool: Requirements and Design

50

a)

c)

b)

d)

Figure 2.2. A comparison between two production schedules and the corresponding inventory levels of product D. In (a), a schedule with fewer

but longer manufacturing campaigns has higher total throughput albeit at the cost of (b) unbalanced product inventory with periods of extremely

low stock (highlighted by the rectangle). On the other hand, a product schedule in (c) has more frequent but shorter product campaigns and, as

a result, lower total throughput but also (d) better maintained product inventory levels.

2. Decision Support Tool: Requirements and Design

51

the product campaigns. Provided that the different stages of biomanufacturing

process (Figure 1.1) are carried out in separate, self-contained processing suites, a

more efficient rolling product changeover can be implemented. For example, while

Figure 2.4.a depicts what looks like two overlapping manufacturing campaigns of

different products, Figure 2.4.b shows that a rolling changeover takes place between

the different early manufactured stages while the product is still being produced in

other suites. In this way, more time is made available for the manufacturing of

products by minimising the idle waiting times in-between production campaigns.

Figure 2.3. An example of a traditional product changeover. The new manufacturing

campaign of product C can only take place after all tasks of product A campaign are

finished.

a)

b)

Figure 2.4. An example of a rolling product changeover. Numbers inside the blocks

correspond to the duration of the corresponding task while a gap between the different

task blocks denotes a changeover.

2. Decision Support Tool: Requirements and Design

52

Given the unique features of the biopharmaceutical manufacture and the wide variety

of objectives and constraints, the manual creation of capacity plans can quickly

become an unsustainable practice. Even for simpler discrete-time based models, the

complexity of biopharmaceutical capacity planning and scheduling problems grows

exponentially with the increasing number of products and time periods (see Table

2.1).

Table 2.1. Minimum number of solutions for different cases over 8 years with a time

period of one month (Source: Siganporia, 2016).

Number of products Number of facilities Number of solutions

2 2 1091

4 4 10289

6 6 10522

10 10 101056

There is an obvious, strong need for methods that would help find the best use of

production resources in order to satisfy production goals, i.e. addressing the

production capacity requirements and anticipating sales opportunities over a planning

horizon of choice (Karimi et al., 2003). The three typical types of planning horizons

are short-term, medium-term and long-term. Short-term planning decisions are

comprised of every day scheduling of operations, e.g. job sequencing; medium-term

planning involves making decisions on material requirements planning and lot sizing

over the planning horizon in order to meet the demand and minimise overall costs;

long-term planning comprises strategic decisions on product, equipment, process,

facility location and design choices and resource planning (Karimi et al., 2003). The

main scope of this thesis is efficient medium-term multi-objective scheduling

biopharmaceutical manufacture in an existing multi-product facility.

2. Decision Support Tool: Requirements and Design

53

2.2. Requirements and Design

There have been several discrete- and continuous-time MILP-based models for

biopharmaceutical capacity planning and scheduling reported in the literature. In order

to be considered as a feasible alternative to these models, a requirements

specification was developed that describes what the GA-based DST should be able

to achieve. The tool requirements are outlined below:

▪ Ability to specify multiple objectives and constraints: the tool needs to capture the

most common objectives and constraints of biopharmaceutical production such

as maximisation of profit and minimisation of costs. However, the availability of

cost data is usually a bottleneck thus the tool needs to allow for other objectives

that are non-monetary, including maximisation of production throughput,

maintaining strategic inventory targets, meeting all product demands on time, and

avoiding product waste.

▪ Ability to specify product-specific characteristics: in order to have practical value

and reflect the biopharmaceutical manufacturing environment in a realistic way,

the tool has to address the aforementioned complexities such as varying process

durations and yields, product sequence-dependent changeovers, QC/QA

approvals, storage and shelf-life limits.

▪ Ability to instantiate new models or add new scheduling logic: the description of

the scheduling problem often changes during the initial stages of implementation.

It is common for the original problem formulation to be continually modified and

enhanced as additional information becomes available. Therefore, it is important

to empower the production scheduler not only with the ability to make non-

structural changes to the scheduling model such as adding new products and

revising product demand but also with the ability to include different scheduling

models. The tool needs to be able to cope with a variety of different

2. Decision Support Tool: Requirements and Design

54

biopharmaceutical capacity planning and scheduling problems,

biopharmaceutical facility designs, and manufacturing strategies.

▪ Ability to achieve solutions in a timely manner: the tool needs to be capable of not

only generating optimal or close-to-optimal solutions but also do it so in a

reasonable amount of time. The shorter the time to report a good schedule is, the

more scenarios can be tested by production schedulers.

▪ Ability to optimise under uncertainty: the tool needs to be able to address the

inherent uncertainties of biopharmaceutical manufacture such as product demand

and to solve the scheduling problem with probability distribution-based input.

The tool generated in this thesis meets all of the aforementioned requirements which

will be covered in the subsequent chapters. For example, Chapters 4-6 will

demonstrate how the tool is used to meet a variety of monetary and non-monetary

scheduling objectives and constraints, including maximisation of profit and

simultaneous optimisation of throughput and product inventory levels subject to

various constraints. The ability to specify product-specific characteristics and the

ability to instantiate new models or add new scheduling logic are demonstrated in

Chapters 4 and 5. For example, in Chapter 4 the tool is used to generate a 1-year

long schedule for a biopharmaceutical facility with 2 USP/2 DSP suites manufacturing

3 products and a 1.5-year long schedule for a biopharmaceutical facility with

2 USP/3 DSP suites manufacturing 4 products. Moreover, in Chapter 4 the tool is

used to schedule production for biopharmaceutical facilities with traditional product-

dependent changeovers, whereas in Chapter 5 the tool is applied to a

biopharmaceutical facility with rolling product sequence-dependent changeovers.

Choosing the right set of technologies and programming languages for the

development of DSTs is an important decision that can have an impact on the ultimate

flexibility and usability of the tool. For the DST to receive continuous support and

2. Decision Support Tool: Requirements and Design

55

attention in the future from the developers and researchers alike, the chosen

programming language(s) need to be sufficiently flexible and have a large and active

community.

According to a popular yearly survey (Stack-Overflow, 2018), Python is the fastest-

growing major programming language. Approximately 40% of over 100,0000

developers from around the world said Python was their primary programming

language. Some of the reasons behind such popularity include succinct and intuitive

language syntax, powerful open source libraries for data analysis and visualisation,

and web-based application development toolkits which will be crucial to a commercial

application of the tool (see Chapter 7). However, one of the major drawbacks of

Python programming language is its performance. For example, multi-threading is not

available out-of-the-box due to what is known as a Global Interpret Lock (GIL) that

prevents more than one thread running in the interpreter (Beazley, 2010). Fortunately,

Python can be easily integrated with other, lower level programming languages such

as C and C++ that can help improve the performance. Faster execution speeds can

benefit the user by allowing them to perform more runs and test more scenarios in

less amount of time.

In thesis, C++ was used to develop most of the work presented, e.g. GAs, scheduling

heuristics, Monte Carlo simulation. The main reasons for the choice were the

performance benefits, relatively straightforward shared-memory parallelism using

OpenMP compiler directives (demonstrated in Algorithm 2.1) (Dagum & Menon,

1998), and support for CUDA – an Application Programming Interface (API) for

parallel programming using GPU resources (Nvidia, 2011). According to the survey

mentioned earlier, C++ is still among the top 10 programming languages despite its

complexity and relatively low safety. Both Python and C++ have the added benefit of

being cross-platform development languages.

2. Decision Support Tool: Requirements and Design

56

Algorithm 2.1. Parallel fitness assessment in C++ using OpenMP compiler directives.

#pragma compiler directive tells the compiler to auto-parallelize the for loop with

OpenMP. If a user is using a quad-core processor, the performance can be expected

to be increased by up to 300% (in most cases).

#pragma omp parallel for

for (int i = 0; i < parents.size(); ++i) {

 fitness_function(parents[i]);

}

Figure 2.5. A high-level structure of the GA-based Decision Support Tool framework.

Figure 2.5 illustrates the framework of the GA-based DST developed in this thesis

from a high level. The scheduling heuristics and GAs are only a piece of the overall

framework. The framework supporting the execution of the models must be capable

of communicating with other business applications as well as a number of

spreadsheets, document files, and databases. Therefore, an API has been developed

in Python that can be used in a variety of settings, including web-based applications,

2. Decision Support Tool: Requirements and Design

57

command line interface (CLI) programs, and integrated development environments

(IDEs). The API wrap-ups the high-performance extensions written in C++ containing

the GAs and scheduling heuristics and provides an interface layer written in Python

for data input/output (I/O) and results analysis and visualisation. The data can be

stored in and read from either a relational database or document files. API usage

examples can be found in Appendix B.

Chapter 7 will discuss the commercial application of the tool developed in this work,

including trend charts for displaying the evolution of product inventory and delivery

profiles, easy viewing and manipulation of input data, and the reporting on the timings

of scheduled campaigns. Below are some of the example outputs from the GA-based

DST. Figures 2.6 and 2.7 show examples of Gantt chart outputs generated for two

case studies which will be discussed individually in later chapters of this thesis. The

Gantt charts show the allocation of different product campaigns and allow a user to

view the exact start and end dates of each campaign as well as the number of batches

and/or kilograms produced. If needed the GA-based DST can also generate a Gantt

chart illustrating the allocation of products to different biomanufacturing stages

allowing user to view the start and finish of each individual batch (Figure 2.8).

Figure 2.6. Gantt chart generated with the GA-based Decision Support Tool for a

biopharmaceutical facility with traditional product changeovers and a 2:2 USP to DSP

ratio manufacturing three products.

2. Decision Support Tool: Requirements and Design

58

Figure 2.7. Gantt chart generated with the GA-based Decision Support Tool for a

biopharmaceutical facility with rolling product sequence-dependent changeovers and

a 1:1 USP to DSP ratio manufacturing four products.

Figure 2.8. Production tasks Gantt chart example.

2.3. Summary

This chapter described the unique features and challenges of the biopharmaceutical

capacity planning and scheduling problems. It also defined a framework for

developing the GA-based DST which will be used to tackle single- (Chapter 4) and

multi-objective problems with deterministic (Chapter 5) and uncertain product

demand (Chapter 6) to illustrate its value.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

59

3. Discrete-Time Biopharmaceutical

Capacity Planning and Scheduling

3.1. Introduction

This chapter presents a fast GA-based approach to both medium- and long-term

capacity planning and scheduling of single- and multi-site biopharmaceutical

manufacture using discrete-time models. The proposed GA is demonstrated as a valid

alternative to MILP to obtain near-exact solutions to close to real-world industrial case

studies of capacity planning and scheduling of biopharmaceutical manufacture. Other

contributions presented in this chapter include the chromosome encoding strategy,

the algorithms describing the single-site/multi-suite and multi-site biopharmaceutical

manufacture, the rolling horizon approach for solving larger, long-term capacity

planning problems, and a PSO-based meta-optimisation approach for tuning the GA

hyperparameters.

The performance of the GA depends on its hyperparameter values. For example, the

rate of crossover controls the capability of the GA in exploiting the known parts of the

search space, whereas the mutation rate controls the speed of the GA in exploring of

new areas (Lin et al., 2003). The values of these parameters are quite often tuned

one by one, i.e. by trial and error. However, this can be a time consuming process

leading to suboptimal results, since the interactions between the parameters are

ignored this way (Eiben et al., 1999). There have been a number of suggestions and

theoretical investigations into the optimal values of crossover, mutation, and

population size (e.g. Schaffer & Morishima, 1987; Goldberg & Deb, 1991; Back, 1993;

Chipperfield & Fleming, 1995). The typical values of crossover and mutation rate have

been reported to lie in the range 0.5-1.0 and 0.001-0.05 respectively. However, most

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

60

investigations were based on simple function optimisation problems with traditional

chromosome encoding strategies and genetic operators. Therefore, their applicability

for other types of problems and custom genetic operators is quite limited. An

alternative to manual parameter tuning is meta-optimisation, i.e. the use of another

optimisation algorithm to tune the GA hyperparameters. For example, Grefenstette

(1986) applied a meta-GA to optimise the hyperparameters of another GA. An

approach to automatically set the parameters of evolutionary algorithms can also be

considered as antecedents of hyper-heuristics – a set of approaches that are

motivated by the goal of automating the design of heuristic methods to solve hard

computational search problems (Burke et al., 2013).

In this work, a PSO algorithm is used to tune the GA. Meta-PSO was chosen due to

its simplicity and relatively low computational overhead (compared to using another

GA) (Pandey et al., 2010) and suitability for the optimisation of functions with

continuous inputs (Hassan et al., 2004).

3.2. Notation

3.2.1. Case Study 1

SETS

i USP suites

j DSP suites

p products

t, θ time periods

PARAMETERS

Cp USP storage capacity of product p [batches]

Fp DSP storage capacity of product p [batches]

CRp USP production rate of product p [batches/day]

FRp DSP production rate of product p [batches/day]

CTp
min

 min production time for product p in USP suite i [days]

CTp
max

 max production time for product p in USP suite i [days]

FTp
min

 min production time for product p in DSP suite j [days]

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

61

FTp
max

 max production time for product p in DSP suite j [days]

αp USP lead time of product p [days]

βp DSP lead time of product p [days]

ρp USP storage cost of product p [RMU/batch]

ωp DSP storage cost of product p [RMU/batch]

ζp USP product lifetime p [time periods]

σp DSP shelf-life of product p [time periods]

λp correspondence factor for USP to DSP production of product p

ηp manufacturing cost of product p [RMU/batch]

ψp changeover cost of product p [RMU / changeover]

τp waste disposal cost of product p [RMU/batch]

νp sales price of product p [RMU/batch]

δp backlog penalty of product p [RMU/batch]

Dpt demand of product p at time period t [batches]

INTEGER VARIABLES

productit part of the chromosome containing product labels allocated at time

period t to USP suite i

productjt part of the chromosome containing product labels allocated at time

period t to DSP suite j

timeit part of the chromosome containing the number of production days

allocated at time period t to USP suite i

timejt part of the chromosome containing the number of production days

allocated at time period t to DSP suite i

Bipt number of batches of product p produced at time period t in USP

suite i

Bjpt number of batches of product p produced at time period t in DSP

suite j

CIpt number of batches of USP product p stored at time period t

FIpt number of batches of DSP product p stored at time period t

CWpt number of batches of USP product p wasted at time period t

FWpt number of batches of DSP product p wasted at time period t

Spt number of batches of product p sold at time period t

Δpt number of batches of product p in backlog at time period p

BINARY VARIABLES

Yipt 1 if product p is produced in USP suite i at time period t; 0 otherwise

Yjpt 1 if product p is produced in DSP suite j at time period t; 0 otherwise

Zipt 1 if a new campaign of product p is produced in USP suite i at time

period t; 0 otherwise

Zjpt 1 if a new campaign of product p is produced in DSP suite j at time

period t; 0 otherwise

CONTINUOUS VARIABLES

CTipt production time for product p in USP suite i during time period t [days]

FTjpt production time for product p in DSP suite j during time period t [days]

Profit total profit (objective function) [RMU]

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

62

3.2.2. Case Study 2

SET

i facilities

p products

t, θ, ξ time periods

PIi set of products that can be produced by facility i

TIi set of time periods in which facility i is available

PARAMETERS

Cp storage capacity of product p [kg]

Tip
min

 min production time for product p in facility i [days]

Tip
max

 max production time for product p in facility i [days]

rip production rate of product p at facility i [batches/day]

α lead time [days]

ζ shelf-life of product [time periods]

ηip manufacturing cost of product p at facility i [RMU/batch]

ρ storage cost [RMU/kg]

ψ changeover cost [RMU/changeover]

ν sales price [RMU/kg]

δ lateness penalty [RMU/kg]

ζ product lifetime [time periods]

π backlog decay factor

ydip yield conversion factor for product p in facility i [kg/batch]

Dpt demand of product p at time period t [kg]

INTEGER VARIABLES

productit part of the chromosome containing product labels allocated at time

period t to facility i

timeit part of the chromosome containing the number of production days

allocated at time period t to facility i

Bipt number of batches of product p produced at time period t in facility i

BINARY VARIABLES

Yipt 1 if product p is produced in facility i at time period t; 0 otherwise

Zipt 1 if a new campaign of product p is produced in facility i at time

period t; 0 otherwise

CONTINUOUS VARIABLES

Tipt production time for product p at facility i during time period t [days]

Kipt amount of product p produced in facility i at time period t [kg]

Ipt amount of product p stored at time period t [kg]

Wpt amount of product p wasted in at time period t [kg]

Spt amount of product p sold at time period t [kg]

Δpt amount of product p in backlog at time period p [kg]

Profit total profit – objective function [RMU]

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

63

3.3. Problem Definition

In this section, the industrial case studies of capacity planning and scheduling of

biopharmaceutical manufacture from two different literature sources are described. In

case study 1, a medium-term capacity planning and scheduling problem of a multi-

suite, multi-product biopharmaceutical manufacture from Lakhdar et al. (2005) is

presented. In case study 2, a long-term capacity planning and scheduling problem of

multi-site, multi-product bio-manufacture from Lakhdar et al. (2007) is solved.

3.3.1. Case Study 1

The objective of the planning problem presented here is to generate a yearlong

production schedule that would maximise the manufacturing profits of multi-suite

biopharmaceutical facility. The topology of this facility is illustrated in Figure 3.1. All

relevant parameters and product demand profiles for case study 1 are listed in Tables

3.1 and 3.2, respectively. The problem statement adapted from Lakhdar et al. (2005)

is as follows:

▪ Given:

o Biopharmaceutical products p = { p1, p2, p3 }

o USP suites i = { i1, i2 } and DSP suites j = { j1, j2 }

o A planning horizon of 360 days made of equal time periods

T = { t1, t2, …, t6 }

o Product-dependent production rates, lead times, and production

throughputs (correspondence factors)

o USP and DSP product shelf-life, storage capacities and costs

o Product demands, sales price and backlog penalty costs

o Manufacturing and campaign changeover costs

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

64

o Minimum and maximum campaign durations

▪ Determine:

o Duration and sequence of campaigns

o Production quantities along with inventory profiles

o Product sales and late deliveries profile

▪ To:

o Maximise the profitability of the schedule

Table 3.1. All relevant parameters used in case study 1.

 Product

 p1 p2 p3

USP production rate CRp [batches / day] 0.05 0.045 0.08

USP lead time αp [days] 30 32 22.5

USP product lifetime ζp [time periods] 1 1 1

USP storage capacity Cp [batches / time period] 10 10 10

USP minimum campaign length CTp
min

 [days] 20 21 12.5

USP minimum campaign length CTp
max

 [days] 60 60 60

DSP production rate FRp [batches/days] 0.1 0.1 0.1

DSP lead time βp [days] 40 42 34.5

DSP product lifetime σp [time periods] 3 3 3

DSP storage capacity Fp [batches / time period] 40 40 40

DSP minimum campaign length FTp
min

 [days] 10 10 10

DSP minimum campaign length FTp
max

 [days] 60 60 60

Production factor λp 1 1 1

Sales price νp [RMU / batch] 20 20 20

Production cost ηp [RMU / batch] 2 2 2

Backlog penalty δp [RMU / batch] 20 20 20

Changeover cost ψp [RMU / changeover] 1 1 1

Waste disposal cost τp [RMU / batch] 5 5 5

USP storage cost ρp [RMU / batch] 5 5 5

DSP storage cost ωp [RMU / batch] 1 1 1

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

65

Table 3.2. Product demand profile [batches] for case study 1.

 Time period (each period represents 60 days)

Product t1 t2 t3 t4 t5 t6

p1 0 0 0 6 0 6

p2 0 0 6 0 0 0

p3 0 8 0 0 8 0

Figure 3.1. Biopharmaceutical facility topology for the case study 1.

3.3.2. Case Study 2

The goal of the planning problem presented in this case study is to generate a 15-

yearlong production schedule to maximise manufacturing profits. The problem

presented here is a single-objective problem adapted from Lakhdar et al. (2007). All

relevant data, e.g. demand profile, parameters, are listed in Tables 3.3-3.8. The

following is a brief problem statement:

▪ Given:

o A network of multi-product facilities i = { i1, i2, …, i10 }

o Biopharmaceutical products p = { p1, p2, …, p15 }

o A planning horizon of 15 years with equal time periods

t = { t1, t2, …, t60 }

o Production rates, yields, and lead times

o Product lifetimes and storage capacities

o Product demands and sales prices

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

66

o Backlog decay factor

o Manufacturing, changeover, storage costs, and late delivery penalties

o Minimum and maximum campaign durations

▪ Determine:

o Campaign durations and sequence of campaigns

o Production quantities along with inventory profiles

o Product sales and late deliveries profile

▪ To:

o Maximise manufacturing profits

Table 3.3. Parameter data for case study 2.

Parameter Value

Production lead time α [days] 14

Product lifetime ζ [time periods] 8

Sales price ν [RMU / kg] 2.5

Storage cost ρ [RMU / kg] 0.01

Backlog penalty δ [RMU / kg] 0.1

Changeover cost ψ [RMU / changeover] 2

Backlog decay π 0.5

Table 3.4. Production yields ydip [kg / batch] for industrial case study 2.

 Product

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 10 1 0 8 0 6 0 10 2 9 7 1 0 12 12

i2 9 0 0 8 0 6 0 9 0 8 10 0 10 12 11

i3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0

i4 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 10 0 0 0 10 0 8 8 0 0 11 11

i6 0 0 0 12 0 0 0 10 0 8 17 0 0 17 14

i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0

i8 0 0 36 0 19 0 0 0 0 0 0 0 0 0 0

i9 10 0 0 12 0 5 0 0 0 8 16 0 0 12 13

i10 9 1 0 12 0 5 0 10 2 8 14 1 10 12 12

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

67

Table 3.5. Product demand profile [kg] for case study 2.

 Time period (each period represents 87 days)

Product t4 t8 t12 t16 t20 t24 t28 t32 t36 t40 t44 t48 t52 t56 t60

p1 21 32 18 28 61 104 153 156 164 163 161 162 162 163 165

p2 6 5 4 4 4 3 3 3 3 3 3 3 2 2 2

p3 12 43 38 5 22 52 97 132 133 135 137 118 109 100 90

p4 583 628 655 687 758 921 989 941 993 649 621 573 521 468 421

p5 12 12 11 10 9 7 6 5 4 3 2 2 2 2 3

p6 211 200 245 246 257 266 284 274 226 180 166 151 137 123 110

p7 4 5 5 7 6 5 8 9 8 9 7 7 6 5 5

p8 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5

p9 15 15 15 13 12 9 8 6 5 4 3 3 2 2 2

p10 72 99 104 102 111 120 130 139 188 120 106 93 81 69 58

p11 552 615 699 737 743 733 684 572 518 471 424 381 342 307 274

p12 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5

p13 211 252 290 298 286 216 169 153 150 145 110 100 93 84 102

p14 2 2 4 3 3 3 16 11 13 16 16 16 16 17 17

p15 4 4 5 6 16 11 24 32 37 40 41 42 42 43 44

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

68

Table 3.6. Production rates rip [kg / day] for case study 2.

 Product

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 0.35 0.39 0 0.45 0 0.29 0 0.35 0.25 0.39 0.41 0.39 0 0.12 0.35

i2 0.6 0 0 0.61 0 0.6 0 0.6 0 0.43 0.56 0 0.6 0.6 0.6

i3 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0

i4 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45

i6 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45

i7 0 0 0 0 0 0 0.45 0 0 0.45 0 0 0 0 0

i8 0 0 0.58 0 0.45 0 0 0 0 0 0 0 0 0 0

i9 0.45 0 0 0.45 0 0.45 0 0 0 0.45 0.45 0 0 0.45 0.49

i10 0.45 0.45 0 0.45 0 0.45 0 0.45 0.45 0.45 0.49 0.45 0.45 0.45 0.45

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

69

Table 3.7. Production costs ηip [RMU / kg] for case study 2.

 Product

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 1 1 0 10 0 3 0 1 1 1 3 1 0 1 1

i2 10 0 0 5 0 2 0 5 0 10 2 0 2 5 2

i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 20 0 0 0 20 0 20 20 0 0 5 20

i6 0 0 0 10 0 0 0 10 0 10 10 0 0 1 10

i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0

i8 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0

i9 10 0 0 10 0 10 0 0 0 10 8 0 0 1 10

i10 15 15 0 15 0 15 0 15 15 15 15 15 15 15 15

Table 3.8. Facility capability PIi [boolean value] for case study 2.

 Product

Facility p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1

i2 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1

i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1

i6 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1

i7 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

i8 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

i9 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1

i10 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1

In their paper, Lakhdar et al. (2007) stated that the presented MILP model was an

extension of the one already discussed in case study 1 described earlier. The core

mathematical formulation for the single-objective problem remained mostly the same

with the only most noticeable change being the lack of explicit model of separation

between USP and DSP suites. Nevertheless, the complexity of the problem in case

study 2 is much higher compared to case study 1 due to a greater number of products,

facilities, and time periods (refer to Table 3.9 for a comparison). A 15-year time

horizon is assumed comprising 60 time periods. Each individual time period t is 87

days long compared to 60 in case study 1. There are 15 products that need to be

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

70

allocated to 10 facilities. Additional subsets are introduced to define facility capability

and availability: PIi, the set of products that can be manufactured in facility i (Table

3.8), and TIi, the set of time periods during which facility i is available for use. All

facilities are assumed to be available throughout the time horizon, apart from facility

i6 which is unavailable until time period t5, and facility i9 which is unavailable until time

period t41. Minimum Tip
min

 and maximum Tip
max campaign durations are assumed to be

0 and 87, respectively. Production yield ydip (Table 3.4), rate rip (Table 3.6), and cost

ηip (Table 3.7) of each product p depend on facility i it is being manufactured in.

Table 3.9. The comparison of MILP model complexity between case study 1 and 2.

 Case Study 1 Case Study 2

Single equations 535 19,430

Single variables 457 25,018

Discrete variables 252 9,382

Non-zero elements 1,750 72,244

3.4. Methods

The implementation of mathematical models using algebraic modelling systems such

as GAMS is very different compared to general-purpose programming languages

such as C++. GAMS allows the mathematical models to be implemented in a way that

is similar to their mathematical notation, while the general-purpose programming

languages require an explicit definition of every expression. Another critical challenge

of developing an efficient GA-based approach was identifying the smallest number of

independent variables so as to maintain the dimensionality of the problem low and

the shortest sequence of steps needed to evaluate the candidate solutions for the

case studies to ensure good performance.

In this section, the structure of the proposed GA-based approach and the steps of the

algorithms that captured capacity planning objectives for multiple products across

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

71

multiple suites and facilities are outlined. Most of the GA methods is explained in the

methods section for case study 1. In case study 2, the focus is on the rolling horizon

strategy taken to improve the performance of the standard GA for solving the long-

term capacity planning problem. The relative complexity of the optimisation problems

is illustrated by the summary of the MILP model statistics shown in Table 3.1. The

MILP models were recreated in GAMS 23.9.5 and solved with a CPLEX 12.4.0.1

solver. GA and PSO algorithms were implemented using C++ programming language

and compiled using the Microsoft Visual C++ Compiler v14 (MSCV). The

mathematical models are summarised in Appendices C and D; however, the reader

is advised to refer to the original papers for a more in-depth explanation. Both case

studies were performed on an Intel i5-6500 based Windows 10 system with 16GB of

RAM.

3.4.1. GA Parameter Tuning

The process of identifying the optimal parameters for an optimisation algorithm or a

machine learning one is usually costly, involves the search of a large, possibly infinite,

space of candidate parameter sets, and may not guarantee optimality (Camilleri et al.,

2014). A simple PSO algorithm is implemented as a meta-optimiser to automatically

tune the crossover and mutation parameter values in both case studies of this chapter

(and throughout this thesis). Each particle, i.e. a potential solution, is initiated with

randomised position and velocity vectors. The particle’s position in a decision space

is defined by its position vector comprising the parameter values of the crossover and

mutation. The particle’s velocity is the speed and direction at which the particle is

traversing the decision space during each epoch. The fitness of each particle is

assessed by running the GA using the parameter values encoded in the position

vector for a specified number of independent algorithm runs with a fixed population

size measuring the average of the best objective function values achieved at the end

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

72

of each run. The concept of the meta-optimisation is illustrated in Figure 3.2 while

Algorithm 3.1 lists a pseudocode for it. The parameter values of PSO algorithm (Table

3.2) were chosen based on the studies performed by Eberhart and Shi (2000) and

Trelea (2003). Meta-optimisation is also applied in other chapters of this thesis (mainly

Chapter 4) to automatically set the parameters of the GAs.

Figure 3.2. The meta-optimisation approach. Adapted from Camilleri et al. (2014).

Table 3.10. Meta-optimisation parameters used in case study 1 and 2 to find the

optimal crossover and mutation parameter values for the GA.

 Case Study 1 Case Study 2

PSO swarm size1 20

Number of PSO epochs2 200

PSO inertia weight w3 0.729

PSO local weight c1
4 1.494

PSO global weight c2
5 1.494

Number of GA runs 100 50

GA population size 100 200
1 The number of candidate solutions, i.e. particles.
2 An equivalent of generations in the GA.
3 Determines how much of the original velocity is retained.
4 Determines how much the personal best position of a particle affects the global search process. Larger

local weights drive the particles towards their own personal bests thus breaking the swarm apart.
5 Determines how much the global best position affects the global search process. Larger global weights

tend to keep the swarm tighter turning it into one large hill-climber.

Meta-Optimisation Algorithm
(Particle Swarm Optimisation)

Meta-Optimisation Problem
(find optimal GA crossover and mutation values)

Genetic Algorithm

Capacity Planning Problem
(e.g. maximise operating profit)

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

73

Algorithm 3.1. PSO-based meta-optimisation of the GA.

 1 swam = ∅

 2 epoch = 0 ▻ epochs counter

 3 best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = <> ▻ placeholder for best position vector

 4 for swarm_size times

 5 x⃗ = A position vector with random values from 0.0 to 1.0 for each GA parameter

 6 v⃗ = A velocity vector with random values from 0.0 to 1.0 for each GA parameter

 7 particle = { x⃗ , v⃗ }

 8 swarm = swarm U { particle }

 9 end for

10 while epoch < epochs

11 for each particle x⃗ in swarm

12 particle’s fitness = n-run performance of the GA using parameter values encoded in x⃗

13 if best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ == <> or particle’s fitness > best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ fitness

14 best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = x⃗

15 end if

16 end for

17 for each particle x⃗ and v⃗ in swarm

18 x⃗ + = previous fittest location of the current particle

19 for each dimension i ▻ update particle’s position x⃗ and velocity v⃗ vectors

20 r1 = random number from 0.0 to 1.0 inclusive

21 r2 = random number from 0.0 to 1.0 inclusive

22 vi = wvi + c1r1(xi
+ – xi) + c2r2(besti – xi)

23 xi = xi + vi

24 Ensure xi is in 0.0-1.0 range ▻ can be either reinitialised or set to the closest bound

25 end for

26 end for

27 epoch += 1

28 end while

29 return best⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

3.4.2. Case Study 1

3.4.2.1. Chromosome Structure

In case study 1, the GA-based approach uses a semi-direct representation, i.e. only

the USP part of the schedule is encoded. Each chromosome is an | i |-by-| t | array of

tuples where i is a set of USP suites, and t is a set of discrete-time periods (illustrated

in Figure 3.3). Each tuple comprises a product label p and production time CTipt in

USP suite i at time period t measured in days. Both variables are randomly generated

at the beginning of the GA during the initial population generation. The variable CTipt

is generated randomly within the minimum CTip
min

 and maximum CTip
max

 production

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

74

time range. The DSP part of the schedule is constructed during fitness evaluation

using the USP variables.

 t1 t2 … tn

U
S

P

s
u

it
e
s

 i1 (p, CTipt) (p, CTipt) … (p, CTipt)

i2 (p, CTipt) (p, CTipt) … (p, CTipt)

… … … … …

in (p, CTipt) (p, CTipt) … (p, CTipt)

Figure 3.3. Chromosome encoding strategy for case study 1. Each (p, CTipt) pair

represents a gene encoding which product p and how many days CTipt have been

allocated to USP suite i at a time period t.

3.4.2.2. Genetic Algorithm

The GA comprises the following steps: fitness evaluation, tournament selection,

crossover, mutation, and replacement. In case study 1, chromosomes for crossover

and mutation are selected using a binary tournament with replacement strategy which

favours individuals with a higher objective function value, i.e. schedules with a larger

profit value. A uniform crossover operator with a rate of pC is used to exchange the

tuples between the chromosomes. Each tuple is also mutated with a rate pM to avoid

premature convergence and improve the quality of the final solution. During mutation,

the product label is changed by replacing it with a different random value from the set

of available products P. The length of production is varied by adding or subtracting a

random number of days, ensuring the allocated campaign time is within the

constrained range, CTip
min

 and CTip
max

. If the length of production after mutation

happens to fall outside of the constrained range, it is set to the value of the closest

bound. In both case studies, the GAs are augmented with elitism (the term was

originally coined by De Jong (1988)) which is a highly exploitative method of

preserving the fittest chromosomes from the previous population (Luke, 2013). In

case study 1, a single best chromosome is re-inserted into the population whenever

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

75

it is lost. Finally, the GA is set to terminate early if the fitness of the best individual has

not improved for 100 consecutive generations.

3.4.2.3. Fitness Evaluation

In both case studies, the fitness evaluation procedures contain algorithmic

adaptations of the MILP models (Lakhdar et al., 2005; Lakhdar et al., 2007) of multi-

product biopharmaceutical manufacture. In case study 1, the fitness evaluation

procedure generates a complete production schedule (fills the DSP part) and

estimates the values of binary and continuous variables, e.g. Zipt, Bipt, CIpt, which are

used in the objective function to calculate the profitability of the schedule (Equation

3.1). The pseudo algorithm of the fitness evaluation procedure for case study 1 is

presented in Algorithm 3.2.

Algorithm 3.2. Pseudocode for fitness evaluation in case study 1

 1 for each time period t

 2 for each upstream suite i

 3 p = productsit

 4 CTipt = timeit

 5 Zipt = 1 – (t > 0 and p == productsi,t-1)

 6 Bipt = Zipt + CRp(CTipt – αpZipt)

 7 CIpt = CIpt + Bipt

 8 end for

 9 for each product p

10 if t > ζp

11 CWpt = CIp,t-ζ
p

-1 – (∑ ∑ Bjpθ +
ζ

p

θ=t-ζ
p

j ∑ CWpθ

ζ
p

θ=t-ζ
p

)

12 end if

13 CIpt = CIpt + CIp,t-1 – CWpt

14 if CIpt > Cp

15 CWpt = CWpt + CIpt – Cp

16 CIpt = Cp

17 end if

18 for each downstream suite j

19 if productsjt == 0

20 Bjpt = λpCIpt

21 Zjpt = 1 – (t > 0 and p == productsj,t-1)

22 while (FTipt= β
p
Zjpt +

Bjpt-Zjpt

FRp
)> FTp

max

23 Bjpt = Bjpt – 1

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

76

Algorithm 3.2. (continued) Pseudocode for fitness evaluation in case study 1

24 end while

25 CIpt = CIpt −
Bjpt

 λp

26 FIpt = FIpt + Bjpt

27 productsjt = p

28 timejt = FTjpt

29 end if

30 end for

31 if t > σp

32 FWpt = FIp,t-σ
p

-1 – (∑ Spθ +
σp

θ=t-σp
∑ FWpθ

σp

θ=t-σp
)

33 end if

34 FIpt = FIpt + FIp,t-1 – FWpt

35 if FIpt > Fp

36 FWpt = FWpt + FIpt – Fp

37 FIpt = Fp

38 end if

39 if Dpt > 0

40 if Dpt ≤ FIpt

41 Spt = Dpt

42 FIpt = FIpt – Spt

43 else

44 Spt = FIpt

45 FIpt = 0

46 Δpt = Dpt – Spt

47 end if

48 end if

49 if Δp,t-1 > 0

50 if Δp,t-1 ≤ FIpt

51 Spt = Spt + Δp,t-1

52 FIpt = FIpt – Δp,t-1

53 else

54 Spt = Spt + FIpt

55 FIpt = 0

56 Δpt = Δpt + Δp,t-1 – Spt

57 end if

58 end if

59 end for

60 end for

In Algorithm 3.2, Lines 3 and 4 retrieve the product label p and the number of

production days allocated to USP suite i at time period t, CTipt, from the chromosome

which is an | i |-by-| t | array. Lines 5 and 6 calculate the number of changeovers and

batches produced in USP suite i at time period t. In Line 5, the value of the changeover

variable Zipt will be equal to 1 if and only if product p has not been produced in USP

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

77

suite i at a previous time period t – 1. Line 7 accumulates the production from all USP

suites. Lines 10-12 calculate the amount of product p wasted in USP suites at time

period t which is equal to the number of batches left unprocessed from ζp periods ago.

The amount of USP inventory of product p at time period t is calculated in Line 13 by

adding the cumulative value obtained in Line 7 from time period t – 1 and subtracting

the amount of waste CWpt. Lines 14-17 ensure that the USP inventory level CIpt does

not exceed the storage limit Cp. Any excess inventory of product p during time period

t is calculated as waste CWpt (Line 15).

Line 19 ensures that the assignment of product p to DSP suite j at time period t is

performed only once. Line 20 calculates how many batches will be produced in a DSP

suite j at time period t. This is performed by multiplying the USP inventory value CIpt

by the production correspondence factor λp which specifies the respective

throughputs from USP and DSP suites. For example, a factor of 0.5 signifies that for

every two USP batches one DSP batch is produced. Line 21 evaluates the number of

changeovers in DSP suites similarly to Line 5. Line 22 estimates the campaign

duration FTjpt of product p at DSP suite j during time period t. It also checks whether

the DSP campaign length does not exceed the allowed maximum FTp
max

. If it does,

the value of variable Bjpt is iteratively decremented until the production time FTjpt is

below or equal to FTp
max

 (Line 23). Line 25 updates the value of USP inventory of

product p at time period t by subtracting the number of batches that are processed in

DSP suite j. Line 26 accumulates the production from all DSP suites. Lines 27 and 28

assign the product p and DSP production time FTjpt to the DSP part of the

chromosome.

The amount of DSP waste FWpt and inventory levels FIpt of final product p at time

period t are calculated in Lines 31-38 similarly to Lines 10-17. In Lines 39-48, if there

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

78

is a demand Dpt for product p at time period t, then the amount of product sold Spt is

calculated based on the number of batches stored in DSP inventory FIpt. If there are

more batches in storage than there are in demand (Line 40), the variable Spt will be

equal to the value of demand (Line 41). Otherwise, Line 44 assigns the value of DSP

storage FIpt to Spt, and the backlog is recorded using variable Δpt for that time period

in Line 46. If the inventory allows it (Line 50), the backlog from a previous time period

Δp,t-1 is sold in Line 45. Otherwise, it is accumulated in Line 51.

The fitness of each chromosome is equal to the profit achieved by the schedule which

is calculated with the same objective function (Equation 3.1) as presented by Lakhdar

et al. (2005) using the aforementioned binary and continuous variables. The objective

function value is equal to the difference between the total sales ∑ ∑ 𝜈𝑝𝑆𝑝𝑡𝑡𝑝 and the

total costs of manufacturing ∑ ∑ (∑ 𝜂𝑝𝐵𝑖𝑝𝑡𝑖𝑡𝑝 + ∑ 𝜂𝑝𝐵𝑗𝑝𝑡)𝑗 , product changeovers

∑ ∑ (∑ 𝜓𝑝𝑍𝑖𝑝𝑡𝑖𝑡𝑝 + ∑ 𝜓𝑝𝑍𝑗𝑝𝑡𝑗), intermediate and final product storage

∑ ∑ (𝜌𝑝𝐶𝐼𝑝𝑡− 𝜔𝑝𝐹𝐼𝑝𝑡𝑡𝑝), late deliveries ∑ ∑ 𝛿𝑝𝛥𝑝𝑡𝑡𝑝 , and waste disposal

∑ ∑ (τpCWpt − τpFWpt𝑡𝑝).

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ ∑ (𝜈𝑝𝑆𝑝𝑡 − ∑ 𝜂𝑝𝐵𝑖𝑝𝑡𝑖𝑡𝑝 − ∑ 𝜓𝑝𝑍𝑖𝑝𝑡𝑖 − ∑ 𝜂𝑝𝐵𝑗𝑝𝑡 −𝑗

∑ 𝜓𝑝𝑍𝑗𝑝𝑡𝑗 −𝜌𝑝𝐶𝐼𝑝𝑡− 𝜔𝑝𝐹𝐼𝑝𝑡− 𝛿𝑝𝛥𝑝𝑡 − 𝜏𝑝𝐶𝑊𝑝𝑡 − 𝜏𝑝𝐹𝑊𝑝𝑡) Equation 3.1.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

79

3.4.3. Case Study 2

3.4.3.1. Chromosome Structure

The increased complexity of the planning problem in case study 2 presented a

challenge for the GA-based approach. Encoding the chromosomes as full-scale

| i |-by-| t | arrays was found to be computationally costly. A rolling time horizon method

was taken to explore the large search space in a more efficient manner by dividing

the 15-yearlong planning problem into 15 equal sub-problems solved consecutively.

In order to accomplish this, each chromosome encoded a sub-problem as an | i |-by-

| τ | array of product p and the length of production Tipt values where τ ⊂ t and | τ | =

4. τ represents the extent of the rolling time horizon, i.e. a dynamic subset of 4 time

periods which correspond to the timeline of the sub-problem being solved. For

example, τ = { t1, t2, t3, t4 } and τ = { t57, t58, t59, t60 } contain the time periods for the first

and last sub-problems, respectively. The best solution from each sub-problem is

stored in the final, full-scale | i |-by-| t | solution, before proceeding to solve the

following sub-problem. The values of the variables corresponding to the best solution

such as the number of batches Bipt of product p produced in each facility i during time

period t are fixed so they would not need to be recalculated for the next sub-problem.

To distinguish the rolling time horizon approach-based GA from the standard one ,

which uses a direct full-scale encoding strategy, it will be referred to it as the dynamic

GA.

3.4.3.2. Genetic Algorithm

This section explains the dynamic GA procedure. Algorithm 3.3 lists the pseudocode

for the dynamic GA. Figure 3.4 illustrates the concept of it.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

80

Algorithm 3.3. Pseudocode for the dynamic GA applied in case study 2.

 1 for each subproblem

 2 parents = ∅

 3 gen = 0 ▻ subproblem generation counter

 4 num_restarts = 0 ▻ tracks the number of times the GA was restarted

 5 subproblem_best = □ ▻ placeholder for the best solution to the current subproblem

 6 Generate new parent population

 7 while gen < max_gens

 8 if gen ≥ x and subproblem_best == subproblem_best from x generations ago

 9 if num_restarts < desired number of GA restarts

10 Generate new parent population

11 num_restarts += 1

12 else

13 break

14 end if

15 end if

16 for each parent in parents

17 EvaluateFitness(parent)

18 if subproblem_best = □ or fitness of parent > fitness of subproblem_best

19 subproblem_best = parent

20 end if

21 end for

22 offspring = { top n of the fittest individuals in parents, breaking ties at random }

23 for (|parents| – | offspring |) / 2 times

24 parenta = BinaryTournament(parents)

25 parentb = BinaryTournament(parents)

26 offspringa, offspringb = Crossover(parenta, parentb)

27 offspring = offspring U { Mutate(offspringa), Mutate(offspringb) }

28 end if

29 parents = offspring

30 gen += 1

31 end while

32 Extend the full-scale solution with subproblem_best ▻fix solved variables

33 end for

A new parent population is generated for every sub-problem with the values of product

p for each facility i selected randomly from the set of allowable products for that facility,

PIi, making sure the facility i is also available for use at time period t ∈ TIi. A product

label with a value of 0 is also included in the set to denote facility i idling at time period

t. The parent population of gen + 1 is made up of the top 5% of the fittest individuals

from the previous parent population and the offspring (recombined parents) (see

Lines 22-29, Algorithm 3.3). A uniform crossover operator with a probability pC is used

to create two offspring from two parent chromosomes. The product label p

and production time encoded in each chromosome are mutated independently with

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

81

Figure 3.4. An illustration of how the long-term capacity planning problem from case study 2 can be divided into smaller sub-problems. The full

solution and each sub-problem are | i |-by-| t | and | I |-by-| τ | arrays respectively. When | τ | = 4, the sub-problems overlap with one another on

the parts that are shaded in grey. For example, once the first sub-problem is solved { t1, t2, t3, t4 }, some of the fixed binary and continuous variables

from time period t4 will be used to estimate the variable values over time period t5 for the second sub-problem { t5, t6, t7, t8 }. The dynamic GA

generates a solution to the full-scale problem by solving the sub-problems in a chronological order and concatenating the best solutions from

each one.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t56 t57 t58 t59 t60

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

Year 12 Year 13 Year 14 Year 15Year 6 Year 7 Year 8 Year 9 Year 10 Year 11

F
a
c
il
it

y

Year 1 Year 2 Year 3 Year 4 Year 5

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

82

probabilities pMutP and pMutT, respectively. Provided that the facility i is available for

use at time period t, the value of product label p is mutated by assigning 0 or a random

value from the subset PIi (products that can be manufactured in facility i). Production

time is mutated by adding or subtracting a random number of days, similarly to the

mutation procedure employed in case study 1. A completely new parent population is

generated when the best fitness value remains unchanged for a specified number of

consecutive generations (Lines 8-16, Algorithm 3.3). When this repeats, the GA stops

solving the sub-problem (Line 13, Algorithm 3.3) and extends the full-scale solution

with the best solution to the most recent sub-problem (Line 32, algorithm 3.3).

3.4.3.3. Fitness Evaluation

The fitness evaluation procedure in the dynamic GA of case study 2 is very similar to

that of case study 1. In Algorithm 3.4, the variable ξ is used to iterate through the

values of the | i |-by-| τ | array encoded by each chromosome. The product label p and

production time Tipt are retrieved from the chromosomes in Lines 4 and 5. The value

of the binary changeover variable Zipt is set to 1 in Line 6 if variable Bip,t-1, the number

of batches of product p produced in facility i in the previous time period slot, is 0. The

value of the number of batches variable Bipt during time period t is calculated in Line

7 and converted into kilograms Kipt using the yield conversion factor ydip in Line 8. The

value of ydip depends on the facility i which the product p is being manufactured in.

Line 9 accumulates the value of Kipt into the variable Ipt – the amount of product p in

kilograms stored at time period t. The amount of product waste Wpt is estimated in

Lines 13-15. The value of this variable is equal to the amount of product p that was

not sold and remained in storage for more than ζ time periods. The rest of the

pseudocode logic in Algorithm 3.4, i.e. from Line 17 and onwards is nearly identical

to Lines 39-58 in Algorithm 3.2 (fitness evaluation for case study 1). The only notable

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

83

differences are the lack of storage capacity constraints and the addition of backlog

decay factor π which diminishes the importance of the backlogged orders over time.

Algorithm 3.4. Pseudocode for fitness evaluation in case study 2.

 1 ξ = 0

 2 for each time period t in subproblem ▻or for ξ from 0 to | τ |

 3 for each facility i

 4 p = productsiξ

 5 Tipt = timeiξ

 6 Zipt = 1 – (t > 0 and Bip,t-1 == 0)

 7 Bipt = Zipt + rip(Tipt – αZipt)

 8 Kipt = Biptydip

 9 Ipt = Ipt + Kipt

10 end for

11 ξ = ξ + 1

12 for each product p

13 if t > ζ

14 Wpt = Ip,t-ζ-1 – (∑ Spθ+ζ

θ=t-ζ
∑ Wpθ ζ

θ=t-ζ)

15 end if

16 Ipt = Ipt + Iip,t-1 – Wpt

17 if Dpt > 0

18 if Dpt ≤ Ipt

19 Spt = Dpt

20 Ipt = Ipt – Spt

21 else

22 Spt = Ipt

23 Ipt = 0

24 Δpt = Dpt – Spt

25 end if

26 end if

27 if Δp,t-1 ≥ 0

28 if Δp,t-1 ≤ Ipt

29 Spt = Spt + Δp,t-1

30 Ipt = Ipt – Δp,t-1

31 else

32 Spt = Spt + Ipt

33 Ipt = 0

34 Δpt = Δpt + πΔp,t-1 – Spt

35 end if

36 end if

37 end for

38 end for

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

84

The fitness of each chromosome is evaluated using the objective function of profit

maximisation (Equation 3.2) defined by Lakhdar et al. (2007). The objective function

value is equal to the difference between the total sales ∑ ∑ ν𝑆𝑝𝑡𝑡∈𝑇𝐼𝑖𝑝 and the total

operating costs which include the costs of manufacturing and changeovers

∑ ∑ ∑ (𝜂𝑖𝑝𝐵𝑖𝑝𝑡 + 𝜓𝑍𝑖𝑝𝑡)𝑖∈𝐼𝑃𝑖𝑡∈𝑇𝐼𝑖𝑝 , storage ∑ ∑ 𝜌𝐼𝑝𝑡𝑡∈𝑇𝐼𝑖𝑝 , and late deliveries

∑ ∑ 𝛿𝛥𝑝𝑡𝑡∈𝑇𝐼𝑖𝑝 .

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ ∑ (𝜈𝑆𝑝𝑡 − 𝜌𝐼𝑝𝑡− 𝛿𝛥𝑝𝑡 − ∑ (𝜂𝑖𝑝𝐵𝑖𝑝𝑡𝑖∈𝐼𝑃𝑖𝑡∈𝑇𝐼𝑖𝑝 + 𝜓𝑍𝑖𝑝𝑡)) Equation 3.2.

3.5. Results

In this section, the results to the case studies of capacity planning and scheduling of

biopharmaceutical manufacture from the literature are presented. In case study 1, the

problem consists of a multi-suite facility, with 2 USP { i1, i2 } and 2 DSP { j1, j2 } suites

to produce 3 products { p1, p2, p3 } with multiple intermediate demand dates due over

a 360-day long production time horizon. The horizon is discretised into 6 time periods

{ t1, t2, …, t6 } of 60 days. In case study 2, the problem consists of 10 facilities { i1, i2,

…, i10 } with different manufacturing capabilities PIi (subset of facilities capable of

producing product p) and availability TIi (subset of facilities available at time period t)

to produce 15 products { p1, p2, …, p15 } due annually over a 15-yearlong production

time horizon. The horizon consists of 60 discrete time periods { t1, t2, …, t60 } of 87

days.

The GAs discussed in the previous sections for case study 1 and case study 2 are

used to solve the respective scheduling problems, and the results are compared with

the recreated MILP models in Tables 3.11 and 3.13. A comparison between the

production schedules generated using MILP and a GA is also provided in Figures 3.5

and 3.6.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

85

3.5.1. Case Study 1

The proposed GA developed in this chapter was first applied to case study 1 on

medium-term capacity planning for a single-site, multi-suite, multi-product

biopharmaceutical facility. Initially, a MILP model was developed for the problem as a

benchmark for comparison with the GA performance. In their original MILP work,

Lakhdar et al. (2005) reported an objective function value of 487 relative monetary

units (RMU) with a 5% optimality gap for this problem. The margin of optimality (also

known as a relative optimality gap) is defined as the relative distance between the

relaxed MILP solution and the current best integer MILP solution (Brooke et al., 1998).

In other words, it is the relative difference between the “best estimate” solution and

“the best integer” solution that satisfies all integer requirements/constraints. Lakhdar

et al. (2005) reported that it took 16 seconds to solve the optimisation problem. Using

the reproduced MILP model an objective function value of 490 RMU was achieved

with 0% optimality gap indicating a global optimum.

Table 3.11. Case study 1 results and model statistics for MILP and GA models.

 MILP GAa GAb

Max obj. function value 490 4901 4901

Solution time (s) 0.22 0.072 0.072

Optimality gap 0% 0%3 0%3

Avg. obj. function value4 - 490 ± 0 489 ± 5

Population size - 100

Crossover rate, pC5 - 0.710

Mutation rate, pM5 - 0.070

Termination6 - 100
a Results obtained using the same random number generator seed from the meta-optimisation.
b Results obtained using a different random number generator seed.
1 Max objective function value obtained from 100 independent GA runs
2 An average solution time of a single GA run
3 An optimality estimate relative to the global optimal obtained using the recreated MILP model
4 Mean objective function value of 100 independent GA runs (mean ± 1 standard deviation).
5 The parameter values were selected using the PSO algorithm.
6 Each run was terminated when the fitness had not improved for 100 generations or maximum

generation limit (1000) had been reached.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

86

In contrast to the mathematical programming approaches, such as MILP, GA is not

guaranteed to converge on the same value every time it is run. As a result, the search

process for the optimal value(s) is typically performed by running the GA for a number

of independent runs (generating a new population for each one). Literature suggests

values in the range of 20 and 50 runs, e.g. Taherdangkoo et al. (2013), Allmendinger

et al. (2014). In case study 1, because of the fast execution speeds of the GA, i.e.

less than a second per single run, the number of runs was set to 100. Each run was

terminated when the fitness had not improved for 100 generations or maximum

generation limit (1000) had been reached.

Figure 3.5. Production schedule for case study 1 with an objective function value of

490 RMU and 0% optimality gap. Both the MILP model and the proposed GA

generated the same schedule. The first number in each cell denotes the number of

batches produced which is followed by the production time [days] in brackets. The

shading of the box indicates which product is being manufactured.

The aforementioned PSO-based meta-optimisation approach was used to tune the

crossover and mutation parameter values, pC and pM. Using this approach, the

optimal values of crossover rate (pC = 0.710) and mutation rate (pM = 0.070) were

identified, and the GA achieved the global optimum of 490 RMU for 100 consecutive,

independent algorithm runs. The GA also generated a production schedule with the

product allocation pattern identical to the one from the recreated MILP model (Figure

3.5). The average solution time of the GA was 0.07 s. In contrast, MILP took an

average of 0.22 s to find the global optimum (even though MILP is a deterministic

t1 t2 t3 t4 t5 t6

USP 1 4 (60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)

USP 2 2 (54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)

DSP 1 3 (55) 5 (50) 2 (50) 3 (30) 2 (20) 5 (50)

DSP 2 2 (52) 2 (20) 2 (20) 3 (55) 5 (50)

Time periods (tn = 60 days)

Su
it
e
s

Product 1 Product 2 Product 3

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

87

technique, the running time can be affected by the background processes thus the

MILP model was run 10 times to obtain a more accurate estimate).

Given the fast performance of the proposed GA-based method and the optimality of

the results, it can be considered as a viable alternative for addressing medium-term

capacity planning and scheduling problems similar in structure and complexity to case

study 1.

3.5.2. Case Study 2

Having tackled medium-term, single-site facility scheduling, the GA was then

extended to address long-term planning across multi-site, multi-product

biopharmaceutical manufacturing facilities in case study 2. To set the benchmark for

the GA, the recreated single-objective MILP model was used to achieve an objective

function value of 66,360 RMU with a 0% optimality gap for this problem. It took

approximately 16.7 min to find the global optimum. With the optimality gap increased

to 1%, the MILP model achieved an objective function value of 65,940 RMU in 8.77

s.

As discussed earlier, two versions of a GA (standard and dynamic) were applied to

solve the long-term capacity planning problem presented in case study 2. Using the

standard version, each chromosome encoded the full-scale problem as an | i |-by-| t |

array (where | i | = 10 and | t | = 60), and the GA was set to terminate after 1000

generations had elapsed. In the dynamic version, a rolling time horizon approach was

utilised to break down the full-scale 15-yearlong scheduling problem into 15 sub-

problems. Each chromosome encoded only a part of the full schedule as an

| i |-by-| τ | array (where τ ∈ t and | τ | = 4) corresponding to the sub-problem being

solved. Both GA versions were run 50 times. The crossover, mutation, and elitism

operators were identical in both standard and dynamic versions.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

88

The PSO-based meta-optimisation was applied to tune both the standard and

dynamic GAs to ensure a fair comparison of the two versions. The dynamic GA was

restarted once the fitness value remained unchanged for a set number of consecutive

generations defined by a termination criterion. In an attempt to achieve a higher

objective function value using the dynamic GA, different population sizes (100, 200,

300) and termination criteria (25, 50, 75) were tested (see Table 3.12).

Table 3.12. Case study 2 results and model statistics for the dynamic GA model using

different population sizes and termination criteria.

Avg. obj.

function value1

Max obj.

function

value 2

Avg. solution

time

Population

size

Termination

criterion3

65,399 ± 131 65,653 3.91 s 100 25

65,518 ± 144 65,799 6.11 s 100 50

65,543 ± 144 65,818 8.30 s 100 75

65,652 ± 112 65,849 8.09 s 200 25

65,755 ± 105 65,934 12.87 s 200 50

65,797 ± 92 65,987 17.20 s 200 75

65,806 ± 66 65,921 12.66 s 300 25

65,855 ± 86 65,997 19.86 s 300 50

65,883 ± 92 66,068 26,85 s 300 75
1 Average of best objective function values from 50 independent GA runs

(mean ± 1 standard deviation)
2 Max objective function value obtained from 50 independent GA runs.
3 If the best objective function value remained unchanged for a given number of consecutive

generations, the GA is restarted with a new parent population. The second time the best objective

function value stayed the same for the same number of generations, the GA was terminated.

As expected, increasing the population size and termination criterion had a positive

impact on the maximum and mean objective function values. For example, with a

population size of 300 and a termination criterion of 75, the mean and maximum

objective function values achieved with the dynamic GA after 50 runs were 65,883 ±

92 and 66,068, respectively. In comparison, the global optimum achieved with MILP

was 66,360. However, the improvements to the objective function value came at the

cost of longer execution times, i.e. upwards of 15 s for a single run on average.

Therefore, for the best trade-off between the solution quality, i.e. the objective function

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

89

value, and the performance of the dynamic GA, the population size and the

termination criterion were set to 200 and 25, respectively.

The comparison of the results between the MILP and the two GA versions is

summarised in Table 3.13. After 50 runs, the mean best objective function value using

the standard GA was 61,186 ± 437 while the dynamic GA (with a population size of

200 and a termination criterion of 25 generations) achieved 65,652 ± 112. The rolling

time horizon approach led to significant performance gains. Not only the mean

objective function value obtained with the dynamic GA was higher and had lower

standard deviation than the standard GA, but also the execution time was

approximately 2.7 times faster (8.09 s vs 21.56 s). The dynamic GA was also

comparable to the relaxed MILP model both in terms of the speed (8.09 s vs 8.77 s)

and solution quality. Using the known global optimum of 66,360 as an upper bound,

the average and the lowest optimality gaps achieved with the dynamic GA (with a

population size of 200 and a termination criterion of 25 generations) were estimated

to be 1.1% and 0.8%, respectively. In comparison, the relaxed MILP model returned

an objective function value of 65,940 with a 0.6% optimality gap. The comparison of

the Gantt charts in Figure 3.6 shows that the scheduling pattern of the dynamic GA

(Figure 3.6.b) is similar to that of the relaxed MILP model (Figure 3.6.a), for example:

▪ Facilities i1 and i2 run with little to no idle time and with a variety of different products

allocated to them.

▪ Facility i3 is busier in the first half of the scheduling table with more product

allocations.

▪ Product p4 is almost exclusively produced in the facility i4.

▪ Facility i4 has no idle time periods.

▪ Certain facilities such as i5 and i10 are completely idle.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

90

Table 3.13. Case study 2 results and model statistics for MILP and GA models.

 MILP GA

 Global optimum Relaxed Dynamica Dynamicb Standarda Standarda

Max obj. function value 66,360 65,940 65,8491 65,8771 61,8801 62,1931

Time (s) 1000.36 8.77 8.092 8.182 21.562 24.082

Optimality gap3 0% 0.6% 0.8%3 0.7%3 7.8%3 7.43

Avg. obj. function value4 - 65,652 ± 112 65,686 ± 105 61,186 ± 437 61,490 ± 469

Population size - 200 200

Crossover rate, pC5 - 0.935 0.597

Mutation rate, pMutP5 - 0.018 0.001

Mutation rate, pMutT5 - 0.867 0.295

Elitism - 70% 5%

Termination - 256 1000

a Results obtained using the same random number generator seed from the meta-optimisation.
b Results obtained using a different random number generator seed.
1 Max obj. function value obtained from 50 independent GA runs.
2 An average solution time of a single GA run.
3 An optimality estimate relative to the global optimum obtained using the recreated MILP model, i.e. 1 – obj. function value / global optimum
4 Average of best objective function values from 50 independent GA runs

(mean ± 1 standard deviation)
5 The parameter values were selected using the PSO algorithm.
6 If the best objective function value remained unchanged for 25 consecutive generations, the GA was restarted with a new parent population. The second time the best

objective function value stayed the same for the same number of generations, the GA was terminated. The maximum generation limit was set to 1000.

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

91

Figure 3.6. Production schedules for case study 2. Each product p ∈ { p1, p2, …, p15 } is denoted by a color label displayed in the legend below

the schedules. The numbers of batches of each product produced have been removed for clarity purposes.

(a) generated using the MILP model. An objective function value of 65,940 RMU was obtained with 0.6% optimality margin (based on the known

global optimum as the upper bound).

(b) generated using the dynamic GA. An objective function value of 65,849 RMU was obtained (0.8% estimated optimality margin)

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

92

3.6. Summary

This chapter has demonstrated how a GA can be applied to solve medium- and long-

term biopharmaceutical capacity planning problems formulated as discrete-time

mixed integer programs in a fast and efficient manner. The key enabling features of

the GA-based approaches included a chromosome encoding strategy, a rolling time

horizon approach to improving the performance of the GA for tackling the long-term

planning problem, and algorithms that captured capacity planning objectives for

multiple products across multiple suites and facilities. A PSO-based meta-

optimisation method was also presented for automatically setting crossover and

mutation parameter values based on the average best objective function value

achieved with the GA. The viability of the GA-based scheduling optimisation

approaches was demonstrated on two industrially-relevant case studies from the

literature.

In case study 1, a medium-term capacity planning problem of a single-site, multi-suite

biopharmaceutical facility was solved. The proposed GA obtained the global optimum

faster than a related MILP model. In case study 2, a more computationally complex,

long-term capacity planning problem of a multi-site biopharmaceutical manufacture

was solved. Using the rolling horizon approach, the full-scale problem was divided

into 15 sub-problems which were solved consecutively. Using the parameters for the

best trade-off between the performance and solution quality, the average run time of

the dynamic GA was 8.09 s whereas the average optimality gap of the solutions was

1.1%, according to the known global optimum.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

93

4. Continuous-Time Biopharmaceutical

Capacity Planning and Scheduling

4.1. Introduction

In the preceding chapter, GA approaches were compared with MILP for discrete-time

based optimisation of biopharmaceutical capacity plans. In the first case study, both

GA and MILP models generated a globally optimal solution. The discretisation of the

time horizon into a number of time intervals of uniform durations was advantageous

in terms of making it simpler to model the planning problem but it also had several

shortcomings. The key one was the inability to meet the product demand on time

(Figure 4.1). This was because of the inherent limitation of the discrete-time

representations adopted in the original MILP formulation by Lakhdar et al. (2005) in

their biopharmaceutical capacity planning model. The constraints of fixed time periods

and the manufacturing of at most one product at any given time period irrespective of

the sufficient time available for further production resulted in several days of unutilised

production time (see Figure 4.2). For example, the USP1 and USP2 suites were

occupied for approximately 89% and 84% of the total available production time,

respectively. So, the demand for product p1 at time period t4 was not met even though

the facility had spare capacity.

Other shortcomings of discrete-time based models have been reported in the

literature. These include inaccuracy, due to the aforementioned approximation of the

time horizon, as well as unnecessary increases in of the overall size of the resulting

mathematical programming problems, due to the introduction of a large number of

binary variables associated with each discrete time interval have been reported in the

literature (Floudas & Lin, 2004). To address these drawbacks, methods based on

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

94

continuous-time representations have received a substantial amount of attention.

They provide greater potential for the development of more efficient and realistic

modeling and solution approaches. In the continuous-time models, the manufacturing

campaigns (more broadly referred to as events) are allowed to take place at any point

in the continuous domain of time. This kind of flexibility is accomplished using variable

event times that can be either made to be specific to each unit/product or defined

globally. Using the continuous-time approach, the mathematical programming

problems can sometimes end up being smaller in size and easier to solve because of

the elimination of the inactive time periods.

Figure 4.1. Supply (bar) and demand (line) profile of the globally optimal solution to

the case study 1. The demand for product p1 at time period t4 was not met on time.

a)

b)

Figure 4.2. Unutilised production time. (b) The numbers in the cells indicate how many

days were left unutilised by (a) the globally optimal solution.

t1 t2 t3 t4 t5 t6

USP 1 4 (60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)

USP 2 2 (54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)

DSP 1 3 (55) 5 (50) 2 (50) 3 (30) 2 (20) 5 (50)

DSP 2 2 (52) 2 (20) 2 (20) 3 (55) 5 (50)

Time periods (tn = 60 days)

Su
it
e
s

USP 1 10 10 20

USP 2 6 16 16 10 10

DSP 1 5 10 10 30 40 10

DSP 2 8 40 20 5 10

Su
it
e
s

Product 1 Product 2 Product 3

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

95

However, due to the variable and more flexible nature it becomes more difficult to

model scheduling problems and the continuous-time based MILP models often tend

to have even more complicated formulations than the discrete-time based

alternatives. Moreover, the usefulness and computational efficiency of the

continuous-time formulation depend on the number of predefined event points

(Méndez et al., 2006). If the global optimum of the scheduling problem requires at

least n points then fewer points will lead to sub-optimal or even infeasible solutions

whereas a large number of points will lead to long computation times. Since the

number of points is not known in advance, it is usually determined iteratively by

increasing it until there is no improvement in the objective function. In certain cases,

a substantial number of model instances need to be solved for each scheduling

problem. Furthermore, this stopping criterion does not guarantee the optimality of the

schedule and may terminate with a sub-optimal solution.

Inspired by the NeuroEvolution strategies, e.g. Stanley and Miikkulainen (2002) , this

chapter presents a novel variable-length chromosome structure and a set of new

genetic operators to automatically determine the optimal permutation, number, and

length of production campaigns to satisfy the capacity planning problem objectives

and constraints. This variable-length GA-based scheduling optimisation method is

validated on two industrially-relevant case studies adapted from the literature and

compared with related discrete- and continuous-time MILP models.

This chapter is organised as follows: Section 4.2 defines the scheduling problems of

the two examples in more detail. Section 4.3 describes the key components of the

novel continuous-time GA-based approach for biopharmaceutical capacity planning.

Section 4.3.1 explains the variable-length chromosome structure and encoding

strategy. Section 4.3.2 introduces new genetic operators and Section 4.3.3 explains

the scheduling heuristic used for evaluating the fitness of each candidate solution and

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

96

constructing the Gantt charts. Case study 1 and 2 results are presented in Section

4.4. The flexible GA-based approach is compared with discrete- and continuous-time

based MILP models on the example 1 in Section 4.3.1. In Section 4.3.2, a discrete-

time MILP model is used to benchmark the performance of the flexible GA-based

approach on the example 2.

4.2. Problem Definition

In this chapter, the novel variable-length GA is validated on two examples adapted

from Lakhdar et al. (2005). Both examples are based on industrially-relevant data and

cover the most common aspects of the biopharmaceutical manufacturing.

4.2.1. Case Study 1

This case study has been already presented in the first case study of the previous

chapter. This particular scheduling problem was first solved by Lakhdar et al. (2005)

using a discrete-time based MILP model, then later by Kabra et al. (2013) using a

continuous-time MILP model based on an STN framework, and finally by Vieira et al.

(2016) using a continuous-time MILP model based on RTN framework. In the original

problem statement in Lakhdar et al. (2005), the planning horizon was discretised into

time periods of uniform durations (60 days). Therefore, the problem data and most of

the constraints were time period-based. In this chapter, the problem statement and

the original data are adjusted to suit the continuous-time domain. The rightmost

boundary of each time period is assigned as a due date for product demand. For

example, any product demand due in the first time period in the discrete-time model

is equivalent to being due on the 60th day from the beginning of the schedule in the

continuous-time model. It is assumed that overproduction is not allowed, sales are

possible only at the demand date, and the backlog can be sold by the next 60th day.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

97

For example, if the delivery on the first 60th day from the start of schedule was missed,

that late order can be sold after the next 60 days, i.e. on the 120th day. Additional

adjustments include the conversions of the time period-based shelf-life durations and

the continuous rates of USP and DSP production into an actual number of days. Both

Kabra et al. (2013) and Vieira et al. (2016) had to make similar assumptions and

adjustments to suit their continuous-time MILP-based models. The problem statement

for case study 1 is as follows:

▪ Given:

o 3 biopharmaceutical products p = { p1, p2, p3 }

o A biopharmaceutical facility with 2 USP suites i = { i1, i2 } and 2 DSP suites

j = { j1, j2 }

o A continuous planning horizon of 360 days

o Product-dependent production and changeover durations.

o Finite product shelf-life and storage capacity

o Product demand with multiple intermediate due dates

o Manufacturing, storage, waste disposal, backlog, and changeover costs

▪ Determine:

o The number, duration, and sequence of manufacturing campaigns

o Production quantities along with sales and inventory profiles

▪ To:

o Maximise total profit

Table 4.1. Product demand profile [batches] for case study 1. The due date is the nth

day from the start of the schedule.

 Due date

Product 60 120 180 240 300 360

p1 0 0 0 6 0 6

p2 0 0 6 0 0 0

p3 0 8 0 0 8 0

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

98

Table 4.2. All relevant parameters for case study 1.

 Product

 p1 p2 p3

USP duration [days] 20 22.2 12.5

USP lead time [days] 10 10 10

DSP duration [days] 10 10 10

DSP lead time [days] 10 10 12.5

Shelf-life [days] 180 180 180

Storage limit [batches] 40 40 40

Sell price [RMU / batch] 20 20 20

USP production cost [RMU / batch] 2 2 2

DSP production cost [RMU / batch] 2 2 2

Storage cost [RMU / batch] 1 1 1

Waste disposal cost [RMU / batch] 5 5 5

Backlog penalty [RMU / batch] 20 20 20

USP changeover cost [RMU / batch] 1 1 1

DSP changeover cost [RMU / batch] 1 1 1

4.2.2. Case Study 2

To further demonstrate the features of the variable-length GA-based scheduling

optimisation approach developed in this chapter, case study 2 introduces a more

complex scheduling problem with more products, more DSP suites, and a planning

horizon that is nearly twice as long. The topology of the multi-product, multi-suite

biopharmaceutical facility in case study 2 is shown in Figure 4.3 and the problem

statement is as follows:

▪ Given:

o 4 biopharmaceutical products p = { p1, p2, p3, p4 }

o A biopharmaceutical facility with 2 USP suites i = { i1, i2 } and 3 DSP suites

J = { j1, j2, j3 }

o A continuous planning horizon of 540 days and

o Product-dependent production and changeover durations.

o Finite product shelf-life and storage capacity

o Product demand with multiple intermediate due dates

o Manufacturing, storage, waste disposal, backlog, and changeover costs

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

99

▪ Determine:

o The number, duration, and sequence of manufacturing campaigns

o Production quantities along with sales and inventory profiles

▪ To:

o Maximise total profit

Figure 4.3. Biopharmaceutical facility topology for the example 2.

Table 4.3. Production data for example 2.

 Product
 p1 p2 p3 p4

USP duration [days] 20 22.2 12.5 12.5

USP lead time [days] 10 10 10 10

DSP duration [days] 10 10 10 10

DSP lead time [days] 10 10 12.5 12.5

Shelf-life [days] 180 180 180 180

Storage limit [batches] 40 40 40 40

Sell price [RMU / batch] 25 20 17 17

USP production cost [RMU / batch] 5 2 1 1

DSP production cost [RMU / batch] 5 2 1 1

Storage cost [RMU / batch] 1 1 1 1

Waste disposal cost [RMU / batch] 5 5 5 5

Backlog penalty [RMU / batch] 20 20 20 20

USP changeover cost [RMU / batch] 1 1 1 1

DSP changeover cost [RMU / batch] 1 1 1 1

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

100

Table 4.4. Product demand profile [batches] for case study 2. The due date is the nth

day from the start of the schedule.

 Due date

Product 60 120 180 240 300 360 420 480 540

p1 0 0 0 6 0 4 0 0 4

p2 0 4 0 0 0 0 4 0 0

p3 0 0 0 0 10 0 0 0 10

p4 0 6 0 8 0 0 0 0 0

4.3. Methods

In this section, the key components of the GA such as chromosome structure,

crossover, and mutation are described. The details of the continuous-time scheduling

heuristic for evaluating the fitness of each chromosome and constructing schedules

are also outlined. The GA parameters have been tuned using the PSO-based meta-

optimisation approach which has been described earlier in Section 3.4.1 of Chapter

3. The fitness of the PSO particle, i.e. GA parameter vector, was assessed by

measuring the mean best objective function value achieved after 20 GA runs with a

population size of 100 for 100 generations using that parameter vector.

The GA-based DST discussed in Chapter 2 was applied in this chapter to solve the

industrially-relevant case studies of multi-suite, multi-product biopharmaceutical

manufacture. Python API developed in this thesis provided with the methods for data

I/O and visualisation, e.g. to generate Gantt charts and inventory profiles. The

variable-length GA with its components and the scheduling heuristic have been

implemented in C++ programming language and compiled using a g++-8 compiler.

Appendix B discusses the technical details and demonstrates an example of the GA-

based DST application using Python API. The discrete-time MILP model was

recreated in GAMS 23.9.5 and solved with a CPLEX 12.4.0.1 solver. Both case

studies have been solved on an Intel i5-6500 based Ubuntu 16.04 LTS system with

16GB of RAM.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

101

4.3.1. Chromosome Structure

In the previous chapter, the chromosomes encoded the product labels and production

time into a table of fixed dimensions which were defined by the problem statement,

i.e. the number of products, time periods, facilities/USP suites. Unlike a discrete-time

representation, a continuous-time one does not have such a grid that is well-defined

by the problem variables, e.g. divided by the number of products and time periods of

uniform durations. Without the discretised planning horizon, it becomes more

challenging to encode the candidate solutions. However, it is still possible to use fixed-

length chromosomes in the continuous-time domain, but this approach would have

the same aforementioned limitations as continuous-time based MILP models – the

number of genes encoding the events, i.e. the chromosome length, would have to be

determined iteratively thus adding another hyper-parameter that needs to be tuned

and possibly worsening the overall GA performance. To eliminate the need for this

variable, a variable-length GA is developed to explore the decision space by

simultaneously varying both the number as well as the length of individual product

campaigns.

The key to the flexible GA-based approach presented in this chapter is a variable-

length chromosome structure. At the time of writing, there were not any known works

in the literature using variable-length chromosomes to solve process design or

capacity planning problems in the biopharmaceutical industry. However, they were

applied in other domains such as finding the optimal number, types, and positions of

wireless transmitters to meet the objectives of maximum coverage and minimum cost

(Ting et al., 2009) and creating an interpreter capable of solving Artificial Intelligence

(AI) planning problems described in the standardised Planning Domain Definition

Language (PDDL) (Brie & Morignot, 2005). The main source of inspiration for the

variable-length chromosome structure presented in this chapter is NeuroEvolution of

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

102

Augmenting Topologies (NEAT) method developed by Stanley and Miikkulainen

(2002). The artificial evolution of neural networks using a GA has shown great promise

in reinforcement learning tasks outperforming standard methods in many benchmark

tasks. NEAT enables the neural networks to evolve not only their weights but also the

connections and the overall topology from basic elements. This is achieved by

employing a flexibile encoding strategy and a set of special genetic operators. This

chapter adapts the idea of evolution from the most basic, unit element into a complex

solution to create a variable-length chromosome structure for continuous-time

scheduling.

In this chapter, every variable-length chromosome comprises the most basic, unit

elements called genes. Each gene encodes a single USP manufacturing campaign

with a product label p, a USP suite i the product campaign would take place in, and

the number of batches to be produced. Since the DSP campaigns are dependent on

the output from the USP suites, it is not necessary to encode the DSP campaigns

information into the variable-length chromosomes. This information can be inferred

from the USP campaigns when a chromosome is decoded into a production schedule

using a continuous-time scheduling heuristic. Figure 4.4.a illustrates the gene and

chromosome structures using UML diagrams whereas Figure 4.4.b visualises the

overall variable-length chromosome structure at the start and end of a GA. More

detailed UML diagrams and C++ implementations of the gene and chromosome are

provided and explained in Appendix B.

Even though it is possible to set how many genes within each chromosome would be

generated at the beginning of the GA, the algorithm presented in this chapter is

designed to evolve the candidate solutions from a single gene, i.e. a single USP

manufacturing campaign of one batch of a random product assigned to a random

USP suite. This is accomplished by modifying certain traditional genetic operators,

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

103

e.g. uniform crossover, as well as introducing a few new ones to add a new random

gene at the end of every GA generation and to mutate the old ones.

a)

b)

Figure 4.4. Variable-length chromosome:

(a) UML diagram representations of the gene and chromosome structures

(b) An example of a variable-length chromosome at the start (GEN 0) and end of the

GA (GEN 100). The values in the boxes correspond to the USP suite label followed

by the number of batches produced. The product label is denoted by the colour.

In Figure 4.4.a, chromosome’s Mutate() method would call gene’s Mutate() method

which comprises individual mutation operators that are discussed in Section 4.3.2.2.

4.3.2. Genetic Algorithm

The search process, i.e. the evolution of the variable-chromosomes, is based on a

standard generational scheme using parent and offspring populations. The parent

population is not only used to create an offspring population through binary

tournaments with replacement, a modified uniform crossover, and a set of special

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

104

mutation genetic operators but also to keep a memory of the fittest individuals found

by the GA. The offspring replace the parents only if they have a better objective

function value. In other words, the parent and offspring populations are combined and

the new parent population of gen + 1 is created by selecting the best solutions from

the combined pool.

4.3.2.1. Crossover

The traditional uniform crossover is adapted to suit the variable-length chromosome

structure. Before the crossover is applied, the chromosomes are sorted according to

the number of genes they possess. This way the crossover operator is performed on

similar individuals. Provided that both parent chromosomes have a sufficient number

of genes (at least 3), the genes are exchanged with a rate of 0.5 until the end of the

shorter chromosome is reached. The extra genes from a longer parent are copied to

the shorter one with a rate of 0.5. The crossover operator is illustrated by Figure 4.5.

Figure 4.5. An example of a modified uniform crossover between two variable-length

chromosomes: genes 2 and 3 are exchanged between the parent chromosomes and

gene 5 from the first parent chromosome is copied to the second one.

4.3.2.2. Mutation

Several special gene- and chromosome-level mutation operators are introduced (see

Figures 4.4.a and Figure 4.6) to perform the following in an order:

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

105

1. MutateProductNum(): to mutate product label mutation with a rate of pMutP.

2. MutateSuiteNum(): to mutate USP suite label with a rate of pMutS.

3. MutateNumBatches(): to increase or decrease the number of batches by one with

a rate of pPosB and pNegB, respectively.

4. MakeNewGene(): to add a new random gene to the end of the chromosome

(occurs unconditionally).

5. SwapGenes(): to swap two genes within the same chromosome with a rate of

pSwap.

Figure 4.6. Variable-length mutation steps. pMutP, pMutS, pPosB, and pNegB denote

the rate of each gene undergoing the corresponding mutation. The addition of a new

gene and swap mutation occur once per chromosome.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

106

4.3.3. Continuous-Time Scheduling Heuristic

In both case studies, the fitness of each chromosome is equal to the total profit

achieved by the schedule encoded in the variable-length chromosome. However,

before the profit can be calculated the schedule and the resulting product inventory,

sales, backlog, and waste profiles need to be constructed. One of the main challenges

of developing the continuous-time scheduling heuristic of this chapter was finding a

way to track the values of various variables over time. In Chapter 3, fitness evaluation

was made easier because of the discrete-time representation. The values of binary

and continuous variables were stored in arrays of a fixed size that was defined by the

problem e.g. number of products and time periods. Therefore, it was relatively simple

to “look up” the value of any variable over any given time period.

In order to be able to accurately track information such as the expiry date of each

individual batch and how many batches are available for any given demand, the

continuous-time scheduling heuristic was developed using Object Oriented

Programming (OOP)-based approach. The heuristic is based on three key objects:

Batch, Campaign, and Schedule (see Figure 4.6). The ability to keep track of

individual batches makes it possible to generate very detailed production schedules.

Figure 4.6. UML diagrams of the key objects used in the scheduling heuristic to

construct a schedule from a variable-length chromosome.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

107

The Batch object represents one whole batch of a specific product and it contains

information when the batch was stored (or manufactured) and when it is expected to

expire. The Campaign object represents the product campaign of a specific product

in one of the available processing suites and it contains the following: the start date,

end date, and the list of batches (Batch objects) produced. The Schedule object

characterises the final decoded solution or schedule which also comprises the

objective function value, i.e. total profit in this chapter, as well as the costs of

production, product changeovers, storage, waste disposal, and backlog penalty. The

product inventory is implemented using a priority queue data structure. A priority

queue is a data structure containing elements, e.g. batches, such that each one has

been assigned a priority based on a specific attribute, e.g. the expiry date. A batch

with a higher priority (imminent expiry date) will be processed (or sold) before any

batch with lower priority. This way the amount of product wasted due to expired shelf-

life is minimised. Each product has an individual priority queue for every demand due

date. Schedule is constructed and evaluated in the following four core steps (see

Figure 4.7).

Figure 4.7. Scheduling heuristic. A high-level illustration of how the

continuous-time scheduling heuristic is used to decode and evaluate a variable-length

chromosome containing two genes.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

108

4.3.3.1. Step 1

First, a schedule of USP campaigns is constructed for each USP suite based on the

production data and the information encoded by the genes within the variable-length

chromosome. Each gene is mapped to a Campaign object by assigning the product

and USP suite labels and the number of batches to it. The order of the genes within

the chromosome determines the chronological order of the campaigns. The start date

of a campaign is equal to the end of the previous one (0 if it is the very first campaign)

plus the number of days needed for the equipment set-up and cleaning, i.e. the USP

lead time (see Table 4.2). The end date of a USP production campaign is estimated

by adding the product of the total number of batches of that campaign and the number

of days needed to produce one batch to the start date. It is ensured that all USP

campaigns are set to end within the planning horizon defined by the scheduling

problem, i.e. 360 days for case study 1 and 540 days for case study 2. Genes

encoding the USP campaigns beyond the planning horizon are removed from the

chromosomes. Algorithm 1 lays out a brief pseudocode for Step 1.

Algorithm 4.1. Pseudocode of the step 1 of the scheduling heuristic.

 1 procedure CreateUSPSchedule(chromosome, schedule)

 2 for each gene in chromosome

 3 Create a campaign object

 4 Map the values encoded in the gene (product, suite, no. batches) to the campaign

 5 if this is the first campaign in the corresponding USP suite

 6 campaign.start = USP lead time of the corresponding product

 7 else

 8 Get the prev_campaign in the current USP suite from the schedule

 9 if prev_campaign.product == campaign.product

10 Continue prev_campaign

11 if prev_campaign.end > planning horizon

11 Adjust the prev_campaign.num_batches so that prev_campaign.end ≤ planning horizon

12 end if

12 continue

13 end if

14 campaign.start = prev_campaign.end + USP lead time of the corresponding product

15 end if

16 campaign.end = campaign.start + USP no. days to produce the gene.num_batches

17 if campaign.end > planning horizon

18 Adjust the campaign.num_batches so that campaign.end ≤ planning horizon

19 end if

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

109

Algorithm 4.1. (continued) Pseudocode of the step 1 of the scheduling heuristic.

20 if campaign.num_batches == 0

21 Remove the corresponding gene from the chromosome

22 else

23 Add campaign to schedule.campaigns for the corresponding USP suite

24 end if

25 end for

26 end procedure

4.3.3.2. Step 2

Using the information from the previous step, a schedule of DSP campaigns is created

for each DSP suite. The earliest USP campaigns are assigned to the DSP suites with

the earliest availability. The start of each DSP campaign depends on the day the first

USP batch becomes available and whether it is necessary to allocate extra time to

set-up a DSP campaign. For example, if the USP batch becomes available on the 10th

day for DSP but the lead time of a DSP campaign is 15 days then the DSP campaign

will start on the 15th day. It is quite common in the biopharmaceutical industry to take

the intermediate product through the DSP processing stage as soon as it leaves the

USP stage generally due to the low stability of the intermediate molecules. Therefore,

the scheduling model schedules every DSP campaign to start immediately once the

batch from the USP stage is ready. Similarly to Step 1, every DSP manufacturing

campaign is represented by a Campaign object which, in addition to the product label,

the number of batches, the start and end dates, also contains a list of Batch objects

for each batch of final product. Algorithm 4.2 lists brief pseudocode for Step 2.

Algorithm 4.2. Pseudocode of the step 2 of the scheduling heuristic.

 1 procedure CreateDSPSchedule(schedule)

 2 for each earliest usp_campaign in schedule.campaigns

 3 Create a dsp_campaign object

 4 dsp_campaign.product = usp_campaign.product

 5 Find a DSP suite with the earliest availability

 6 if this is the first campaign in the corresponding DSP suite

 7 if DSP lead time > the day the first USP batch is available

 8 dsp_campaign.start = DSP lead time

 9 else

10 dsp_campaign.start = the day the first USP batch is available

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

110

Algorithm 4.2. (continued) Pseudocode of the step 2 of the scheduling heuristic.

11 end if

12 else

13 Get previous_dsp_campaign in the current DSP suite from the schedule.campaigns

14 if previous_dsp_campaign.end + DSP lead time > the day the first USP batch is available

15 dsp_campaign.start = previous_dsp_campaign.end + DSP lead time

16 else

17 dsp_campaign.start = the day the first USP batch is available

18 end if

19 dsp_campaign.end = dsp_campaign.start + DSP duration

20 Create a dsp_batch object

21 dsp_batch.product = dsp_campaign.product

22 dsp_batch.stored_on = dsp_campaign.end

23 dsp_batch.expires_on = dsp_batch.stored_on + shelf-life of the corresponding product

24 dsp_campaign.num_batches = 1

25 Add dsp_batch to dsp_campaign.batches list

26 Add dsp_batch to schedule.inventory for the earliest demand due date

27 for each remaining usp_batch in usp_campaign

28 if the day usp_batch is available + DSP duration > planning horizon

29 break

30 end if

31 dsp_campaign.end = the day usp_batch is available + DSP duration

32 Create another dsp_batch object

33 dsp_batch.product = dsp_campaign.product

34 dsp_batch.stored_on = dsp_campaign.end

35 dsp_batch.expires_on = dsp_batch.stored_on + shelf-life of the corresponding product

36 dsp_campaign.num_batches += 1

37 Add batch to dsp_campaign.batches list

38 Add dsp_batch to schedule.inventory for the earliest demand due date

39 end for

40 end for

41 end procedure

4.3.3.3. Step 3

Having both the USP and DSP schedules constructed in Steps 1 and 2, the next step

is to create the profiles for how many batches will be sold, stored, in backlog, and

wasted due to expired shelf-life or overproduction, e.g. exceeded storage limits. The

product profiles are later used in Step 4 to evaluate the objective function value.

Algorithm 4.3. Pseudocode of the step 3 of the scheduling heuristic.

 1 procedure CreateProductProfiles(schedule)

 2 S ∈ ℤ|p|×|d| ▻ supply profile

 3 B ∈ ℤ|p|×|d| ▻ backlog profile

 4 W ∈ ℤ|p|×|d| ▻ waste profile

 5 I ∈ ℤ|p|×|d| ▻ inventory profile

 6 for each product p

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

111

Algorithm 4.3. (continued) Pseudocode of the step 3 of the scheduling heuristic.

 7 for each p demand due date d

 8 Get the inventory queue for p and d from schedule.inventory

 9 Add the leftover inventory of p from the last demand due date d – 1 to the current one

10 Count the backlog from the last demand due date d – 1, i.e. Bpd += Bp,d – 1

11 Remove any expired and excess batches of p from the inventory and add the count to Wpd

12 if the number of batches in the inventory ≥ p demand on d

13 Spd = p demand on d

14 if there are any batches of p remaining in the inventory

15 Use the remainder to fill the backlog orders Bpd and update Spd

16 end if

17 else

18 Spd = all available batches in the inventory

19 Add the count of late deliveries to backlog Bpd

20 end if

21 Add the count of the remaining p batches in the inventory to Ipd

22 end for

23 end for

24 Assign S, B, W, I to schedule

25 end procedure

The sales, backlog, waste, and inventory profiles are created on the basis of product

demand due dates, i.e. the product profiles are integer arrays of | p |-by-| d |

dimensions where | p | is the number of products and | d | is the number of due dates.

The inventory profile is not the same as the inventory of final product. The former is

used to record how many batches were left in storage on any given due date d and

the later is a priority queue which gives the highest sales or delivery priority to the

older batches. All batches are sold in the order of the date they were stored on, which

in return minimises the amout of waste due to expired shelf-life. Any extra amount of

unsold product incurs inventory costs which effectively penalises overproduction in

the objective function of profit maximisation. Backlog is penalised until it is cleared.

Both backlog and inventory costs are cumulative. Step 3 procedure is summarised in

Algorithm 4.3.

4.3.3.4. Step 4

The final step evaluates the objective function value by calculating the profit which is

equal to the difference between the total revenue, i.e. sales, and the total costs of

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

112

USP and DSP production, product changeovers, storage, waste disposal, and

backlog. The objective function from the original discrete-time Lakhdar et al. (2005)

model (see Equation 1 in Section 3.4.2.3) was modified slightly to suit the proposed

approach. The production and changeover costs are estimated on the basis of a

manufacturing campaign. The costs of storage, waste disposal, and backlog penalty

are estimated on the basis of a product demand due date.

Algorithm 4.4. Pseudocode of the step 4 of the scheduling heuristic.

 1 procedure EvaluateSchedule(chromosome, schedule)

 2 for each usp_campaign in schedule.campaigns

 3 schedule.production_cost += usp_campaign.num_batches × USP production cost per batch

 4 schedule.changeover_cost += USP changeover cost

 5 end for

 6 for each dsp_campaign in schedule.campaigns

 7 schedule.production_cost += dsp_campaign.num_batches × DSP production cost per batch

 8 schedule.changeover_cost += DSP changeover cost

 9 end for

10 S, B, W, I = CreateProductProfiles(schedule)

11 for each product p

12 for each p demand due date d

13 schedule.revenue += Spd × sales price of p

14 schedule.backlog_penalty += Bpd × backlog penalty of p

15 schedule.waste_disposal_cost += Wpd × waste disposal cost of p

16 schedule.storage_cost += Ipd × storage cost of p

17 end for

18 end for

19 schedule.profit = (

20 schedule.revenue –

21 schedule.production_cost –

22 schedule.changeover_cost –

23 schedule.backlog_penalty –

24 schedule.waste_disposal_cost –

25 schedule.storage_cost

26)

27 chromosome.objective = schedule.profit

28 end procedure

4.4. Results

In this section, the validity of the variable-length GA-based scheduling optimisation

method is demonstrated on two industrially-relevant case studies adapted from the

literature. In case study 1, the GA-based optimisation method is compared with a

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

113

recreated discrete-time (Lakhdar et al., 2005) and reported continuous-time MILP

models (Kabra et al., 2013; Vieira et al., 2016). The problem consists of a multi-suite

facility with 2 USP and 2 DSP suites producing 3 products with multiple intermediate

demands due over a 360-day (1 year) planning horizon. In example 2, the GA is

compared with a recreated discrete-time MILP model only. The problem consists of a

multi-suite facility with 2 USP and 3 DSP suites producing 4 products with multiple

intermediate demands due over a 540-day (1.5 year) planning horizon.

As mentioned earlier, the original input data has been adapted from Lakhdar et al.

(2005) to suit the continuous-time domain and the scheduling heuristic presented in

this chapter. The continuous production rates are converted from batches per day into

production days per batch. The lead times as used in discrete-time model in Lakhdar

et al. (2005) include not only the cleaning and set-up time but also the time for the

production of the first batch of the product. Therefore, they are adjusted to account

for the cleaning and set-up time only. Product lifetime variables are also converted

from time periods to the corresponding number of days.

4.4.1. Case Study 1

The model statistics and the comparison of the results between the flexible GA-based

approach and the MILP-based models are provided in Table 4.5 for the industrial case

study of multi-product, multi-suite biopharmaceutical production. The Gantt charts

from the different models are shown in Figure 4.9. In their original work, Lakhdar et

al. (2005) reported an objective function value of 487 with 5% optimality gap in 16 s;

in contrast the recreated model achieved an objective function value of 490 by solving

the problem to zero gap in 0.22 s. Due to the aforementioned limitations of the

discrete-time model, the product demand for product p1 was not met on time during

time period t5 (see Figure 4.8.b).

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

114

Kabra et al. (2013) solved the example 1 problem using a continuous-time MILP

formulation based on an STN representation and reported an objective function value

of 517 with 0% optimality gap, zero backlogs, and zero wastage (Table 4.5.b). Vieira

et al. (2016) proposed a continuous-time MILP formulated based on an RTN

representation. They solved the problem to zero gap and achieved an objective

function value of 519 with no wastage and all product demands met on time (Table

4.5.c). Both models were reported to take more CPU time to solve the example 1

problem (85.5 s and 46.9 s respectively) than the discrete-time MILP due to a large

number of constraints needed for accurate monitoring of storage tasks and product

changeovers.

It is important to note that both Kabra et al. (2013) and Vieira et al. (2016) made

several assumptions about the case study 1 problem. For example, Vieira et al. (2016)

had to relax certain storage constraints in order to compare the results with Lakhdar

et al. (2005). Furthermore, the number of batches in both continuous-time MILP

models was set as a continuous variable in contrast to the original Lakhdar et al.

(2005) model. This is also reflected by the continuous values in Gantt charts shown

in Figure 4.9.b and Figure 4.9.c. Without the continuous variable assumption, Vieira

et al. (2016) reported a lower objective function value of 513. In comparison, the GA

achieved an objective function value of 518 maintaining the integer constraints.

The GA-based scheduling optimisation approach developed in this chapter achieved

an objective function value of 518 during every single one of the 20 independent runs

in 0.05 s on average (the parameters of the GA are listed in Table 4.5.a). The best

solution met all product demands on time (Figure 4.8) with zero wastage and had a

better objective function value than the discrete-time MILP (490), Kabra et al. (2013)

(517), and Vieira et al. (2016) (513) using an integer batch-extent variable.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

115

Table 4.5. Case study 1 scheduling problem: comparison of results from the novel

continuous-time GA approach with other discrete-time and continuous-time models.

 Model type

 GAa MILP (STN)b MILP (RTN)c MILPd

Time representation Continuous Continuous Continuous Discrete

Best obj. function value 5181 517b 513 (519)c 490 (487)d

Mean. obj. function value 518 ± 02 - - -

Optimality gap - 0%b 0%c 0% (5%)d

Run time (s) 0.053 85.5b 2.2 (46.9)c 0.22 (16)d

No. runs 20 -

No. generations 100 -

No. chromosomes 100 -

Starting length 14 -

pC 0.027 -

pMutP 0.005 -

pMutS 0.016 -

pPosB 0.900 -

pNegB 0.854 -

pSwap 0.403 -
1 Best obj. function value achieved out of 20 runs

2 Mean best obj. function value ± its standard deviation of 20 runs
3 Mean running time of a GA single run
4 Number of genes per chromosomes at the beginning of the GA

a Continuous-time GA presented in this chapter
b Reported by Kabra et al. (2013)
c Reported by Vieira et al. (2016) using an integer batch-extent variable and continuous batch-extent

variable in brackets
d Recreated model result and the reported one by Lakhdar et al. (2005) in brackets

Figure 4.8. Supply (bar) and demand (line) profile of the best case study 1 solution

generated with the continuous-time GA-based approach (obj. function value of 518).

In the biopharmaceutical industry, the term batch is typically used to denote a

complete biopharmaceutical process (see Figure 1.1). If the number of batches is

continuous then this could mean either an unfinished process or lower than typical

yield. Either way, it is uncommon to have the number of batches set as a continuous

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

116

a)

b)

c)

d)

Figure 4.9. Gantt charts generated for the case study 1:

(a) continuous-time GA-based approach (obj. function value of 518). Each box displays the number of batches followed by the campaign length.

(b) discrete-time MILP (obj. function value of 490). Each box displays the number of batches produced and production time.

(c) RTN-based continuous-time MILP (Vieira et al., 2016) (obj. function value of 519, CO indicates a changeover)

(d) STN-based continuous-time MILP (Kabra et al., 2013) (obj. function value of 517)

t1 t2 t3 t4 t5 t6

USP 1 4 (60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)

USP 2 2 (54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)

DSP 1 3 (55) 5 (50) 2 (50) 3 (30) 2 (20) 5 (50)

DSP 2 2 (52) 2 (20) 2 (20) 3 (55) 5 (50)

Time periods (tn = 60 days)

Su
it
e
s

Product 1 Product 2 Product 3

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

117

variable as it makes the interpretation of the result and Gantt charts (see Figure 4.9.c

and Figure 4.9.d) more difficult.

The gaps between the campaigns in Figure 4.9.a correspond to the lead time needed

to set-up a new campaign or to switch between two different ones. Using the novel

GA-based scheduling optimisation approach, the capacity utilisation of USP1 and

USP2 suites was 94% and 79%, respectively. In contrast, using an integer batch-

extent variable, Vieira et al. (2016) reported utilisation rates of 96% and 80%.

It is interesting to see that the scheduling pattern of the novel variable-length GA

presented in this chapter (Figure 4.9.a) is very similar to that of the discrete-time MILP

model (Figure 4.9.b). For example, there are 6 batches of product p2 and 8 batches

of product p3 scheduled for manufacture at the beginning of both schedules.

Moreover, both models achieved the same average USP capacity utilisation of 86.5%.

Nevertheless, the variable-length GA enabled by the continuous-time scheduling

heuristic was more effective at utilising the available production time which made it

possible not only to meet all product demands on time but also presented an

opportunity for additional production capacity.

Figure 4.10. Supply (bar) and demand (line) profile of the best solution (obj. function

value of 562) generated using the continuous-time GA for the case study 1 with an

increased demand for product p1.

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

118

The variable-length GA was further tested by increasing the demand for product p1 at

the end of planning horizon by 3 batches, i.e. from 6 to 9 on 540th day. Using the same

hyper-parameter values (Table 4.5), the variable-length GA generated a production

schedule (see Figure 4.11) with an objective function value of 562 and all product

demands met on time (displayed in Figure 4.10). The capacity utilisation of USP1 and

USP2 suites increased to approximately 97% and 96%, respectively.

Figure 4.11. Gantt chart generated using the continuous-time GA-based approach for

the case study 1 with an increased demand for product p1.

4.4.2. Case Study 2

In this section, a more complex case study of multi-product, multi-suite

biopharmaceutical manufacture is used to demonstrate that the novel variable-length

GA-based scheduling optimisation approach can be extended for facilities with more

manufacturing suites, more products, and longer demand profiles. In case study 2,

the proposed GA was used to generate a 1.5 production plan for biopharmaceutical

facility with 2 USP and 3 DSP suites manufacturing 4 distinct products.

The comparison of the results and schedules between the GA and the discrete-time

MILP is provided in Table 4.6 and Figures 4.12 and 4.13. The discrete-time MILP

model solved the case study 2 problem to 0% optimality gap achieving an objective

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

119

function value of 598 in approximately 11 s. Despite the global optimality, due to the

aforementioned inherent limitations of the discrete-time domain, the model was only

capable of meeting approximately 86% of all product demands on time (see Figure

4.10.b). The capacity utilisation rate was 88% for both USP suites.

The GA-based scheduling optimisation approach, on the other hand, significantly

outperformed the discrete-time MILP model achieving mean and best objective

function values of 725 ± 37 and 801 respectively. Additionally, the best solution

generated using the GA met all of the product demands on time (see Figure 4.12)

(compared to 8 late deliveries in the MILP solution) without product waste. The

capacity utilisation rates of the USP suites were 97% and 99%. The GA was also

approximately 14 times faster on average than the discrete-time MILP model.

a)

b)

Figure 4.12. Supply (bar) and demand (line) profile of the best case study 2 solution

generated with (a) continuous-time GA-based approach (obj. function value of 801)

and (b) discrete-time MILP (obj. function value of 598)

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

120

Table 4.6. Case study 2 scheduling problem: comparison of results from the novel

continuous-time GA approach with discrete-time MILP model.

 Model type

 GAa MILPb

Time representation Continuous Discrete

Best obj. function value 8011 598

Mean obj. function value 725 ± 372 -

Optimality gap - 0%

Run time (s) 0.793 11.03

No. runs 20 -

No. generations 1000 -

No. chromosomes 100 -

Starting length 14 -

pC 0.027 -

pMutP 0.005 -

pMutS 0.016 -

pPosB 0.900 -

pNegB 0.854 -

pSwap 0.403 -

1 Best obj. function value achieved out of 20 runs

2 Mean best obj. function value ± its standard deviation of 20 runs
3 Mean running time of a single GA run
4 Number of genes per chromosomes at the beginning of the GA

a)

b)

Figure 4.13. Gantt charts generated for the case study 2 using different models:

(a) continuous-time GA-based approach

(b) discrete-time MILP

t1 t2 t3 t4 t5 t6 t7 t8 t9

USP 1 2 (54) 2 (44) 2 (50) 3 (60) 4 (60) 4 (50) 2 (54) 2 (44) 4 (60)

USP 2 2 (35) 4 (50) 4 (50) 4 (50) 4 (60) 2 (50) 3 (60) 3 (60) 4 (60)

DSP1 2 (50) 3 (30) 2 (30) 3 (30) 3 (30)

DSP 2 2 (52) 2 (20) 6 (60) 4 (40) 2 (52) 2 (20) 2 (54.5)

DSP 3 2 (54.5) 4 (40) 4 (40) 4 (40) 2 (54.5) 6 (60)

Su
it
e
s

Time periods (tn = 60 days)

Product 1 Product 2 Product 3 Product 3

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

121

4.4. Summary

In this chapter, a new variable-length GA-based optimisation approach has been

developed for the optimisation of medium-term capacity plans of multi-product, multi-

suite biopharmaceutical facilities. The flexible GA-based approach accounts for the

same features as its discrete- and continuous-time MILP-based counterparts

including but not limited to product-dependent changeovers, multiple intermediate

demand due dates, backlogs, limited storage capacity, shelf-life, and waste disposal.

The validity of the new approach has been demonstrated on two industrially-relevant

case studies previously solved using both discrete- and continuous-time based MILP

models from the literature. In case study 1, the proposed GA-based scheduling

optimisation approach generated a solution that had higher objective function value

than the globally optimal medium-term schedules created related using discrete- and

continuous-time MILP models. In example 2, the continuous-time GA-based approach

was tested on a problem with a more complex facility topology as well as a longer

demand profile. The GA solution met all of the product demands on time significantly

outperforming the discrete-time MILP solution, which despite the global optimality and

available production capacity only met approximately 86% of all product demands on

time.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

122

5. Multi-Objective Biopharmaceutical

Capacity Planning and Scheduling

5.1. Introduction

In the previous chapter, a novel variable-length GA-based optimisation approach was

developed for continuous-time medium-term capacity planning and scheduling of

multi-suite, multi-product biopharmaceutical facility. The novel variable-length GA was

demonstrated to be an efficient and flexible optimisation approach outperforming both

discrete- and continuous-time MILP models on literature-based industrial case

studies. However, both case studies were single-objective while in reality

biopharmaceutical companies have to consider multiple objectives and constraints

that are often conflicting.

Hence this chapter builds upon the variable-length GA and scheduling heuristic

described earlier by incorporating multiple objectives, including maximising the total

production throughput, minimising the cumulative deviations from the strategic

product inventory targets whilst satisfying demands on time and avoiding product

waste over a 3-year period. The continuous-time scheduling heuristic described in the

previous chapter is extended with additional constraints and features such as rolling

product sequence-dependent changeovers, varying manufacturing yields, and

product QC/QA approval times. The functionality of the multi-objective variable-length

GA is illustrated on an industrially-relevant case study. The GA-based scheduling

optimisation approach developed in this chapter is demonstrated to generate a set of

production schedules with optimal number and length of manufacturing campaigns to

satisfy the aforementioned objectives and constraints. The importance of the genetic

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

123

operators introduced in Chapter 4 and the impact of the starting number of genes on

the performance of the GA are also investigated.

This chapter is organised as follows: Section 5.2 lists the input data and describes

the multi-objective biopharmaceutical scheduling problem in more detail. The

methods of this chapter are described in Section 5.3. Section 5.3.1 explains how the

variable-length chromosome structure described in Chapter 4 was modified to suit the

scheduling problem of this chapter. Section 5.3.2 describes the key parts of the GA

with a focus on multi-objective selection and constraint satisfaction components.

Section 5.3.3 presents the extended continuous-time scheduling heuristic for

evaluating the objective values of each candidate solution and decoding

chromosomes into production schedules. The results and discussion are given in

Section 5.4. Section 5.4.1 defines the bounds of the objective space and sets a

benchmark for the multi-objective GA by first solving the scheduling problem of this

chapter with a single-objective GA. Section 5.4.2 evaluates the individual impact of

the population size and the number of generations on the performance of the multi-

objective GA. Section 5.4.3 investigates the importance of each genetic operator.

Section 5.4.4 evaluates the impact of the starting number of genes. Finally, the

results of the multi-objective GA are discussed and compared with the single-

objective GA in Section 5.4.5.

5.2. Problem Definition

The focus of this chapter is on multi-objective capacity planning and scheduling of a

multi-product biopharmaceutical facility with 1 USP and 1 DSP suite. The topology of

the facility is illustrated in Figure 5.1. The problem statement of the industrial case

study is as follows:

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

124

▪ Given:

o A start date (1-Dec-2016) and a planning horizon of 3 years

o A set of biopharmaceutical products { A, B, C, D }

o USP and DSP processing times

o Product-dependent manufacturing yields

o Product sequence-dependent changeovers

o Varying amounts of product stock available at the beginning of the

schedule

o Desired minimum and maximum number of batches per individual product

campaign

o Unique manufacturing requirements to produce the batches in multiples of

a specified number

o QC/QA approval times

o 3-year profile of strategic product inventory targets

o 3-year profile of uncertain monthly product demand

▪ Determine:

o A set of production schedules and the number and length of manufacturing

campaigns for each one

o Production quantities along with inventory and late delivery profiles

▪ So as to (constrained deterministic multi-objective problem):

o Maximise the total production throughput

o Minimise the total inventory deficit, i.e. cumulative differences between the

monthly product inventory levels and the strategic inventory targets

▪ Subject to:

o The total backlog being no greater than 0 kg, i.e. meet all product demands

without delays

o The total waste being no greater than 0 kg

The demand forecast comprises a planning horizon of 3 years (1096 days) with

realistic monthly due dates. It is often not enough just to be able to meet the product

demand on time. In order to be able to deal with unforeseen events and uncertainties

such as unplanned facility shutdowns or higher-than-anticipated product demands,

biopharmaceutical companies strive to meet specific strategic product inventory

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

125

targets. The strategic inventory targets are listed alongside product demand in Table

5.3.

Figure 5.1. Biopharmaceutical facility topology.

The facility is assumed to be available for the entirety of the 1096-day planning

horizon. Before the biopharamceutical products can be shipped to meet the demand,

they have to pass the 90-day QC/QA process. For example, if a demand for a certain

product is due on the 31 March 2018, then the material must be manufactured by the

31 December 2017. Product sequence-dependent changeover time (Table 5.1) is

incurred only when there is a switch between different product manufacturing

campaigns. Any excess or expired product is considered as wasted material which

must be avoided/minimised. Each product has a different manufacturing yield which

determines how many kilograms are produced in a single batch. Additionally, due to

specific DSP requirements, product D needs to be produced in multiples of 3 batches.

The complete process data for the industrial case study is provided in Table 5.2.

Table 5.1. Product-dependent changeovers [days].

 To product
 A B C D

F
ro

m

p
ro

d
u

c
t A 0 10 16 20

B 16 0 16 20

C 16 10 0 20

D 18 10 18 0

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

126

Table 5.2. Process data for the industrial case study.

 Product

 A B C D

Inoculation duration [days] 20 15 20 26

Seed duration [days] 11 7 11 9

Production duration [days] 14 14 14 14

USP duration [days]1 45 36 45 49

DSP duration [days] 7 11 7 7

QC/QA duration 90 90 90 90

Shelf-life [days] 730 730 730 730

Yield per batch [kg] 3.1 6.2 4.9 5.5

Storage limit [kg] 250 250 250 250

Opening stock [kg] 18.6 0 19.6 32.0

Minimum batch throughput per campaign 2 2 2 3

Maximum batch throughput per campaign 50 50 50 30

Produce batches per campaign in multiples of 1 1 1 3
1 USP duration is a sum of inoculation, seed, and production durations

The first objective is to maximise the total kilogram throughput of the production

schedule. It is calculated as the sum of throughputs from individual manufacturing

campaigns. The second objective is to minimise the total inventory deficit – a

cumulative difference between the inventory level and the corresponding strategic

target whenever the latter is greater than the former. The multi-objective optimisation

problem is also subject to the following constraints: the total amount of backlog and

product waste must be ≤ 0 kg. The way the constraints were handled in the model will

be explained in the subsequent sections.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

127

Table 5.3. Product demand followed by the strategic inventory targets inside the

brackets.

 Product

Due date A B C D

1-Jan-17 0 (6.2) 0 (0) 0 (0) 0 (22)

1-Feb-17 0 (6.2) 0 (0) 0 (4.9) 5.5 (27.5)

1-Mar-17 3.1 (9.3) 0 (0) 0 (9.8) 5.5 (27.5)

1-Apr-17 0 (9.3) 0 (0) 0 (9.8) 0 (27.5)

1-May-17 0 (12.4) 0 (0) 0 (9.8) 5.5 (27.5)

1-Jun-17 3.1 (12.4) 0 (0) 0 (9.8) 5.5 (33)

1-Jul-17 0 (15.5) 0 (0) 4.9 (19.6) 5.5 (33)

1-Aug-17 3.1 (21.7) 0 (0) 4.9 (19.6) 5.5 (27.5)

1-Sep-17 3.1 (21.7) 0 (0) 0 (14.7) 5.5 (27.5)

1-Oct-17 3.1 (24.8) 0 (0) 0 (19.6) 0 (27.5)

1-Nov-17 0 (21.7) 0 (0) 0 (19.6) 11 (38.5)

1-Dec-17 6.2 (24.8) 0 (0) 9.8 (19.6) 5.5 (33)

1-Jan-18 6.2 (27.9) 0 (0) 4.9 (14.7) 0 (33)

1-Feb-18 3.1 (21.7) 0 (0) 0 (19.6) 5.5 (33)

1-Mar-18 6.2 (24.8) 0 (0) 4.9 (19.6) 5.5 (33)

1-Apr-18 0 (24.8) 0 (0) 0 (14.7) 11 (33)

1-May-18 3.1 (24.8) 0 (0) 0 (14.7) 5.5 (27.5)

1-Jun-18 9.3 (27.9) 0 (6.2) 4.9 (19.6) 5.5 (33)

1-Jul-18 0 (27.9) 0 (6.2) 9.8 (19.6) 0 (33)

1-Aug-18 6.2 (27.9) 0 (6.2) 0 (9.8) 5.5 (33)

1-Sep-18 6.2 (31) 0 (6.2) 0 (19.6) 5.5 (38.5)

1-Oct-18 0 (31) 0 (6.2) 0 (19.6) 5.5 (33)

1-Nov-18 6.2 (34.1) 6.2 (6.2) 4.9 (19.6) 11 (38.5)

1-Dec-18 9.3 (34.1) 0 (6.2) 4.9 (19.6) 5.5 (33)

1-Jan-19 0 (27.9) 0 (6.2) 0 (24.5) 0 (33)

1-Feb-19 9.3 (27.9) 0 (6.2) 9.8 (34.3) 11 (33)

1-Mar-19 6.2 (27.9) 0 (6.2) 0 (24.5) 0 (33)

1-Apr-19 3.1 (27.9) 0 (6.2) 0 (29.4) 11 (44)

1-May-19 6.2 (34.1) 6.2 (6.2) 4.9 (39.2) 5.5 (33)

1-Jun-19 3.1 (34.1) 0 (6.2) 9.8 (39.2) 5.5 (33)

1-Jul-19 0 (31) 0 (6.2) 9.8 (29.4) 0 (33)

1-Aug-19 9.3 (31) 0 (6.2) 0 (19.6) 11 (33)

1-Sep-19 6.2 (21.7) 0 (6.2) 4.9 (19.6) 11 (22)

1-Oct-19 9.3 (15.5) 0 (6.2) 9.8 (14.7) 0 (11)

1-Nov-19 6.2 (6.2) 0 (6.2) 4.9 (4.9) 5.5 (11)

1-Dec-19 0 (0) 6.2 (6.2) 0 (0) 5.5 (5.5)

5.3. Methods

Chapter 2 defined a list of key requirements for the GA-based scheduling optimisation

tool including the flexibility and applicability to a wide range of biopharmaceutical

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

128

facility models. In order to accomplish this, it is important to continue developing such

a framework that could be used to solve a variety of biopharmaceutical scheduling

problems without having to make significant changes to it. Therefore, the work of this

chapter re-uses a lot of the methods described in Chapter 4, i.e. variable-length

chromosome structure, genetic operators, scheduling heuristic. The focus of this

section is on the changes and the additional features added to the GA and the

scheduling heuristic, e.g. the multi-objective optimisation, the handling of constraints,

rolling product changeovers.

Similarly to Chapter 4, the GA-based DST was applied in this chapter to solve the

industrially-relevant multi-objective scheduling problem of multi-product

biopharmaceutical manufacture. The API developed in Python was used for data I/O

and visualisation such as plotting of Gantt charts and Pareto fronts. The variable-

length multi-objective GA and the continuous-time scheduling heuristic were both

implemented in C++ programming language and compiled with a gcc-8 compiler.

Appendix B discusses the technical details and demonstrates an example of the GA-

based DST application using Python API. The scheduling problem of this chapter has

been solved on an Intel i7-4770HQ based macOS 10.13.5 system 16GB of RAM.

5.3.1. Chromosome Structure

The biopharmaceutical facilities described in the scheduling problem examples in

Chapter 4 had relatively complex topologies with multiple USP and DSP suites. Each

variable-length chromosome consisted of genes encoding USP suite and product

labels and the number of batches produced. According to the problem definition of

this chapter, the biopharmaceutical facility has only 1 USP and 1 DSP (Figure 5.1).

Hence, the amount of information that needs to be encoded by each gene can be

reduced by removing the USP suite labels (see Figure 5.2.a).

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

129

In order to demonstrate the flexibility of the novel encoding strategy developed earlier,

the core idea behind the variable-length chromosome structure is preserved in this

chapter: a 1-D list of genes is used to encode a production schedule. Every gene in

the list contains a product label { A, B, C, D } and a number of batches. Figure 5.2.b

displays an example of what a variable-length chromosome looks like at the start

(GEN 0) and after 100 generations (GEN 100) of the GA have elapsed.

a)

b)

Figure 5.2. Variable-length chromosome:

(a) UML diagram representations of the gene and chromosome structures

(b) An example of a variable-length chromosome at the start (GEN 0) and end of the

GA (GEN 100). The values in the boxes correspond to the number of batches

produced. The product label is denoted by the color.

The order of the genes (from left to right) defines the timing of each manufacturing

campaign. e.g. the second gene in the chromosome encodes the second

manufacturing campaign in the production schedule. The initial population is created

by generating a pool of random chromosomes containing a single gene. With the aid

of special genetic operators described in Chapter 4, the chromosomes are enabled to

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

130

grow and shrink in length over the course of the GA. The impact of the starting number

of genes on the algorithm’s performance is assessed in detail in the results section.

5.3.2. Genetic Algorithm

With the exception of the USP suite mutation operator, all other genetic operators

described in Chapter 4 and the aforementioned variable-length chromosome

representation are integrated into a multi-objective GA that is based on NSGA-II.

NSGA-II is well-know for its effectiveness at solving a wide variety of multi-objective

problems, e.g. see Raisanen and Whitaker (2005) and Hamdy et al. (2016). The multi-

objective variable-length GA employs a generational reproduction scheme using two

populations (parents and offspring) with a fixed number of chromosomes. Parent

population is used to keep track of the best solutions found, i.e. provides elitism, while

the offspring population is a result of crossover, mutation, and selection operators.

Figure 5.3 displays a high-level schematic of the key steps of the multi-objective GA

developed in this chapter. After the initial population of single-gene chromosomes is

created and evaluated, the steps are performed continuously until the maximum

number of generations is reached. For completeness, the descriptions of the genetic

operators described in Chapter 4 have also been included in the schematic.

The scheduling problem of this chapter is a constrained multi-objective optimisation

problem. An area of the objective space where the corresponding solutions do not

meet the constraint requirements is known as infeasible region. Production schedules

that are not able to meet all product demands on time and/or result in a certain amount

of product waste (either due to expired shelf-life or exceeded storage limits) would

belong to the infeasible region. Constraint handling and representation in heuristic-

based optimisation is a difficult issue (Harjunkoski et al., 2014). Simpler constraints

such as the fact that a valid schedule has to be a permutation of jobs or product

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

131

Figure 5.3. Schematic of the core steps of the multi-objective GA developed in

Chapter 5. Assuming the initial population has been created and evaluated, the steps

are looped through until the maximum number of generations is reached.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

132

demands can be mapped into the problem representation and into the choice of

genetic operators. However, such implicit representation becomes harder with the

increasing number and complexity of constraint.

The most basic methods of constraint handling are to discard all infeasible solutions

or to apply a penalty function. More sophisticated methods include the use of repair

mechanisms to convert infeasible solutions into feasible ones during the search

process or the handling of only some of the degrees of freedom by the meta-heuristic

search strategy and fixing the remaining ones during the evaluation of the solution

(Harjunkoski et al., 2014), e.g. by using local priority rules (Piana & Engell, 2010).

In this work, repairing infeasible schedules was deemed to be too computationally

expensive. The penalty-based constraint handling was rejected to avoid introducing

additional parameters into the model. Moreover, according to Sand et al. (2008),

incorrectly applied penalty, e.g. too large, may prevent the heuristic from traversing

infeasible sub-regions in disjoint search spaces.

There have been several other constraint-handling approaches for the multi-objective

problems reported in the literature, e.g. Fonseca and Fleming (1998) and Ray et al.

(2001). For its simplicity and computational efficiency, a constraint-handling approach

proposed by Deb et al. (2002) is used together with a binary tournament selection to

choose more optimal, non-dominated solutions. The pseudocode for this procedure

is listed in Algorithm 5.1. Using this approach, the solutions which do not satisfy the

constraints of the problem, i.e. with a total amount of backog and/or product waste

greater than 0 kg, will not be selected, i.e. will be ranked lower by the NSGA-II ranking

algorithm, even if the values of the objectives are better than those of the solutions

which fully satisfy the constraints. Therefore, the GA initially selects the chromosomes

based on the extent of constraint statisfaction.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

133

Algorithm 5.1. Procedure for binary tournament multi-objective selection based on

constrained-domination (Deb et al., 2002). DetermineDominance procedure returns

an integer flag of 1 if solution q dominates p, -1 if p dominates q, and 0 if both solutions

are non-dominated.

 1 procedure Select(q, p)

 2 flag = DetermineDominance(q, p)

 3 if flag == 1

 4 return q

 5 else if flag == -1

 6 return p

 7 end if

 8 if q.d > p.d ▻ if both q and p are non-dominated select the solution with a larger crowding distance

 9 return q

10 else if p.d > q.d

11 return p

12 end if

13 Randomly select between q and p if both solutions have the same crowding distance

14 end procedure

15

16 procedure DetermineDominance(q, p)

17 if q.constraints != p.constraints ▻ constraints variable is equal to the sum of all constraint violations

18 if q.constraints < p.constraints

19 return 1

20 return -1

21 end if

22 q_dominates = false

23 p_dominates = false

24 for each objective ▻ all objectives are assumed to be minimised

25 if q.objective < p.objective

26 q_dominates = true

27 else if p.objective < q.objective

28 p_dominates = true

29 end if

30 end for

31 if q_dominates == true and p_dominates == false

32 return 1

33 else if p_dominates == true and q_dominates == false

34 return -1

35 end if

36 return 0

37 end procedure

5.3.3. Continuous-Time Scheduling Heuristic

The variable-length chromosomes are decoded into production schedules using a

continuous-time scheduling heuristic adapted from Chapter 4. In this chapter, the

scheduling heuristic describes the biopharmaceutical manufacturing model of a multi-

product biopharmaceutical facility with 1 USP and 1 DSP suite operating in a fed-

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

134

batch mode with staggered bio-reactors and rolling product sequence-dependent

changeovers. For completeness, Figure 5.4 provides UML diagrams of the key

objects used by the continuous-time scheduling heuristic. Algorithm 5.2 lists a brief

pseudocode explaining the schedule construction logic.

Figure 5.4. UML diagrams of the key objects used in the scheduling heuristic of this

chapter to construct a schedule from a variable-length chromosome.

Algorithm 5.2. Pseudocode of the continuous-time scheduling heuristic part that builds

a schedule in this chapter.

 1 procedure CreateSchedule(chromosome, schedule_start_date)

 2 Create a new schedule object

 3 if AddFirstCampaign(first gene in chromosome, schedule, schedule_start_date) == true

 4 for each remaining gene in chromosome

 5 if prev_gene.product != gene.product

 6 if AddNewCampaign(gene, schedule) == false ▻ product changeover
 7 break

 8 end if

 9 else

10 if ContinuePreviousCampaign(gene, schedule) == false

11 break

12 end if

13 end if

14 end for

15 end if

16 return schedule

17 end procedure

18

19 procedure AddFirstCampaign(gene, schedule, schedule_start_date)

20 Create a new campaign object

21 campaign.product = gene.product

22 campaign.start = schedule_start_date

23 campaign.first_harvest = campaign.start + USP duration of campaign.product

24 if AddFirstBatch(campaign) == false

25 return false

26 else

27 AddRemainingBatches(gene, campaign)

28 end if

29 Add campaign to schedule.campaigns list

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

135

Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic

part that builds a schedule in this chapter.

30 return true ▻ will signal to CreateSchedule procedure to continue building the schedule

31 end procedure

32

33 procedure AddNewCampaign(gene, schedule)

34 Create a new campaign object

35 prev_campaign = last most recent campaign in schedule.campaigns list

36 campaign.product = gene.product

37 campaign.first_harvest = prev_campaign.end + changeover duration ▻ see Figure 5.6.c

38 campaign.start = campaign.first_harvest – USP time of campaign.product

39 if AddFirstBatch(campaign) == false

40 return false

41 else

42 AddRemainingBatches(gene.num_batches – 1, campaign)

43 end if

44 Add campaign to schedule.campaigns

45 return true

46 end procedure

47

48 procedure ContinuePreviousCampaign(gene, schedule)

49 prev_campaign = last most recent campaign in schedule.campaigns list

50 return AddRemainingBatches(gene.num_batches, prev_campaign)

51 end procedure

52

53 procedure AddFirstBatch(campaign)

54 Create a new batch object

55 batch.product = campaign.product

56 batch.harvested_on = campaign.first_harvest

57 batch.stored_on = batch.first_harvest + DSP duration of batch.product

58 if batch.stored_on > planning horizon

59 return false ▻ this will send a signal to CreateSchedule procedure to stop

60 end if

61 batch.kg = manufacturing yield of batch.product

62 batch.start = campaign.start

63 batch.approved_on = batch.stored_on + QC/QA approval time of batch.product

64 Add batch to campaign.batches list

65 Add batch to schedule.inventory for the appropriate batch.product demand due date

66 campaign.kg += batch.kg

67 return true

68 end procedure

69

70 procedure AddRemainingBatches(num_batches, campaign)

71 Ensure num_batches is within the minimum and maximum batch throughput bounds

72 Ensure num_batches is a multiple of the given number for gene.product

73 while num_batches > 1

74 Create a new batch object

75 prev_batch = last most recent batch in campaign.batches list

76 batch.product = campaign.product

77 batch.harvested_on = previous_batch.stored_on

78 batch.stored_on = batch.harvested_on + DSP time of batch.product

79 if batch.stored_on > planning horizon

80 return false ▻ this will send a signal to CreateSchedule procedure to stop

81 end if

82 batch.kg = manufacturing yield of batch.product

83 batch.start = batch.harvested_on – USP duration of batch.product

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

136

Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic

part that builds a schedule in this chapter.

84 batch.approved_on = batch.stored_on + QC/QA approval time of batch.product

85 Add batch to campaign.batches list

86 Add batch to schedule.inventory for the appropriate batch.product demand due date

87 campaign.kg += campaign.kg + batch.kg

88 num_batches = num_batches – 1

89 end while

90 last_batch = last most recent batch in campaign.batches list

91 campaign.end = last_batch.stored_on

92 end procedure

Figure 5.5 explains the concept of rolling product changeovers with a simple

illustrative example of how a two-gene chromosome is decoded into a production

schedule of two manufacturing campaigns. In Figure 5.5.a, the chromosome contains

two genes: one represents a manufacturing campaign of one batch of product A and

another – a manufacturing campaign of one batch of product C. The length of each

production campaign is determined based on the number of batches within each gene

and the number of USP and DSP days for the corresponding product. For example, it

takes 52 days in total (45 for USP and 7 for DSP) to produce 1 batch of product A.

The order of the genes within the variable-length chromosome determines the timings

of the manufacturing campaigns. Hence, the campaigns are scheduled in sequence

one after another. At the first glance, it might seem that the two manufacturing

campaigns in Figure 5.5.b overlap with each other. However, it only looks so because

of the aforementioned rolling product sequence-dependent changeovers. Figure 5.5.c

illustrates how the rolling changeovers are implemented. For example, once the

Inoculation stage of product A is complete, a changeover process can begin to

prepare the stage for product C while product A is in Seed stage. The rolling product

changeovers have the obvious benefit of making the utilisation of the available

production time more efficient. However, not every biopharmaceutical facility design

can allow this especially if the individual manufacturing stages do not take place in

separate rooms.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

137

The product sequence-dependent changeover time is used to determine the start date

of the new campaign. This is illustrated by the black and white striped box which

separates the DSP stages of products A and C in Figure 5.5.c (see also Lines 37 and

38 in Algorithm 5.2). The manufacturing campaign of product C is scheduled in such

a way that its production stage ends 16 days, i.e. the number of changeover days

(see Table 5.1), after the end of the manufacturing campaign of product A.

a)

b)

c)

Figure 5.5. An example of the relationship between (a) the genes (b), the decoded

production schedule displayed at a product campaign level, and (c) at a manufacturing

stage level.

Every finished batch of each product is added to an inventory that is also implemented

using a priority queue which ensures that the oldest batches are delivered first.

Similarly to the continuous-time scheduling heuristic described in the preceding

chapter, every product is assigned an individual priority queue for each due date.

Additional check is introduced to ensure that every batch of product has been

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

138

approved by the QC/QA before it can be delivered. The scheduling heuristic maintains

that each chromosome encodes a production schedule which starts and ends within

the set planning horizon. Genes encoding production campaigns beyond the planning

horizon are removed from the chromosome.

The crossover and mutation operators can sometimes cause multiple, consecutive

genes encode manufacturing campaigns of the same product. After the schedule has

been constructed, the heuristic combines the consecutive genes encoding the

campaigns of the same product into one. Figure 5.6. illustrates an example of this.

a)

b)

c)

Figure 5.6. Correction of the mapping of genes to the production campaigns. In (a),

the genes 2 and 3 correspond to the same product. The continuous-time scheduling

heuristic combines them into (b) one contiguous manufacturing campaign and re-

maps it to (c) a single a gene.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

139

5.4. Results

In this section, the novel multi-objective variable-length GA developed earlier in this

chapter is used to generate 3-year production schedules for a multi-product

biopharmaceutical facility. The objectives and constraints of the capacity planning and

scheduling problem are to maximise the total kilogram throughput, minimise the total

kilogram inventory deficit whilst avoiding product waste and meeting all product

demands on time. The multi-objective results are discussed in Section 5.4.5 by

comparing the trade-offs between the best non-dominated solutions. Sections 5.4.2-

5.4.4 study the relationship between the GA, its genetic operators, and their

parameter values by varying them one at a time, keeping all the others unchanged,

i.e. by performing ablation studies. It is acknowledged this is not the most optimal way

because it does not account for the interactions between the operators (Eiben et al.,

1999). Nevertheless, this approach can given some useful insights about the relative

importance of each parameter and genetic operator. The following experiments are

performed:

▪ In Section 5.4.2, the impact of the number of chromosomes on the GA’s

performance is investigated while keeping the number of generations constant

and vice versa.

▪ Section 5.4.3 assesses the importance of each genetic operator by comparing

the performance of the GA when the corresponding rate value is set to 0.

▪ Section 5.4.4 evaluates the effect of the starting number of genes on the GA’s

performance. Moreover, it investigates how the length of the chromosomes in the

best Pareto front changes as a function of the number of generations.

Every experiment is performed for 50 independent GA runs. The top Pareto fronts

from each individual run are combined and sorted again using the non-dominated sort

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

140

method (Deb et al., 2002) to obtain the best Pareto front. The performance of the

multi-objective GA is evaluated on the basis of the maximum and mean hypervolume

achieved after 50 runs. The hypervolume indicator measures the size of the area

between a reference point (worst possible objective functions values) and the Pareto

front. In this work, the maximum hypervolume is equal to the area between a

reference point and the best Pareto front whereas the mean hypervolume correspond

to the mean area size between a reference point and a Pareto front from a individual

GA run.

Using unary performance indicators to assess the performance of multi-objective

algorithms can be problematic (Zitzler et al., 2003). Nevertheless, the hypervolume

indicator is often used for assessing the performance of many multi-objective

evolutionary algorithms (Knowles et al., 2003; Zitzler & Künzli, 2004; Fonseca et al.,

2006). In this work, an improved dimension-sweep algorithm proposed by (Fonseca

et al., 2006) and provided by the DEAP framework (Fortin et al., 2012) is used to

estimate the hypervolume indicator.

5.4.1. Objective Space

In order to set a benchmark for the multi-objective GA and get a better understanding

of what the objective space looks like, the scheduling problem was first solved as a

single-objective optimisation problem. A single-objective GA with 1000 chromosomes

was run for 1000 generations 50 times (50 independent runs). In other words, a total

of 50M objective function evaluations were performed to find the best value of each

objective subject to the constraints of the scheduling problem (the total amount of

backlog and product waste must be equal to 0 kg).

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

141

The worst possible values of the objectives (when the total production throughput is

0 kg and when the inventory deficit is equal to the sum of all strategic product inventory

target values, i.e. 2651.7 kg) were used as a reference point for estimating the

hypervolume indicator. The best values of the objectives (total production throughput

of 630.4 kg and total inventory deficity of 184.8 kg) obtained with a single-objective

GA were combined to create an ideal point which together with a reference point were

used to make an assumption about the boundaries of the objective space for the

problem of this chapter. The total area of the objective space was also used to

normalise the hypervolume indicator to lie in the 0.0-1.0 range. Figure 5.7 displays

the reference and ideal points, the single-objective solutions, and the objective space

of the scheduling problem of this chapter. The results and statistics of the single-

objective optimisation are also provided in Table 5.4.

Figure 5.7. The objective space (dashed line) of the scheduling problem described in

this chapter. The objectives are to maximise the total production throughput and to

minimise the total inventory deficit subject to the sum of total backlog and product

waste being equal to 0 kg. The single-objective solutions were obtained with a single-

objective GA after 50 independent runs of 1000 generations with 1000 chromosomes.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

142

Table 5.4. The best individual objective values (bold) obtained with a single-objective

GA.

 Single-objective solution

1. Maximise total

throughput

2. Minimise total

inventory deficit

Total throughput [kg] 630.4 513.1

Total inventory deficit [kg] 469.3 184.8

Total backlog [kg] 0 0

Total waste [kg] 0 0

Starting length1 1

No. runs 50

No. generations 1000

No. chromosomes 1000

pC 0.108

pMutP 0.041

pPosB 0.608

pNegB 0.766

pSwap 0.471

Run time2 12.6 s 13.7 s
1 The starting number of genes per chromosome in the initial population.
2 Mean run time of a single GA run.

5.4.2. The Impact of The Number of Chromosomes and The

Number of Generations

This section assesses the sensitivity of the multi-objective GA to the increasing

number of chromosomes while the number of generations is set to a sufficiently large

number and vice versa. The parameter values of genetic operators and the starting

number of genes used during the single-objective optimisation (Table 5.4) are also

applied here to the multi-objective GA.

Figures 5.8.a and 5.8.b illustrate how the maximum and mean hypervolume values

as well as the mean time of a single GA run are affected by the number of

chromosomes and generations, respectively. Tables 5.5 and 5.6. contain a more

detailed summary of the results and statistics of the experiments such as the objective

function values of the boundary solutions X and Y from the best Pareto front and the

number of unique non-dominated solutions in the best Pareto front. The best

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

143

attainment surfaces together with all non-dominated solutions collected from every

GA run using different parameter combinations are displayed in Figures 5.9 and 5.10.

Overall, the performance of the GA, i.e. maximum and mean hypervolume values,

improves with the increasing number of chromosomes and generations. Based on the

comparison between Figures 5.8.a and 5.8.b, it is apparent that the number of

chromosomes has a greater impact on the maximum and mean hypervolume than

the number of generations. For example, after 50 runs of 1000 generations with 100

chromosomes, the values of maximum and mean hypervolume are 0.992 and 0.982

± 0.011 respectively, whereas, when the number of generations is set to 100 and the

number of chromosomes is set to 1000, the maximum and mean values increase to

0.994 and 0.991 ± 0.005, respectively.

a) b)

Figure 5.8. The impact of the number of (a) chromosomes and (b) generations on the

performance of the multi-objective variable-length GA. In (a), the number of

generations was fixed at 1000 whereas in (b) the number of chromosomes was set to

1000. The vertical lines denote the standard deviation of mean hypervolume. The

black dashed line marks the highest maximum hypervolume achieved.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

144

Table 5.5. The impact of the number of chromosomes on the performance of the multi-objective variable-length GA.

 No. chromosomes

 100 200 300 600 900 1200

Max hypervolume 0.992 0.990 0.992 0.994 0.994 0.994

Mean hypervolume1 0.982 ± 0.011 0.973 ± 0.008 0.989 ± 0.008 0.994 ± 0.000 0.991 ± 0.006 0.994 ± 0.000

No. solutions2 35 31 35 35 37 35

Solution X3 [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4]

Solution Y3 [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3]

Run time4 [s] 2.14 4.74 8.32 19.20 36.10 52.8

No. runs 50

No. generations 1000

Starting length5 1

Table 5.6. The impact of the number of generations on the performance of the multi-objective variable-length GA.

 No. generations

 100 200 300 600 900 1200

Max hypervolume 0.994 0.994 0.994 0.994 0.994 0.994

Mean hypervolume1 0.991 ± 0.005 0.993 ± 0.004 0.993 ± 0.001 0.994 ± 0.000 0.994 ± 0.000 0.994 ± 0.000

No. solutions2 35 35 36 35 36 37

Solution X3 [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4]

Solution Y3 [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3]

Run time4 [s] 5.5 10.5 18.7 32.3 52.1 71.2

No. runs 50

No. chromosomes 1000

Starting length5 1
1 Mean ± 1 standard deviation.
2 The number of solutions in the best Pareto front.
3 The boundary solutions of the best Pareto front.
4 Average time elapsed for each of the 50 runs.
5 The starting number of genes per chromosome in the initial population.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

145

a)

b)

c)

Figure 5.9. All non-dominated solutions (black circles) and the best Pareto front (red crosses) with (a) 100, (b) 600, and (c) 1200 chromosomes.

a)

b)

c)

Figure 5.10. All non-dominated solutions and the best Pareto front (red crosses) after (a) 100, (b) 600, and (c) 1200 generations.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

146

However, the relationship between the GA’s performance and the number of

chromosomes is not perfectly linear, e.g. the maximum and mean hypervolume

values are actually higher when the number of chromosomes is 100 rather than 200

(Figure 5.8.a). The performance trend appears to be much more consistent with the

number of generations, i.e. increasing this number leads to an improvement. In both

cases, the maximum hypervolume stops improving once the total number of objective

function evaluations ≥ 30M (50 runs of 1000 generations with 600 chromosomes or

50 runs of 600 generations with 1000 chromosomes).

The mean time of single GA run increases linearly with both the number of

chromosomes and the number of generations. Nevertheless, the computational

performance of the multi-objective variable-length GA developed in this chapter is

more affected by the number of chromosomes rather than generations. It takes longer

to run a GA with 1000 chromosomes for 100 generations than the other way around.

The reason for this is because the evaluation of the chromosomes is parallelised.

5.4.3. The Importance of Genetic Operators

In the previous chapter, a set of new genetic operators was introduced to give the

variable-length GA the means to search for the optimal number and permutation of

production campaigns manufacturing the right amounts of the product. In this section,

a series of ablation experiments is performed with a purpose of evaluating the relative

importance of the following genetic operators:

▪ Modified uniform crossover which takes place with a rate of pC.

▪ Product label mutation that affects each gene individually with a rate of pMutP.

▪ Positive (+1) and negative (-1) mutations of the number of batches encoded in

each gene with the rates of pPosB and pNegB respectively.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

147

▪ Swap mutation – two genes are made to swap their positions once per

chromosome with a rate of pSwap.

First, a benchmark was established by performing 50 runs of the multi-objective GA

with 1000 chromosomes for 600 generations with all genetic operator parameter

values set to 0.5 (see Table 5.7.a). The number of chromosomes and the number of

generations were selected based on the findings from the previous section: out of all

the combinations studied, this one gave the best tradeoff between the maximum

hypervolume, the consistency of top non-dominated solutions from run to run, and the

computational performance. The impact of each genetic operator on the GA’s

performance was evaluated by setting the corresponing rate to 0. The results and

statistics of the experiments are provided in Table 5.7. The impact of disabling each

operator is also illustrated by displaying the best Pareto fronts and all non-dominated

solutions collected from the individual GA runs in Figure 5.11.

With the exception of product label mutation, individually disabling all other genetic

operators had a negative impact on the mean hypervolume. Assuming the importance

of each genetic operator can be quantified by the increase/decrease in mean

hypvervolume when it is disabled, then, according to the results of ablation

experiments, the operators can be ranked in the following order (from the most to the

least important):

1. Negative mutation of the number of batches. Disabling this operator reduced the

base case mean hypervolume from 0.930 ± 0.009 to 0.844 ± 0.061. Moreover, the

consistency of the GA’s performance was signficantly reduced. In Figure 5.11.e,

the non-dominated solutions collected from the individual runs are a lot more

widely scattered compared to the base case (Figure 5.11.a).

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

148

2. Positive mutation of the number of batches. Without this operator, the base case

mean hypervolume dropped from 0.930 to 0.912 whereas the standard deviation

increased from 0.009 to 0.016. Compared to the negative mutation of the number

of batches, the impact was not as severe because the GA had other means of

increasing the number of batches. For example, several consecutive genes can

sometimes end up encoding the same product label because of the crossover,

swap mutation or the addition of a new gene. The continuous-time scheduling

heuristic combines the consecutive genes with the same product label summing

up the number of batches from each gene.

3. Swap mutation. Compared to disabling the uniform crossover, the impact of

disabling the swap mutation on the mean hypervolume was only slighty more

negative. However, the variability in non-dominated solutions from run to run was

nearly four times larger.

4. Modified uniform crossover. Disabling this genetic operator had negligible impact

on the maximum and mean hypervolume values.

5. Product label mutation. The GA is capable of varying the product labels through

crossover, swap mutation, and the addition of a new gene. Therefore, disabling

this operator likely made the overall search process more directed which is also

relfected by the improved maximum and mean hypervolume values.

Therefore, the recommendation for selecting the starting parameter values for solving

biopharmaceutical scheduling problems similar to the one of this chapter would be to

set pNegB, pPosB, and pSwap high with pNegB > pPosB > pSwap > 0.5 and set pC

and pMutP low (0.0-0.1 range) or disable altogether.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

149

Table 5.7. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f)

swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case when the parameters of all genetic

operators are set to 0.5.

 a) b) c) d) e) f)

Maximum hypervolume 0.957 0.959 0.994 0.958 0.960 0.946

Mean hypervolume1 0.930 ± 0.009 0.923 ± 0.007 0.993 ± 0.003 0.912 ± 0.016 0.844 ± 0.061 0.920 ± 0.026

No. solutions2 17 13 37 22 12 18

Run time3 [s] 29.0 28.9 29.1 29.1 28.9 29.2

No. runs 50

No. generations 600

No. chromosomes 1000

Starting length4 1

pC 0.5 0

pMutP 0.5 0

pPosB 0.5 0

pNegB 0.5 0

pSwap 0.5 0
1 Mean ± 1 standard deviation.
2 The number of solutions in the best Pareto front.
3 Average time elapsed for each of the 50 runs.
4 The starting number of genes per chromosome in the initial population.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

150

a)

b)

c)

d)

e)

f)

Figure 5.11. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and

(f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case when the parameters of all genetic

operators are set to 0.5.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

151

5.4.4. The Impact of The Starting Number of Genes

This section evaluates how the starting number of genes in the variable-length

chromosome affects the performance of the multi-objective variable-length GA. A total

of 5 experiments were performed: when the starting number of genes is 1 (a base

case), 3, 6, 9, and 12. Each experiment was performed by running the GA with 1000

chromosomes for 600 generations and 50 runs with all genetic operator parameter

values set to 0.5.

According to the results displayed in Figure 5.12 and listed Table 5.8, increasing the

starting number of genes does not have a significant positive or negative impact on

the maximum and mean hypervolume achieved with the multi-objective variable-

length GA. Nevertheless, there was a slight improvement in the performance when

the starting number of genes was increased from 1 to 3 (the base case maximum and

mean hypervolume increased from 0.957 and 0.930 ± 0.009 to 0.966 and 0.933 ±

0.009) and from 1 to 6 (the base case maximum and mean hypervolume increased

from 0.957 and 0.930 ± 0.009 to 0.963 and 0.933 ± 0.009). However, increasing the

starting number of genes beyond 6 decreased the performance slightly.

Figure 5.12. The impact of the starting number of genes on the maximum and mean

hypervolume. Vertical lines denote the standard deviation of mean hypervolume.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

152

Table 5.8. The impact of the starting number of genes on the maximum and mean hypervolume.

 a) b) c) d) e)

Maximum hypervolume 0.957 0.966 0.963 0.958 0.954

Mean hypervolume1 0.930 ± 0.009 0.933 ± 0.009 0.933 ± 0.009 0.929 ± 0.012 0.927 ± 0.01

No. solutions2 17 18 18 21 18

Run time3 [s] 29.9 29.8 29.9 29.9 30.0

No. runs 50

No. generations 600

No. chromosomes 1000

Starting length4 1 3 6 9 12

pC 0.5

pMutP 0.5

pPosB 0.5

pNegB 0.5

pSwap 0.5
1 Mean ± 1 standard deviation.
2 The number of solutions in the best Pareto front.
3 Average time elapsed for each of the 50 runs.
4 The starting number of genes per chromosome in the initial population.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

153

5.4.5. Multi-Objective GA Results

This section highlights the advantages of the multi-objective approach for optimising

the production schedules of a multi-product biopharmaceutical facility by comparing

the boundary solutions X and Y of the best Pareto front with one another and with the

single-objective solutions. The reason for selecting the solutions for comparison from

the extreme ends of the Pareto front was to illustrate the trade-off between the two

objectives more clearly. As it was discussed earlier, the best Pareto front is generated

by re-sorting combined Pareto fronts collected from individual GA runs.

Figure 5.13 displays the total objective space that was determined with a single-

objective GA and the best Pareto front generated with a multi-objective GA side-by-

side. Table 5.9 provides the details about the Pareto front boundary solutions X and

Y.

a) b)

Figure 5.13. Multi-objective optimisation results:

(a) Objective space determined with a single-objective GA.

(b) The best Pareto front (red crosses) and all non-dominated solutions (black circles)

collected from individual runs of the multi-objective variable-length GA (maximum and

mean hypervolume of 0.994 and 0.944 ± 0.000).

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

154

Table 5.9. The boundary solutions X and Y of the best Pareto front generated with the

multi-objective variable-length GA.

 Pareto front boundary solution

 X Y

Total throughput [kg] 574.4 630.4

Total inventory deficit [kg] 191.4 469.4

Total backlog [kg] 0 0

Total waste [kg] 0 0

Starting length1 1

No. runs 50

No. generations 600

No. chromosomes 1000

pC 0.108

pMutP 0.000

pPosB 0.608

pNegB 0.766

pSwap 0.471

Run time2 20.0 s 20.0 s
1 The starting number of genes per chromosome in the initial population.
2 Mean run time of a single GA run.

According to Figure 5.13 and Table 5.9, the multi-objective variable-length GA is

capable of finding solutions which meet all product demands on time and avoid

product waste and, at the very least, non-dominate the single-objective solutions. For

example, the total inventory deficit of solution X is only slightly larger than that of the

single-objective solution 2 (191.3 vs 184.8 kg) but it also has a larger total production

throughput (513.1 kg vs 574.4 kg). On the other hand, solution Y matches the single-

objective solution 1, i.e. the total production throughput and total inventory deficit are

the same for both (630.3 kg and 469.4 kg respectively). The key advantage of the

multi-objective GA over the single-objective one is that it provides more options. A

total of 36 unique non-dominated solutions were generated. Every production

schedule in the best Pareto front offers close-to-optimal (if not optimal) trade-off

between maximising the manufacturing capacity of a facility and maintaining a

balanced product inventory. A single production schedule can be selected from the

non-dominated solutions using, for example, a weighted sum method, Euclidean

distance (finding a production schedule that is closest to the ideal point in the objective

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

155

space) or using a more sophisticated Monte Carlo simulation-based sensitivity

analysis to evaluate the robustness of the schedule to the variations in product

demand.

a)

b)

Figure 5.14. Production schedules of (a) solution X and (b) solution Y from the best

Pareto front. The numbers in the boxes show how many kilograms are being

manufactured, followed by the production time (days).

Figure 5.14 compares the production schedule of solution X with that of solution Y.

Every campaign in both solutions has a batch throughput that is within the minimum

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

156

and maximum bounds of the corresponding product. The special requirement of

product D to be produced in multiples of 3 batches has also been met. All campaigns

of product D in either solution has a number of batches that is evenly divisible by 3.

The production schedule of solution X has 11 manufacturing campaigns which are

124-day long and produce 11 batches or 52 kg on average. In contrast, the production

schedule of solution Y comprises 7 manufacturing campaigns with an average

duration of 180 days, and average throughput of 19 batches and 90 kg. This difference

follows the overall pattern of the non-dominated solutions: shorter but more frequent

campaigns scheduled appropriately will lead to better balanced product inventory, i.e.

lower inventory deficit, but at the cost of lower total production throughput due to more

changeovers taking place. In Figure 5.16, the gaps between the strategic inventory

targets and the product inventory levels of solution Y are wider and more frequent

than those displayed in Figure 5.15 for solution X. The product inventory levels profile

of solution X has a more balanced, sawtooth-like pattern, i.e. the inventory tends

increase and decrease at a more even rate , compared to those of solution Y. For

example, the monthly mean inventory level of product D for solution X is 52.2 ± 20.7

kg; in contrast, the monthly mean inventory level of product D for solution Y is 61.9 ±

41.2 kg.

This comparison illustrates the value of the variable-length chromosome structure for

multi-objective scheduling problems. First, it enables the scheduling optimisation to

take place in continuous-time. Second, it allows the GA to evolve a set of non-

dominated solutions with varying total numbers of production campaigns.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

157

Figure 5.15. Product (A B C D) inventory levels of solution X.

Figure 5.16. Product (A B C D) inventory levels of solution Y.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

158

5.5. Summary

This chapter considered a real-life capacity planning and scheduling problem of multi-

product biopharmaceutical manufacture featuring multiple objectives and constraints,

product-dependent changeovers, QC/QA checks, and storage and shelf-life limits. An

adaptable, variable-length multi-objective GA and a continuous-time scheduling

heuristic were adapted from Chapter 4 to tackle the aformentioned scheduling

problem. The problem was first solved using a single objective GA to determine the

objective space and set a benchmark for the multi-objective optimisation. The

variable-length multi-objective GA achieved on average 99.4% of the total objective

space hypervolume and generated a Pareto front that, at the very least, non-

dominated the solutions obtained with a single-objective GA. Furthermore, all

solutions met the constraints of the planning problem including the special

manufacturing requirements. In the next chapter, the proposed approach will be

extended to generate production plans under uncertainty of the biopharmaceutical

environment.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

159

6. Multi-Objective Biopharmaceutical

Capacity Planning Under Uncertainty

6.1. Introduction

In the previous chapter, the single-objective variable-length GA developed in Chapter

4 was extended with a multi-objective component for continuous-time optimisation of

total production throughput and monthly inventory levels of a multi-product

biopharmaceutical facility given a 3-year long product demand profile with multiple

intermediate due dates. Adding the ability to optimise several objectives

simultaneously was shown to be advantageous compared to the single-objective GA-

based approach. The multi-objective variable-length GA was used to generate a set

of production schedules that not only met all product demands on time without

exceeding storage and shelf-life limits but also provided a trade-off between

maximising the utilisation of the biopharmaceutical facility’s capacity and having a

more balanced product inventory. Nevertheless, the presented approach did so

deterministically without the consideration for an inherent feature of

biopharmaceutical manufacture which is the uncertainty of conditions in this

environment.

Meeting product demand in the biopharmaceutical industry is a highly sensitive issue

owing to the high value and importance of the products. However, the market demand

is often not known in advance and must be estimated. In case the demand uncertainty

is neglected during the planning process, the obtained production schedules may be

costly or even infeasible. For example, in the 1990s, Wyeth and Immunex (now

Amgen) developed Enbrel for the treatment of rheumatoid arthritis. When Enbrel was

finally launched in 1998, the demand was higher than what it was anticipated. Even

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

160

after increasing volume with their existing Enbrel CMO, both Wyeth and Immunex

were unable to satisfy the higher than expected market demand (Kamarck, 2006).

Malik et al. (2002) estimated that the lack of manufacturing capacity for the highly

successful arthritis drug, Enbrel, cost the company more than $200M in lost revenue

in 2001. Therefore, the biopharmaceutical companies must ensure an adequate

supply of the product.

Production plans created based on the assumption that the average product demand

scenarios will occur can be flawed. Savage (2002) called this phenomenon The Flaw

of Averages stating that whenever an average is used to represent an uncertain

quantity it ends up distorting the results as it neglects the impact of the inevitable

fluctuations. A decision to produce the amount equal to an average product demand

will lead to the profit that will be on average less than the profit associated with

average demand. Lower-than-average demand will lead to higher inventory costs and

increased chance of product waste while greater demand will exceed the capacity of

the facility and result in late deliveries. A better way to make plans under demand

uncertainty is by utilising Monte Carlo simulation which can be used to generate

hundreds of demand scenarios based on the whole range of possible values and their

likelihood of occurring.

The term Monte Carlo simulation (or method) was coined by Metropolis and Ulam

(1949) in reference to games of chance, a popular attraction in Monte Carlo, Monaco.

It was a codename for the simulations performed during the 1930s and 1940s to

estimate the probability that the chain reaction needed for an atom bomb to detonate

would be successful. The key idea behind Monte Carlo simulation is to use

randomness by generating draws from a probability distribution. Monte Carlo

simulation performs risk analysis by building models of possible results by substituting

a probability distribution for any factor that has inherent uncertainty. It then calculates

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

161

results over and over, each time using a different set of random values from the

probability functions. Depending upon the number of uncertainties and the ranges

specified for them, a Monte Carlo simulation could involve thousands or tens of

thousands of recalculations before it is complete. Monte Carlo simulation produces

distributions of possible outcome values.

In this chapter, the multi-objective variable-length GA from the previous chapter is

extended with a Monte Carlo simulation component to generate medium-term

production schedules that are robust to the variations in product demand. For the sake

of brevity, the integrated Monte Carlo simulation and multi-objective GA approach will

be referred to as the stochastic GA while the multi-objective GA without Monte Carlo

simulation will be referred to as the deterministic GA. The advantages of the

stochastic GA over the deterministic one will be demonstrated by comparing the

production schedules generated when the uncertainty in demand is ignored by using

only the most likely demand values and when it is accounted for by characterising it

with a probability distribution.

The chapter is organised as follows: Section 6.2 contains the input data and the

definition of the biopharmaceutical scheduling problem with uncertain product

demand. Section 6.3 describes how Monte Carlo simulation is integrated with the

multi-objective variable-length GA presented in the previous chapter and how the

combined approach is used to generate production schedules under the product

demand uncertainty. Additionally, the section explains how the stochastic GA is made

more efficient by accelerating the computationally expensive Monte Carlo simulations

using GPU resources. The results and discussion are given in Section 6.4. Similarly

to Section 5.4.1, Section 6.4.1 first defines the stochastic objective space and then

presents the best Pareto front generated using a stochastic multi-objective GA. The

trade-offs between the boundary solutions X and Y of the best Pareto front are

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

162

explored in Section 6.4.2. Section 6.4.3 shows the impact of neglecting the

uncertainty in product demand by comparing the production schedules generated

using the stochastic GA (GA with Monte Carlo simulation embedded in the

optimisation) and deterministic GA. Deterministic GA outcomes were tested with

Monte Carlo simulation post-optimisation.

6.2. Problem Definition

The scheduling problem from the previous chapter has been adapted to demonstrate

the features of the integrated multi-objective variable-length GA and Monte Carlo

simulation approach. For completeness, the problem statement is as follows:

▪ Given:

o A start date (1-Dec-2016) and a planning horizon of 3 years

o A set of biopharmaceutical products { A, B, C, D }

o USP and DSP processing times

o Product-dependent manufacturing yields

o Product sequence-dependent changeovers

o Varying amounts of product stock available at the beginning of the

schedule

o Desired minimum and maximum number of batches per individual product

campaign

o Unique manufacturing requirements to produce the batches in multiples of

a specified number

o QC/QA approval times

o 3-year profile of strategic product inventory targets

o 3-year profile of uncertain monthly product demand

▪ Determine:

o A set of production schedules

o The number and length of manufacturing campaigns

o Production quantities along with inventory and late delivery profiles

▪ So as to (constrained stochastic multi-objective problem):

o Maximise the total production throughput

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

163

o Minimise the median total inventory deficit, i.e. cumulative differences

between the monthly product inventory levels and the strategic inventory

targets

▪ Subject to:

o The median total backlog being no greater than 0 kg

It is assumed that the biopharmaceutical facility is available during the entire 3-year

(1096-day) period. The product demand is assumed to be due on the first day of each

month. The products must undergo a 90-day QC/QA process before they can be

delivered which must be taken into consideration when meeting the product demand.

Product sequence-dependent changeover time (Table 6.1) is incurred only when

there is a switch between different product campaigns. Each product has a different

manufacturing yield which determines how many kilograms are produced in a single

batch. Due to the QC/QA approval process, there is a certain amount of product stock

made available at the beginning of the schedule to meet the product demand during

the first 90 days. The complete process data for the industrial case study is provided

in Table 6.2. The strategic product inventory monthly targets are listed in Table 6.3.

In the last chapter, one of the objectives was to minimise the total inventory deficit

which was defined as the cumulative sum of the differences between the product

inventory levels and the corresponding strategic monthly targets whenever the latter

were greater than the former. In this chapter, the product demand is characterised by

a triangular probability distribution based on the specifications of minimum, maximum,

and most likely amounts for each due date (see Table 6.4 and Figure 6.1). Therefore,

the total inventory deficit and total backlog will have a corresponding distribution of

different values depending on the randomly generated product demand scenarios

during Monte Carlo simulation.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

164

The goal of the stochastic GA is to generate a set of schedules that are the most

robust to the variations in product demand, e.g. with a high probability of meeting all

product demands on time. This is accomplished by maximising the total production

throughput and minimising the median total inventory deficit subject to the median

total backlog being no greater than 0 kg. The objective of the total production

throughput maximisation remains unchanged from the previous chapter as the

throughput from each individual manufacturing campaign is the same regardless of

the product demand scenario.

Table 6.1. Product sequence-dependent changeovers [days].

 To product
 A B C D

F
ro

m

p
ro

d
u

c
t A 0 10 16 20

B 16 0 16 20

C 16 10 0 20

D 18 10 18 0

Table 6.2. Process data for the industrial case study.

 Product

 A B C D

USP duration [days] 45 36 45 49

DSP duration [days] 7 11 7 7

QC/QA duration 90 90 90 90

Yield per batch [kg] 3.1 6.2 4.9 5.5

Opening stock [kg] 18.6 0 19.6 110

Minimum batch throughput per campaign 2 2 2 3

Maximum batch throughput per campaign 50 50 50 30

Produce batches per campaign in multiples of 1 1 1 3

Due to the skewness of product demand distributions (Figure 6.1) and the expected

non-symmetrical distributions of the stochastic multi-objective optimisation outcomes,

median was chosen as a measure of central tendency. Later in this chapter, non-

parametric statistical tests are applied to analyse the stochastic optimisation results

and compare them with the results from the deterministic optimisation.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

165

Table 6.3. Strategic inventory targets.

 Product

Due date A B C D

1-Jan-17 6.2 0 0 22

1-Feb-17 6.2 0 4.9 27.5

1-Mar-17 9.3 0 9.8 27.5

1-Apr-17 9.3 0 9.8 27.5

1-May-17 12.4 0 9.8 27.5

1-Jun-17 12.4 0 9.8 33

1-Jul-17 15.5 0 19.6 33

1-Aug-17 21.7 0 19.6 27.5

1-Sep-17 21.7 0 14.7 27.5

1-Oct-17 24.8 0 19.6 27.5

1-Nov-17 21.7 0 19.6 38.5

1-Dec-17 24.8 0 19.6 33

1-Jan-18 27.9 0 14.7 33

1-Feb-18 21.7 0 19.6 33

1-Mar-18 24.8 0 19.6 33

1-Apr-18 24.8 0 14.7 33

1-May-18 24.8 0 14.7 27.5

1-Jun-18 27.9 6.2 19.6 33

1-Jul-18 27.9 6.2 19.6 33

1-Aug-18 27.9 6.2 9.8 33

1-Sep-18 31 6.2 19.6 38.5

1-Oct-18 31 6.2 19.6 33

1-Nov-18 34.1 6.2 19.6 38.5

1-Dec-18 34.1 6.2 19.6 33

1-Jan-19 27.9 6.2 24.5 33

1-Feb-19 27.9 6.2 34.3 33

1-Mar-19 27.9 6.2 24.5 33

1-Apr-19 27.9 6.2 29.4 44

1-May-19 34.1 6.2 39.2 33

1-Jun-19 34.1 6.2 39.2 33

1-Jul-19 31 6.2 29.4 33

1-Aug-19 31 6.2 19.6 33

1-Sep-19 21.7 6.2 19.6 22

1-Oct-19 15.5 6.2 14.7 11

1-Nov-19 6.2 6.2 4.9 11

1-Dec-19 0 6.2 0 5.5

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

166

Table 6.4. Product demand uncertainty for a 3-year period.

 Product

Due date A B C D

1-Jan-17 0 0 0 0

1-Feb-17 0 0 0 Tr(4.5, 5.5, 8.25)

1-Mar-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)

1-Apr-17 0 0 0 0

1-May-17 0 0 0 Tr(4.5, 5.5, 8.25)

1-Jun-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)

1-Jul-17 0 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Aug-17 Tr(2.1, 3.1, 4.65) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Sep-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)

1-Oct-17 Tr(2.1, 3.1, 4.65) 0 0 0

1-Nov-17 0 0 0 Tr(10, 11, 16.5)

1-Dec-17 Tr(5.2, 6.2, 9.3) 0 Tr(8.8, 9.8, 14.7) Tr(4.5, 5.5, 8.25)

1-Jan-18 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) 0

1-Feb-18 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)

1-Mar-18 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Apr-18 0 0 0 Tr(10, 11, 16.5)

1-May-18 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)

1-Jun-18 Tr(8.3, 9.3, 13.95) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Jul-18 0 0 Tr(8.8, 9.8, 14.7) 0

1-Aug-18 Tr(5.2, 6.2, 9.3) 0 0 Tr(4.5, 5.5, 8.25)

1-Sep-18 Tr(5.2, 6.2, 9.3) 0 0 Tr(4.5, 5.5, 8.25)

1-Oct-18 0 0 0 Tr(4.5, 5.5, 8.25)

1-Nov-18 Tr(5.2, 6.2, 9.3) Tr(5.2, 6.2, 9.3) Tr(3.9, 4.9, 7.35) Tr(10, 11, 16.5)

1-Dec-18 Tr(8.3, 9.3, 13.95) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Jan-19 0 0 0 0

1-Feb-19 Tr(8.3, 9.3, 13.95) 0 Tr(8.8, 9.8, 14.7) Tr(10, 11, 16.5)

1-Mar-19 Tr(5.2, 6.2, 9.3) 0 0 0

1-Apr-19 Tr(2.1, 3.1, 4.65) 0 0 Tr(10, 11, 16.5)

1-May-19 Tr(5.2, 6.2, 9.3) Tr(5.2, 6.2, 9.3) Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Jun-19 Tr(2.1, 3.1, 4.65) 0 Tr(8.8, 9.8, 14.7) Tr(4.5, 5.5, 8.25)

1-Jul-19 0 0 Tr(8.8, 9.8, 14.7) 0

1-Aug-19 Tr(8.3, 9.3, 13.95) 0 0 Tr(10, 11, 16.5)

1-Sep-19 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(10, 11, 16.5)

1-Oct-19 Tr(8.3, 9.3, 13.95) 0 Tr(8.8, 9.8, 14.7) 0

1-Nov-19 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(4.5, 5.5, 8.25)

1-Dec-19 0 Tr(5.2, 6.2, 9.3) 0 Tr(4.5, 5.5, 8.25)
Note: Tr(x, y, z) denotes a triangular distribution where x, y, and z are the minimum, mode (most likely),

and maximum values.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

167

Figure 6.1. Min, median, and max product (A B C D) demand values for each due date after 1,000 Monte Carlo simulation trials using

the corresponding triangular distribution from Table 6.4 as an input.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

168

6.3. Methods

The multi-objective variable-length GA and the scheduling heuristic have been

implemented in C++ programming language and compiled with MSVC14 compiler to

run on a CPU. The Monte Carlo simulation component was developed using C++ and

CUDA 8.0 API and compiled with NVCC v8.0 compiler to run on a GPU. The

industrially-relevant capacity planning and scheduling problem of medium-term multi-

product biopharmaceutical manufacture under uncertainty has been solved on Intel

i5-6500 (CPU) and NVIDIA GTX-1060 (GPU) based Windows 10 system with 16GB

of RAM and 6 GB of VRAM.

The chromosome encoding strategy, genetic operators, NSGA-II based multi-

objective optimisation, constraint handling, and the scheduling heuristic remain

largely unchanged from the previous chapter. Therefore, for the sake of brevity, the

focus of this section is placed on the implementation details of Monte Carlo simulation

integration with the multi-objective GA and steps taken to improve the performance of

the stochastic multi-objective GA-based framework.

Figure 6.2 provides a flowchart illustrating of how Monte Carlo simulation fits into the

GA-based scheduling optimisation framework from a high-level. First, a continuous-

time scheduling heuristic is applied to decode the variable-length chromosomes into

production schedules (the heuristic logic has been discussed in Chapters 4 and 5).

This is accomplished using the product sequence-dependent changeovers and

process data just the same way as it was described in the previous chapter. After the

schedule has been constructed, its robustness to the variations in product demand is

then tested by conducting Monte Carlo simulation trials. Hundreds of demand

scenarios are generated for each individual production schedule based on the

provided triangular probability distributions for each product and its every demand due

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

169

date. The performance of production schedule, e.g. total inventory deficit, total

amount of backlog, is evaluated on each randomly generated demand scenario. For

each Monte Carlo simulation trial t, the calculated values of total inventory deficit and

total amount of backlog are stored in | t |-dimensional arrays (see Lines 9 and 10 in

Figure 6.2). After the simulation trials are completed, the medians of the total inventory

deficit and total backlog distributions are assigned to the corresponding chromosome

as the objective and constraints values.

Figure 6.2. Objective function evaluation of the chromosome using the continuous-

time scheduling heuristic and Monte Carlo simulation.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

170

One the major drawbacks of Monte Carlo simulation is the associated computational

overhead. In this chapter, 1000 Monte Carlo simulation trials were applied for the

evaluation of each chromosome and the impact of this on the execution performance

can be seen in Figure 6.3.a. The average time elapsed for a single run of stochastic

GA with Monte Carlo simulation embedded into the optimisation was approximately

100-fold longer than that of a deterministic GA without Monte Carlo simulation.

Reducing the number of Monte Carlo simulation trials to improve the performance is

not ideal as the error of the simulation estimates is inversely proportional to the

number of trials. The larger the number of trials is, the more confident the estimates

are. Hence, it was necessary to find a way to improve the performance, i.e. execution

speed, without sacrificing the accuracy and confidence of the results.

a) b)

Figure 6.3. Average elapsed time for each of the 50 GA runs with 100 chromosomes

for 1000 generations:

(a) deterministic GA vs. CPU-only stochastic GA

(b) Stochastic GA with Monte Carlo simulation performed on a GPU vs. CPU-only

stochastic GA

Note: fitness evaluations deterministic and CPU-only stochastic GAs were performed

in parallel

Since the individual Monte Carlo simulation trials are independent form each other in

this study, the overall simulation process can be made more efficient through the use

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

171

of Single Instruction Multiple Data (SIMD)-based architectures. Modern GPUs are

optimised for SIMD type processing with massive parallelism. For example, compared

to an average consumer-grade Central Processing Unit (CPU) which typically has

from 4 to 8 cores, a single GPU can have over 2000 cores (Vanek et al., 2017). Figure

6.4 illustrates the difference between the high-level architectures of GPU and CPU.

Each individual Monte Carlo trial can be assigned to a single core on a GPU thus

enabling hundreds of trials to be performed in parallel with substantial savings in

computational power and time.

Figure 6.4. Comparison of a high-level architecture between a Central Processing

Unit (CPU) and a Graphics Processing Unit (GPU).

In this work, only the Monte Carlo simulation component from the stochastic multi-

objective GA-based framework was made to run on a GPU since it was found to be

the biggest performance bottleneck compared to other components. The execution of

the program was transferred from CPU to GPU every time

MonteCarloSimulationKernel (see Lines 3, 8-18 in Figure 6.2) was invoked during the

objective function evaluation. Once the simulation finished, the execution of the

program was transferred back to CPU to continue running the GA.

Accelerating Monte Carlo simulation with a GPU reduced the mean running time of a

single stochastic GA run by approximately 30 times (see Figure 6.3.b). In other words,

in the time it takes to complete a single run of a CPU-only stochastic GA, 30 runs of

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

172

a GPU-accelerated stochastic GA could be completed. As it was outlined in the

requirements section of Chapter 2, the ability to achieve solutions in a timely manner

is very valuable as it would enable the production schedulers to test more scenarios

and perform more case studies with different inputs in less amount of time.

6.4. Results

In this section, the validity of stochastic multi-objective GA outlined earlier is

demonstrated on an industrially-relevant case study of multi-objective

biopharmaceutical capacity planning and scheduling. The problem requires to

produce a set of optimal 3-year schedules for a multi-product biopharmaceutical

facility manufacturing 4 products under uncertain monthly demand. The objectives of

the capacity planning and scheduling problem are to maximise the total kilogram

throughput, minimise the median total kilogram inventory deficit. The optimisation

problem is subject to the constraint of 0 kg median total kilogram backlog.

First, Section 6.4.1 defines the objective space of the stochastic optimisation problem

using a single-objective GA with integrated Monte Carlo simulation The results

obtained using a stochastic, multi-objective GA with Monte Carlo simulation

embedded into the optimisation are discussed in Section 6.4.2 by comparing the

trade-offs between two non-dominated solutions selected from the extreme ends of

the best Pareto front. Section 6.4.3 strengthens the argument for stochastic

optimisation with a comparison of the production schedules generated using the

stochastic and deterministic GAs. The schedules generated with the deterministic GA

are tested using Monte Carlo simulation post-optimisation to show the impact of

optimisation using only the most likely values, ignoring the uncertainty in product

demand.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

173

6.4.1. Stochastic Objective Space

In the preceding chapter, a single-objective GA was applied to obtain an ideal point

(a combination of the best objective function values) which together with a reference

point (a combination of the worst possible objective function values) was used to

assume the boundaries of the objective space. Knowing the total hypervolume of the

objective space, made it more convenient to gauge the performance of the multi-

objective GA using a hypervolume indicator normalised to 0.0-1.0 range (the higher,

the better). Moreover, this also made it easier to interpret and compare the different

Pareto fronts to one another.

Table 6.5. The best values of each objective (bold) obtained with the stochastic single-

objective GA.

 Stochastic single-objective solution

 1. Maximise total

throughput

2. Minimise median total

inventory deficit

Total throughput [kg] 602.1 514.3

Median total inventory deficit [kg] 555.2 423.1

Median total backlog [kg] 0.0 0.0

No. Monte Carlo simulation trials1 1000

No. runs 50

No. generations 1000

No. chromosomes 100

Starting length2 1

pC 0.108

pMutP 0.041

pPosB 0.608

pNegB 0.766

pSwap 0.471

Run time3 [s] 8.94 9.13
1 Number of Monte Carlo simulations for each chromosome evaluation.
2 The starting number of genes per chromosome in the initial population.
3 Mean run time of a single GA run

The same methodology is also applied in this chapter. The scheduling problem with

uncertain demand is first solved using a single-objective GA that also has Monte Carlo

simulation embedded into the objective function evaluation. The highest total

production throughput and the lowest median total inventory deficit values are used

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

174

to create an ideal point (see Table 6.5) to define the limits of the stochastic objective

space for the scheduling problem of this chapter (see Figure 6.5.a).

a) b)

Figure 6.5. (a) Stochastic objective space and (b) the best Pareto front generated

using the stochastic multi-objective GA (hypervolume of 0.997). The gray shaded area

is used for illustrative purposes to show the area of the objective space that is

dominated by the Pareto front solutions.

Table 6.6. Boundary solutions X and Y of the best Pareto front generated using the

stochastic multi-objective GA (hypervolume of 0.997).

 Stochastic Pareto solution

 X Y

Total throughput [kg] 539.3 601.5

Median total inventory deficit [kg] 424.4 551.7

Median total backlog [kg] 0 0

No. Monte Carlo simulation trials1 1000

No. runs 50

No. generations 1000

No. chromosomes 100

Starting length2 1

pC 0.108

pMutP 0.041

pPosB 0.608

pNegB 0.766

pSwap 0.471

Run time3 [s] 10.81
1 Number of Monte Carlo simulations for each chromosome evaluation.
2 The starting number of genes per chromosome in the initial population.
3 Mean run time of a single GA run

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

175

The goal of the GA in this chapter is to generate a Pareto front of unique non-

dominated solutions with the maximum hypervolume value, i.e. as optimal as possible

in terms of the specified objectives and constraints. However, as it was described

earlier, the GA is an optimisation technique that is not guaranteed to converge on the

same solution(s) every time. Therefore, the top Pareto front is saved at the end of

each individual GA run. After all 50 runs are completed, the fronts are combined and

sorted again using the non-dominated sorting algorithm described by Deb et al. (2002)

to create the best Pareto front containing a set of top non-dominated solutions. Such

front of non-dominated solution with a hypervolume of 0.997 is displayed in Figure

6.5.b alongside the single-objective solutions and the ideal point.

6.4.2. Stochastic Multi-Objective GA Results

This section compares the solutions X and Y selected from the extreme end of the

best Pareto front generated after 50 stochastic GA runs with a population size of 100

for 1000 generations (see Figure 6.5.b and Table 6.6).

The production schedule of solution X (Figure 6.6.a) has a greater number of

manufacturing campaigns than solution Y (Figure 6.6.b). The average production time

per campaign of solution X is 117 days compared to 161 days for solution Y. Similar

to the previous chapter, the model predicted that more frequent but shorter

manufacturing campaigns scheduled according to a recurring pattern would lead to

better optimised product inventory levels but at the cost of lower total production

throughput because of the lost production time due to more frequent product

changeovers.

According to the Mann-Whitney U test, the difference between the total inventory

deficit distributions of the solutions X and Y (Figure 6.7.a) was found to be statistically

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

176

a)

b)

Figure 6.6. Production schedules of (a) solution X and (b) Y from the best Pareto front

after 50 runs generated using the stochastic GA. The numbers in the boxes show how

many kilograms are being manufactured, followed by the production time (days).

significant with a two-tailed p value of 0. Mann-Whitney U test is a non-parametric

alternative to independent samples t-test. The null hypothesis H0 of the test is that the

probability of a random observation from distribution X exceeding a random

observation from distribution Y is the same, i.e. P(X > Y) == P(Y > X). While Mann-

Whitney U test helps to evaluate the probability of the effect, it does not reveal any

details about its size. However, this can be evaluated by calculating the point estimate

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

177

of the Hodges-Lehmann’s median difference Δ which is equal to the median of all

pairwise differences between the two distributions (Hodges Jr & Lehmann, 1963). The

value of Δ between the total inventory deficit distributions of the solutions X and Y is

equal to 126 kg. This value can also be interpreted in the following way: the total

inventory deficit of the solution Y is 126 kg higher on average than that of the solution

X.

a) b)

Figure 6.7. Comparison of (a) the total inventory deficit and (b) total backlog

distributions between the solutions X and Y from the best Pareto front generated using

the stochastic GA.

The median total backlog is equal to 0 kg for both solutions (Table 6.7). Nevertheless,

solution X has a greater probability of meeting the product demand compared to the

solution Y (0.82 vs 0. 0.50). Using Mann-Whitney U test, the difference between the

total backlog distributions in Figure 6.7.b is also found to be statistically significant

(two-tailed p value of 0) with Δ of 0.1 kg.

The results of the stochastic multi-objective GA show that depending on the chosen

objectives and constraints, there can be multiple alternative solutions to a scheduling

problem even in the presence of uncertainty. The stochastic GA generates a set of

equally good alternative production schedules. Depending on the business strategy,

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

178

decision-makers can decide whether it is more acceptable to choose a production

schedule that would result in higher total throughput but also a higher risk of not being

able to meet the inventory targets and product demands on time or vice versa.

Table 6.7. Comparison of the solutions X and Y from the best Pareto front generated

using the stochastic GA.

 Stochastic Pareto front solution

 X Y

Total throughput [kg] 539.3 601.5

Max total backlog [kg] 8.2 16.0

Mean total backlog [kg] 0.2 ± 0.6 7.1 ± 4.3

Median total backlog [kg] 0 0

Min total backlog [kg] 0 0

P(total backlog ≤ 0 kg) 0.82 0.50

Max total inventory deficit [kg] 683.4 786.0

Mean total inventory deficit [kg] 432.6 ± 58.6 558.6 ± 59.0

Median total inventory deficit [kg] 424.4 551.7

Min total inventory deficit [kg] 259.4 355.6

6.4.3. Comparison with the Deterministic GA

This section of the results will discuss the merits of integrating Monte Carlo simulation

into the multi-objective variable-length GA for creating production schedules under

demand uncertainty. As mentioned earlier, the advantages will be illustrated by

comparing the stochastic optimisation results with a deterministic GA-based

approach.

The scheduling problem presented in this chapter was solved again but the

uncertainty in product demand was ignored and instead of the probability distributions

(Table 6.4) only the most likely product demand values were used as an input. First,

the objective space was defined using a deterministic single-objective GA without

Monte Carlo simulation. Then, a multi-objective GA, also without Monte Carlo

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

179

simulation, was used to generate the best Pareto front of deterministic solutions in a

similar way that was described in earlier in the last paragraph of Section 6.4.1.

a) b)

Figure 6.8. (a) Deterministic objective space and (b) the best Pareto front generated

using the deterministic multi-objective GA (hypervolume of 0.996).

Table 6.8. The best values of each objective (bold) obtained with a deterministic single

objective GA.

 Deterministic single-objective solution

1. Maximise total

throughput

2. Minimise total

inventory deficit

Total throughput [kg] 630.4 488.2

Total inventory deficit [kg] 464.3 174.8

Total backlog [kg] 0 0

No. runs 50

No. generations 1000

No. chromosomes 100

Starting length1 1

pC 0.108

pMutP 0.041

pPosB 0.608

pNegB 0.766

pSwap 0.471

Run time2 [s] 0.78 0.86
1 The starting number of genes per chromosome in the initial population.
2 Mean run time of a single GA run

Table 6.8 lists the best single-objective values obtained with a deterministic single-

objective GA (without Monte Carlo simulation) whereas Figure 6.8.a shows the

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

180

boundaries of the deterministic objective space defined by the reference and ideal

points. The solution X (refer to Figure 6.8.b and Table 6.9) from the best Pareto front

generated with the deterministic multi-objective GA, i.e. without Monte Carlo

simulation, is compared to the solution X (see Figure 6.5.b and Table 6.6) from the

best Pareto front generated using the stochastic GA. For convenience, the two

solutions will be referred to as deterministic and stochastic solution respectively. To

be able to compare the deterministic solution with the stochastic one, Monte Carlo

simulation is used to conduct a stochastic analysis to assess its robustness to the

variability of product demand.

Table 6.9. The boundary solutions X and Y of the best Pareto front generated using

the deterministic multi-objective GA without the embedded Monte Carlo simulation-

based optimisation.

 Deterministic Pareto front solution

 X Y

Total throughput [kg] 498.5 630.4

Total inventory deficit [kg] 175.4 461.4

Total backlog [kg] 0 0

No. runs 50

No. generations 1000

No. chromosomes 100

Starting length1 1

pC 0.108

pMutP 0.041

pPosB 0.608

pNegB 0.766

pSwap 0.471

Run time2 [s] 3.07
1 The starting number of genes per chromosome in the initial population.
2 Mean run time of a single GA run

Using only the most likely demand values, the deterministic solution (solution X from

Figure 6.8.b and Table 6.9) achieved the total throughput and total inventory deficit

values of 498.5 kg and 175.4 kg respectively. The production schedules of the

deterministic (Figure 6.9.a) and stochastic solution (Figure 6.9.b) are very similar: both

contain short but frequent recurring manufacturing campaigns. Therefore, at the first

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

181

glance, it might seem like the production schedule generated deterministically would

perform similarly to the production schedule generated using a stochastic GA under

uncertain product demand, i.e. have a similar median total inventory deficit and a

median total backlog equal to 0 kg.

a)

b)

Figure 6.9. Production schedules of (a) the deterministic solution X and (b) stochastic

solution X from the respective best Pareto fronts. The numbers in the boxes show

how many kilograms are being manufactured, followed by the production time (days).

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

182

However, after Monte Carlo simulation was applied post-optimisation to evaluate the

robustness of the deterministic solution to the variability of demand, it was found that

the corresponding production schedule had a significantly lower probability of meeting

product demands on time.

a) b)

Figure 6.10. A comparison of (a) the total inventory deficit (a) and (b) total backlog

distributions between the stochastic and deterministic solutions. after the stochastic

analysis with Monte Carlo simulation

Table 6.8. A comparison between the stochastic and the deterministic solutions.

 Solution

 Stochastic Deterministic

Total throughput [kg] 539.3 498.5

Max total backlog [kg] 8.2 27.1

Mean total backlog [kg] 0.2 ± 0.6 7.1 ± 4.3

Median total backlog [kg] 0 6

Min total backlog [kg] 0 0

P(total backlog ≤ 0 kg) 0.82 0.01

Max total inventory deficit [kg] 683.4 776.5

Mean total inventory deficit [kg] 432.6 ± 58.6 504.8 ± 74.1

Median total inventory deficit [kg] 424.4 501

Min total inventory deficit [kg] 259.4 238.4

Note: the stochastic solution was generated using a multi-objective GA with Monte Carlo

simulation embedded into the optimisation of the objectives. The deterministic solution was

obtained using a multi-objective GA without the integrated Monte Carlo simulation. Instead, Monte

Carlo simulation was used to perform a post-optimisation sensitivity analysis of the solution was

performed using it.

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

183

Figure 6.10 and Table 6.8 illustrate and list the results of the Monte Carlo simulation-

based sensitivity analysis of the deterministic solution and the comparison with the

stochastic solution generated using the multi-objective GA with Monte Carlo

simulation embedded into the objective function evaluation. The production schedule

generated using the deterministic multi-objective GA was capable of meeting all

product demands in only 14 randomly generated product demand scenarios out of

1000 in total (1.4%). Moreover, the median total inventory deficit level was also higher

(501 kg vs 424.4 kg) than that of the production schedule generated using the

stochastic GA with integrated Monte Carlo simulation.

Figure 6.11. Individual product (A B C D) inventory profiles of the

deterministic solution after the stochastic analysis with Monte Carlo simulation. The

negative inventory levels highlighted by the red ovals indicate the median amount of

unmet product demand.

Using the Mann-Whitney U-test, the difference between the total inventory

distributions of the deterministic and stochastic solutions is statistically significant

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

184

(two-tailed p value of 0) with Δ of 71.4 kg. The difference between the total backlog

distributions is also statistically significant (two-tailed p value of 0) with Δ of 6.4 kg.

More importantly, the deterministic solution has only 0.01 probability of meeting all

product demands on time compared to 0.82 probability of the stochastic solution.

According to Figure 6.11, the deterministic production schedule is expected to be

unable to meet the demand on time for products A and C on 6 separate due dates. In

comparison, the stochastic solution meets all product demands on time on average

(Figure 6.12).

Figure 6.12. Individual product (A B C D) inventory profiles of the

stochastic solution.

Based on the comparison between the deterministic and stochastic solutions, the

advantages of the stochastic GA are evident. The difference between the total

inventory deficit and total backlog distributions of the two solutions is statistically

significant. The stochastic solution has a much greater chance of meeting all product

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

185

demands on time despite the variations. Moreover, the monthly product inventory

levels of the stochastic solution are expected to be closer to the set strategic targets.

6.5. Summary

In this chapter, the novel continuous-time GA-based scheduling optimisation

approach described in Chapters 4 and 5 was extended with Monte Carlo simulation

to address an inherent and very important feature of biopharmaceutical industry –

uncertainty in product demand. The monthly demand for each product was

characterised with a triangular distribution defined by the minimum, most likely, and

maximum quantities. Integrating Monte Carlo simulation into the multi-objective GA

permitted the identification of more robust production schedules better suited to

handle product demand fluctuations. The benefits of an integrated GA and Monte

Carlo simulation approach were demonstrated by comparing it with a deterministic

approach. The production schedules generated with a deterministic GA were based

on the most likely demand values and did not account for the variability in product

demand. Hence, in scenarios where the product demand was higher than expected

the solution was shown as not able to meet all product demands on time on average.

7. Commercialisation

186

7. Commercialisation

7.1. Introduction

This chapter outlines a plan for potential commercialisation of the work generated

during this PhD. A minimum viable product (MVP) has been developed to

demonstrate the viability of the commercialisation plan. The following areas are

discussed:

▪ Delivery model – best way to deliver the software so that benefits both the clients

and the software developers.

▪ Architecture – the overall design of the software including database schema, user

experience (UX), and user interface (UI).

▪ Revenue model – strategies for pricing the software based on its features.

7.2. Delivery Model

Traditionally, businesses would buy software, install it and maintain it on their own

machines. That software delivery model is giving way to a modern one known as

Software as a Service (SaaS).

The concept of SaaS is relatively simple: just like e-mails or social media applications,

business applications can also be accessed with a Web browser over the Internet.

Instead of buying a license and installing the software on individual machines, a

business buys a subscription to use the application and services hosted in a cloud

environment. Cloud computing has become so popular that it was introduced as a

new word in the English language in 2012 (Dutt et al., 2017). According to the forecast

by the International Data Corporation (IDC, 2018), worldwide public cloud services

7. Commercialisation

187

spending is expected to reach $203.4B by 2020 and SaaS solutions are estimated to

account for about 60% of this spending.

SaaS model offers multiple benefits to software developers and buyers alike. For

buyers, the advantages include easier and more frequent upgrades, lower cost of

ownership, and better support from vendors as they have to be more responsive to

customers or risk losing subscription revenues (Dubey & Wagle, 2007). Moreover, the

investment in SaaS product development tends to be higher which also results in

higher software quality compared to perpetual licensing (Choudhary, 2007). For

software developers, the benefits of a SaaS approach include reduced deployment

time, streamlined software building and testing cycles using, for example, continuous

integration (CI) systems, and the ability to monitor software usage which can be used

to enhance it. Countering the advantages of SaaS are the risks of reliability and

security of the service. For example, some of the biopharmaceutical companies might

have concerns about data privacy.

SaaS model is especially attractive for deploying the GA-based DST developed

during this PhD. Using high-performance cloud computing environments, it is possible

to make the computationally demanding features, e.g. GPU-accelerated integrated

Monte Carlo simulation for stochastic optimisation, accessible to all users on virtually

any platform (including tablets, mobile phones, different Operating Systems –

anything that can run a Web browser). In contrast, using the traditional delivery model,

clients would be most likely restricted to one platform and would not be able to access

such complex features unless they invest in building the IT infrastructure and buying

specialist hardware with high-performance CPUs and GPUs.

Therefore, this chapter proposes to build and deliver the GA-based DST as a SaaS

application.

7. Commercialisation

188

7.3. Architecture

This section explains the proposed architecture of the SaaS solution for capacity and

scheduling of biopharmaceutical facilities using snapshots of an actual MVP.

7.3.1. Overview

The GA-based DST has been developed according to most of the requirements and

specifications outlined in Chapter 2. The tool comprises the following three core parts:

▪ High-performance, multi-threaded C++ implementations of the work that was

presented in the previous chapters, i.e. GA-based scheduling optimisation

algorithms and biopharmaceutical scheduling models.

▪ Python API which wraps up the C++ components, provides methods for data input

and output, results reporting and visualisation, Gantt charts generation, and also

makes the integration with other libraries or applications much more streamlined.

▪ Django (Django, 2018) open source web framework which provides a user-friendly

platform to view and manage input data and scheduling optimisation results.

There are a number of different web frameworks available, but Django is the most

popular Python web framework that encourages rapid development, clean,

pragmatic design, and offers a very wide range of features available out-of-the-

box, including but not limited to a web server, extensible authentication system,

and an object relational mapping (ORM) tool for storing and retrieving data from a

relational database.

Figure 7.1 displays a high-level architecture of a SaaS application (GA-based DST)

that is hosted in a cloud environment and accessible over the Internet using a Web

browser. Django web framework is responsible for handling client’s requests using

Models, Views, Templates, and a Uniform Resource Locator (URL) Dispatcher,

7. Commercialisation

189

Models. A URL Dispatcher maps the requested URL to a View function and calls it.

For example, if a client requested to enter new or edit the existing data, a URL

Dispatcher would map that request to a corresponding View function which would

perform one or several Create, Read, Update, and Delete (CRUD) operations in the

relational database.

Figure 7.1. High-level architecture of the GA-based Decision Support Tool

implemented as a SaaS application.

In an example scenario, if a client requests to create production schedules for a

specific facility, the URL Dispatcher would call a matching View function to retrieve

7. Commercialisation

190

the input data comprised of Facility, Product, Changeover, Demand, and

InventoryTarget tables (Figure 7.2) from the database using user_id and facility_id.

The input data is passed to Python API (see Figure 7.1) which connects the web

framework and the high-performance C++ implementations of the variable-length GAs

and scheduling models described in the earlier chapters. Python API is responsible

not only for transferring the data back and forth from the C++ components but also for

formatting, analytics, and reporting the results back to the web framework. After the

request is complete, the View function would save the output data in the Schedule,

Campaign, Batch, and Inventory tables (Figure 7.2), create a Template – an HTTP

object with tables, figures, and Gantt charts from the scheduling optimisation – and

render it using a Web browser.

Figure 7.2. Database schema utilised by the GA-based Decision Support Tool.

7.3.2. Input Data Setup

Before the SaaS application can be accessed, a new client would need to create a

user account first (Figure 7.3). A user account allows the client to write and save data

that is protected with a password. Moreover, the user account type determines how

7. Commercialisation

191

much the client will be charged for using the service (pricing is discussed in Section

7.4). Once a user account is created, a client can start entering the input data for the

scheduling problem.

Figure 7.3. Sign up (Register) page view.

a)

b)

c)

d)

Figure 7.4. Entering facility data into the application. (a) and (b) display the different

ways of gaining access to (c) a facility form whereas (d) displays a facility data table.

7. Commercialisation

192

The first step is to enter data about the biopharmaceutical facility that needs to be

optimised. This can be accomplished by filling in the facility form (Figure 7.4.c) that is

accessible from the Facilities > New Facility tab (Figure 7.4.a). The form can also be

accessed by selecting the Facilities > Saved Facilities tab and then clicking the “+

New Facility” button (Figure 7.4.b).

a)

b)

c)

Figure 7.5. Entering product data into the application. (a) displays how to access (b)

the form (only a portion of it is shown here) for entering data about an individual

product. (c) displays a product data table.

Once the data about the facility is set up (Figure 7.4.d), a client can then begin

assigning products to the facility. All forms for entering product-related data, including

7. Commercialisation

193

process data (7.5.b), product sequence-dependent changeovers, and product

demand, can be accessed from the Products > New Product tab (Figure 7.5.a).

a)

b)

Figure 7.6. Entering product sequence-dependent changeover data into the

application. (a) shows the form for entering the data whereas (b) displays the product

changeover table with the data filled-in.

When all of the products are defined for a given facility (Figure 7.5.c), a client can

enter data about the product sequence-dependent changeovers. This is

accomplished by going over to the Products > Product Changeovers tab which gives

access to a product changeovers form (7.6.a). The changeovers data is set up by

adding individual rows specifying the product sequence (from-to), the duration (days),

and the facility since the changeovers are inherently dependent not only on the

product but also on the design and capabilities of a biopharmaceutical facility. The

product changeover data table is displayed in Figure 7.6.b. Finally, the product

demand and strategic inventory targets can be added to the database of the

7. Commercialisation

194

application by uploading CSV files containing the data. When the right file is added

and uploaded (Figure 7.7.a), a client is presented with a graphical output and a

message informing of success (Figure 7.7.b).

a)

b)

Figure 7.7. Uploading product demand data into the application: (a) before and (b)

after the upload.

7.3.3. Optimisation Setup

Once all of the required input data is in the database, the scheduling optimisation

dashboard for a specific facility can be accessed by clicking the Plan icon (Figure 7.8).

Figure 7.8. Accessing scheduling optimisation dashboard.

7. Commercialisation

195

After having clicked the icon, a client is presented with a minimalistic dashboard that

displays only the key problem settings such as objectives, constraints, and the start

date of the schedule (Figure 7.9.a). The advanced settings such as the number of

runs, generations, and chromosomes, the rates of crossover and mutation operators

are also available and can be accessed by clicking the Advanced Settings icon (Figure

7.9.b).

a)

b)

Figure 7.9. Scheduling optimisation setup in the application. (a) lists only the key

scheduling optimisation settings whereas (b) displays an expanded list of advanced

mostly GA-related parameters.

Once all the parameters are set, the scheduling optimisation can be initiated by

clicking the Run scheduler button. When this button is pressed, the web framework

instructs the scheduling optimisation process to start running in the background. This

way the web page remains responsive and a client can continue interacting with it

7. Commercialisation

196

while the optimisation is running. In certain cases, the optimisation process can take

longer than a few seconds to complete. Therefore, a progress bar is used to inform of

the application status (Figure 7.10).

Figure 7.10. Scheduling optimisation in progress.

7.3.4. Visualisation of Results

When the scheduling optimisation is finished, the best non-dominated solutions

generated with the GA are transferred to the web framework using Python API for

display (Figure 7.11). First, a client will be presented with an interactive table of

solutions and, if the scheduling optimisation problem has two objectives, an

interactive graph of the best Pareto front (Figure 7.11.a).

a)

Figure 7.11. Scheduling optimisation results view. In (a), if the optimisation problem

has two objectives, an interactive chart of the best Pareto will be displayed. In (b),

every row in the table represents a unique schedule that can be inspected by clicking

the corresponding View schedule icon in the Actions column.

7. Commercialisation

197

b)

Figure 7.11. (continued) Scheduling optimisation results view. In (a), if the

optimisation problem has two objectives, an interactive chart of the best Pareto will

be displayed. In (b), every row in the table represents a unique schedule that can be

inspected by clicking the corresponding View schedule icon in the Actions column.

Each row in the table corresponds to a unique production schedule which can be

inspected by clicking the View schedule icon in the Actions column (7.11.b). Clicking

this icon will bring up a detailed view of the schedule which includes an interactive

Gantt chart and an interactive table listing the production throughput, and the start

and end dates of each manufacturing campaign (Figure 7.12).

a)

Figure 7.12. Detailed view of a selected production schedule. In (a), manufacturing

campaigns can be inspected by hovering over them in the Gantt chart. In (b),

individual product profiles can be viewed by selecting the View inventory icon in the

Actions column of the production schedule table.

7. Commercialisation

198

b)

Figure 7.12. (continued) Detailed view of a selected production schedule. In (a),

manufacturing campaigns can be inspected by hovering over them in the Gantt chart.

In (b), individual product profiles can be viewed by selecting the View inventory icon

in the Actions column of the production schedule table.

The inventory profile, strategic targets, and demand of each product (Figure 7.13) can

be inspected by clicking the View inventory icon in the Actions column of the

production schedule table (Figure 7.12.a). Clicking this icon would return a web page

with interactive charts that display the quantities for each due date.

Figure 7.13. Product inventory profile.

7. Commercialisation

199

7.4. Pricing

Unlike the traditional software development and delivery model, SaaS model has the

potential of reaching a broader range of users and building a relationship between a

producer and a customer that creates and captures value where the customer

participates actively. The relationship with them shapes the service and determines

which features are essential and which are not. Hence, it is important to let the

customers know that they are buying a highly customizable service that can be

improved with their feedback. The experience gained from a relationship with one

customer will also help bring new ones onboard. Therefore, the pricing of a SaaS

application can be quite complicated compared to on-premise software with perpetual

licenses.

Fortunately, with a SaaS model it is possible to charge for usage. The modularity of

the GA-based DST enables different pricing strategies. It is not necessary to pack all

of the application’s value into one single (and often large) number that can put off a

lot of smaller scale clients. For starters, clients could select one of three different

subscription plans priced proportionally to the number of features made available (see

Figure 7.14). A Free subscription plan would allow the users to test the basic features

of the platform at no cost which would provide some organic growth for the business.

A free user account can be thought of as the first step towards building a relationship

between a client and a SaaS provider. Free users can be later convinced to switch to

a paying subscription by showing them the value of the platform. The biggest

downside of Free subscription plan is its scalability. Too many free users can put a

strain on resources, e. g. storage space and processing speed, with a marginal benefit

to the service provider. A better alternative to a Free subscription plan would be a

limited trial period.

7. Commercialisation

200

Figure 7.14. Monthly subscriptions plans priced proportionally to the number of

features provided by the service.

A client would have to pay for Basic and Premium subscription plans but also would

get access to a broad range of useful features such as the ability to create schedules

for a larger number of products and longer planning horizons, the ability to perform

sensitivity analysis and stochastic optimisation, and have the SaaS provider create a

scheduling model that is tailored to their biopharmaceutical facility. The main purpose

of a Basic subscription plan is to provide a reliable but moderate stream of revenue

from the customers who might not necessarily require customisation or complex

features but would like to use the tool to estimate the available capacity of the facility

or to evaluate the impact of shorter product changeovers or increased product

demand. A Premium plan with a high-level of customisation would suit customers who

operate uniquely designed facilities with distinct manufacturing capabilities and

deliver biopharmaceuticals in unpredictable markets. They are likely to benefit from

features such as multi-objective scheduling optimisation under uncertainty, e.g.

production yields and product demand, the most.

While the pre-defined and readily-available subscription plans are a good starting

point, it is better to understand the exact features that the customers value the most.

In addition to asking for a customer’s feedback directly, this can also be accomplished

by collecting and analysing usage data (especially from free or trial users). This would

7. Commercialisation

201

identify which group certain types of customers fall into and help determine the right

subscription plans.

7.5. Summary

This chapter described an implementation plan of the GA-based DST generated

during this PhD thesis. An MVP was developed to demonstrate the practical value of

the tool and the viability of the plan. It was proposed to deliver it as a SaaS application

because of the lower development and deployment costs, and a subscription-based

pricing model which would facilitate building stronger, mutually beneficial relationships

with the customers.

Once the SaaS application starts generating revenue, it could be expanded further to

include not only the models and algorithms for scheduling optimisation but also other

features such as process economics models (Farid, 2007), tools for assessing

process robustness (Stonier et al., 2012) and algorithms for process design and

optimisation (Allmendinger et al., 2012; Simaria et al., 2012). Additional features

would increase the value of the application, help retain the existing and attract the

new customers.

8. Conclusions and Future Work

202

8. Conclusions and Future Work

8.1. Introduction

Suboptimal scheduling of biopharmaceutical manufacturing campaigns can have

significant financial implications such as increased variable costs incurred by holding

too much inventory or loss of profit due to insufficient or underutilised capacity to meet

the product demand. In order to create a cost-effective production plan,

biopharmaceutical companies need to consider a wide range of factors including but

not limited to:

▪ Product-dependent yields and process durations of individual manufacturing

stages.

▪ Manufacturing capabilities of the facility, e.g. the number of USP and DSP suites.

▪ Amount of time required for setup and clean-up between the manufacturing

campaigns. The duration of a changeover can depend not only on the products

but also on the sequence they are manufactured in.

▪ Product and process-dependent constraints, e.g. finite storage space and product

shelf-life, minimum and maximum production throughput limits.

▪ Multiple concurrent and often conflicting objectives, e.g. maximisation of profit,

minimisation of costs, maximisation of production throughput and capacity

utilisation, meeting all product demands on time, avoiding product waste,

minimisation of the differences between the monthly product inventory levels and

the corresponding strategic targets etc.

▪ Lengthy QC/QA approval times. The manufacturing campaigns have to be

scheduled in a such way that the product material is made available several weeks

or even months in advance of the delivery due date.

8. Conclusions and Future Work

203

▪ Uncertain variables inherent in the biopharmaceutical manufacturing environment

such as product demand.

This thesis has addressed all of these features of biopharmaceutical capacity

planning and scheduling. Moreover, a flexible Decision Support Tool (DST) (including

not only the Application Programming Interface but also a more user friendly web-

based interface) based on a Genetic Algorithm (GA) was developed to help the

biopharmaceutical companies tackle the said challenges and make better scheduling

decisions faster. The reasons for taking a GA-based approach were several:

▪ Most of the optimisation methods for biopharmaceutical capacity planning and

scheduling reported utilise discrete-time modelling and Mixed Integer Linear

Programming (MILP). There have been multiple MILP-model reported for single-

and multi-objective optimisation of biopharmaceutical capacity plans using

discrete- and continuous-time representations. In comparison, the number of

scheduling optimisation methods based on a GA or other alternatives is much

more limited. Therefore, there is significant potential for new research exploring

alternative optimisation methods for biopharmaceutical capacity planning and

scheduling.

▪ The tools for mathematical programming typically require high level of expertise

(Mustafa et al., 2006). There is also reported lack of transparency associated with

certain exact methods which often requires intervention from the specialists

(Widmer et al., 2008). In contrast, the core features of a GA are relatively simple

to implement (Deb, 2001) and combine with other methods such as Monte Carlo

simulation.

Briefly, the GA-based DST brings the following benefits to both academia and

industry:

8. Conclusions and Future Work

204

▪ A variable-length chromosome structure for continuous-time scheduling which

makes it possible to create accurate and realistic production schedules. The

validity of the variable-length GA was first demonstrated in Chapter 4 on two

industrial case studies adapted from the literature and compared with discrete-

and continuous-time MILP models. The same variable-length chromosome

structure was also applied in Chapters 5 and 6 to solve entirely new deterministic

and stochastic multi-objective case studies.

▪ Flexible multi-objective optimisation. The advantages of a GA-based multi-

objective optimisation were demonstrated in Chapter 5. Instead of a single

solution, the multi-objective GA presents a biopharmaceutical strategist with a set

of non-dominated solutions to choose from.

▪ Integrated Monte Carlo simulation, i.e. stochastic GA, for generating production

schedules under product demand uncertainty. The benefits of stochastic GA were

demonstrated in Chapter 6. It identified production schedules which had high

probabilities of meeting all product demands on time despite the large variations.

In comparison, the production schedules generated with a deterministic approach,

i.e. GA without the integrated Monte Carlo simulation, had only < 2% probability

of meeting the product demands on time according to the post-optimisation Monte

Carlo simulation-based sensitivity analysis.

8.2. Contribution of This Thesis

The following Sections 8.2.1-8.2.5 outline the contributions of this thesis and briefly

describe the work undertaken to create a flexible and user-friendly DST for realistic

medium-term scheduling of a multi-product biopharmaceutical facility that could tackle

multiple conflicting objectives and the uncertainty of biopharmaceutical environment.

8. Conclusions and Future Work

205

8.2.1. Discrete-Time Biopharmaceutical Capacity

Planning and Scheduling

At the time of writing Chapter 3 there were not any relevant papers on GA-based

methods for biopharmaceutical capacity planning and scheduling. Therefore, the goal

was to fill in the knowledge gap by developing GA-based alternatives to the discrete-

time MILP-based models reported in the literature. The GA-based scheduling

optimisation was evaluated on two cases studies adapted from the literature. In the

first case study, a medium-term capacity planning problem of a single-site, multi-suite

biopharmaceutical facility was solved. The GA-based approach obtained the global

optimum faster than a MILP model. In the second case study, a more complex, long-

term capacity planning problem of a multi-site biopharmaceutical manufacture was

solved. A rolling time horizon approach was implemented to improve the GA

performance. Using this approach, the average optimality gap achieved with the GA

was 1.1%.

A Particle Swarm Optimisation (PSO) algorithm was used to automatically tune the

GA parameters. The objective of the PSO algorithm was to maximise the mean best

GA objective function value achieved after a given number of independent runs using

the parameters encoded in a particle’s position.

Other key contributions of Chapter 3 include a chromosome encoding strategy,

algorithmic adaptations that captured capacity planning objectives for multiple

products across multiple suites and facilities, and a rolling time horizon approach to

improve the GA performance.

8. Conclusions and Future Work

206

8.2.2. Continuous-Time Biopharmaceutical Capacity

Planning and Scheduling

The challenges and limitations encountered in Chapter 3 provided the motivation for

the development of unique GA-based scheduling optimisation methods that leveraged

the GA’s flexibility instead of attempting to solve the scheduling problems by adapting

the mathematical models.

Chapter 4 introduced a novel variable-length chromosome structure and an entirely

new continuous-time scheduling heuristic for decoding the chromosomes into full-

solutions, i.e. production schedules. The heuristic included a wide-range of

biopharmaceutical manufacture features such as product-dependent changeovers,

multiple intermediate demand due dates, backlogs, limited storage capacity, shelf-life,

and waste disposal. The validity of the new approach was demonstrated on two

literature-based examples of medium-term biopharmaceutical capacity planning and

scheduling problems. In the first example, the variable-length GA was applied to a

scheduling problem involving a single, multi-suite (2 USP and 2 DSP suites)

biopharmaceutical facility manufacturing three products. The GA-based approach met

all of the product demands on time and achieved a higher objective function value

than the discrete- and continuous-time MILP-based solutions reported in the

literature. In the second example, the variable-length GA was compared with a

discrete-time MILP-based model on a problem involving a longer demand profile and

a single, multi-suite (2 USP and 3 DSP suites) biopharmaceutical facility producing

four products. The GA solution met all of the product demands on time and achieved

an objective function value that was 33% greater than that of the globally optimal

discrete-time MILP solution which met approximately 86% of all product demands on

time.

8. Conclusions and Future Work

207

8.2.3. Multi-Objective Biopharmaceutical Capacity

Planning and Scheduling

Chapter 5 continued with the development of the variable-length GA for continuous-

time biopharmaceutical capacity planning and scheduling by adding a multi-objective

component. The variable-length chromosome structure and the new genetic

operators introduced in Chapter 4 were integrated with NSGA-II. A completely new,

real-life capacity planning and scheduling problem of multi-product biopharmaceutical

manufacture was used to demonstrate the advantages of the multi-objective

optimisation. The problem featured a single biopharmaceutical facility manufacturing

four products to meet a demand profile based on realistic due dates, multiple

objectives and constraints, rolling product sequence-dependent changeovers, QC/QA

times, storage and shelf-life limits. The objectives of the problem were to maximise

the total kilogram throughput and to minimise the sum of differences between the

inventory level and the corresponding strategic targets. The production schedules that

did not meet product demand on time or resulted in product waste were treated as

infeasible. The scheduling problem was first solved using a single objective GA to

determine the objective space and set a benchmark for the multi-objective

optimisation. The variable-length multi-objective GA achieved on average 99.4% of

the total objective space and generated a Pareto front that, at the very least, non-

dominated the solutions obtained with a single-objective GA.

8.2.4. Multi-Objective Biopharmaceutical Capacity

Planning and Scheduling Under Uncertainty

Chapter 6 expanded upon the ideas presented in Chapters 4 and 5 by integrating

Monte Carlo simulation with a multi-objective variable-length GA to tackle production

scheduling under uncertain product demand. The integrated Monte Carlo simulation

8. Conclusions and Future Work

208

and GA approach, i.e. stochastic GA, was applied to the biopharmaceutical capacity

planning and scheduling problem adapted from Chapter 5. The product demand

uncertainty was quantified using a triangular distribution defined by the minimum,

most likely, and maximum product demand quantities for each due date. The benefits

of the stochastic GA were demonstrated by comparing it with a deterministic approach

(a GA without Monte Carlo simulation). The stochastic GA permitted the identification

of more robust production schedules with much higher probabilities of meeting all

product demands on time and lower expected cumulative deviations from the strategic

inventory targets. On the other hand, the production schedules generated with a

deterministic GA ignored the variability in product demand thus in scenarios where

the product demand was higher than expected the solutions were shown to have close

to 0% probability of meeting product demands on time.

8.2.5. Commercialisation

Chapter 7 outlined a plan for commercialising the work generated during this PhD. A

minimum viable product (MVP) was developed to demonstrate the viability of the plan

and the various features of the GA-based DST. A Software-as-a-Service (SaaS)-

based delivery model of the product was discussed highlighting many benefits to both

the developer(s) as well as the users of the tool or clients. A subscription pricing model

was proposed to charge the users or clients according to the usage of tool. Finally, it

was suggested that the GA-based DST could be used as a platform to include other

decisional frameworks reported in the literature, e.g. process economics models

(Farid, 2007), tools for assessing process robustness (Stonier et al., 2012), and

algorithms for process design and optimisation (Allmendinger et al., 2012; Simaria et

al., 2012).

8. Conclusions and Future Work

209

8.3. Future Work

This PhD thesis demonstrated how GA-based scheduling optimisation can be used

to tackle continuous-time, multi-objective, deterministic and stochastic

biopharmaceutical capacity planning problems. This section lists a number of ways

the work conducted in this PhD thesis could be improved and expanded.

8.3.1. Additional Constraints and Features

The continuous-time scheduling heuristics presented in this thesis assumed that the

biopharmaceutical facilities were available for the entire planning horizon. However,

in reality, biopharmaceutical companies often have to regularly shut down their

facilities for maintenance or inspection. The variable-length chromosome could

include several special genes encoding a facility shut-down taking place. This way

the GA could generate production schedules with optimised start and end dates of

the facility shut-down(s) without compromising the objectives and constraints of the

problem. Moreover, an integrated Monte Carlo simulation and GA approach could be

applied to evaluate the impact of unplanned facility shut-downs which can occur, for

example, due to contamination or equipment breakdown.

In Chapter 6, the stochastic GA was applied to create production schedules under

demand uncertainty. The novel stochastic scheduling optimisation approach could be

taken further to tackle other uncertainties inherent in the biopharmaceutical

manufacturing process such as variable fermentation titres and process yields,

contamination risks, QC/QA rejection rates, and clinical attrition rates. The integrated

Monte Carlo simulation and multi-objective variable-length GA could be used to

generate production schedules that have the highest probabilities of meeting the

specified objectives and constraints under the aforementioned uncertainties and risks.

8. Conclusions and Future Work

210

This PhD work considered objectives and constraints including total profit, total

production throughput, maintaining strategic inventory targets, meeting all product

demands on time, and avoiding product waste. It would be interesting to evaluate

other objectives such as minimisation of product changeovers. Furthermore, it could

also be of interest to test whether the biopharmaceutical facility has sufficient capacity

to accommodate the production of an additional product by minimising the total

manufacturing time whilst meeting all product demands on time. The GA would need

to not only determine the timings and durations of the manufacturing campaigns but

also when the facility can remain idle. In this work, each gene corresponded to a real

manufacturing campaign. The start and end dates of every manufacturing campaign

were inferred from the order of the genes in the variable-length chromosome and the

product-dependent process durations and changeovers. A straightforward fix to

enable the minimisation of manufacturing time would be to allow the genes to encode

dummy campaigns that do not have a product label associated with them. The number

of batches of a dummy campaign could be used to encode the idle time duration in

the facility. The timings of the real and dummy manufacturing campaigns can be

implicitly encoded by the order of genes within the chromosome.

Finally, the variable-length chromosome could be extended to address capacity

planning and scheduling of multiple biopharmaceutical facilities. For example, the

continuous-time scheduling described in Chapter 4 could be adapted for multi-site

biopharmaceutical manufacture by changing the USP suites to biopharmaceutical

facilities. Each gene could encode biopharmaceutical facility and product labels, and

the number of batches to be manufactured.

8. Conclusions and Future Work

211

8.3.2. Improved GA-based Optimisation

This PhD thesis focused on a generational single-objective GA and a multi-objective

GA based on NSGA-II. It would be beneficial to investigate how the variable-length

chromosome structure would perform with other GA types, e.g. compare the

generational GA with a steady-state one.

One of the major limitations of NSGA-II is that its performance degrades with an

increasing number of objectives and constraints (Ishibuchi et al., 2008). Therefore, for

many-objective scheduling problems the variable-length chromosome structure could

be integrated with more sophisticated MOEAs such as NSGA-III (Yuan et al., 2014)

or Unified (U)-NSGA-III (Seada & Deb, 2015).

It would also be interesting to see whether the work developed in this thesis could be

combined and enhanced with Reinforcement Learning, e.g. for tuning and controlling

the GA, creating a hyper-heuristic, or for improving the scheduling models.

Allmendinger (2012) provided a good review of Reinforcement Learning applications

in Evolutionary Optimisation and the development of hyper-heuristics. Zhang (1996)

studied Reinforcement Learning applications in short-term job-shop scheduling with

the aim to learn a repair-based scheduler capable of repairing a set of temporal and

resource constraint violations.

In summary, this PhD thesis presents novel GA-based methods that are relatively

easy to implement and provides a strong foundation for future work developing

advanced stochastic multi-objective capacity planning and scheduling optimisation

methods for the biopharmaceutical industry.

References

212

References

Abara, J. (1989). Applying integer linear programming to the fleet assignment
problem. Interfaces, 19, 20-28.

Allmendinger, R. (2012). Tuning evolutionary search for closed-loop optimization. The
University of Manchester (United Kingdom).

Allmendinger, R., Simaria, A. S., & Farid, S. S. (2012). Efficient discovery of
chromatography equipment sizing strategies for antibody purification
processes using evolutionary computing. In International Conference on
Parallel Problem Solving from Nature (pp. 468-477): Springer.

Allmendinger, R., Simaria, A. S., Turner, R., & Farid, S. S. (2014). Closed‐loop
optimization of chromatography column sizing strategies in biopharmaceutical
manufacture. Journal of chemical technology and biotechnology, 89, 1481-
1490.

Almada-Lobo, B., Klabjan, D., Antónia carravilla, M., & Oliveira, J. F. (2007). Single
machine multi-product capacitated lot sizing with sequence-dependent
setups. International Journal of Production Research, 45, 4873-4894.

Amodeo, L., Prins, C., & Sánchez, D. R. (2009). Comparison of metaheuristic
approaches for multi-objective simulation-based optimization in supply chain
inventory management. In Workshops on Applications of Evolutionary
Computation (pp. 798-807): Springer.

Asenjo, J. A., Montagna, J. M., Vecchietti, A. R., Iribarren, O. A., & Pinto, J. M. (2000).
Strategies for the simultaneous optimization of the structure and the process
variables of a protein production plant. Computers & Chemical Engineering,
24, 2277-2290.

Back, T. (1993). Optimal mutation rates in genetic search. In Proceedings of the fifth
international conference on genetic algorithms (pp. 2-8): Morgan Kaufmann,
San Mateo, CA.

Beazley, D. (2010). Understanding the python gil. In PyCON Python Conference.
Atlanta, Georgia.

Bitran, G. R., & Yanasse, H. H. (1982). Computational complexity of the capacitated
lot size problem. Management science, 28, 1174-1186.

Blau, G. E., Pekny, J. F., Varma, V. A., & Bunch, P. R. (2004). Managing a portfolio
of interdependent new product candidates in the pharmaceutical industry.
Journal of Product Innovation Management, 21, 227-245.

Branke*, J., & Mattfeld, D. C. (2005). Anticipation and flexibility in dynamic scheduling.
International Journal of Production Research, 43, 3103-3129.

Brastow, W., & Rice, C. (2003). Planning pharmaceutical manufacturing strategies in
an uncertain world. BioProcess International, 1, 46-55.

Brie, A. H., & Morignot, P. (2005). Genetic Planning Using Variable Length
Chromosomes. In ICAPS (pp. 320-329).

Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. (1998). GAMS: the solver
manuals. Washington, DC, GAMS Development Corporation.

Brunet, R., Guillén-Gosálbez, G., Pérez-Correa, J. R., Caballero, J. A., & Jiménez, L.
(2012). Hybrid simulation-optimization based approach for the optimal design
of single-product biotechnological processes. Computers & Chemical
Engineering, 37, 125-135.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R.
(2013). Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society, 64, 1695-1724.

Camilleri, M., Neri, F., & Papoutsidakis, M. (2014). An algorithmic approach to
parameter selection in machine learning using meta-optimization techniques.
WSEAS Transactions on systems, 13, 202-213.

References

213

Chen, M.-S., & Liao, F. H. (1998). Neural networks training using genetic algorithms.
In Systems, Man, and Cybernetics, 1998. 1998 IEEE International
Conference on (Vol. 3, pp. 2436-2441): IEEE.

Chipperfield, A., & Fleming, P. (1995). The MATLAB genetic algorithm toolbox. In
Applied Control Techniques Using MATLAB, IEE Colloquium on (pp. 10/11-
10/14): IET.

Choudhary, V. (2007). Comparison of software quality under perpetual licensing and
software as a service. Journal of Management Information Systems, 24, 141-
165.

Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing
and scheduling problems: a classification and review of models. OR spectrum,
39, 1-64.

Corne, D. W., Knowles, J. D., & Oates, M. J. (2000). The Pareto envelope-based
selection algorithm for multiobjective optimization. In International conference
on parallel problem solving from nature (pp. 839-848): Springer.

Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Multi-objective optimization methods and
application in energy saving. Energy, 125, 681-704.

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-
memory programming. IEEE computational science and engineering, 5, 46-
55.

Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear
inequalities. New York.

De Jong, K. (1988). Learning with genetic algorithms: An overview. Machine learning,
3, 121-138.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16):
John Wiley & Sons.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on evolutionary
computation, 6, 182-197.

DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the
pharmaceutical industry: new estimates of R&D costs. Journal of health
economics, 47, 20-33.

DiMasi, J. A., Hansen, R. W., & Grabowski, H. G. (2003). The price of innovation: new
estimates of drug development costs. Journal of health economics, 22, 151-
185.

Ding, H., Benyoucef, L., & Xie, X. (2006). A simulation-based multi-objective genetic
algorithm approach for networked enterprises optimization. Engineering
Applications of Artificial Intelligence, 19, 609-623.

Django. (2018). Django overview | Django. In.
Dubey, A., & Wagle, D. (2007). Delivering software as a service. The McKinsey

Quarterly, 6, 2007.
Dutt, A., Jain, H., & Kumar, S. (2017). Providing Software as a Service: a design

decision (s) model. Information Systems and e-Business Management, 1-30.
Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors

in particle swarm optimization. In Evolutionary Computation, 2000.
Proceedings of the 2000 Congress on (Vol. 1, pp. 84-88): IEEE.

Eiben, Á. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in
evolutionary algorithms. IEEE Transactions on evolutionary computation, 3,
124-141.

Eskandari, H., Rabelo, L., & Mollaghasemi, M. (2005). Multiobjective simulation
optimization using an enhanced genetic algorithm. In Proceedings of the 37th
conference on Winter simulation (pp. 833-841): Winter Simulation
Conference.

Farid. (2007). Process economics of industrial monoclonal antibody manufacture.
Journal of Chromatography B, 848, 8-18.

References

214

Farid, S., Washbrook, J., & Titchener-Hooker, N. J. (2007). Modelling
biopharmaceutical manufacture: Design and implementation of
SimBiopharma. Computers & Chemical Engineering, 31, 1141-1158.

Farid, S. S., Novais, J. L., Karri, S., Washbrook, J., & Titchener‐Hooker, N. J. (2000).
A tool for modeling strategic decisions in cell culture manufacturing.
Biotechnology Progress, 16, 829-836.

Farid, S. S., Washbrook, J., & Titchener-Hooker, N. (2001). Decision-support tool for
risk analysis in biopharmaceutical manufacture. IFAC Proceedings Volumes,
34, 161-165.

Farid, S. S., Washbrook, J., & Titchener‐Hooker, N. J. (2005). Decision‐support tool
for assessing biomanufacturing strategies under uncertainty: Stainless steel
versus disposable equipment for clinical trial material preparation.
Biotechnology Progress, 21, 486-497.

Fike, R. (2009). Nutrient Supplementation Strategies for Biopharmaceutical
Production, Part 2. BioProcess Int, 7.

Floudas, C. A., & Lin, X. (2004). Continuous-time versus discrete-time approaches for
scheduling of chemical processes: a review. Computers & Chemical
Engineering, 28, 2109-2129.

Fogel, D. B., & Atmar, J. W. (1990). Comparing genetic operators with Gaussian
mutations in simulated evolutionary processes using linear systems. Biological
Cybernetics, 63, 111-114.

Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple
constraint handling with evolutionary algorithms. I. A unified formulation. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 28, 26-37.

Fonseca, C. M., Paquete, L., & López-Ibánez, M. (2006). An improved dimension-
sweep algorithm for the hypervolume indicator. In Evolutionary Computation,
2006. CEC 2006. IEEE Congress on (pp. 1157-1163): IEEE.

Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning
Research, 13, 2171-2175.

Friedman, L. M., Furberg, C., DeMets, D. L., Reboussin, D., & Granger, C. B. (2015).
Fundamentals of clinical trials: Springer.

Gatica, G., Papageorgiou, L. G., & Shah, N. (2003). Capacity Planning Under
Uncertainty for the Pharmaceutical Industry. Chemical Engineering Research
and Design, 81, 665-678.

George, E. D., & Farid, S. S. (2008). Strategic Biopharmaceutical Portfolio
Development: An Analysis of Constraint‐Induced Implications. Biotechnology
Progress, 24, 698-713.

Gicquel, C., Hege, L., Minoux, M., & Van Canneyt, W. (2012). A discrete time exact
solution approach for a complex hybrid flow-shop scheduling problem with
limited-wait constraints. Computers & Operations Research, 39, 629-636.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13, 533-549.

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used
in genetic algorithms. Foundations of genetic algorithms, 1, 69-93.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on systems, man, and cybernetics, 16, 122-128.

Gutjahr, W. J., & Pichler, A. (2016). Stochastic multi-objective optimization: a survey
on non-scalarizing methods. Annals of Operations Research, 236, 475-499.

Hamdy, M., Nguyen, A.-T., & Hensen, J. L. (2016). A performance comparison of
multi-objective optimization algorithms for solving nearly-zero-energy-building
design problems. Energy and Buildings, 121, 57-71.

Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann,
I. E., Hooker, J., Méndez, C., Sand, G., & Wassick, J. (2014). Scope for

References

215

industrial applications of production scheduling models and solution methods.
Computers & Chemical Engineering, 62, 161-193.

Hartl, D. L. (1988). A primer of population genetics: Sinauer Associates, Inc.
Hassan, R., Cohanim, B., de Weck, O., & Venter, G. (2004). A copmarison of particle

swarm optimization and the genetic algorithm. American Institute of
Aeronautics and Astronautics.

Haupt, R. (1989). A survey of priority rule-based scheduling. Operations-Research-
Spektrum, 11, 3-16.

Hertz, A., & Widmer, M. (2003). Guidelines for the use of meta-heuristics in
combinatorial optimization. European Journal of Operational Research, 151,
247-252.

Ho, J. C., Chang, Y.-L., & Solis, A. O. (2006). Two modifications of the least cost per
period heuristic for dynamic lot-sizing. Journal of the Operational Research
Society, 57, 1005-1013.

Hodges Jr, J. L., & Lehmann, E. L. (1963). Estimates of location based on rank tests.
The Annals of Mathematical Statistics, 598-611.

Holland, J., & Goldberg, D. (1989). Genetic algorithms in search, optimization and
machine learning. Massachusetts: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence: U
Michigan Press.

IDC. (2018). Worldwide Public Cloud Services Spending Forecast to Reach $122.5
Billion in 2017, According to IDC. In.

Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective
optimization. In Genetic and Evolving Systems, 2008. GEFS 2008. 3rd
International Workshop on (pp. 47-52): IEEE.

James, K., & Russell, E. (1995). Particle swarm optimization. In Proceedings of 1995
IEEE International Conference on Neural Networks (pp. 1942-1948).

James, R. J., & Almada-Lobo, B. (2011). Single and parallel machine capacitated
lotsizing and scheduling: New iterative MIP-based neighborhood search
heuristics. Computers & Operations Research, 38, 1816-1825.

Jankauskas, K., Long, A., Osborne, M., McCartney, G., Papageorgiou, L., & Farid, S.
(2017). Multi-objective medium-term capacity planning for stainless steel and
single-use multi-product biopharmaceutical facilities under uncertainty using a
genetic algorithm. In ABSTRACTS OF PAPERS OF THE AMERICAN
CHEMICAL SOCIETY (Vol. 253): AMER CHEMICAL SOC 1155 16TH ST,
NW, WASHINGTON, DC 20036 USA.

Jankauskas, K., Papageorgiou, L. G., & Farid, S. S. (2017). Continuous-Time
Heuristic Model for Medium-Term Capacity Planning of a Multi-Suite, Multi-
Product Biopharmaceutical Facility. In Computer Aided Chemical Engineering
(Vol. 40, pp. 1303-1308): Elsevier.

Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review.
International Journal of Production Research, 46, 1619-1643.

Jiang, Z., Droms, K., Geng, Z., Casnocha, S., Xiao, Z., Gorfien, S., & Jacobia, S. J.
(2012). Fed-Batch Cell Culture Process Optimization. BioProcess
International.

Jin, Y., & Branke, J. (2005). Evolutionary optimization in uncertain environments-a
survey. IEEE Transactions on evolutionary computation, 9, 303-317.

Kabra, S., Shaik, M. A., & Rathore, A. S. (2013). Multi-period scheduling of a multi-
stage multi-product bio-pharmaceutical process. Computers & Chemical
Engineering, 57, 95-103.

Kaitin, K., & DiMasi, J. (2010). Pharmaceutical innovation in the 21st century: new
drug approvals in the first decade, 2000–2009. Clinical Pharmacology &
Therapeutics, 89, 183-188.

References

216

Kallrath, J. (2002). Planning and scheduling in the process industry. OR spectrum,
24, 219-250.

Kalyanmoy, D. (2011). Multi-objective optimization using evolutionary algorithms: An
introduction. KanGAL Report.

Kamarck, M. E. (2006). Building biomanufacturing capacity—the chapter and verse.
Nature biotechnology, 24, 503-505.

Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing
problem: a review of models and algorithms. Omega, 31, 365-378.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing
(pp. 302-311): ACM.

Kimms, A. (1999). A genetic algorithm for multi-level, multi-machine lot sizing and
scheduling. Computers & Operations Research, 26, 829-848.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220, 671-680.

Knowles, J. D., Corne, D. W., & Fleischer, M. (2003). Bounded archiving using the
Lebesgue measure. In Evolutionary Computation, 2003. CEC'03. The 2003
Congress on (Vol. 4, pp. 2490-2497): IEEE.

Köksalan, M. M., Wallenius, J., & Zionts, S. (2011). Multiple criteria decision making:
from early history to the 21st century: World Scientific.

Kondili, E., Pantelides, C., & Sargent, R. (1993). A general algorithm for short-term
scheduling of batch operations—I. MILP formulation. Computers & Chemical
Engineering, 17, 211-227.

Laínez, J. M., Schaefer, E., & Reklaitis, G. V. (2012). Challenges and opportunities in
enterprise-wide optimization in the pharmaceutical industry. Computers &
Chemical Engineering, 47, 19-28.

Lakhdar, K., Farid, S., Savery, J., Titchener-Hooker, N., & Papageorgiou, L. (2006).
Medium term planning of biopharmaceutical manufacture under uncertainty.
Computer Aided Chemical Engineering, 21, 2069-2074.

Lakhdar, K., & Papageorgiou, L. G. (2006). An iterative mixed integer optimisation
approach for medium term planning of biopharmaceutical manufacture under
uncertainty. Chemical Engineering Research and Design, 86, 259-267.

Lakhdar, K., & Papageorgiou, L. G. (2008). An iterative mixed integer optimisation
approach for medium term planning of biopharmaceutical manufacture under
uncertainty. Chemical Engineering Research and Design, 86, 259-267.

Lakhdar, K., Savery, J., Papageorgiou, L., & Farid, S. (2007). Multiobjective Long‐
Term Planning of Biopharmaceutical Manufacturing Facilities. Biotechnology
Progress, 23, 1383-1393.

Lakhdar, K., Zhou, Y., Savery, J., Titchener‐Hooker, N. J., & Papageorgiou, L. G.
(2005). Medium term planning of biopharmaceutical manufacture using
mathematical programming. Biotechnology Progress, 21, 1478-1489.

Langer, E. (2009). Trends in capacity utilization for therapeutic monoclonal antibody
production. In MAbs (Vol. 1, pp. 151-156): Taylor & Francis.

Langer, E., & Rader, R. A. (2017). Top Trends in Biopharmaceutical Manufacturing,
2017. Pharmaceutical Technology, 41.

Levis, A. A., & Papageorgiou, L. G. (2004). A hierarchical solution approach for multi-
site capacity planning under uncertainty in the pharmaceutical industry.
Computers & Chemical Engineering, 28, 707-725.

Lim, A. C., Washbrook, J., Titchener‐Hooker, N. J., & Farid, S. S. (2006). A computer‐
aided approach to compare the production economics of fed‐batch and
perfusion culture under uncertainty. Biotechnology and bioengineering, 93,
687-697.

Lin, W.-Y., Lee, W.-Y., & Hong, T.-P. (2003). Adapting crossover and mutation rates
in genetic algorithms. J. Inf. Sci. Eng., 19, 889-903.

References

217

Liu, S., Simaria, A. S., Farid, S. S., & Papageorgiou, L. G. (2013). Designing cost‐
effective biopharmaceutical facilities using mixed‐integer optimization.
Biotechnology Progress, 29, 1472-1483.

Lorigeon, T., Billaut, J., & Bouquard, J. (2002). A dynamic programming algorithm for
scheduling jobs in a two-machine open shop with an availability constraint.
Journal of the Operational Research Society, 53, 1239-1246.

Luke, S. (2009). Essentials of metaheuristics (Vol. 113): Lulu Raleigh.
Luke, S. (2013). Essentials of metaheuristics: Lulu Com.
Majozi, T., Seid, E. R., & Lee, J.-Y. (2015). Synthesis, Design, and Resource

Optimization in Batch Chemical Plants: CRC Press.
Malik, A., Pinkus, G., & Sheffer, S. (2002). Biopharma's capacity crunch. McKinsey

Quarterly. In.
Melanie, M. (1996). An Introduction to Genetic Algorithms.
Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-

of-the-art review of optimization methods for short-term scheduling of batch
processes. Computers & Chemical Engineering, 30, 913-946.

Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American
statistical association, 44, 335-341.

Miller, D. L., Schertz, D., Stevens, C., & Pekny, J. F. (2010). Mathematical
programming for the design and analysis of a biologics facility. BioPharm
International, 23.

Montagna, J. M., Vecchietti, A. R., Iribarren, O. A., Pinto, J. M., & Asenjo, J. A. (2000).
Optimal design of protein production plants with time and size factor process
models. Biotechnology Progress, 16, 228-237.

Mustafa, M., Washbrook, J., Titchener-Hooker, N., & Farid, S. (2006). Retrofit
decisions within the biopharmaceutical industry: an EBA case study. Food and
bioproducts processing, 84, 84-89.

Nie, W. (2015). Cost evaluation and portfolio management optimization for
biopharmaceutical product development. UCL (University College London).

Nie, W., Zhou, Y., Simaria, A. S., & Farid, S. S. (2012). Biopharmaceutical portfolio
management optimization under uncertainty. In Symposium on Computer
Aided Process Engineering (Vol. 17, pp. 20).

Nvidia, C. (2011). Nvidia cuda c programming guide. Nvidia Corporation, 120, 8.
Otto, R., Santagostino, A., & Schrader, U. (2014). Rapid growth in biopharma:

Challenges and opportunities. In.
Oyebolu, F. B., van Lidth de Jeude, J., Siganporia, C., Farid, S. S., Allmendinger, R.,

& Branke, J. (2017). A new lot sizing and scheduling heuristic for multi-site
biopharmaceutical production. Journal of heuristics, 23, 231-256.

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments. In Advanced information networking and applications (AINA),
2010 24th IEEE international conference on (pp. 400-407): IEEE.

Pantelides, C. C. (1994). Unified frameworks for optimal process planning and
scheduling. In Proceedings on the second conference on foundations of
computer aided operations (pp. 253-274): Cache Publications New York.

Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules. Operations
Research, 25, 45-61.

Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2000). Strategic Supply Chain
Optimization for the Pharmaceutical Industries. Industrial & Engineering
Chemistry Research, 40, 275-286.

Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain
optimization for the pharmaceutical industries. Industrial & Engineering
Chemistry Research, 40, 275-286.

Paparrizos, K., Samaras, N., & Stephanides, G. (2003). A new efficient primal dual
simplex algorithm. Computers & Operations Research, 30, 1383-1399.

References

218

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg,
S. R., & Schacht, A. L. (2010). How to improve R&D productivity: the
pharmaceutical industry's grand challenge. Nature Reviews Drug Discovery,
9, 203-214.

Piana, S., & Engell, S. (2010). Hybrid evolutionary optimization of the operation of
pipeless plants. Journal of heuristics, 16, 311-336.

Pinto, J. M., & Grossmann, I. E. (1998). Assignment and sequencing models for
thescheduling of process systems. Annals of Operations Research, 81, 433-
466.

Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer
programming: Springer Science & Business Media.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm
intelligence, 1, 33-57.

Raisanen, L., & Whitaker, R. M. (2005). Comparison and evaluation of multiple
objective genetic algorithms for the antenna placement problem. Mobile
Networks and Applications, 10, 79-88.

Rajapakse, A., Titchener-Hooker, N. J., & Farid, S. S. (2005). Modelling of the
biopharmaceutical drug development pathway and portfolio management.
Computers & Chemical Engineering, 29, 1357-1368.

Rajapakse, A., Titchener‐Hooker, N. J., & Farid, S. S. (2006). Integrated approach to
improving the value potential of biopharmaceutical R&D portfolios while
mitigating risk. Journal of chemical technology and biotechnology, 81, 1705-
1714.

Ransohoff, T. C. (2004). Considerations impacting the make vs. buy decision. Amer
Pharm Outsourcing, 5, 52-63.

Ray, T., Tai, K., & Seow, C. (2001). An evolutionary algorithm for multiobjective
optimization. Eng. Optim, 33, 399-424.

Reeves, C. (2003). Genetic algorithms. In Handbook of metaheuristics (pp. 55-82):
Springer.

rey Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic
algorithm for multiobjective optimization. In Proceedings of the first IEEE
conference on evolutionary computation, IEEE world congress on
computational intelligence (Vol. 1, pp. 82-87): Citeseer.

Rotstein, G. E., Papageorgiou, L. G., Shah, N., Murphy, D. C., & Mustafa, R. (1999).
A product portfolio approach in the pharmaceutical industry. Computers &
Chemical Engineering, 23, Supplement, S883-S886.

Sabatier, V., Mangematin, V., & Rousselle, T. (2010). From recipe to dinner: business
model portfolios in the European biopharmaceutical industry. Long Range
Planning, 43, 431-447.

Samsatli, N., & Shah, N. (1996a). An optimization based design procedure for
biochemical processes: Part I: Preliminary design and operation. Food and
bioproducts processing, 74, 221-231.

Samsatli, N., & Shah, N. (1996b). An optimization based design procedure for
biochemical processes: Part II: Detailed scheduling. Food and bioproducts
processing, 74, 232-242.

Sand, G., Till, J., Tometzki, T., Urselmann, M., Engell, S., & Emmerich, M. (2008).
Engineered versus standard evolutionary algorithms: A case study in batch
scheduling with recourse. Computers & Chemical Engineering, 32, 2706-
2722.

Saraph, P. V. (2001). Simulating biotech manufacturing operations: issues and
complexities. In Proceedings of the 33nd conference on Winter simulation
(pp. 530-524): IEEE Computer Society.

Savage, S. (2002). The flaw of averages. Harvard Business Review, 80, 20-21.
Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic

algorithms. In Proceedings of the First International Conference on Genetic

References

219

Algorithms and Their Applications, 1985: Lawrence Erlbaum Associates. Inc.,
Publishers.

Schaffer, J. D., & Morishima, A. (1987). An adaptive crossover distribution mechanism
for genetic algorithms. In Genetic Algorithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms
(pp. 36-40): Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Schmidt, C. W., & Grossmann, I. E. (1996). Optimization models for the scheduling of
testing tasks in new product development. Industrial & Engineering Chemistry
Research, 35, 3498-3510.

Schrijver, A. (1998). Theory of linear and integer programming: John Wiley & Sons.
Seada, H., & Deb, K. (2015). U-NSGA-III: a unified evolutionary optimization

procedure for single, multiple, and many objectives: proof-of-principle results.
In International Conference on Evolutionary Multi-Criterion Optimization (pp.
34-49): Springer.

Senaratna, N. I. (2005). Genetic algorithms: The crossover-mutation debate. Bachelor
of Computer Science (Special) of the University of Colombo.

Shah, N. (1998). Planning and scheduling-single-and multisite planning and
scheduling: Current status and future challenges. In AIChE Symposium
Series (Vol. 94, pp. 75-90): New York, NY: American Institute of Chemical
Engineers, 1971-c2002.

Shaik, M. A., Janak, S. L., & Floudas, C. A. (2006). Continuous-time models for short-
term scheduling of multipurpose batch plants: A comparative study. Industrial
& Engineering Chemistry Research, 45, 6190-6209.

Shanley, A. (2014). Tufts’ New Figures on Drug-Development Costs Spark Debate.
In (Vol. 2016). BioPharm International.com: BioPharm International.

Sierksma, G. (2001). Linear and integer programming: theory and practice: CRC
Press.

Siganporia, C. (2016). Strategic Biopharmaceutical Production Planning for Batch and
Perfusion Processes. UCL (University College London).

Siganporia, C. C., Ghosh, S., Daszkowski, T., Papageorgiou, L. G., & Farid, S. S.
(2014). Capacity planning for batch and perfusion bioprocesses across
multiple biopharmaceutical facilities. Biotechnology Progress.

Silver, E. A. (1973). A heuristic for selecting lot size quantities for the case of a
deterministic time-varying demand rate and discrete opportunities for
replenishment. Prod. Inventory Manage., 2, 64-74.

Simaria, A. S., Turner, R., & Farid, S. S. (2012). A multi-level meta-heuristic algorithm
for the optimisation of antibody purification processes. Biochemical
Engineering Journal, 69, 144-154.

Spears, W. M., & Anand, V. (1991). A study of crossover operators in genetic
programming. In International Symposium on Methodologies for Intelligent
Systems (pp. 409-418): Springer.

Stack-Overflow. (2018). Stack Overflow Developer Survey 2018. In.
Stanley, K. O., & Miikkulainen, R. (2002). Efficient evolution of neural network

topologies. In Evolutionary Computation, 2002. CEC'02. Proceedings of the
2002 Congress on (Vol. 2, pp. 1757-1762): IEEE.

Stone, R. E., & Tovey, C. A. (1991). The simplex and projective scaling algorithms as
iteratively reweighted least squares methods. SIAM review, 33, 220-237.

Stonier, A., Simaria, A. S., Smith, M., & Farid, S. S. (2012). Decisional tool to assess
current and future process robustness in an antibody purification facility.
Biotechnology Progress, 28, 1019-1028.

Svinivas, N. (1995). Multiobjective optimization using nondominated sorting in genetic
algorithms. IEEE Trans. Evol. Comput., 2, 221-248.

Syberfeldt, A., Ng, A., John, R. I., & Moore, P. (2009). Multi-objective evolutionary
simulation-optimisation of a real-world manufacturing problem. Robotics and
Computer-Integrated Manufacturing, 25, 926-931.

References

220

Taherdangkoo, M., Paziresh, M., Yazdi, M., & Bagheri, M. (2013). An efficient
algorithm for function optimization: modified stem cells algorithm. In Open
Engineering (Vol. 3, pp. 36).

Tait, K. (1998). Pharmaceutical industry. In (pp. 79.74-75).
Ting, C.-K., Lee, C.-N., Chang, H.-C., & Wu, J.-S. (2009). Wireless heterogeneous

transmitter placement using multiobjective variable-length genetic algorithm.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39, 945-958.

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information processing letters, 85, 317-325.

Vanek, J., Michálek, J., & Psutka, J. (2017). A Comparison of Support Vector
Machines Training GPU-Accelerated Open Source Implementations. arXiv
preprint arXiv:1707.06470.

Varma, V. A., Pekny, J. F., Blau, G. E., & Reklaitis, G. V. (2008). A framework for
addressing stochastic and combinatorial aspects of scheduling and resource
allocation in pharmaceutical R&D pipelines. Computers & Chemical
Engineering, 32, 1000-1015.

Vasquez-Alvarez, E., & Pinto, J. (2004). Efficient MILP formulations for the optimal
synthesis of chromatographic protein purification processes. Journal of
Biotechnology, 110, 295-311.

Vieira, M., Pinto-Varela, T., Moniz, S., Barbosa-Póvoa, A. P., & Papageorgiou, L. G.
(2016). Optimal planning and campaign scheduling of biopharmaceutical
processes using a continuous-time formulation. Computers & Chemical
Engineering, 91, 422-444.

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size
model. Management science, 5, 89-96.

Walsh, G. (2010). Biopharmaceutical benchmarks 2010. Nature biotechnology, 28,
917.

Widmer, M., Hertz, A., & Costa, D. (2008). Metaheuristics and Scheduling. Production
Scheduling, 33-68.

Yang, Y., Farid, S. S., & Thornhill, N. F. (2014). Data mining for rapid prediction of
facility fit and debottlenecking of biomanufacturing facilities. Journal of
Biotechnology, 179, 17-25.

Yuan, Y., Xu, H., & Wang, B. (2014). An improved NSGA-III procedure for
evolutionary many-objective optimization. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation (pp. 661-668): ACM.

Zhang, W. (1996). Reinforcement learning for job-shop scheduling.
Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In

International Conference on Parallel Problem Solving from Nature (pp. 832-
842): Springer.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto
evolutionary algorithm. TIK-report, 103.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Transactions on
evolutionary computation, 3, 257-271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003).
Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on evolutionary computation, 7, 117-132.

Appendix

221

Appendix

Appendix A

A.1. Publications

Jankauskas, K., Papageorgiou, L.G. and Farid, S.S., 2017. Continuous-Time

Heuristic Model for Medium-Term Capacity Planning of a Multi-Suite, Multi-Product

Biopharmaceutical Facility. In Computer Aided Chemical Engineering (Vol. 40, pp.

1303-1308). Elsevier.

Jankauskas, K., Papageorgiou, L. G., & Farid, S. S. (2017). Fast Genetic Algorithm

Approaches to Solving Discrete-Time Mixed Integer Linear Programming Problems

of Capacity Planning and Scheduling of Biopharmaceutical Manufacture. Computer

Aided Chemical Engineering (submitted)

Jankauskas, (Eli Lilly authors TBD), Papageorgiou, LG., Farid, SS. 2017. Multi-

objective Capacity Planning For Multi-product Biopharmaceutical Facilities Under

Uncertainty Using a Flexible Genetic Algorithm Approach. (Journal TBD) (in

preparation)

A.1. Conferences

Jankauskas, K., Papageorgiou, LG., Farid, SS. 2018. Continuous-Time Heuristic

Model for Medium-Term Capacity Planning Of A Multi-Suite, Multi-Product

Biopharmaceutical Facility (Keynote), 27th European Symposium on Computer Aided

Process Engineering (ESCAPE), Barcelona, Spain, October 2-6.

Jankauskas, K., McCartney, GR., Osborne, MD., Papageorgiou, LG., Farid, SS. 2017.

Multi-Objective Capacity Planning for Multi-Product Biopharmaceutical Facilities

Under Uncertainty, 253rd ACS National Meeting, San Francisco, USA, April 2-6.

Jankauskas, K., Papageorgiou, LG., Farid, SS. 2016. Production Scheduling of A

Multi-Product Biopharmaceutical Facility Using a Genetic Algorithm, 28th European

Conference on Operational Research (EURO), Poznan, Poland, July 4-8.

Appendix

222

Appendix B

This appendix provides the technical details of the core flexible GA-based DST

components developed during this PhD thesis.

B.1. Gene

A gene class/structure was created for encapsulating problem-specific information,

e.g. encoded variables and methods for mutating them. This way, the variable-length

chromosome (see the next Appendix) can be used to solve different

biopharmaceutical scheduling problems just by plugging in a corresponding gene

encoding the minimum required variables. For example, the SingleSiteSimpleGene

displayed in Figure B.1.b does not have fields and methods associated with the USP

suites, e.g. usp_suite_num and mutate_usp_suite_num(), as this was not mandated

by the scheduling problems described in Chapters 5 and 6.

a) b)

Figure B.1. Structure of a single variable-length chromosome gene:

(a) Gene structure utilised in Chapter 4

(b) Gene structure utilised in Chapters 5 and 6

Appendix

223

Algorithm B.1. C++ implementation of a gene used in Chapter 4.

#include <utility>
#include "utils.h"

struct SingleSiteMultiSuiteGene
{
 SingleSiteMultiSuiteGene() {}

 SingleSiteMultiSuiteGene(
 int num_products,
 int num_usp_suites,
 double p_product_mut,
 double p_usp_suite_mut,
 double p_plus_batch_mut,
 double p_minus_batch_mut
)
 {
 this->num_products = num_products,
 this->num_usp_suites = num_usp_suites,
 this->p_product_mut = p_product_mut,
 this->p_usp_suite_mut = p_usp_suite_mut,
 this->p_plus_batch_mut = p_plus_batch_mut,
 this->p_minus_batch_mut = p_minus_batch_mut,
 this->num_batches = 1;
 this->product_num = utils::random_int(1, num_products);
 this->usp_suite_num = utils::random_int(1, num_usp_suites);
 }

 SingleSiteMultiSuiteGene make_new()
 {
 return std::move(
 SingleSiteMultiSuiteGene(
 num_products,
 num_usp_suites,
 p_product_mut,
 p_usp_suite_mut,
 p_plus_batch_mut,
 p_minus_batch_mut
)
);
 }

 inline void Mutate()
 {
 mutate_product_num();
 mutate_usp_suite_num();
 mutate_num_batches();
 }

 int product_num;
 int usp_suite_num;
 int num_batches;

private:
 inline void mutate_product_num()
 {
 if (utils::random() >= p_product_mut) {
 return;
 }

 int random_product_num = 0;
 do { random_product_num = utils::random_int(1, num_products); }
 while (product_num == random_product_num);
 product_num = random_product_num;

Appendix

224

 }

 inline void mutate_usp_suite_num()
 {
 if (utils::random() >= p_usp_suite_mut) {
 return;
 }

 int random_usp_suite_num = 0;
 do { random_usp_suite_num = utils::random_int(1, num_usp_suites); }
 while (usp_suite_num == random_usp_suite_num);
 usp_suite_num = random_usp_suite_num;
 }

 inline void mutate_num_batches()
 {
 if (utils::random() < p_plus_batch_mut) {
 num_batches += 1;
 }

 if (num_batches > 0 && utils::random() < p_minus_batch_mut) {
 num_batches -= 1;
 }
 }

 int num_products;
 int num_usp_suites;
 double p_product_mut;
 double p_usp_suite_mut;
 double p_plus_batch_mut;
 double p_minus_batch_mut;
};

Algorithm B2. C++ implementation of a gene used in Chapter 5.

#include <utility>
#include "utils.h"

struct SingleSiteSimpleGene
{
 SingleSiteSimpleGene() {}

 SingleSiteSimpleGene(
 int num_products,
 double p_product_mut,
 double p_plus_batch_mut,
 double p_minus_batch_mut

)
 {
 this->num_products = num_products;
 this->num_batches = 1;
 this->p_product_mut = p_product_mut;
 this->p_plus_batch_mut = p_plus_batch_mut;
 this->p_minus_batch_mut = p_minus_batch_mut;
 this->product_num = utils::random_int(1, num_products);
 }

 SingleSiteSimpleGene make_new()
 {
 return std::move(
 SingleSiteSimpleGene(
 num_products,
 p_product_mut,

Appendix

225

 p_plus_batch_mut,
 p_minus_batch_mut
)
);
 }

 inline void Mutate()
 {
 mutate_product_num();
 mutate_num_batches();
 }

 int product_num;
 int num_batches;

private:
 inline void mutate_product_num()
 {
 if (utils::random() >= p_product_mut) {
 return;
 }

 int random_product_num = 0;
 do { random_product_num = utils::random_int(1, num_products); }
 while (product_num == random_product_num);
 product_num = random_product_num;
 }

 inline void mutate_num_batches()
 {
 if (utils::random() < p_plus_batch_mut) {
 num_batches += 1;
 }

 if (num_batches > 1 && utils::random() < p_minus_batch_mut) {
 num_batches -= 1;
 }
 }

 int num_products;
 double p_product_mut;
 double p_plus_batch_mut;
 double p_minus_batch_mut;
};

Appendix

226

B.2. Variable-length Chromosome

The variable-length chromosome described in Chapter 4 and later used in Chapters

5 and 6 has been implemented using a template class (see BaseChromosome in

Figure B.2). Templates in C++ programming language make classes more abstract

by letting the user define the behavior of the class without specifically knowing what

datatype will be handled by the operators/methods of the class. This way the variable-

length chromosome can be compatible with genes comprising varying number of

mutation operators, parameters, and encoded variables. The ability to have a single

class that can handle several different gene types means the codebase is easier to

maintain and more reusable. The same variable-length chromosome base can be

applied to different biopharmaceutical capacity planning and scheduling problems,

e.g. Chapter 4 and 5, by specifying a problem-specific gene datatype. Gene

parameter values are passed from the chromosome using a variadic parameter pack

which improves the abstraction even further.

Figure B.2. Variable-length chromosome.

NSGAChromosome and SingleObjectiveChromosome classes extend the

BaseChromosome class with GA-specific attributes, e.g. NSGAChromosome add

attributes required by the NSGA-II algorithm.

Appendix

227

Algorithm B.3. C++ implementation of the variable-length chromosome base.

#include <vector>
#include <cstdlib>
#include <utility>
#include <algorithm>
#include <functional>
#include "utils.h"

template<class Gene>
class BaseChromosome
{
public:
 typedef std::vector<Gene> Genes;

 explicit BaseChromosome() {}

 template<class... GeneParams>
 explicit BaseChromosome(
 int starting_length,
 double p_xo,
 double p_gene_swap,
 GeneParams... params
) :
 p_xo(p_xo),
 p_gene_swap(p_gene_swap)

 {
 while (starting_length-- > 0) {
 genes.push_back(std::move(Gene(params...)));
 }
 }

 inline void Cross(BaseChromosome &other)
 {
 if (utils::random() > p_xo) {
 return;
 }

 if (genes.size() < 2 || other.genes.size() < 2) {
 return;
 }

 int i;

 if (genes.size() < other.genes.size()) {
 for (i = 0; i != genes.size(); ++i) {
 if (utils::random() <= 0.50) {
 std::swap(genes[i], other.genes[i]);
 }
 }
 for (; i != other.genes.size(); ++i) {
 if (utils::random() <= 0.50) {
 genes.push_back(other.genes[i]);
 }
 }
 }
 else {
 for (i = 0; i != other.genes.size(); ++i) {
 if (utils::random() <= 0.50) {
 std::swap(genes[i], other.genes[i]);
 }
 }
 for (; i != genes.size(); ++i) {
 if (utils::random() <= 0.50) {

Appendix

228

Algorithm B.3. (continued) C++ implementation of the variable-length chromosome

base.

 other.genes.push_back(genes[i]);
 }
 }
 }
 }

 inline void Mutate()
 {
 for (auto &gene : genes) {
 gene.Mutate();
 }

 AddGene();
 SwapGenes();
 }

 Genes;

private:
 inline void AddGene()
 {
 genes.push_back(genes.back().make_new());
 }

 inline void SwapGenes()
 {
 if (utils::random() >= p_gene_swap) {
 return;
 }

 int g1 = 0, g2 = 0;
 do {
 g1 = utils::random_int(0, genes.size() - 1);
 g2 = utils::random_int(0, genes.size() - 1);
 } while (g1 == g2);

 std::swap(genes[g1], genes[g2]);
 }

 double p_xo;
 double p_gene_swap;
};

Appendix

229

B.3. Genetic Algorithm

A base GA class was developed to improve the re-usability of the codebase and to

provide a standardised interface for single- and multi-objective GAs. It was also

implemented as a template class to make it possible to specify different scheduling

heuristics, i.e. as FitnessFunction (see Figure B.3 below). This way the codebase for

the GA could be re-used to solve the various biopharmaceutical scheduling problems

applying different scheduling heuristics.

Figure B.3. Diagrams of Genetic Algorithms developed in this thesis.

Appendix

230

B.4. API Usage Examples

This section provides practical examples (Algorithm B.4 and B.5) of how the GA-

based DST is used to solve the case studies described in Chapters 4 and 5 using the

Python API designed in this thesis.

Algorithm B.4. Demonstration of how the GA-based Decision Support Tool is used to

solve a single-objective scheduling problem described in the case study 1 of Chapter

4 using Python Application Programming Interface designed in this work.

Import Python Pandas library for data I/O
import pandas as pd

Import the desired model from the GA-based DST
from biopharma_scheduling.single_site.deterministic import DetSingleSiteMultiSuite

Data setup
start_date = '2016-11-02'
demand = pd.read_csv('demand.csv', index_col='date')
product_data = pd.read_csv('product_data.csv')
usp_changeover_days = pd.read_csv('usp_changeover_days.csv')
dsp_changeover_days = pd.read_csv('dsp_changeover_days.csv')
num_usp_suites = 2
num_dsp_suites = 2

Specify which objective or objectives to optimise.
The objectives are pre-defined by the imported model
For example, calling DetSingleSiteMultiSuite.AVAILABLE_OBJECTIVES
will list all available objectives which can be minimised or
maximised by specifing the coefficient of -1 or 1, respectively
{
'total_backlog_penalty',
'total_batch_backlog',
'total_batch_supply',
'total_batch_throughput',
'total_batch_waste',
'total_changeover_cost',
'total_cost',
'total_production_cost',
'total_profit',
'total_revenue',
'total_storage_cost',
'total_waste_cost'
}
objectives = {
 'total_profit': 1 # Coefficient of 1 indicates maximisation
}

Specify the GA parameters
ga_params = {
 'num_runs': 20,
 'popsize': 100,
 'num_gens': 100,
 'starting_length': 1,
 'p_xo': 0.026776,
 'p_product_mut': 0.004667,
 'p_usp_suite_mut': 0.015991,
 'p_plus_batch_mut': 0.896385,

Appendix

231

Algorithm B.4. (continued) Demonstration of how the GA-based Decision Support

Tool is used to solve a single-objective scheduling problem described in the case

study 1 of Chapter 4 using Python Application Programming Interface designed in this

work.

 'p_minus_batch_mut': 0.853790,
 'p_gene_swap': 0.403328
}

Create an instance of the model
model = DetSingleSiteMultiSuite(
 **ga_params, # unpacks GA parameters set-up earlier
 random_state=7, # fix the seed for random number generator
 num_threads=-1, # will evaluate solutions in parallel using all available cores
 verbose=True, # will report progress status to the user
)

Fit the model using the GA params and the data defined earlier
model.fit(
 start_date,
 objectives,
 num_usp_suites,
 num_dsp_suites,
 demand,
 product_data,
 usp_changeover_days,
 dsp_changeover_days
)

After the model has been fit, the solutions, i.e. schedules,
will be contained in model.schedules list. If only one objective
was specified for the scheduling problem then it was solved using
a single-objective GA.

model.schedules will contain a single best solution that was found
during the specified number of GA runs.
schedule = model.schedules[0]

Will list the estimated values of all objectives
schedule.objectives

Will list a production schedule table for campaigns
schedule.campaigns

Will list a production schedule table for individual batches
schedule.batches

Will display a Gantt chart
schedule.campaigns_gantt()

Will display product inventory, supply, waste, and backlog profiles
schedule.batch_inventory
schedule.batch_supply
schedule.batch_waste
schedule.batch_backlog

Appendix

232

Algorithm B.5. Demonstration of how the GA-based Decision Support Tool is used to

solve a multi-objective biopharmaceutical scheduling problem with constraints

described in Chapter 5 using Python Application Programming Interface designed in

this work.

Import Python Pandas library for data I/O
import pandas as pd

Import the desired model from the GA-based DST
from biopharma_scheduling.single_site.deterministic import DetSingleSiteSimple

Data setup
start_date = '2016-12-01'
demand = pd.read_csv('demand.csv', index_col='date')
inventory_targets = pd.read_csv('inventory_targets.csv', index_col='date')
product_data = pd.read_csv('product_data.csv')
changeover_days = pd.read_csv('changeover_days.csv')

Specify which objective or objectives to optimise.
The objectives are pre-defined by the imported model
For example, calling DetSingleSiteSimple.AVAILABLE_OBJECTIVES
will list all available objectives which can be minimised or
maximised by specifing the coefficient of -1 or 1, respectively:
{
'total_backlog_penalty',
'total_cost',
'total_inventory_penalty',
'total_kg_backlog',
'total_kg_inventory_deficit',
'total_kg_supply',
'total_kg_throughput',
'total_kg_waste',
'total_production_cost',
'total_profit',
'total_revenue',
'total_storage_cost',
'total_waste_cost'
}
objectives = {
 'total_kg_throughput': 1, # maximise
 'total_kg_inventory_deficit': -1 # minimise
}

constraints = {
 'total_kg_backlog': [-1, 0], # total_kg_backlog <= 0
 'total_kg_waste': [-1, 0] # total_kg_waste <= 0
}

Specify the GA parameter
ga_params = {
 'num_runs': 50,
 'num_gens': 1000,
 'popsize': 600,
 'starting_length': 1,
 'p_xo': 0.108198,
 'p_product_mut': 0.0,
 'p_plus_batch_mut': 0.608130,
 'p_minus_batch_mut': 0.765819,
 'p_gene_swap': 0.471346,
}

Create an instance of the model
model = DetSingleSiteSimple(
 **ga_params, # unpacks GA parameters set-up earlier

Appendix

233

Algorithm B.5. (continued) Demonstration of how the GA-based Decision Support

Tool is used to solve a multi-objective biopharmaceutical scheduling problem with

constraints described in Chapter 5 using Python Application Programming Interface

designed in this work.

 random_state=7, # fix the seed for random number generator
 num_threads=-1, # will evaluate solutions in parallel using all available cores
 verbose=True, # will report progress status to the user
)

Fit the model using the GA params and the data defined earlier
model.fit(
 start_date,
 objectives,
 kg_demand,
 product_data,
 changeover_days,
 kg_inventory_target,
 constraints
)

After the model has been fit, the solutions, i.e. schedules,
will be contained in model.schedules list. Since more than one
objective is specified, the scheduling problem will be solved
as a multi-objective problem.

model.schedules will contain a single best Pareto
front which is a result of the best Pareto fronts from each
individual run combined together and sorted again using a
non-dominated sorting algorithm.

Sorting the Pareto objective using either one of the two
objectives, will make it easier to obtain the boundary
solutions X and Y
sorted_schedules = sorted(model.schedules, key=lambda schedule:
schedule.objectives['total_kg_throughput'].values[0])
solution_x = sorted_schedules[0]
solution_y = sorted_schedules[-1]

Will list the estimated values of all solution X objective
solution_x.objectives

Will list a solution X production schedule table
solution_x.campaigns

solution_x.batches

Will display a Gantt chart for solution X campaigns
solution_x.campaigns_gantt()

Will display a Gantt chart for solution X tasks, e.g. inoculation, USP, DSP
solution_x.tasks_gantt()

Solution X inventory, supply, waste, and backlog profiles
solution_x.kg_inventory
solution_x.kg_supply
solution_x.kg_waste
solution_x.kg_backlog

Appendix

234

Appendix C

This appendix summarises the mathematical model presented by Lakhdar et al.

(2005).

C.1. Production Constraints

Constraints 1 and 2 represent the manufacture of product in USP and DSP suites.

Upstream production, Bipt, and downstream production, Bjpt, are represented by

continuous rates of production, CRp and FRp, which are combined with their respective

USP and DSP lead times, αp and βp, and USP and DSP production times, CTipt and

FTjpt. Constraints 3 and 4 activate lead time in USP suite i and DSP suite j if the same

product p has not been manufactured in the preceding time period, t – 1. Constraints

5 and 6 ensures that only one product p is produced in any USP suite i and DSP suite

j at any time period t.

𝐵𝑖𝑝𝑡 = 𝑍𝑖𝑝𝑡 + 𝐶𝑅𝑝(𝐶𝑇𝑖𝑝𝑡 − 𝛼𝑝𝑍𝑖𝑝𝑡) ∀ 𝑖, 𝑝, 𝑡 (1)

𝐵𝑗𝑝𝑡 = 𝑍𝑗𝑝𝑡 + 𝐹𝑅𝑝(𝐹𝑇𝑗𝑝𝑡 − 𝛽𝑝𝑍𝑗𝑝𝑡) ∀ 𝑗, 𝑝, 𝑡 (2)

𝑍𝑖𝑝𝑡 ≥ 𝑌𝑖𝑝𝑡 − 𝑌𝑖𝑝,𝑡−1 ∀ 𝑖, 𝑝, 𝑡 (3)

𝑍𝑗𝑝𝑡 ≥ 𝑌𝑗𝑝𝑡 − 𝑌𝑗𝑝,𝑡−1 ∀ 𝑗, 𝑝, 𝑡 (4)

∑ 𝑌𝑖𝑝𝑡 ≤ 1 ∀ 𝑖, 𝑡𝑝 (5)

∑ 𝑌𝑗𝑝𝑡 ≤ 1 ∀ 𝑗, 𝑡𝑝 (6)

C.2. Timing Constraints

Constraints 7 and 8 represent the appropriate minimum and maximum production

times for USP and DSP suites, which are only activated when Yipt and Yjpt are equal

to 1. Constraints 9 and 10 ensure that the total USP or DSP time does not exceed the

specified production time horizon, Ht.

Appendix

235

𝐶𝑇𝑝
𝑚𝑖𝑛𝑌𝑖𝑝𝑡 ≤ 𝐶𝑇𝑖𝑝𝑡 ≤ 𝐶𝑇𝑝

𝑚𝑎𝑥𝑌𝑖𝑝𝑡 ∀ 𝑖, 𝑝, 𝑡 (7)

𝐹𝑇𝑝
𝑚𝑖𝑛𝑌𝑗𝑝𝑡 ≤ 𝐹𝑇𝑗𝑝𝑡 ≤ 𝐹𝑇𝑝

𝑚𝑎𝑥𝑌𝑗𝑝𝑡 ∀ 𝑗, 𝑝, 𝑡 (8)

∑ 𝐶𝑇𝑖𝑝𝑡 ≤ 𝐻𝑡 ∀𝑖, 𝑡𝑝 (9)

∑ 𝐹𝑇𝑗𝑝𝑡 ≤ 𝐻𝑡 ∀𝑗, 𝑡𝑝 (10)

C.3. Storage Constraints

Constraints 11 and 12 enforce an inventory balance in upstream and downstream

production and force the total downstream production to meet the product demand.

Constraints 13 and 14 ensure that the amount of upstream and downstream product

stored over timer period t is positive and below the maximum available storage

capacities, Cp and Fp. Both upstream and downstream product inventory is

constrained by the limited product shelf-life. Constraints 15 and 16 ensure the total

amount of stored upstream product and downstream product is used after the next ζp

or σp time periods, respectively.

𝐶𝐼𝑝𝑡 = 𝐶𝐼𝑝,𝑡−1 + ∑ 𝐵𝑖𝑝𝑡 −
1

𝜆𝑝
∑ 𝐵𝑗𝑝𝑡𝑗 − 𝐶𝑊𝑝𝑡 ∀ 𝑝, 𝑡𝑖 (11)

𝐹𝐼𝑝𝑡 = 𝐹𝐼𝑝,𝑡−1 + ∑ 𝐵𝑗𝑝𝑡 − 𝑆𝑝𝑡 − 𝐹𝑊𝑝𝑡 ∀ 𝑝, 𝑡𝑗 (12)

0 ≤ 𝐶𝐼𝑝𝑡 ≤ 𝐶𝑝 ∀ 𝑝, 𝑡 (13)

0 ≤ 𝐹𝐼𝑝𝑡 ≤ 𝐹𝑝 ∀ 𝑝, 𝑡 (14)

𝐶𝐼𝑝𝑡 ≤ ∑ ∑ 𝐵𝑗𝑝𝜃
𝑡+𝜁𝑝

𝜃=𝑡+1𝑗 ∀ 𝑝, 𝑡 (15)

𝐹𝐼𝑝𝑡 ≤ ∑ 𝑆𝑝𝜃
𝑡+𝜎𝑝

𝜃=𝑡+1
 ∀ 𝑝, 𝑡 (16)

C.4. Backlog Constraints

Constraint 17 penalises the amount of product p that was late for delivery at time

period t, Δpt.

Appendix

236

Δ𝑝𝑡 = Δ𝑝,𝑡−1 + 𝐷𝑝𝑡 − 𝑆𝑝𝑡 ∀ 𝑝, 𝑡 (17)

C.5. Objective Function

The objective function is to maximise profit which is equal to the difference between

total sales and total operating costs. All costs and prices are in relative monetary units

(RMU).

max𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ ∑ (𝜈𝑝𝑆𝑝𝑡 − ∑ 𝜂𝑝𝐵𝑖𝑝𝑡𝑖𝑡𝑝 − ∑ 𝜓𝑝𝑍𝑖𝑝𝑡𝑖 − ∑ 𝜂𝑝𝐵𝑗𝑝𝑡 −𝑗

∑ 𝜓𝑝𝑍𝑗𝑝𝑡𝑗 −𝜌𝑝𝐶𝐼𝑝𝑡− 𝜔𝑝𝐹𝐼𝑝𝑡− 𝛿𝑝𝛥𝑝𝑡 − 𝜏𝑝(𝐶𝑊𝑝𝑡 + 𝐹𝑊𝑝𝑡)) (18)

Appendix

237

Appendix D

This appendix summarises the mathematical model presented by Lakhdar et al.

(2007).

D.1. Production Constraints

Constraint 1 represents biopharmaceutical production. The number of batches

produced in facility i of product p at time period t, Bipt, is represented by a continuous

production rate, rip, production lead time, αip, and production time Tipt. Constraint 2

converts the integer number of batches, Bipt, into kilograms, Kipt, using a yield

conversion factor, ydip. Constraint 3 activates lead time in facility i if the same product

p has not been manufactured in the preceding time period, t – 1. Constraint 4 ensures

that only one product p is produced in any facility i at any time period t.

𝐵𝑖𝑝𝑡 = 𝑍𝑖𝑝𝑡 + 𝑟𝑝𝑡(𝑇𝑖𝑝𝑡 − 𝛼𝑖𝑝𝑍𝑖𝑝𝑡) ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖 (1)

𝐾𝑖𝑝𝑡 = 𝐵𝑖𝑝𝑡𝑦𝑑𝑖𝑝 ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖 (2)

𝑍𝑖𝑝𝑡 ≥ 𝑌𝑖𝑝𝑡 − 𝑌𝑖𝑝,𝑡−1 ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖 (3)

∑ 𝑌𝑖𝑝𝑡 ≤ 1 ∀ 𝑖, 𝑡 ∈ 𝑇𝐼𝑖𝑝∈𝑃𝐼𝑖 (4)

D.2. Timing Constraints

Constraints 5 and 6 represent the appropriate minimum and maximum campaign

durations, Tip
min

 and Tip
max

, which are only activated when Yipt is equal to 1.

𝑇𝑖𝑝
𝑚𝑖𝑛𝑌𝑖𝑝𝑡 ≤ 𝑇𝑖𝑝𝑡 ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖 (5)

𝑇𝑖𝑝𝑡 ≤ min{𝑇𝑖𝑝
𝑚𝑎𝑥 , 𝐻𝑡} 𝑌𝑖𝑝𝑡 ∀ 𝑖, 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖 (6)

Appendix

238

D.3. Storage Constraints

Constraint 7 enforces inventory balance for production and forces the total production

to meet the product demand. Constraint 9 enforces that the amount of product p in

inventory at time period t is below the maximum storage capacity, Cp, while the

constraint 10 ensures that the global storage capacity, Cp
tot

, is not exceeded. The

duration a product can be is stored in inventory is limited by the constraint 10.

𝐼𝑝𝑡 = 𝐼𝑝,𝑡−1 + ∑ 𝐾𝑖𝑝𝑡 − 𝑆𝑝𝑡 − 𝑊𝑝𝑡 ∀ 𝑝 ∈ 𝑃𝐼𝑖, 𝑡 ∈ 𝑇𝐼𝑖𝑖 (7)

0 ≤ 𝐼𝑝𝑡 ≤ 𝐶𝑝 ∀ 𝑝, 𝑡 (8)

0 ≤ ∑ 𝐼𝑝𝑡 ≤ 𝐶𝑝
𝑡𝑜𝑡

𝑝 ∀ 𝑡 (9)

𝐼𝑝𝑡 ≤ ∑ 𝑆𝑝𝜃
𝑡+𝜁𝑝

𝜃=𝑡+1
 ∀ 𝑝, 𝑡 (10)

D.4. Backlog Constraints

Constraint 11 penalises the amount of product p that was late for delivery at time

period t, Δpt.

Δ𝑝𝑡 = 𝜋𝑝Δ𝑝,𝑡−1 + 𝐷𝑝𝑡 − 𝑆𝑝𝑡 ∀ 𝑝, 𝑡 (11)

D.5. Objective Function

The objective function is to maximise profit which is equal to the difference between

total sales and total operating costs. All costs and prices are in relative monetary units

(RMU).

max𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ ∑ (𝜈𝑝𝑆𝑝𝑡 − 𝜌𝑝𝐼𝑝𝑡 − 𝛿𝑝Δ𝑝𝑡 − ∑ (𝜂𝑖𝑝𝐵𝑖𝑝𝑡 + ψ𝑖𝑝𝑍𝑖𝑝𝑡))𝑖∈𝐼𝑃𝑝𝑡∈𝑇𝐼𝑖𝑝 (12)

	Declaration
	Abstract
	Impact Statement
	Acknowledgements
	Contents
	1. Background
	1.1. Biopharmaceutical Industry Overview
	Figure 1.1. Traditional drug development value chain (Source: Sabatier et al., 2010).
	Figure 1.2. The costs of biopharmaceutical drug development pathway (Source: Nie, 2015).

	1.2. Biopharmaceutical Manufacture
	Figure 1.3. Typical biopharmaceutical production process flowsheet. Adapted from Tait (1998).

	1.3. Planning and Scheduling Overview
	Figure 1.4. Major decisions in batch process scheduling (Source: Harjunkoski et al., 2014).

	1.4. Mathematical Programming
	Figure 1.5. A polytope defined as a feasible region by the constraints applied to the objective function. The simplicial cones are the corners (vertices) of a polytope.
	Figure 1.6. Different time representations used in scheduling problems (Source: Méndez et al., 2006).

	1.5. Heuristics
	1.5.1. Introduction to Genetic Algorithms
	Table 1.1. Most common terms used to describe Genetic Algorithms. Adapted from Luke (2009)
	Algorithm 1.1. Pseudocode of a basic GA.
	Figure 1.7. A cube formed by three-dimensional vectors (black circles) which represent positions of parent chromosomes in the decision space (Luke, 2009)

	1.5.2. Stochastic and Multi-Objective Approaches
	Figure 1.8. Relationship between the design (x1, x2) and objective (f1, f2) spaces of a two-objective optimisation problem (Source: Cui et al., 2017).

	1.5.3. Lot Sizing using Genetic Algorithms

	1.6. Related Work
	1.6.1. Process Design and Optimisation
	1.6.2. Portfolio Management and Capacity Planning
	Table 1.2. Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.
	Table 1.2. (continued) Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.
	Table 1.2. (continued) Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.
	Table 1.2. (continued) Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

	1.7. Aims and Outline of Thesis

	2. Decision Support Tool: Requirements and Design
	2.1. Problem Statement and Challenges
	Figure 2.1. Examples of different biopharmaceutical facility topologies (different USP to DSP suite number ratios): (a) 1:1, (b) 2:2, (c) 2:3. All three examples will be tackled in the later chapters of this thesis.
	Figure 2.2. A comparison between two production schedules and the corresponding inventory levels of product D. In (a), a schedule with fewer but longer manufacturing campaigns has higher total throughput albeit at the cost of (b) unbalanced product in...
	Figure 2.3. An example of a traditional product changeover. The new manufacturing campaign of product C can only take place after all tasks of product A campaign are finished.
	Figure 2.4. An example of a rolling product changeover. Numbers inside the blocks correspond to the duration of the corresponding task while a gap between the different task blocks denotes a changeover.
	Table 2.1. Minimum number of solutions for different cases over 8 years with a time period of one month (Source: Siganporia, 2016).

	2.2. Requirements and Design
	Algorithm 2.1. Parallel fitness assessment in C++ using OpenMP compiler directives. #pragma compiler directive tells the compiler to auto-parallelize the for loop with OpenMP. If a user is using a quad-core processor, the performance can be expected t...
	Figure 2.5. A high-level structure of the GA-based Decision Support Tool framework.
	Figure 2.6. Gantt chart generated with the GA-based Decision Support Tool for a biopharmaceutical facility with traditional product changeovers and a 2:2 USP to DSP ratio manufacturing three products.
	Figure 2.7. Gantt chart generated with the GA-based Decision Support Tool for a biopharmaceutical facility with rolling product sequence-dependent changeovers and a 1:1 USP to DSP ratio manufacturing four products.
	Figure 2.8. Production tasks Gantt chart example.

	2.3. Summary

	3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling
	3.1. Introduction
	3.2. Notation
	3.2.1. Case Study 1
	3.2.2. Case Study 2

	3.3. Problem Definition
	3.3.1. Case Study 1
	Table 3.1. All relevant parameters used in case study 1.
	Table 3.2. Product demand profile [batches] for case study 1.
	Figure 3.1. Biopharmaceutical facility topology for the case study 1.

	3.3.2. Case Study 2
	Table 3.3. Parameter data for case study 2.
	Table 3.4. Production yields ydip [kg / batch] for industrial case study 2.
	Table 3.5. Product demand profile [kg] for case study 2.
	Table 3.6. Production rates rip [kg / day] for case study 2.
	Table 3.7. Production costs ηip [RMU / kg] for case study 2.
	Table 3.8. Facility capability PIi [boolean value] for case study 2.
	Table 3.9. The comparison of MILP model complexity between case study 1 and 2.

	3.4. Methods
	3.4.1. GA Parameter Tuning
	Figure 3.2. The meta-optimisation approach. Adapted from Camilleri et al. (2014).
	Table 3.10. Meta-optimisation parameters used in case study 1 and 2 to find the optimal crossover and mutation parameter values for the GA.
	Algorithm 3.1. PSO-based meta-optimisation of the GA.

	3.4.2. Case Study 1
	3.4.2.1. Chromosome Structure
	Figure 3.3. Chromosome encoding strategy for case study 1. Each (p, CTipt) pair represents a gene encoding which product p and how many days CTipt have been allocated to USP suite i at a time period t.

	3.4.2.2. Genetic Algorithm
	3.4.2.3. Fitness Evaluation
	Algorithm 3.2. Pseudocode for fitness evaluation in case study 1
	Algorithm 3.2. (continued) Pseudocode for fitness evaluation in case study 1
	𝑃𝑟𝑜𝑓𝑖𝑡= ,𝑝-,𝑡-(,𝜈-𝑝.,𝑆-𝑝𝑡.−,𝑖-,,𝜂-𝑝.𝐵-𝑖𝑝𝑡....−,𝑖-,,𝜓-𝑝.𝑍-𝑖𝑝𝑡..−,𝑗-,,𝜂-𝑝.𝐵-𝑗𝑝𝑡.−,𝑗-,,𝜓-𝑝.𝑍-𝑗𝑝𝑡..−.,,𝜌-𝑝.𝐶𝐼-𝑝𝑡.,− ,𝜔-𝑝.𝐹𝐼-𝑝𝑡.,− ,𝛿-𝑝.𝛥-𝑝𝑡. ,− ,𝜏-𝑝.𝐶𝑊-𝑝𝑡.−,𝜏-𝑝.,𝐹𝑊-𝑝𝑡.) Equati...

	3.4.3. Case Study 2
	3.4.3.1. Chromosome Structure
	3.4.3.2. Genetic Algorithm
	Algorithm 3.3. Pseudocode for the dynamic GA applied in case study 2.
	Figure 3.4. An illustration of how the long-term capacity planning problem from case study 2 can be divided into smaller sub-problems. The full solution and each sub-problem are | i |-by-| t | and | I |-by-| τ | arrays respectively. When | τ | = 4, th...

	3.4.3.3. Fitness Evaluation
	Algorithm 3.4. Pseudocode for fitness evaluation in case study 2.

	3.5. Results
	3.5.1. Case Study 1
	Table 3.11. Case study 1 results and model statistics for MILP and GA models.
	Figure 3.5. Production schedule for case study 1 with an objective function value of 490 RMU and 0% optimality gap. Both the MILP model and the proposed GA generated the same schedule. The first number in each cell denotes the number of batches produc...

	3.5.2. Case Study 2
	Table 3.12. Case study 2 results and model statistics for the dynamic GA model using different population sizes and termination criteria.
	Table 3.13. Case study 2 results and model statistics for MILP and GA models.
	Figure 3.6. Production schedules for case study 2. Each product p ∈ { p1, p2, …, p15 } is denoted by a color label displayed in the legend below the schedules. The numbers of batches of each product produced have been removed for clarity purposes.
	(a) generated using the MILP model. An objective function value of 65,940 RMU was obtained with 0.6% optimality margin (based on the known global optimum as the upper bound).
	(b) generated using the dynamic GA. An objective function value of 65,849 RMU was obtained (0.8% estimated optimality margin)

	3.6. Summary

	4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling
	4.1. Introduction
	Figure 4.1. Supply (bar) and demand (line) profile of the globally optimal solution to the case study 1. The demand for product p1 at time period t4 was not met on time.
	Figure 4.2. Unutilised production time. (b) The numbers in the cells indicate how many days were left unutilised by (a) the globally optimal solution.

	4.2. Problem Definition
	4.2.1. Case Study 1
	Table 4.1. Product demand profile [batches] for case study 1. The due date is the nth day from the start of the schedule.
	Table 4.2. All relevant parameters for case study 1.

	4.2.2. Case Study 2
	Figure 4.3. Biopharmaceutical facility topology for the example 2.
	Table 4.3. Production data for example 2.
	Table 4.4. Product demand profile [batches] for case study 2. The due date is the nth day from the start of the schedule.

	4.3. Methods
	4.3.1. Chromosome Structure
	Figure 4.4. Variable-length chromosome:
	(a) UML diagram representations of the gene and chromosome structures
	(b) An example of a variable-length chromosome at the start (GEN 0) and end of the GA (GEN 100). The values in the boxes correspond to the USP suite label followed by the number of batches produced. The product label is denoted by the colour.

	4.3.2. Genetic Algorithm
	4.3.2.1. Crossover
	Figure 4.5. An example of a modified uniform crossover between two variable-length chromosomes: genes 2 and 3 are exchanged between the parent chromosomes and gene 5 from the first parent chromosome is copied to the second one.

	4.3.2.2. Mutation
	Figure 4.6. Variable-length mutation steps. pMutP, pMutS, pPosB, and pNegB denote the rate of each gene undergoing the corresponding mutation. The addition of a new gene and swap mutation occur once per chromosome.

	4.3.3. Continuous-Time Scheduling Heuristic
	Figure 4.6. UML diagrams of the key objects used in the scheduling heuristic to construct a schedule from a variable-length chromosome.
	Figure 4.7. Scheduling heuristic. A high-level illustration of how the continuous-time scheduling heuristic is used to decode and evaluate a variable-length chromosome containing two genes.
	4.3.3.1. Step 1
	Algorithm 4.1. Pseudocode of the step 1 of the scheduling heuristic.
	Algorithm 4.1. (continued) Pseudocode of the step 1 of the scheduling heuristic.

	4.3.3.2. Step 2
	Algorithm 4.2. Pseudocode of the step 2 of the scheduling heuristic.
	Algorithm 4.2. (continued) Pseudocode of the step 2 of the scheduling heuristic.

	4.3.3.3. Step 3
	Algorithm 4.3. Pseudocode of the step 3 of the scheduling heuristic.
	Algorithm 4.3. (continued) Pseudocode of the step 3 of the scheduling heuristic.

	4.3.3.4. Step 4
	Algorithm 4.4. Pseudocode of the step 4 of the scheduling heuristic.

	4.4. Results
	4.4.1. Case Study 1
	Table 4.5. Case study 1 scheduling problem: comparison of results from the novel continuous-time GA approach with other discrete-time and continuous-time models.
	Figure 4.8. Supply (bar) and demand (line) profile of the best case study 1 solution generated with the continuous-time GA-based approach (obj. function value of 518).
	Figure 4.9. Gantt charts generated for the case study 1:
	(a) continuous-time GA-based approach (obj. function value of 518). Each box displays the number of batches followed by the campaign length.
	(b) discrete-time MILP (obj. function value of 490). Each box displays the number of batches produced and production time.
	(c) RTN-based continuous-time MILP (Vieira et al., 2016) (obj. function value of 519, CO indicates a changeover)
	(d) STN-based continuous-time MILP (Kabra et al., 2013) (obj. function value of 517)
	Figure 4.10. Supply (bar) and demand (line) profile of the best solution (obj. function value of 562) generated using the continuous-time GA for the case study 1 with an increased demand for product p1.
	Figure 4.11. Gantt chart generated using the continuous-time GA-based approach for the case study 1 with an increased demand for product p1.

	4.4.2. Case Study 2
	Figure 4.12. Supply (bar) and demand (line) profile of the best case study 2 solution generated with (a) continuous-time GA-based approach (obj. function value of 801) and (b) discrete-time MILP (obj. function value of 598)
	Table 4.6. Case study 2 scheduling problem: comparison of results from the novel continuous-time GA approach with discrete-time MILP model.
	Figure 4.13. Gantt charts generated for the case study 2 using different models:
	(a) continuous-time GA-based approach
	(b) discrete-time MILP

	4.4. Summary

	5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling
	5.1. Introduction
	5.2. Problem Definition
	Figure 5.1. Biopharmaceutical facility topology.
	Table 5.1. Product-dependent changeovers [days].
	Table 5.2. Process data for the industrial case study.
	Table 5.3. Product demand followed by the strategic inventory targets inside the brackets.

	5.3. Methods
	5.3.1. Chromosome Structure
	Figure 5.2. Variable-length chromosome:
	(a) UML diagram representations of the gene and chromosome structures
	(b) An example of a variable-length chromosome at the start (GEN 0) and end of the GA (GEN 100). The values in the boxes correspond to the number of batches produced. The product label is denoted by the color.

	5.3.2. Genetic Algorithm
	Figure 5.3. Schematic of the core steps of the multi-objective GA developed in Chapter 5. Assuming the initial population has been created and evaluated, the steps are looped through until the maximum number of generations is reached.
	Algorithm 5.1. Procedure for binary tournament multi-objective selection based on constrained-domination (Deb et al., 2002). DetermineDominance procedure returns an integer flag of 1 if solution q dominates p, -1 if p dominates q, and 0 if both soluti...

	5.3.3. Continuous-Time Scheduling Heuristic
	Figure 5.4. UML diagrams of the key objects used in the scheduling heuristic of this chapter to construct a schedule from a variable-length chromosome.
	Algorithm 5.2. Pseudocode of the continuous-time scheduling heuristic part that builds a schedule in this chapter.
	Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic part that builds a schedule in this chapter.
	Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic part that builds a schedule in this chapter.
	Figure 5.5. An example of the relationship between (a) the genes (b), the decoded production schedule displayed at a product campaign level, and (c) at a manufacturing stage level.
	Figure 5.6. Correction of the mapping of genes to the production campaigns. In (a), the genes 2 and 3 correspond to the same product. The continuous-time scheduling heuristic combines them into (b) one contiguous manufacturing campaign and re-maps it ...

	5.4. Results
	5.4.1. Objective Space
	Figure 5.7. The objective space (dashed line) of the scheduling problem described in this chapter. The objectives are to maximise the total production throughput and to minimise the total inventory deficit subject to the sum of total backlog and produ...
	Table 5.4. The best individual objective values (bold) obtained with a single-objective GA.

	5.4.2. The Impact of The Number of Chromosomes and The Number of Generations
	Figure 5.8. The impact of the number of (a) chromosomes and (b) generations on the performance of the multi-objective variable-length GA. In (a), the number of generations was fixed at 1000 whereas in (b) the number of chromosomes was set to 1000. The...
	Table 5.5. The impact of the number of chromosomes on the performance of the multi-objective variable-length GA.
	Table 5.6. The impact of the number of generations on the performance of the multi-objective variable-length GA.
	Figure 5.9. All non-dominated solutions (black circles) and the best Pareto front (red crosses) with (a) 100, (b) 600, and (c) 1200 chromosomes.
	Figure 5.10. All non-dominated solutions and the best Pareto front (red crosses) after (a) 100, (b) 600, and (c) 1200 generations.

	5.4.3. The Importance of Genetic Operators
	Table 5.7. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case...
	Figure 5.11. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base ca...

	5.4.4. The Impact of The Starting Number of Genes
	Figure 5.12. The impact of the starting number of genes on the maximum and mean hypervolume. Vertical lines denote the standard deviation of mean hypervolume.
	Table 5.8. The impact of the starting number of genes on the maximum and mean hypervolume.

	5.4.5. Multi-Objective GA Results
	Figure 5.13. Multi-objective optimisation results:
	(a) Objective space determined with a single-objective GA.
	(b) The best Pareto front (red crosses) and all non-dominated solutions (black circles) collected from individual runs of the multi-objective variable-length GA (maximum and mean hypervolume of 0.994 and 0.944 ± 0.000).
	Table 5.9. The boundary solutions X and Y of the best Pareto front generated with the multi-objective variable-length GA.
	Figure 5.14. Production schedules of (a) solution X and (b) solution Y from the best Pareto front. The numbers in the boxes show how many kilograms are being manufactured, followed by the production time (days).
	Figure 5.15. Product (A B C D) inventory levels of solution X.
	Figure 5.16. Product (A B C D) inventory levels of solution Y.

	5.5. Summary

	6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty
	6.1. Introduction
	6.2. Problem Definition
	Table 6.1. Product sequence-dependent changeovers [days].
	Table 6.2. Process data for the industrial case study.
	Table 6.3. Strategic inventory targets.
	Table 6.4. Product demand uncertainty for a 3-year period.
	Note: Tr(x, y, z) denotes a triangular distribution where x, y, and z are the minimum, mode (most likely), and maximum values.
	Figure 6.1. Min, median, and max product (A B C D) demand values for each due date after 1,000 Monte Carlo simulation trials using the corresponding triangular distribution from Table 6.4 as an input.

	6.3. Methods
	Figure 6.2. Objective function evaluation of the chromosome using the continuous-time scheduling heuristic and Monte Carlo simulation.
	Figure 6.3. Average elapsed time for each of the 50 GA runs with 100 chromosomes for 1000 generations:
	(a) deterministic GA vs. CPU-only stochastic GA
	(b) Stochastic GA with Monte Carlo simulation performed on a GPU vs. CPU-only stochastic GA
	Note: fitness evaluations deterministic and CPU-only stochastic GAs were performed in parallel
	Figure 6.4. Comparison of a high-level architecture between a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU).

	6.4. Results
	6.4.1. Stochastic Objective Space
	Table 6.5. The best values of each objective (bold) obtained with the stochastic single-objective GA.
	Figure 6.5. (a) Stochastic objective space and (b) the best Pareto front generated using the stochastic multi-objective GA (hypervolume of 0.997). The gray shaded area is used for illustrative purposes to show the area of the objective space that is d...
	Table 6.6. Boundary solutions X and Y of the best Pareto front generated using the stochastic multi-objective GA (hypervolume of 0.997).

	6.4.2. Stochastic Multi-Objective GA Results
	Figure 6.6. Production schedules of (a) solution X and (b) Y from the best Pareto front after 50 runs generated using the stochastic GA. The numbers in the boxes show how many kilograms are being manufactured, followed by the production time (days).
	Figure 6.7. Comparison of (a) the total inventory deficit and (b) total backlog distributions between the solutions X and Y from the best Pareto front generated using the stochastic GA.
	Table 6.7. Comparison of the solutions X and Y from the best Pareto front generated using the stochastic GA.

	6.4.3. Comparison with the Deterministic GA
	Figure 6.8. (a) Deterministic objective space and (b) the best Pareto front generated using the deterministic multi-objective GA (hypervolume of 0.996).
	Table 6.8. The best values of each objective (bold) obtained with a deterministic single objective GA.
	Table 6.9. The boundary solutions X and Y of the best Pareto front generated using the deterministic multi-objective GA without the embedded Monte Carlo simulation-based optimisation.
	Figure 6.9. Production schedules of (a) the deterministic solution X and (b) stochastic solution X from the respective best Pareto fronts. The numbers in the boxes show how many kilograms are being manufactured, followed by the production time (days).
	Figure 6.10. A comparison of (a) the total inventory deficit (a) and (b) total backlog distributions between the stochastic and deterministic solutions. after the stochastic analysis with Monte Carlo simulation
	Table 6.8. A comparison between the stochastic and the deterministic solutions.
	Figure 6.11. Individual product (A B C D) inventory profiles of the deterministic solution after the stochastic analysis with Monte Carlo simulation. The negative inventory levels highlighted by the red ovals indicate the median amount of u...
	Figure 6.12. Individual product (A B C D) inventory profiles of the stochastic solution.

	6.5. Summary

	7. Commercialisation
	7.1. Introduction
	7.2. Delivery Model
	7.3. Architecture
	7.3.1. Overview
	Figure 7.1. High-level architecture of the GA-based Decision Support Tool implemented as a SaaS application.
	Figure 7.2. Database schema utilised by the GA-based Decision Support Tool.

	7.3.2. Input Data Setup
	Figure 7.3. Sign up (Register) page view.
	Figure 7.4. Entering facility data into the application. (a) and (b) display the different ways of gaining access to (c) a facility form whereas (d) displays a facility data table.
	Figure 7.5. Entering product data into the application. (a) displays how to access (b) the form (only a portion of it is shown here) for entering data about an individual product. (c) displays a product data table.
	Figure 7.6. Entering product sequence-dependent changeover data into the application. (a) shows the form for entering the data whereas (b) displays the product changeover table with the data filled-in.
	Figure 7.7. Uploading product demand data into the application: (a) before and (b) after the upload.

	7.3.3. Optimisation Setup
	Figure 7.8. Accessing scheduling optimisation dashboard.
	Figure 7.9. Scheduling optimisation setup in the application. (a) lists only the key scheduling optimisation settings whereas (b) displays an expanded list of advanced mostly GA-related parameters.
	Figure 7.10. Scheduling optimisation in progress.

	7.3.4. Visualisation of Results
	Figure 7.11. Scheduling optimisation results view. In (a), if the optimisation problem has two objectives, an interactive chart of the best Pareto will be displayed. In (b), every row in the table represents a unique schedule that can be inspected by ...
	Figure 7.11. (continued) Scheduling optimisation results view. In (a), if the optimisation problem has two objectives, an interactive chart of the best Pareto will be displayed. In (b), every row in the table represents a unique schedule that can be i...
	Figure 7.12. Detailed view of a selected production schedule. In (a), manufacturing campaigns can be inspected by hovering over them in the Gantt chart. In (b), individual product profiles can be viewed by selecting the View inventory icon in the Acti...
	Figure 7.12. (continued) Detailed view of a selected production schedule. In (a), manufacturing campaigns can be inspected by hovering over them in the Gantt chart. In (b), individual product profiles can be viewed by selecting the View inventory icon...
	Figure 7.13. Product inventory profile.

	7.4. Pricing
	Figure 7.14. Monthly subscriptions plans priced proportionally to the number of features provided by the service.

	7.5. Summary

	8. Conclusions and Future Work
	8.1. Introduction
	8.2. Contribution of This Thesis
	8.2.1. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling
	8.2.2. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling
	8.2.3. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling
	8.2.4. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling Under Uncertainty
	8.2.5. Commercialisation

	8.3. Future Work
	8.3.1. Additional Constraints and Features
	8.3.2. Improved GA-based Optimisation

	References
	Appendix
	Appendix A
	A.1. Publications
	A.1. Conferences

	Appendix B
	B.1. Gene
	Figure B.1. Structure of a single variable-length chromosome gene: (a) Gene structure utilised in Chapter 4
	Algorithm B.1. C++ implementation of a gene used in Chapter 4.
	Algorithm B2. C++ implementation of a gene used in Chapter 5.

	B.2. Variable-length Chromosome
	Figure B.2. Variable-length chromosome.
	Algorithm B.3. C++ implementation of the variable-length chromosome base.
	Algorithm B.3. (continued) C++ implementation of the variable-length chromosome base.

	B.3. Genetic Algorithm
	Figure B.3. Diagrams of Genetic Algorithms developed in this thesis.

	B.4. API Usage Examples
	Algorithm B.4. Demonstration of how the GA-based Decision Support Tool is used to solve a single-objective scheduling problem described in the case study 1 of Chapter 4 using Python Application Programming Interface designed in this work.
	Algorithm B.4. (continued) Demonstration of how the GA-based Decision Support Tool is used to solve a single-objective scheduling problem described in the case study 1 of Chapter 4 using Python Application Programming Interface designed in this work.
	Algorithm B.5. Demonstration of how the GA-based Decision Support Tool is used to solve a multi-objective biopharmaceutical scheduling problem with constraints described in Chapter 5 using Python Application Programming Interface designed in this work.
	Algorithm B.5. (continued) Demonstration of how the GA-based Decision Support Tool is used to solve a multi-objective biopharmaceutical scheduling problem with constraints described in Chapter 5 using Python Application Programming Interface designed ...

	Appendix C
	C.1. Production Constraints
	C.2. Timing Constraints
	C.3. Storage Constraints
	C.4. Backlog Constraints
	C.5. Objective Function

	Appendix D
	D.1. Production Constraints
	D.2. Timing Constraints
	D.3. Storage Constraints
	D.4. Backlog Constraints
	D.5. Objective Function

