Biopharmaceutical Scheduling
Using a Flexible Genetic

Algorithm Approach

A thesis submitted to University College London (UCL)
for the degree of

Doctor of Philosophy (PhD)
by

Karolis Jankauskas, MEng (Hons)

The Advanced Centre for Biochemical Engineering
Department of Biochemical Engineering
UCL

London, United Kingdom

September, 2018

Declaration

Declaration

I, Karolis Jankauskas, confirm that this thesis is my own. Where information has been

derived from other sources, | confirm that this has been indicated in the thesis.

Abstract

Abstract

The goal of biopharmaceutical capacity planning and scheduling is to identify an
optimal production schedule (solution) that would satisfy multiple financial and
operational objectives. It is a complex combinatorial optimisation problem
characterised by features such as multi-product portfolios, variable process durations
and yields, long product lead and approval times, and uncertain market forecasts. The
bulk of research in the area of biopharmaceutical capacity planning and scheduling
has focused on Mixed Integer Linear Programming (MILP) formulations. Heuristic
optimisation methods such as Genetic Algorithms (GAs) have received very little
attention even though they are reportedly more flexible, easier to implement and, in
certain cases, have the potential of outperforming mathematical programming
models. Therefore, this thesis addresses this knowledge gap by describing the
development of a flexible GA-based Decision Support Tool (DST) for single- and
multi-objective biopharmaceutical capacity planning and scheduling under

deterministic and uncertain product demand.

This thesis makes four broad contributions. Firstly, a GA is designed for solving
biopharmaceutical capacity planning and scheduling problems using a discrete-time
representation. The effectiveness of the algorithm is demonstrated on two industrial
case studies and compared with discrete-time MILP models from the literature. A
rolling time horizon strategy is applied to improve solution quality and the performance
of the GA. A Particle Swam Optimisation (PSO) algorithm is utilised as a meta-
optimiser to automatically tune the parameters of the GA. Secondly, a novel variable-
length chromosome structure and an entirely new continuous-time scheduling
heuristic are developed for more realistic and efficient medium-term scheduling of
biopharmaceutical manufacture. The variable-length chromosome enables the GA to

generate production schedules from a single gene. The novel variable-length GA with

3

Abstract

an embedded continuous-time scheduling heuristic is shown to outperform related
discrete- and continuous-time MILP models on two literature-based examples.
Thirdly, a multi-objective component is added to the variable-length GA and the
continuous-time scheduling heuristic is extended with additional constraints and
features, including rolling product sequence-dependent changeovers and lengthy
product quality control and assurance (QC/QA) checks. A real-life industrial case
study is used to demonstrate the functionality and benefits of the multi-objective
optimisation. The multi-objective variable-length GA is used to optimise both the total
production throughput and monthly product inventory levels of a multi-product
biopharmaceutical facility. Finally, the multi-objective variable-length GA is combined
with a Graphics Processing Unit (GPU)-accelerated Monte Carlo simulation for
biopharmaceutical capacity planning and scheduling under uncertain product
demand. The merits of the approach are highlighted by comparing the production
schedules generated when the uncertainty in demand is ignored and when it is
accounted for by characterising it with a probability distribution. In the final sections of

this thesis an example of a commercial application of this work is presented.

Impact Statement

Impact Statement

Capacity planning and scheduling plays a very important role in the biopharmaceutical
industry. Improper planning decisions can lead to high costs and loss of profit.
Ransohoff (2004) estimated that for a typical 500 kg/year mAb facility 50%
underutilisation could cost $2-3 M/month whereas 50% under capacity would likely
result in a monthly profit loss of $40-50M. When Amgen launched Enbrel, an arthritis
drug, in 1998, the demand for it was higher than anticipated. Malik et al. (2002)
estimated that the lack of manufacturing capacity for Enbrel cost the company more
than $200M in lost revenue in 2001. Hence, this work describes a flexible, GA-based
DST developed in collaboration with industry experts for multi-objective capacity
planning and scheduling of biopharmaceutical manufacture bringing several benefits
to both academia and industry. A special focus is placed on deployability of the tool
which is something that is very rarely discussed in production planning and scheduling

literature.

This thesis addresses the research gap in heuristic-based biopharmaceutical capacity
planning and scheduling optimisation by describing a framework based on a novel
variable-length GA embedded with a continuous-time scheduling heuristic. The
framework has been applied to a variety of literature-based and real life industrial case
studies The results were presented during the 28" European Conference on
Operational Research (EURO), the 253 American Chemical Society (ACS) National
Meeting (Jankauskas, Long, et al., 2017), and a keynote lecture at the 27" European
Symposium on Computer Aided Process Engineering (ESCAPE) (Jankauskas,

Papageorgiou, et al., 2017).

Even though there have been multiple biopharmaceutical capacity planning and

scheduling optimisation models reported in the literature, companies still rely mostly

5

Impact Statement

on manual, spreadsheet-based scheduling methods mostly due to a steep learning
curve and a high level of expertise associated with mathematical programming
models (Mustafa et al., 2006; Widmer et al., 2008). Using more accessible research
principles, the GA-based DST developed during this PhD helps the biopharmaceutical
companies understand the impact of constraints and uncertainties on key operational
and risk metrics and allows to make better scheduling decisions faster. A commercial
application of the framework was demonstrated to the industrial sponsor in

Indianapolis, USA, during August 1-3, 2018.

Acknowledgements

Acknowledgements

| would like to express my gratitude to Prof. Suzanne Farid, my academic supervisor,
for her guidance and support. | would also like to thank my industrial supervisor Dr.

Graham McCartney for his consistent positive attitude and feedback.

| am eternally grateful to my family and friends. | would not be where | am today

without them.

Financial support provided by the Engineering and Physical Sciences Research

Council (EPSRC) and Eli Lilly & Company is gratefully acknowledged.

Contents

Contents
Declaration 2
Abstract 3
Impact Statement 5
Acknowledgements 7
Contents 8
1. Background 11
1.1. Biopharmaceutical Industry Overview 12
1.2. Biopharmaceutical Manufacture 14
1.3. Planning and Scheduling Overview 15
1.4. Mathematical Programming 18
1.5. Heuristics 23
1.5.1. Introduction to Genetic Algorithms 25
1.5.2. Stochastic and Multi-Objective Approaches 29
1.5.3. Lot Sizing using Genetic Algorithms 31
1.6. Related Work 32
1.4.1. Process Design and Optimisation 33
1.4.2. Portfolio Management and Capacity Planning 34
1.7. Aims and Outline of Thesis 42
2. Decision Support Tool: Requirements and Design 46
2.1. Problem Statement and Challenges 47
2.2. Requirements and Design 53
2.3. Summary 58
3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling 59
3.1. Introduction 59
3.2. Notation 60
3.2.1. Case Study 1 60
3.2.2. Case Study 2 62
3.3. Problem Definition 63
3.3.1. Case Study 1 63
3.3.2. Case Study 2 65
3.4. Methods 70
3.4.1. GA Parameter Tuning 71
3.4.2. Case Study 1 73

Contents

3.4.3. Case Study 2 79
3.5. Results 84
3.6. Summary 92

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling 93

4.1. Introduction 93
4.2. Problem Definition 96
4.2.1. Case Study 1 96
4.2.2. Case Study 2 98
4.3. Methods 100
4.3.1. Chromosome Structure 101
4.3.2. Genetic Algorithm 103
4.3.3. Continuous-Time Scheduling Heuristic 106
4.4, Results 112
4.4.1. Case Study 1 113
4.4.2. Case Study 2 118
4.4, Summary 121

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling 122

5.1. Introduction 122
5.2. Problem Definition 123
5.3. Methods 127
5.3.1. Chromosome Structure 128
5.3.2. Genetic Algorithm 130
5.3.3. Continuous-Time Scheduling Heuristic 133
5.4. Results 139
5.4.1. Objective Space 140
5.4.2. The Impact of The Number of Chromosomes and The Number of Generations 142
5.4.3. The Importance of Genetic Operators 146
5.4.4. The Impact of The Starting Number of Genes 151
5.4.5. Multi-Objective GA Results 153
5.5. Summary 158

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty 159

6.1. Introduction 159
6.2. Problem Definition 162
6.3. Methods 168
6.4. Results 172

6.4.1. Stochastic Objective Space 173

Contents

6.4.2. Stochastic Multi-Objective GA Results
6.4.3. Comparison with the Deterministic GA

6.5. Summary

7. Commercialisation
7.1. Introduction
7.2. Delivery Model
7.3. Architecture
7.3.1. Overview
7.3.2. Input Data Setup
7.3.3. Optimisation Setup
7.3.4. Visualisation of Results
7.4. Pricing

7.5. Summary

8. Conclusions and Future Work
8.1. Introduction
8.2. Contribution of This Thesis

8.2.1. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling
8.2.2. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

8.2.3. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

175
178
185

186
186
186
188
188
190
194
196
199
201

202
202
204
205
206
207

8.2.4. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling Under

Uncertainty
8.2.5. Commercialisation
8.3. Future Work
8.3.1. Additional Constraints and Features

8.3.2. Improved GA-based Optimisation

References
Appendix
Appendix A
Appendix B
Appendix C
Appendix D

10

207
208
209
209
211

212
221
221
222
234
237

1. Background

1. Background

The environment of biopharmaceutical manufacture is vastly dynamic and complex.
Its business landscape is defined by expensive, long-term research and development
(R&D) process and high risks of clinical failure. Biopharmaceutical products are also
immensely sophisticated requiring substantial investment of capital, human
resources, and technological expertise to produce them. Depending on the scale,
biopharmaceutical facilities cost approximately $40-500M and can take several years
to build. Moreover, they are costly to operate, with long process durations, relatively

low yields, and the need for highly skilled experts to run them (Otto et al., 2014).

Nevertheless, due to success and general efficiency of biopharmaceutical products
in treating complex health diseases, the industry has experienced constant and
enormous growth since its inception in 1982 (Siganporia, 2016). For example, the
number of biotech patent applications every year has been growing at 25% annually
since 1995, the global revenues of biopharmaceuticals were reported to be over
$100B in 2010 (Walsh, 2010) and over $150B in 2014 (Otto et al., 2014). The overall

annual industry growth has been estimated at 14-15% (Langer & Rader, 2017).

Managing manufacturing facility assets for these growing and dynamic
biopharmaceutical portfolios requires careful capacity planning. Essential to achieving
this are agile capacity planning algorithms that can reconcile multiple conflicting
objectives and deal with inherent uncertainty. Hence, this thesis presents the
development of a flexible planning and scheduling tool for optimising the
manufacturing capacity in an existing multi-product facility using a stochastic multi-

objective GA.

11

1. Background

This chapter will discuss the risks and costs of biopharmaceutical drug development
(Section 1.1), describe what a typical biopharmaceutical manufacturing process
looks like (Section 1.2), overview the concepts of planning and scheduling (Section
1.3) and the most common optimisation approaches (Sections 1.4 and 1.5), and
review related work carried out on capacity planning and scheduling in
pharmaceutical and biopharmaceutical industry (Section 1.6). Finally, the aims and

the overall structure of this thesis are discussed in Section 1.7.

1.1. Biopharmaceutical Industry Overview

For a biopharmaceutical product to make it into the market, it must first pass a series
pre-clinical tests and clinical trials (Figure 1.1). An investigational new drug application
can be filed with the Food and Drug Administration (FDA) for drugs that pass the pre-
clinical testing. If the application is successful, phase | of clinical trials can begin.
During this phase the drug product is administered to a small number of healthy
volunteers to study its safety and pharmacology, i.e. absorption, metabolic effect,
excretion, and toxicity. The next phase, i.e. phase Il, of clinical trials examines the
effectiveness of the compound on subjects with the target disease. Phase Il is the
final stage before a new drug application (NDA) can be submitted to the FDA and the

drug can be sold to the market (Friedman et al., 2015).

The characteristics of biopharmaceutical drug development are vastly different
compared to most of the chemical engineering industry: high costs of development,
high risks of failure during drug discovery, clinical trials that take years to complete,
time sensitive compounds, limited product shelf-life, stringent current good
manufacturing practices (cGMP), unique process validation requirements, and
intense competition from generics after the end of a 20-year patent (Lainez et al.,

2012; Majozi et al., 2015).

12

1. Background

- Research & Preclinical Phase | Phase II Phase I MARKE
Drug Discovery Studies Trials Trials Trials

Figure 1.1. Traditional drug development value chain (Source: Sabatier et al., 2010).

The likelihood of a new biopharmaceutical drug product gaining approval for
marketing and the rate of approval for new products have been getting lower over the
years. According to Kaitin and DiMasi (2010), only one in six new drugs that entered
clinical trials in the United States during 1993-1998 and the 1999-2004 sub-periods
were successfully approved for marketing. Shanley (2014) reported that only 12% of
the candidate drugs get approved for use. According to a more recent study by DiMasi
et al. (2016), the likelihood that a drug that enters clinical testing is also about 12%.

Figure 1.2 highlights the risks and costs associated with the development process.

Pre-clinical
Phase 1

Phase 11
Phase I1I EFD Market
Average number of projects
required to achieve 1 market success E I:E _

Total

Cost of portfolio development

Total costs ($ million) 87 | 281 | | 185 | | 162 | | 33 | | 748 |

Cost as % total expenditure | 11.6 | | 37.5 | | 24.8 | | 21.7 | | 4.4 |

Clnical brats (5 millon) 605
Cost of manufacturing ($ million) “
Cost of process development ($ million) 30

Non-clinical cost as % total stage cost I 37.2 I l 5.6 | I 12.8 I | 25.4 I | 90 | I 19.1 |

Figure 1.2. The costs of biopharmaceutical drug development pathway (Source: Nie,
2015).

The cost of development of a single drug entering human trials between 1989 and
2002 was estimated to be in excess of $800M (DiMasi et al., 2003). Based on the
data collected at University College London (UCL) (Farid, 2007), the costs of
investment for antibody manufacturing facilities with total site capabilities in the range

of 20,000-200,000L were reported to be $7,130-$17,000/m? and $1,765-%$4,220/L.

13

1. Background

The development costs have been rising continuously for years. For example, in an
analysis by Paul et al. (2010), the cost of a new molecular entity was reported to be

in excess of $1B whereas DiMasi et al. (2016) revised this figure to $2.8B.

1.2. Biopharmaceutical Manufacture

A biopharmaceutical refers to any pharmaceutical drug product for therapeutic or in
vivo diagnostic purposes produced from biological sources such as microbial, e.g. E.
coli or P. pastoris, mammalian, e. g. Chinese hamster ovary (CHO) cells, and plant
cell cultures. The unique and complex macromolecular structure of
biopharmaceuticals distinguishes them from conventional chemical products.
Biopharmaceutical production platforms can be operated in a batch, fed-batch, or
perfusion mode. Fed-batch mode, where nutrients are periodically added to the
bioreactor over the course of cell fermentation, is preferable to a regular batch mode
mostly due to higher yields. In perfusion mode, the product is harvested throughout
the culture rather than at the end of it. Perfusion mode is favoured when the product
is unstable and the purification of it is time sensitive. Most biopharmaceutical

production platforms are fed-batch-based (Fike, 2009; Jiang et al., 2012).

Regardless of the mode of operation, a biopharmaceutical production process is
typically divided into two broad manufacturing stages: upstream processing (USP)
and downstream processing (DSP) (Figure 1.3). In USP, cells are derived from culture
banks and nurtured in progressively larger bioreactors to express the
biopharmaceutical product. In DSP, the raw product is extracted from the cells and
purified using a series of processing steps such as centrifugation, microfiltration,
chromatography, ultrafiltration, and viral clearance. Additionally, every step in both

USP and DSP comprises several ancillary unit operations for cleaning, sterilisation,

14

1. Background

preparation of intermediate materials such as culture media and buffer solutions, and

product quality control and assurance (QC/QA).

Upstream Processing (USP)

Plate cultwre or stock
frozen ot -80°C

ﬁ 5 ofa | | B Honestng

=0
START o
Shoke ok e foment il * ol B ' »
Seed fermentor Filolos

Producion fermentor

Furthes
= Ol

Qu ol p— -
olity contr i *
Approved product ‘—’ ud?dwuiw ‘ | [

— = §E §E

S
pure maleril Continuous centrifuges

Downstream Processing (DSP)

Figure 1.3. Typical biopharmaceutical production process flowsheet. Adapted from
Tait (1998).

Biopharmaceutical production is performed in a series of manufacturing campaigns.
Determining the duration of each campaign is a difficult challenge that requires careful
consideration of the tradeoff between two different kinds of risks and costs. For
example, due to costs, risks of cross-contamination, and considerable amount of time
associated with setup and cleaning during a campaign changeover, some companies
prefer long campaigns with uninterrupted series of batches (Lakhdar et al., 2005).
However, in order to meet uncertain demand, it can be safer for the biopharmaceutical
facilities to operate multiple smaller scale bioreactors that are scheduled appropriately

(Simaria et al., 2012).

1.3. Planning and Scheduling Overview

Planning and scheduling can have a substantial impact on production performance
and cost-effectiveness of manufacturing operations. A good production schedule can

result in significant savings through better capacity utilisation. For example, Ransohoff

15

1. Background

(2004) reported that a typical mammalian cell-culture facility could increase its annual
revenue by $380M with a 25% increase in plant utilisation. Planning and scheduling
appear in a wide range of industries, including Pulp and Paper, Metals, Oil and Gas,
Chemicals, Food and Beverages, Pharmaceuticals, Transportations, Service, and
Military, because of a substantial impact on production performance and the cost-

effectiveness of manufacturing operations.

Production planning refers to the preparation of manufacture: specifying what
components are needed to manufacture a product, determining optimal sourcing of
raw materials, clarifying what processes and unit operations are necessary to
transform those raw materials into a final product, and defining the distribution
network. Production scheduling, on the other hand, involves decisions regarding
optimal allocation, sequencing, and timing of resources or capacity across a broad
number of competing tasks to satisfy one or more objectives and constraints. Figure
1.4 illustrates three major decisions in scheduling of batch processes: batching (lot-

sizing), assignment, and sequencing.

Despite the variety of business environments, the type and goals of scheduling
problems are usually defined by four major factors: market environment, interaction
with other planning functions, production environment, and specific processing

characteristics (Harjunkoski et al., 2014).

Batching Batch-unit Assignment Sequencing & Timing

How many batches? What size? Where each batch is processed? In what sequence are batches processed?

Demand (orders) B‘dtt‘hié : :

A : [ol I 74]
@ @ l I A Al A2 A3 Cl [

. (B — @@ . |

c | |

D I L) | | %

E [| | bt D Bl B2 Bl

! 1

Figure 1.4. Major decisions in batch process scheduling (Source: Harjunkoski et al.,
2014).

16

1. Background

The variability and volume of product demand dictates the regularity and frequency of
production campaigns. For example, the typical strategy for scheduling the production
of high-volume products is to generate a cyclic schedule in order to maintain the
product inventory at certain strategic levels, i.e. make-to-stock. In contrast, products
with infrequent demand orders are usually scheduled as needed, i.e. make-to-order
(Pochet & Wolsey, 2006). Manufacturing capacity also plays an important role in
determining planning and scheduling objectives. If a production facility has
manufacturing capacity to spare, then the goal of planning and scheduling is usually
to minimise the total cost or earliness. On the other hand, when the product demand
is higher than the manufacturing capacity, the goal is to maximise the total profit or
throughput and/or minimise backlogs. It is common for companies to have multiple

make-to-stock and make-to-order products manufactured in the same facility.

Production scheduling also depends on the outcomes from other supply chain
management functions such as procurement, distribution, and demand planning. For
example, the availability of raw materials and the estimated quantities and due dates
of product demand orders are key inputs to scheduling. Other factors influencing
production scheduling decisions include the type of manufacturing process, e.g. batch
or continuous, and the type of facility, e.g. single-stage or multi-stage. The more
intricate the facility design is, the more complex a scheduling problem will be. The
scheduling of a facility is also affected by the specific processing characteristics such
as utilities, setup and changeover requirements, and storage and resource

constraints.

Traditionally, planning and scheduling has been carried out manually by specialists
using spreadsheets, industry experience, and rule-based scheduling, e.qg. first come
first serve (FCFS), schedule the job with the shortest processing time (SPT), earliest

due date first (EDD) (Panwalkar & Iskander, 1977; Haupt, 1989). However, due to

17

1. Background

increasing production volumes, greater number of products, different manufacturing
scenarios, and uncertain markets, it is difficult to ensure a cost-effective production
plan without any optimisation support. Scheduling problems are NP-hard (Bitran &
Yanasse, 1982) which is to say that finding the optimal solution to scheduling
optimisation problems, especially the large-scale ones, is very difficult. Therefore, the
general problem of planning and scheduling has received a considerable amount of
attention in the literature. Ever since the introduction of the first basic lot sizing
problem in 1958 (Wagner & Whitin, 1958), a number of papers have been written
across different scientific communities. Due to the variety of problems, a number of
approaches have been developed, including expert systems, decomposition-based
methods, and optimisation algorithms based on mathematical programming or
heuristics. Useful reviews of the development of planning and scheduling optimisation
approaches over the last 10-20 years can be found in Shah (1998), Pinto and
Grossmann (1998), Kallrath (2002), Floudas and Lin (2004), Méndez et al. (2006),

Widmer et al. (2008), Majozi et al. (2015), and Copil et al. (2017).

The subsequent sections will review mathematical programming and heuristic (mostly

GA-based) optimisation approaches and the related work.

1.4. Mathematical Programming

The vast majority of the capacity planning and scheduling optimisation models are
based on a branch of mathematical programming — mixed-integer linear programming
(MILP) which is a variation of linear programming (LP) for combinatorial optimisation
problems. Programming in this context refers to planning and logistics instead of
computer programming. LP is a technique for the optimisation of a linear objective
function subject to linear equality and inequality constraints. Despite the assumptions

of linearity, both LP and MILP have been shown to be effective at solving problems in

18

1. Background

a variety of domains including not only capacity planning (e.g. Lazaros G
Papageorgiou et al., 2001) and scheduling (e.g. Lorigeon et al., 2002) but also

transportation (e.g. Abara, 1989).

The problem of solving a system of linear inequalities can be dated back to as far as
Jean-Babtiste Joseph Fourier who published a method for solving such a system in
1827 (Sierksma, 2001). However, the first LP formulation as well as a method for
solving it are attributed to Leonid Kantorovich, a Soviet economist, who used it to
reduce the costs of the Red Army in 1939 (Schrijver, 1998). Around the same time,
Tjalling Koopmans formulated classical economic problems as LP problems. As a
result, Kantorovich and Koopmans shared the Nobel prize in economics in 1975

(Sierksma, 2001).

Optimal
solution

Starting

vertex _‘

Figure 1.5. A polytope defined as a feasible region by the constraints applied to the
objective function. The simplicial cones are the corners (vertices) of a polytope.

The early LP methods were improved by George B. Dantzig who independently
developed a general LP formulation and invented the simplex method for solving LP
problems (Dantzig, 1951). The name of the algorithm comes from the idea that it
operates on simplicial cones which become simplices with additional constraints
(Stone & Tovey, 1991). In Figure 1.5, the simplex method explores the feasible region
by moving from corner to corner (or vertex) until the optimal solution is found. Only

the corners of the polytope need to be explored since no other point on the line will

19

1. Background

ever be optimal. The performance of the simplex method is highly dependent on the
number of constraints, i.e. the number of constraints is proportional to the number of
corner points (vertices) in the polytope that need to be explored. Alternative methods
were developed for tackling more complex problems with a large number of

constraints.

Karmarkar (1984) developed an interior point method for solving large-scale LP
problems. The name “interior” comes from the fact that the best solution is reached
by traversing the interior of the feasible region, i.e. the polytope. This method, also
known as Karmarkar’s algorithm, was proven to run in polynomial time and enabled
solutions of LP problems that were beyond the capabilities of the simplex method.
Nevertheless, Paparrizos et al. (2003) reported that on small and medium-sized LP

problems, the simplex algorithm actually performs better.

Many practical problems require discrete variables, e.g. explicit decisions are usually
modelled using binary variables. One of the critical limitations of the simplex method
is that it is only applicable to continuous variables. LP problems with discrete
variables, i.e. MILP problems, could be solved by enumerating the solutions for every
possible integer value. However, the brute-force method is only feasible when the
scale of the problem is relatively small. Large MILP problems are typically solved
using techniques that are based on divide-and-conquer algorithmic approaches such
as branch and bound (B&B) algorithm. LP relaxations are first solved using the B&B
algorithm to bound the objective function, and then branches are created by adding

constraints that eliminate non-integer values.

The mathematical programming models for capacity planning and scheduling
optimisation can be classified according to the following four main aspects: time

representation, material balances, event representation, and objective function

20

1. Background

(Méndez et al., 2006). Time representation is the first and most important issue. The
optimisation methods typically utilise discrete- or continuous-time representation.
Discrete-time representation is based on the discretisation of planning horizon into a
number of time periods with predefined durations. The start and end times of tasks
can only take place at the boundaries of these periods. Since the time points are
known, the overall model structure becomes simpler and easier to solve. However,
the computational efficiency of the model and its size depend on the number of time
periods defined as a function of the input data and desired accuracy of the solution.
Furthermore, the reduction of the domain of timing decisions can often yield sub-
optimal or even infeasible solutions. Nevertheless, optimisation models using

discrete-time representation have been widely used in the literature.

Continuous-time representation has been adopted to overcome the aforementioned
limitations and build data-independent optimisation models. Using this representation,
timing decisions are represented as a set of continuous variables defining the timings
of events. While the variable time handling allows for more flexible solutions and
results in models with fewer variables, more complicated constraints with big-M (large
number associated with the artificial variables) terms are required to model resource
and inventory limitations which negatively impacts the complexity of the model and

the capabilities of the overall method.

Mathematical planning and scheduling models can be further classified based on how
batches and their sizes are managed. There are two broad categories: models which
assume that the number of batches of each size is known in advance and monolithic
models that simultaneously address the optimal number and size of batches,
allocation and sequencing of resources, and the timing of processing operations. The
first category uses an approximate two-stage approach, i.e. batching and batch

scheduling, to address larger practical problems. The second category of models

21

1. Background

typically employ the state-task network (STN) (Kondili et al., 1993) or the resource-
task network (RTN) (Pantelides, 1994) to represent the problem. The STN is a
directed graph that consists of state nodes, task nodes that represent processing
operations, and arcs that indicate the flow of materials between the states and tasks.
The STN-based optimisation approaches assume that processing events produce
and consume states, e.g. raw materials, intermediate and final products. The RTN-
based formulation assumes that processing and storage tasks consume and release
resource at their start and end times. STN- or RTN-based formulations are able to
handle arbitrary network processes but are mostly limited to a small nhumber of

processing tasks and short planning horizons.

Méndez et al. (2006) defined five different types of event representations. Figure 1.6
illustrates the same schedule of fives batches (a, b, c, d, e) allocated to two units (J1

and J2) generated using the alternative event representations.

a e —k—
1 2 3
J2 —4. o |_'P_":—| ’l|
123 4567 8810 1 2 3 4 5
(a) Global time intervals (discrete) (b} Global time points {continuous) {c) Unit specific time events {continuous)

- e precedes b | a precedes ¢ [¢ precedes d
f " Tatinnahi
P I R
- Immediate precedence relationships +
a precedes d

(d) Time slots (continuous) {e) I diate and g Ip dence (i

Figure 1.6. Different time representations used in scheduling problems (Source:
Méndez et al., 2006).

For discrete-time representations, the definition of global time periods is the only
option for general network (processed materials can be mixed and split) and
sequential (no mixing of the processed materials, the same batch is assumed to be

processed in different stages) processes. A common fixed time grid valid for all shared

22

1. Background

resources is predefined and events are scheduled to start and finish exactly at the
grid points. The main advantage of a fixed time grid is its simplicity. Continuous-time
formulation involves extensive alternative event representations that focus on
different types of processes. For sequential processes, time slots and batch
precedence-based approaches can be used, whereas in the case of general network
processes, global time points and unit-specific time events are employed. The global
time period representation corresponds to a generalisation of global time periods
where the timing of time periods is modelled as a new variable. Based on the detailed
comparison of various continuous-time models for short-term scheduling of batch
plant performed by Shaik et al. (2006), the unit-specific event-based models always
require fewer event points and yield favourable computational performance compared
to both slot-based and global event-based models due to heterogeneous locations of

event points used.

Different criteria of solution quality can be used for scheduling problems. The six most
commonly used are: makespan, earliness, tardiness, profit, inventory, and cost. The
choice of the objective function has a direct effect on the computational performance
of the optimisation model. A review of relevant literature on mathematical
programming-based biopharmaceutical capacity planning and scheduling is provided

in section 1.6.

1.5. Heuristics

While mathematical programming is often the optimisation method of choice, heuristic
approaches have also been investigated to address certain limitations of these
methods. These include dealing with non-linearities, uncertain parameters, and
generating feasible solutions for industrial-sized problems in a reasonable amount of
time. The word “heuristic” originates from Ancient Greek word for “find” or “discover”.

23

1. Background

Generally, heuristic refers to any approximate problem-solving method that unlike
mathematical programming does not guarantee optimality. Instead of being dedicated
to the solution of a particular problem, heuristics are typically designed with the aim
of being flexible enough to handle as many different combinatorial problems as
possible. Despite the lack of guarantee of solution optimality, heuristics provide a
number of advantages compared to classical optimisation, including flexibility, lack of
assumptions about the problem, and ease-of-implementation in most cases. There
have been many papers reporting success stories of applying heuristics to a wide-
range of NP-hard problems. Heuristic problem-solving methods can be broadly
classified into local search methods and population-based search techniques

(Widmer et al., 2008).

In local search methods, the solution space is explored at each step by moving from
one solution to a more optimal one in its neighbourhood. According to Hertz and
Widmer (2003), local search can be thought of as a traversal of a directed graph G =
(S, A) where S is a set of solutions to a particular problem and A is a set of arcs (s,
s’) if and only if s”is in the neighbourhood of s. The neighbourhood of a solution s is
defined as the set of solutions that can be obtained from s by making simple
modifications to it. Some of the better-known local search techniques are simulated

annealing (Kirkpatrick et al., 1983) and tabu search (Glover, 1986).

Population-based search techniques differ from the previous methods in that they
keep a sample of solutions rather than a single candidate solution. The solution
population is usually randomly generated and then iteratively tweaked and assessed
in the direction of better solutions according to a certain set of rules. Most such
methods are based on concepts borrowed from biology. For example, Particle Swarm
Optimisation (PSO) algorithm, developed by James Kennedy and Russel Eberhart in

the mid-1990s (James & Russell, 1995; Luke, 2013), was inspired by swarming and

24

1. Background

flocking behaviours in animals. In PSO, every solution (or particle) is assigned
randomised velocity and position vectors which are used to traverse the decision
space. A more detailed description of the algorithm can be found in an overview by
Poli et al. (2007). Other particularly popular set of optimisation techniques is known
collectively as Evolutionary Optimisation (EO), Evolutionary Computation (EC) or

Evolutionary Algorithms (EAS).

1.5.1. Introduction to Genetic Algorithms

GAs, invented by John J. H. Holland (1975) at the University of Michigan, are the most
widely used class of EAs. Due to the relationship to biology and evolution theory,

many biological terms have been used to describe GAs (Table 1.1).

Table 1.1. Most common terms used to describe Genetic Algorithms. Adapted from

Luke (2009)

Term Meaning
Gene A slot position in a chromosome and a smallest unit of an
encoded solution that represents a decision
Chromosome Encoded solution represented as a string of genes
Individual A candidate solution
Population A collection of chromosomes
. Determines the reproductive success Represents the
Fitness

Objective function

quality of an encoded solution
Function that estimates the fithess of a chromosome
Process of combining two chromosomes to create one or

Crossover L
more new individuals
Mutation Random changes made to the encoded solutions
Reproduction/Recombination Crossover and mutation
Parent Individual used to generate new solutions (offspring)
. New solutions generated by applying crossover and
Offspring _ g y applying
mutation to parents
. Process of determining which parent solutions will undergo
Selection _
crossover and mutation
. One iteration of GA which includes selection, crossover,
Generation

Genetic operator

and mutation
Operator that guides the algorithm towards a solution to a
given a problem, e.g. selection, crossover, and mutation

25

1. Background

GAs can be divided into generational and steady-state algorithms. Generational
algorithms, which are more common, update the entire or most of the sample whereas
steady-state algorithms update the same sample a few individuals at a time. Algorithm
1.1 describes a procedure of a basic generational GA. The algorithm initiates from a
pool of typically randomly generated chromosomes. Parent chromosomes with a
higher objective function value or fitness are selected for crossover and mutation to

create new and hopefully better solutions for each new generation of the GA.

Algorithm 1.1. Pseudocode of a basic GA.

1 procedure GeneticAlgorithm(popsize, max_gen, objective_function)

2 parents=0
3 gen=0 = generation counter
4 best=0 = placeholder for best individual
5 Generate new parent population of popsize
6 while gen < max_gens
7 for each parent in parents
9 Evaluate parent fitness with objective_function
10 if best = OJ or fithess of parent > fitness of best
11 best = parent
12 end if
13 end for

14 offspring = @
15 for |parents| / 2 times

16 parenta = SelectWithReplacement(parents)

17 parents = SelectWithReplacement (parents)

18 offspringa, offspringn = Crossover(parenta, parenty)

19 offspring = offspring U { Mutate(offspringa), Mutate(offspringp) }
20 end if

21 parents = offspring
22 gen+=1

23 end while

24 return best

25 end procedure

The most common selection operators are fitness-proportional selection (also known
as roulette-wheel selection) and tournament selection. As the name suggests, fithess-
proportional operator selects parent chromosomes with a probability that is
proportional to their fitness. Tournament selection picks the best solution from a
random population sample of size t (tournament size). Tournament selection with
samples comprising two individuals is often referred to as binary tournament. It has

26

1. Background

been extensively used due to its computational efficiency and better or equivalent
convergence when compared to other selection methods that are available in the
literature (Goldberg & Deb, 1991; Melanie, 1996). After the selection, the parent
chromosomes are crossed over with a certain probability pC to create one or more
offspring chromosomes. Commonly used crossover operators include a uniform
crossover, which swaps each of the parent genes with a probability of 0.5, a single-
point crossover, which selects a random point and swaps all genes beyond that point
in either parent’s chromosome between the two parents, and a multi-point crossover,

which is a generalisation of a single-point crossover (Allmendinger, 2012).

Figure 1.7. A cube formed by three-dimensional vectors (black circles) which
represent positions of parent chromosomes in the decision space (Luke, 2009)

The original motivation for crossover was building-block hypothesis (BBH) (Holland &
Goldberg, 1989) or, more formally, schema theory (Reeves, 2003). The basic premise
of BBH is that highly fit individuals often share certain traits, i.e. building blocks, which
are defined as a collection of genes set to certain alleles, i.e. positions in the
chromosome. Crossover works by spreading these building blocks throughout the
population. However, with the crossover alone, the search capabilities of a GA are
severely limited. For example, if parent chromosomes were three-dimensional
vectors, they would form a cube in a decision space (Figure 1.7). Crossover of these
vectors will result in offspring that would lie at other corners of the cube. Therefore,

conventional crossover operators are limited to search inside the bounding box

27

1. Background

surrounding the parents (Luke, 2009). Moreover, repeated crossover and selection
often eliminate certain genes, create copies of the same individual, and cause the GA

to prematurely converge.

The usefulness of crossover operator has been extensively debated which led to the
emergence of new recombination operators and Naive Evolution algorithms that run
without crossover (Fogel & Atmar, 1990; Senaratna, 2005). For example, Spears and
Anand (1991) reported that for neural network modules and their control circuits GAs
performed better without crossover. Naive Evolution algorithms are supported by the
many examples in nature of complex organisms which evolved without crossover, e.g.
Bdelloidea — a class of microscopic pseudocoelomate freshwater animals (Senaratna,
2005). Furthermore, biologists consider mutation, not crossover, as the main source
of new “raw genetic material” (Hartl, 1988). Commonly used mutation operators in
GAs are ones that change each gene in a chromosome independently with some
probability pM. It is worth noting that the variety of GAs is vast. There are many
different strategies for performing selection, crossover, mutation, and even the

underlying algorithm.

Unlike classical optimisation methods which make assumptions about the
relationships between the variables, constraints, and the objective, GAs are flexible
optimisers making minimal assumptions about the problem. Therefore, despite the
lack of guarantee of finding the global optimum and the difficulty of designing the
objective function, chromosome structure, and operators, GAs have been used to
obtain approximate solutions to a wide range of complex linear and non-linear
problem such as training neural networks (Chen & Liao, 1998), finding the optimal
number, types, and positions of wireless transmitters (Ting et al., 2009), and creating
a program capable of solving planning problems described in Planning Domain

Definition Language (PDDL) (Brie & Morignot, 2005). Moreover, due to the multiplicity

28

1. Background

in solutions, GAs have been quite popular for solving the multi-objective optimisation
problems (Kalyanmoy, 2011). Since a population of solutions is processed in each
iteration of a GA, the outcome is also a population of solutions. If an optimisation
problem has a global optimum, then all chromosomes can be expected to converge
to it. Alternatively, if an optimisation problem has multiple optimal solutions, GAs can

capture them in its final population (Deb, 2001).

1.5.2. Stochastic and Multi-Objective Approaches

For multi-objective optimisation problems, two or more objective functions need to be
evaluated simulatenously. Moreover, these objective functions are often contradictory
to each other. A solution that is good for one objective function might do so at the cost
of a less optimal value for another function. Solving multi-objective problems with or
without the presence of constraints leads to a set of trade-off solutions popularly
known as a Pareto front. Each optimal solution in the Pareto front is called a non-
dominated solution. For example, in Figure 1.8, solutions A and B are non-dominated.
A good survery on the history of multi-objective decision analysis and optimisation

methods is provided by Koksalan et al. (2011).

Figure 1.8. Relationship between the design (x1, x2) and objective (f1, f2) spaces of
a two-objective optimisation problem (Source: Cui et al., 2017).

The first multi-objective GA, Vector-Evaluated Genetic Algorithm (VEGA), was
proposed by (Schaffer, 1985). There have been several other multi-objective

evolutionary algorithms (MOEA) developed over the years such as Niched Pareto

29

1. Background

Genetic Algorithm (NPGA) (rey Horn et al., 1994), Non-Dominated Sorting Genetic
Algorithm (NSGA) (Svinivas, 1995), Strength Pareto Evolutionary Algorithm (SPEA)
(Zitzler & Thiele, 1999) and SPEA2 (Zitzler et al.,, 2001), Pareto Envelope-based
Selection Algorithm (PESA) (Corne et al., 2000), Non-Dominated Sorting Genetic

Algorithm-Il (NSGA-II) (Deb et al., 2002), and many others.

One of the most attractive features of heuristics compared to mathematical
programming is that they can be easily integrated with other methods such as Monte
Carlo simulation (discussed in Chapter 6) which can be used to represent complex
problem features and uncertainties that cannot be straightforwardly modelled by
mathematical equations. A general simulation-based optimization method comprises
an optimization part that guides the search process and a simulation part used to
evaluate performances of candidate solutions. Compared with mathematical
programming techniques, simulation-based optimization methods replace the
analytical objective function and constraints by one or more simulation models.
Iteratively the output of the simulation is used by the underlying optimisation algorithm,
such as GA, to guide the search for the optimal solution(s). A comprehensive review
of approaches to addressing different uncertainties using EAs is provided by Jin and
Branke (2005). A more recent survey by Gutjahr and Pichler (2016) includes reviews
of non-scalarising mathematical programming- and heuristic-based stochastic multi-
objective optimisation. For example, Eskandari et al. (2005) integrated a simulation
model with a stochastic nondomination-based multi-objective GA and introduced new
genetic operators to enhance the algorithm’s performance. Ding et al. (2006)
proposed a multi-objective GA combined with a simulation procedure for supply chain
optimisation. Amodeo et al. (2009) combined a discrete-event simulation procedure
with SPEA-II, NSGA-II, and multi-objective PSO to determine the inventory policy of
a single product supply chain, taking into account the maximization of customer

service level and the total inventory cost. Syberfeldt et al. (2009) used a multi-

30

1. Background

objective evolutionary algorithm supported by an artificial neural network, combined

with a simulation routine to improve a manufacturing cell at Volvo Aero in Sweden.

1.5.3. Lot Sizing using Genetic Algorithms

There have been a number of papers reporting GA-based optimisation approaches
for solving lot sizing and job-shop scheduling problems. Most of the approaches can
be broadly divided into two classes depending on the encoding strategy: direct
representation and indirect representation (Oyebolu et al.,, 2017). In a direct
representation, the sequence and lot sizes are encoded in the chromosome directly.
In an indirect representation, a chromosome typically encodes a set of rules or a
permutation-based solution. A construction heuristic is then used to derive a schedule
from the permutation or encoded rules. For example, Kimms (1999) used a two-
dimensional matrix encoding strategy to solve a multi-level, multi-machine
proportional lot sizing and scheduling problem formulated as a mixed-integer
programming problem. The matrix contained rules for selecting the set up state for a
machine at the end of a period. A construction heuristic was used to translate the
matrix into the solution starting from the end of planning horizon. There have been
multiple construction heuristics developed for a variety of problems. Branke and
Mattfeld (2005) demonstrated an approach of penalising early idle times to increase
scheduling flexibility and enhance overall performance for dynamic job-shop
scheduling problems. Ho et al. (2006) proposed two construction heuristics for the
single-level uncapacitated dynamic lot-sizing problem, extending the work of Silver
(1973). Almada-Lobo et al. (2007) presented a five step heuristic to solve a multi-item
capacitated lot-sizing problem with sequence-dependent setup times and costs from
the glass industry. James and Almada-Lobo (2011) developed a general-purpose

approach combining heuristics and mixed integer programming to find high quality

31

1. Background

solutions to the single- and parallel-machine capacitated lot sizing and scheduling

problem with sequence-dependent setup times and costs.

Jans and Degraeve (2008) noted that most of the heuristic-based optimisation
methods developed for solving lot sizing problems were validated using artificial data
and were limited in terms of the assumptions made, e.g. unlimited capacity, making
the application to real-life problems troublesome. This thesis addresses this gap by
developing scheduling models that address the most common features of
biopharmaceutical industry, e.g. storage and shelf-life limitations, and are validated

using industrially-relevant case studies either from real life or from the literature.

1.6. Related Work

Planning and scheduling of biopharmaceutical manufacture is a complex
combinatorial optimisation problem further complicated by the unique features of
biopharmaceutical production. Saraph (2001) noted that the biopharmaceutical
manufacturing process is a mix of discrete and continuous processes, the size of
batch and production capacity tend to vary depending on the processing stage, and
the common utilities, e.g. water, are shared. Furthermore, most companies typically
have a portfolio of various products manufactured across a network of owned and
contract manufacturing facilities with wide-ranging production capabilities.
Biopharmaceutical products may be unstable and thus have specialised and costly
transportation and storage requirements. Biopharmaceutical companies are also
required to meet high-quality standards and prove they can deliver a consistent
manufacturing process. The high-quality standards are achieved by rigorous cleaning
and sterilisation between individual production campaigns. Based on the report by
Langer (2009), the top eight factors that create biopharmaceutical production capacity

constraints are physical capacity of downstream processing equipment as well as

32

1. Background

fermentation/bioreactor equipment, inability to retain and lack of new experienced
technical and production staff, lack of financing for production expansion, costs
associated with downstream purification, inability to optimise overall system and

general inability to meet demands for finished product.

1.6.1. Process Design and Optimisation

The area of planning and scheduling in the biopharmaceutical industry has not
received as much attention as bioprocess design and optimisation (Majozi et al.,
2015). The development of computer-aided design tools for bioprocessing began in
the mid-1980s (Farid et al., 2007). The vast majority of bioprocess design optimisation

methods have been based on mathematical programming and simulation techniques.

Simulation-based approaches have been especially popular at modelling the impact
of uncertainties within a biopharmaceutical manufacturing environment for more
effective use of resources and improved economic performance. Farid and coworkers
(Farid et al., 2000, 2001; 2005, and 2007) presented the SimBiopharma software tool
to evaluate biopharmaceutical manufacturing alternatives in terms of cost, time, yield,
resource utilisation, and risk. Incorporating uncertainty allowed users to make
decisions based on both the expected outputs as well as the likelihood of achieving
them. The key features of the tool included interactive graphics, task-oriented
representation, bioprocess economics, dynamic simulation, risk analysis and multi-
attribute decision-making. The benefits of this integrated approach were illustrated
with an evaluation of stainless steel versus single-use or disposable facilities for
clinical material preparation. Lim et al. (2005 and 2006) and Pollock et al. (2013) built
on these decisional tools to evaluate the impact of uncertainty in fermentation titres,
DSP vyield, contamination rates on the design and robustness of perfusion culture

based processes compared to fed-batch processes. Stonier et al. (2012) developed

33

1. Background

these decisional tools to identify facility limits of legacy mAb facilities in terms of
downstream capacities, assess the current and future robustness of these facilities to
increasing cell culture titres and determine robust purification configurations given titre
fluctuations. Stonier et al. (2013) and Yang et al. (2014) further leveraged the
stochastic datasets generated from such tools with datamining tools (e.g. principal
component analysis, clustering algorithms, decision trees) so as to be able to predict

the root cause of facility fit issues.

Some of the earliest works to address the optimisation of the design structure and
process variables in biopharmaceutical multi-product facilities with mixed-integer non-
linear programming (MINLP) were presented by Montagna et al. (2000) and Asenjo
et al. (2000). Vasquez-Alvarez and Pinto (2004) developed a MILP-based
optimisation model to optimise chromatography unit operations. Brunet et al. (2012)
created a hybrid simulation-mixed-integer with dynamic optimisation approach for the
design of USP and DSP units in a single-product process. Simaria et al. (2012)
proposed a multi-objective GA-based approach for the selection and optimisation of
purification sequences and chromatography column sizing strategies. Allmendinger
et al. (2012) presented a GA for the discovery of chromatography equipment sizing
strategies for antibody purification processes under uncertainty. The optimisation of
the chromatography column-sizing design in the mAb purification processes was also

addressed by Liu et al. (2013) who applied MINLP to minimise the total cost.

1.6.2. Portfolio Management and Capacity Planning

Early work on biopharmaceutical portfolio management and capacity sourcing
decisions used simulation models. For example, Rajapakse et al. (2005) and (2006)
presented a Decision Support Tool based on Monte Carlo simulation to predict the

process and business outcomes for portfolios of biopharmaceutical products in the

34

1. Background

development pathway. At the time of writing, the literature on the use of alternative
optimisation techniques such as GAs or hybrid methods in the pharmaceutical and
biopharmaceutical industry was somewhat limited. Most of the publications focused
on the optimisation of process design (discussed in the previous section) and the
management of product portfolios rather than capacity planning and scheduling. The

few that exist are discussed below.

On the pharmaceutical portfolio management front, Blau et al. (2004) reported a
hybrid discrete simulation and GA-based approach for selecting a sequence of
pharmaceutical products that maximises the expected economic returns at an
acceptable level of risk for a given level of resources in a new product development
pipeline. Varma et al. (2008) expanded the work accomplished by Blau et al. (2004)
and proposed an integrated resource management tool to maximise portfolio’s
expected net present value, while keeping both risk and drug development times
under control. The framework was based on the combination of a stochastic
simulation of the pharmaceutical work flow process, a MILP formulation that acted as
a “resource manager”, and a Genetic Algorithm based “strategy learner” which was
used to assess how the various strategies of resource allocation affect the financial
and cycle time performance of the simulated portfolio of drug candidates. On the
biopharmaceutical portfolio management front, George and Farid (2008) developed a
stochastic, multi-objective optimisation framework based on probabilistic, model-
building GAs for the optimisation of decisions related to portfolio selection, timing, and
capacity sourcing decisions. Probabilistic model-building GAs belong to a class of
EAs known as Estimation of Distribution Algorithms (EDAS). EDAs differ from most
conventional algorithms by using explicit probability distributions represented by a
model class, e.g. a Bayesian network or a multivariate normal distribution. Nie et al.

(2012) presented a stochastic, GA-based decision-support tool to address the

35

1. Background

decisions involved in portfolio management at both the drug development process

level and the portfolio level.

Table 1.2. lists all relevant literature on capacity planning and scheduling optimisation
methods in the biopharmaceutical industry to date. The vast majority of the research
has focused on discrete-time MILP formulations adapted from the pharmaceutical and
chemical engineering industries. The problem of task scheduling for new product
development in the pharmaceutical industry was first developed by Schmidt and
Grossmann (1996). According to Gatica et al. (2003), the first paper addressing the
capacity planning problem as well as product selection decisions in the
pharmaceutical industry appeared in 1999 by Rotstein et al. (1999). They presented
a stochastic capacity planning model incorporating clinical trials uncertainty. A wide
range of deterministic and stochastic models addressing such problems in the
pharmaceutical industry have been developed since then. Gatica et al. (2003)
presented a realistic approach to optimise a product portfolio subject to the outcome
of the clinical trials. The proposed model included a multi-stage, multi-scenario case,
and four outcomes, i.e. high success, target success, low success, and failure. It was
based on previous pharmaceutical product portfolio optimisation models, such as
Rotstein et al. (1999) and Papageorgiou et al. (2000), and was capable of considering
whether it is more beneficial to outsource the manufacturing process or maintain the
investment in the facility. Brastow and Rice (2003) demonstrated how Monte Carlo
simulation could be used to identify the probability of having too much or too little
manufacturing capacity for a network of pharmaceutical facilities. Levis and
Papageorgiou (2004) presented a systematic mathematical programming approach
for long-term, multi-site capacity planning under uncertainty in the pharmaceutical
industry, simultaneously addressing the problem of product management. They also
provided an extensive review of the publications addressing the problem of portfolio

optimisation and task scheduling in the pharmaceutical industry.

36

1. Background

Table 1.2. Resume of biopharmaceutical literature planning and scheduling

optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods
Samsatli and Shah = Two stages = MILP model
(1996a), optimisation: first (STN
Samsatli and Shah stage, processing framework)
(1996b) rates and conditions = Discrete-time

of unit representation
operations/equipment = Cyclic
capacities through schedule
dynamic optimisation (48 h/68 h)
(gProms); second = Maximise
stage, scheduling operating

and design profit
adjustments of

intermediate storage.

Lakhdar et al. (2005) = Medium-term = MILP model
planning and = Discrete-time
scheduling (1-2 representation
years) = Maximise

= Determines operating
campaigns durations profit
and sequence,
production quantities,
inventories, and
product sales

Lakhdar et al. (2006) = Medium-term = MILP model
planning (1-3 years) derived using
considering CCP

uncertainty in the
fermentation titres
Considers storage
constraints

Results compared
within deterministic
model, a two-stage
programming model
accompanied by an
iterative construction
algorithm, and a
proposed CCP model

Discrete-time
representation
Maximise
operating
profit
Multi-scenario
stochastic
programming

37

1. Background

Table 1.2. (continued) Resume of biopharmaceutical literature planning and
scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

Source

Model Characteristics

Methods

Lakhdar et al. (2007)

Lakhdar and
Papageorgiou (2008)

Miller et al. (2010)

Long-term
planning, first
solved as a single
objective problem
(maximise
operating profit)
and capacity
analysis was
conducted; then
extended to allow
multiple objectives
through goal
programming
Medium-term
planning under
uncertain
fermentation titres
Storage constraints
Proposed future
extension to multi-
stage framework to
allow uncertainty to
be revealed
gradually at any
time period; further,
proposed
decomposition and
approximation
solution methods
Core mathematical
programming
solver designed
around a uniform
discretisation
model and
customised outer
layer to address
biologics process
behaviour

VirtECS Scheduler
Software
Intermediate
material storage
consideration

MILP model
Discrete-time
representation
Maximise
operating profit
Minimise total
adverse
deviations to
targets: cost,
customer
service level,
and capacity
utilisation
MILP model
Discrete-time
representation
Iterative
algorithm for
large-scale
problem
Maximise
operating profit

MILP model
(RTN
framework)
Discrete-time
representation
Monte Carlo
stochastic
parameters

38

1. Background

Table 1.2. (continued) Resume of biopharmaceutical literature planning and
scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods
Gicquel et al. (2012) = Hybrid flow shop = MILP model
scheduling problem = Discrete-time
= Zero intermediate representation
capacity and limited = Minimise total
waiting time weighted
between tardiness
processing
= Suggest heuristic
solution as future
work
Kabra et al. (2013) = Unit-specific event- = MILP model
based continuous- = Continuous-
time representation time
= Multi-period representation
scheduling of multi- = Maximise

stage multi-product

operating profit

process
= Basedon STN
representation
Siganporia et al. (2014) = Long-term planning = MILP model
= The model = Discrete-time
comprised specific representation

features to account
for products with
fed-batch or
perfusion culture
processes

Utilised rolling time
horizon approach
to obtain greater
optimality in less
computational time
than the full-scale
model

Minimise total
cost

Vieira et al. (2016) = Multi-period = MILP model
scheduling of multi- = Continuous-
stage multi-product time
process representation

= RTN continuous- = Maximise

time single-grid
formulation

operating profit

39

Table 1.2. (continued) Resume of biopharmaceutical literature planning and
scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

Source Model Characteristics Methods
Oyebolu et al. (2017) = Inspired by GA = GA model
approaches to job » Maximise
shop scheduling operating profit

= Proposed a
problem-tailored
construction
heuristic for
scheduling product
demands across
multiple facilities

Jankauskas et al. (2017)" = Medium-term = GA model
planning = Continuous-
= Multi-period time
scheduling of multi- representation
stage multi-product = Maximise
process operating profit

= Developed a
continuous-time
scheduling heuristic
using variable-
length
chromosomes

* This work is part of this thesis.

One of the first frameworks for biopharmaceutical capacity planning and scheduling
was developed by Samsatli and Shah (1996b). They addressed the design and short-
term scheduling of biopharmaceutical processes using MILP and STN formulations.
The first medium-term capacity planning model for a multi-product, multi-suite
biopharmaceutical facility was presented by Lakhdar et al. (2005). Their approach
helped to determine the optimal durations and sequence of production campaigns
together with product inventory, sales, and late deliveries profiles. Furthermore, the
proposed MILP based optimisation method was shown to find more optimal solutions
than the industrial rule-based approach. Kabra et al. (2013) compared this discrete-
time model with a continuous-time multi-period scheduling of multi-stage, multi-
product process based on an STN framework, reporting an improved objective

function value. Vieira et al. (2016) also compared Lakhdar et al. (2005) discrete-time

1. Background

model with a new MILP model based on RTN continuous-time single-grid formulation.

They reported even better objective function values.

The randomness of the biopharmaceutical manufacturing environment such as
uncertain yield and risks of contamination, can cause significant scheduling and
planning difficulties for the biopharmaceutical manufacturing campaigns. To address
this, Lakhdar and Papageorgiou (2006) compared a chance-constrained
programming (CCP) model with a deterministic MILP and two-stage programming
approach combined with an iterative construction algorithm for medium-term planning
of biopharmaceutical manufacture under uncertain fermentation titres. The proposed
methodology was reported to yield better results than a deterministic MILP model.
Lakhdar and Papageorgiou (2008) improved their work presented in 2005 with an
iterative algorithm for solving large-scale biopharmaceutical capacity planning and

scheduling problems with uncertain fermentation titres.

The optimisation of biopharmaceutical manufacturing capacity often involves many
multiple conflicting criteria and objectives to be considered. Lakhdar et al. (2007)
addressed the challenge of making long-term (15 years), multi-site capacity planning
decisions given multiple strategic criteria such as risk, cost, and customer service
levels. The problem was first solved as a single objective problem to maximise
operating profit, and then extended using goal programming to allow for multiple

objectives, i.e. cost, customer service level, and capacity utilisation.

The vast part of the research on biopharmaceutical manufacture planning has been
limited to either batch or fed-batch processes. However, a more recent, large-scale
discrete-time MILP model was presented by Siganporia et al. (2014) to optimise long-
term capacity plans for a portfolio of biopharmaceutical products, with either batch or

perfusion bioprocesses, across multiple facilities to meet quarterly demand.

41

1. Background

The work presented by Oyebolu et al. (2017) is one of the few GA-based planning
and scheduling optimisation models for the biopharmaceutical industry. Taking
inspiration from GA-based approaches to job-shop scheduling, they proposed a
problem-tailored construction heuristic for scheduling demands of multiple products
sequentially across several facilities to generate a long-term manufacturing schedule.
Compared to the aforementioned construction heuristics (Section 1.5.3), theirs is
different in that it inserts jobs (manufacturing campaigns) in an order of importance
determined by the GA and not necessarily in any chronological order. The approach
is based on an indirect representation of the problem using a permutation of all the
product demands. The sequence of demands encoded in a chromosome determines
the order by which the construction heuristic schedules production campaigns. The
construction heuristic explores a number of different scheduling alternatives, e.g.
schedule as late as possible, schedule next to previous demand, split demand, and
picks the best one based on feasibility and the smallest additional cost. The approach
outperformed a related discrete-time MILP model on a single-objective long-term
biopharmaceutical capacity planning problem from the literature (Lakhdar et al.,

2007).

1.7. Aims and Outline of Thesis

As discussed earlier, much of process planning and scheduling research for
biochemical engineering processes has been based on MILP formulations using
discrete-time representation (Table 1.2). It is acknowledged that the development of
models for production planning and scheduling of biopharmaceutical processes has
been fairly unexplored (Vieira et al., 2016). This work is particularly motivated by the
insufficient research of GA-based capacity planning and scheduling optimisation
methods in the biopharmaceutical industry. The key objectives of this work are to

investigate the applicability of GAs for capacity planning and scheduling of

42

1. Background

biopharmaceutical facilities and to develop a flexible framework that would facilitate
the biopharmaceutical industry’s strategic and operational decision-making. The

following areas will be explored:

= Medium- and long-term planning
= Discrete- and continuous-time representations
= Single- and multi-objective problems

= Deterministic and stochastic optimisation

Chapter 2 describes a general problem statement and lists the key challenges of
biopharmaceutical capacity planning and scheduling. It also describes the framework
and the technical details of the GA-based DST developed in this thesis for tackling

biopharmaceutical scheduling problems.

Chapter 3 serves as a starting point in understanding the implementation challenges
of GA-based biopharmaceutical capacity planning and scheduling optimisation. This
is accomplished by developing GA-based approaches for solving single-objective
biopharmaceutical capacity planning and scheduling problems using the simpler
discrete-time representation. The performance of the GA is compared with MILP
models on industrial case studies of medium- and long-term planning from the
literature. Moreover, a PSO-based meta-optimisation approach is utilised to
automatically set the parameters of the GA. With some caveats, such as rolling time
horizon, the GA is demonstrated to be capable of generating exact or near-optimal
solutions to discrete-time MILP problems of biopharmaceutical capacity planning and

scheduling.

The early work of this thesis presented in Chapter 3 identified the shortcomings of

discrete-time representation such as unutilised production time and unnecessarily

43

1. Background

high model complexity. Chapter 4 improves upon Chapter 3 by presenting a novel
variable-length GA (which is the core of the GA-based DST developed in this thesis)
and a continuous-time scheduling heuristic for efficient and more realistic medium-
term scheduling of biopharmaceutical manufacture. Using the variable-length
chromosome structure, the GA is capable of adapting to the planning problem from a
single gene by either growing or shrinking in length. The continuous-time scheduling
heuristic accounts for constraints and features such as product-dependent
changeovers, varying manufacturing yields, multiple intermediate demand due dates,
and storage and shelf-life limits. The performance of the method is evaluated on two
industrial case studies and contrasted with related discrete- and continuous-time

MILP models.

Chapter 5 extends the variable-length GA from Chapter 4 with a multi-objective
component. The continuous-time scheduling heuristic is also adapted to suit a
different biopharmaceutical facility model with rolling product sequence-dependent
changeovers and to account for product quality control and assurance (QC/QA)
checks. The functionality of the multi-objective approahc is highlighted on an industrial
case study developed together with Eli Lilly & Company. The GA is used to optimise
both the throughput and monthly product inventory levels of a multi-product

biopharmaceutical facility over a three year period.

In Chapter 6, Monte Carlo simulation is integrated into the multi-objective variable-
length GA from Chapter 5 for generating production schedules under variable product
demand. The advantages and performance of the approach are demonstrated on a
real life industrial case study and contrasted to a deterministic optimisation approach
that neglects the uncertainty in product demand. Moreover, the chapter describes how
the computationally intensive Monte Carlo simulation can be accelerated using a GPU

that achieved a 30-fold speed-up.

44

1. Background

Chapter 7 contains an implementation plan for commercialisation of the work
generated in this thesis. It describes not only the architecture and the design details
of a proposed user interface but also discusses how the application could be priced
and delivered to clients. Finally, the conclusions of this thesis and the plausible
directions for future work are provided in Chapter 8. A list of publications (published

and in progress) resulting from this thesis is given in Appendix A.

45

2. Decision Support Tool: Requirements and Design

2. Decision Support Tool:

Requirements and Design

The previous chapter provided an overview of the biopharmaceutical industry and the
existing, mostly MILP-based methods for assisting biopharmaceutical manufacturers
in making decisions about when, where, and how long they should manufacture a
product. Despite the number of works available in the literature, the actual adoption
of MILP-based optimisation models has been relatively slow in the biopharmaceutical
industry. Due to specialist knowledge, high skill requirements, and lack of
transparency associated with mathematical programming-based methods (Mustafa et
al., 2006; Widmer et al., 2008), production scheduling especially short- and medium-
term is still often carried out using mostly manual spreadsheet-based methods.
Another reason why simpler methods are so widely used is because they can be
easily explained to and understood by the business stakeholders. Fortunately, the
research principles at the basis of GAs are generally more accessible to
inexperienced users making the algorithm an attractive alternative. Moreover, due to
their inherent flexibility, GAs can be easily adapted or combined with other types of

methods and applied to a wide-range of problems.

The literature on mathematical programming-based scheduling optimisation methods
puts a lot of emphasis on the optimality of solutions. It is nearly impossible to measure
the optimality of solutions generated using heuristic methods such as GA.
Nevertheless, in most real-life scenarios, it is sufficient to compare the performance
of a heuristic-based scheduling tool against a benchmark generated using, for
example, an expert system or industrial rule-based planning. If there are significant
gains in the objective function values, then the solution does not need to be proven to

be optimal.

46

2. Decision Support Tool: Requirements and Design

In this chapter, the requirements and design of a flexible GA-based DST for efficient
single- and multi-objective capacity planning and scheduling of multi-product
biopharmaceutical facilities are presented. Section 2.1 outlines a general statement
and key challenges of biopharmaceutical capacity planning and scheduling problems
which will be tackled in the next chapters of this thesis. Section 2.2 lists the high-level
requirements and defines the components of the tool's framework needed to meet

them.

2.1. Problem Statement and Challenges

Despite the wide variety of biopharmaceutical capacity planning and scheduling
problem classes, every problem statement can be defined in the following general

way:

= Given:
o Production facility data such as production capacities, number of USP and
DSP suites, and availability of utilities.
o Processing data such as USP and DSP processing times and material
requirements.
o Costs (optional), e.g. manufacturing, storage, backlog penalty, and waste
disposal.
o Production targets or product demand.
= Determine:

o An optimal schedule that would satisfy one or several strategic criteria.

Biopharmaceutical facilities can have various manufacturing capabilities and plant
topologies with multiple USP and DSP suites (see Figure 2.1). For the simple case,

both USP and DSP can be treated as a monolithic, black-box process without explicit

47

2. Decision Support Tool: Requirements and Design

discretisation into individual suites. However, allowing the various biopharmaceutical
manufacturing stages to be modelled separately can yield more realistic production
schedules though at the cost of higher computational complexity and increased

modelling challenges.

> ()
7 /
b)
“ > [DsP 1 |
O \/ﬁ
/’\\
c)

/‘/

/
s
F
@
T

»

NS

-
[N

ol

Figure 2.1. Examples of different biopharmaceutical facility topologies (different USP
to DSP suite number ratios): (a) 1:1, (b) 2:2, (c) 2:3. All three examples will be tackled
in the later chapters of this thesis.

48

2. Decision Support Tool: Requirements and Design

Capacity planning and scheduling problems are often subject to several constraints,
e.g. biopharmaceutical companies are required to produce a minimum number of
batches for the regulatory bodies, the product demand must be met on time, and
product waste needs to be minimised or avoided completely. Furthermore, most real-
life biopharmaceutical capacity planning and scheduling problems have multiple
objectives. It is generally desirable to maximise the facility throughput and maintain
the strategic product inventory levels at specific monthly targets. A straightforward
way to maximise facility throughput is to run fewer but longer manufacturing
campaigns (Figure 2.2.a) which reduces the number of product changeovers and
increases the available time for manufacturing. However, having longer and
infrequent campaigns can lead to uneven product inventory levels and periods where
the stock is dangerously low (Figure 2.2.b). Therefore, running shorter but more
frequent manufacturing campaigns (Figure 2.2.c.) would ensure that product
inventory is re-stocked often and there is enough of it at any point in time to meet the
product demand for the next 6 or 9 months in case of unplanned facility shutdowns or
other emergencies (Figure 2.2.d). One of the key challenges that the

biomanufacturers face is striking a balance between these two objectives.

The capacity planning and scheduling problem of biopharmaceutical manufacture is
further complicated by other factors such as limited shelf-life, storage capacity
limitations, and the types and durations of product changeovers. Figure 2.3. depicts
an example of a biopharmaceutical product changeover that is widely used in the
capacity planning and scheduling MILP-based models reported in the literature
(Lakhdar et al., 2005; Lakhdar et al., 2007; Siganporia et al., 2014). During this type
of product changeover, all tasks of the previous manufacturing campaign need to be
completed before the clean-up process and the subsequent manufacturing campaign
can begin. The time required to switch between products includes the time required

to clean the suites and equipment, and it often depends on the sequence of

49

2. Decision Support Tool: Requirements and Design

c)

a)

[a]

< (8]
19npoid

T
m

T
[a]

o <
19npoid

T
oM

[2020 Jan
[2019 Nov
[2019 Sep
r 2019 Jul

r 2019 May
r 2019 Mar
[2019 Jan
[2018 Nov
[2018 Sep
r 2018 Jul

r 2018 May
2018 Mar
[2018 Jan
[2017 Nov
[2017 Sep
r 2017 Jul

r 2017 May
r 2017 Mar
[2017 Jan

[2016 Nov

r 2020 Jan

2019 Nov

[2019 Sep
2019 Jul

[2019 May
[2019 Mar
[2019 Jan
[2018 Nov
[2018 Sep
[2018 Jul

[2018 May
[2018 Mar
[2018 Jan
[2017 Nov
[2017 Sep
[2017 Jul

[2017 May
[2017 Mar
[2017 Jan

[2016 Nov

6102 220
6T0Z AON
6102 20

610z das
610¢ Bny
6T0Z INC

6T0¢ ung
6T0Z A
610¢ 1dy
6T0Z 1IN
610¢ 424
6T0Z uer
810¢ 920
8T0Z NoN
810¢ 120

810z des
810¢ bny
8T0Z InC

8T0¢ ung
810z feiN
810¢ 1dy
8T0Z eI
8T0Z 4o
8T0Z uer
1102 220
/102 AON
LT02 Y0

/10¢ des
1102 Bny
/T0Z Inp

/TO0Z unp
1102 fe
L10¢ 1dy
1102 re
/T0Z 924
/T0¢ uer

o

t

@

o

S

g

el

o Q

g g

s

QL @

> =

£ £

[m -]

o2

[S]

= 3

T T

o o

<3

oo

1

r

1
= 2 8
=] & S

By

~
°

.~

[+}]

[=1]

S

s

>

o o

S g

c C

Qo Q@

= =

e £

[mpy-)

ol

[+l

= =

= T

[=]

S S

o oo

1

r

1
2 2 S
& 4 =

By

—~~
o)

Figure 2.2. A comparison between two production schedules and the corresponding inventory levels of product D. In (a), a schedule with fewer

but longer manufacturing campaigns has higher total throughput albeit at the cost of (b) unbalanced product inventory with periods of extremely

low stock (highlighted by the rectangle). On the other hand, a product schedule in (c) has more frequent but shorter product campaigns and, as

a result, lower total throughput but also (d) better maintained product inventory levels.

50

2. Decision Support Tool: Requirements and Design

the product campaigns. Provided that the different stages of biomanufacturing
process (Figure 1.1) are carried out in separate, self-contained processing suites, a
more efficient rolling product changeover can be implemented. For example, while
Figure 2.4.a depicts what looks like two overlapping manufacturing campaigns of
different products, Figure 2.4.b shows that a rolling changeover takes place between
the different early manufactured stages while the product is still being produced in
other suites. In this way, more time is made available for the manufacturing of

products by minimising the idle waiting times in-between production campaigns.

A 52 days

Product

c 52 days

6 1‘0 éO 50 40 éO 60 7‘0 BIO dD l[I)D lllO léO 130
Day
Figure 2.3. An example of a traditional product changeover. The hew manufacturing

campaign of product C can only take place after all tasks of product A campaign are
finished.

A 52 days

Product

Cc 52 days

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Day

b)

Inoculation 20 days 20 days
Seed 11 days 11 days
Production 14 days 14 days

DSP 7 days 7 days

6 % 1‘0 1‘5 Zb 2|5 3b 35 40 4‘5 E;D 5|5 50 6‘5 ?b 7I5
Day
Figure 2.4. An example of a rolling product changeover. Numbers inside the blocks
correspond to the duration of the corresponding task while a gap between the different
task blocks denotes a changeover.

51

2. Decision Support Tool: Requirements and Design

Given the unique features of the biopharmaceutical manufacture and the wide variety
of objectives and constraints, the manual creation of capacity plans can quickly
become an unsustainable practice. Even for simpler discrete-time based models, the
complexity of biopharmaceutical capacity planning and scheduling problems grows
exponentially with the increasing number of products and time periods (see Table

2.1).

Table 2.1. Minimum number of solutions for different cases over 8 years with a time
period of one month (Source: Siganporia, 2016).

Number of products Number of facilities Number of solutions
2 2 109
4 4 1028
6 6 10522
10 10 101056

There is an obvious, strong need for methods that would help find the best use of
production resources in order to satisfy production goals, i.e. addressing the
production capacity requirements and anticipating sales opportunities over a planning
horizon of choice (Karimi et al., 2003). The three typical types of planning horizons
are short-term, medium-term and long-term. Short-term planning decisions are
comprised of every day scheduling of operations, e.g. job sequencing; medium-term
planning involves making decisions on material requirements planning and lot sizing
over the planning horizon in order to meet the demand and minimise overall costs;
long-term planning comprises strategic decisions on product, equipment, process,
facility location and design choices and resource planning (Karimi et al., 2003). The
main scope of this thesis is efficient medium-term multi-objective scheduling

biopharmaceutical manufacture in an existing multi-product facility.

52

2. Decision Support Tool: Requirements and Design

2.2. Requirements and Design

There have been several discrete- and continuous-time MILP-based models for

biopharmaceutical capacity planning and scheduling reported in the literature. In order

to be considered as a feasible alternative to these models, a requirements

specification was developed that describes what the GA-based DST should be able

to achieve. The tool requirements are outlined below:

Ability to specify multiple objectives and constraints: the tool needs to capture the
most common objectives and constraints of biopharmaceutical production such
as maximisation of profit and minimisation of costs. However, the availability of
cost data is usually a bottleneck thus the tool needs to allow for other objectives
that are non-monetary, including maximisation of production throughput,
maintaining strategic inventory targets, meeting all product demands on time, and
avoiding product waste.

Ability to specify product-specific characteristics: in order to have practical value
and reflect the biopharmaceutical manufacturing environment in a realistic way,
the tool has to address the aforementioned complexities such as varying process
durations and vyields, product sequence-dependent changeovers, QC/QA
approvals, storage and shelf-life limits.

Ability to instantiate new models or add new scheduling logic: the description of
the scheduling problem often changes during the initial stages of implementation.
It is common for the original problem formulation to be continually modified and
enhanced as additional information becomes available. Therefore, it is important
to empower the production scheduler not only with the ability to make non-
structural changes to the scheduling model such as adding new products and
revising product demand but also with the ability to include different scheduling

models. The tool needs to be able to cope with a variety of different

53

2. Decision Support Tool: Requirements and Design

biopharmaceutical capacity planning and scheduling problems,
biopharmaceutical facility designs, and manufacturing strategies.

= Ability to achieve solutions in a timely manner: the tool needs to be capable of not
only generating optimal or close-to-optimal solutions but also do it so in a
reasonable amount of time. The shorter the time to report a good schedule is, the
more scenarios can be tested by production schedulers.

= Ability to optimise under uncertainty: the tool needs to be able to address the
inherent uncertainties of biopharmaceutical manufacture such as product demand

and to solve the scheduling problem with probability distribution-based input.

The tool generated in this thesis meets all of the aforementioned requirements which
will be covered in the subsequent chapters. For example, Chapters 4-6 will
demonstrate how the tool is used to meet a variety of monetary and non-monetary
scheduling objectives and constraints, including maximisation of profit and
simultaneous optimisation of throughput and product inventory levels subject to
various constraints. The ability to specify product-specific characteristics and the
ability to instantiate new models or add new scheduling logic are demonstrated in
Chapters 4 and 5. For example, in Chapter 4 the tool is used to generate a 1-year
long schedule for a biopharmaceutical facility with 2 USP/2 DSP suites manufacturing
3 products and a 1.5-year long schedule for a biopharmaceutical facility with
2 USP/3 DSP suites manufacturing 4 products. Moreover, in Chapter 4 the tool is
used to schedule production for biopharmaceutical facilities with traditional product-
dependent changeovers, whereas in Chapter 5 the tool is applied to a

biopharmaceutical facility with rolling product sequence-dependent changeovers.

Choosing the right set of technologies and programming languages for the
development of DSTs is an important decision that can have an impact on the ultimate

flexibility and usability of the tool. For the DST to receive continuous support and

54

2. Decision Support Tool: Requirements and Design

attention in the future from the developers and researchers alike, the chosen
programming language(s) need to be sufficiently flexible and have a large and active

community.

According to a popular yearly survey (Stack-Overflow, 2018), Python is the fastest-
growing major programming language. Approximately 40% of over 100,0000
developers from around the world said Python was their primary programming
language. Some of the reasons behind such popularity include succinct and intuitive
language syntax, powerful open source libraries for data analysis and visualisation,
and web-based application development toolkits which will be crucial to a commercial
application of the tool (see Chapter 7). However, one of the major drawbacks of
Python programming language is its performance. For example, multi-threading is not
available out-of-the-box due to what is known as a Global Interpret Lock (GIL) that
prevents more than one thread running in the interpreter (Beazley, 2010). Fortunately,
Python can be easily integrated with other, lower level programming languages such
as C and C++ that can help improve the performance. Faster execution speeds can
benefit the user by allowing them to perform more runs and test more scenarios in

less amount of time.

In thesis, C++ was used to develop most of the work presented, e.g. GAs, scheduling
heuristics, Monte Carlo simulation. The main reasons for the choice were the
performance benefits, relatively straightforward shared-memory parallelism using
OpenMP compiler directives (demonstrated in Algorithm 2.1) (Dagum & Menon,
1998), and support for CUDA — an Application Programming Interface (API) for
parallel programming using GPU resources (Nvidia, 2011). According to the survey
mentioned earlier, C++ is still among the top 10 programming languages despite its
complexity and relatively low safety. Both Python and C++ have the added benefit of

being cross-platform development languages.

55

2. Decision Support Tool: Requirements and Design

Algorithm 2.1. Parallel fithess assessment in C++ using OpenMP compiler directives.
#pragma compiler directive tells the compiler to auto-parallelize the for loop with
OpenMP. If a user is using a quad-core processor, the performance can be expected
to be increased by up to 300% (in most cases).

#pragma omp parallel for
for (int 1 = @; i < parents.size(); ++i) {
fitness function(parents[i]);

High Level DST Framework

GA-based GA Scheduling
Solver(s) " Loop Model(s)
Optimal Input
Schedules Data
Resul_ts Ar!aly_5|s . Data Data I/O
and Visualisation Transfer
Flexible (Python) API
Optimal Input E 9
Schedules Data vu
Dynamic
Web-based CLI based Environment
Application Application e.0. Jupyter,

| Client (User) Side |

Figure 2.5. A high-level structure of the GA-based Decision Support Tool framework.

Figure 2.5 illustrates the framework of the GA-based DST developed in this thesis
from a high level. The scheduling heuristics and GAs are only a piece of the overall
framework. The framework supporting the execution of the models must be capable
of communicating with other business applications as well as a number of
spreadsheets, document files, and databases. Therefore, an API has been developed

in Python that can be used in a variety of settings, including web-based applications,

56

2. Decision Support Tool: Requirements and Design

command line interface (CLI) programs, and integrated development environments
(IDEs). The APl wrap-ups the high-performance extensions written in C++ containing
the GAs and scheduling heuristics and provides an interface layer written in Python
for data input/output (I/0O) and results analysis and visualisation. The data can be
stored in and read from either a relational database or document files. API usage

examples can be found in Appendix B.

Chapter 7 will discuss the commercial application of the tool developed in this work,
including trend charts for displaying the evolution of product inventory and delivery
profiles, easy viewing and manipulation of input data, and the reporting on the timings
of scheduled campaigns. Below are some of the example outputs from the GA-based
DST. Figures 2.6 and 2.7 show examples of Gantt chart outputs generated for two
case studies which will be discussed individually in later chapters of this thesis. The
Gantt charts show the allocation of different product campaigns and allow a user to
view the exact start and end dates of each campaign as well as the number of batches
and/or kilograms produced. If needed the GA-based DST can also generate a Gantt
chart illustrating the allocation of products to different biomanufacturing stages

allowing user to view the start and finish of each individual batch (Figure 2.8).

usPL

usp2

(Apr 4, 2017, DSP1)
Start: 2016-12-04
Product: p2

End: 2017-04-04
Batches: 6

Suite: DSP1

DSP1L

DspP2

) A A A 1
o 20 o o> 29>
o 7 h s P W s

!
e ¢ wet e e?

o

Figure 2.6. Gantt chart generated with the GA-based Decision Support Tool for a
biopharmaceutical facility with traditional product changeovers and a 2:2 USP to DSP
ratio manufacturing three products.

57

2. Decision Support Tool: Requirements and Design

(Sep 3, 2018, D)
Start: 2018-04-23
Last Batch: 2018-09-03
o I | (tieiorts
First Harvest: 2018-06-11
Kg: 66.0
Batches: 12
Product: D
A
c
B
wl N a® N] N o
2 2® 2 2® 2 29 2
A R A 3 o 3 *

Figure 2.7. Gantt chart generated with the GA-based Decision Support Tool for a
biopharmaceutical facility with rolling product sequence-dependent changeovers and
a 1:1 USP to DSP ratio manufacturing four products.

(May 1, 2018, Seed)
Start: 2018-04-20
Task: Seed
Product: A
s i NEERC
¢ A ® 2 9 9 o
e v W s v v 1
iy 70 49 =y 29 29 28
»© W w° » w® b w®

Figure 2.8. Production tasks Gantt chart example.

2.3. Summary

This chapter described the unique features and challenges of the biopharmaceutical
capacity planning and scheduling problems. It also defined a framework for
developing the GA-based DST which will be used to tackle single- (Chapter 4) and
multi-objective problems with deterministic (Chapter 5) and uncertain product

demand (Chapter 6) to illustrate its value.

58

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

3. Discrete-Time Biopharmaceutical

Capacity Planning and Scheduling

3.1. Introduction

This chapter presents a fast GA-based approach to both medium- and long-term
capacity planning and scheduling of single- and multi-site biopharmaceutical
manufacture using discrete-time models. The proposed GA is demonstrated as a valid
alternative to MILP to obtain near-exact solutions to close to real-world industrial case
studies of capacity planning and scheduling of biopharmaceutical manufacture. Other
contributions presented in this chapter include the chromosome encoding strategy,
the algorithms describing the single-site/multi-suite and multi-site biopharmaceutical
manufacture, the rolling horizon approach for solving larger, long-term capacity
planning problems, and a PSO-based meta-optimisation approach for tuning the GA

hyperparameters.

The performance of the GA depends on its hyperparameter values. For example, the
rate of crossover controls the capability of the GA in exploiting the known parts of the
search space, whereas the mutation rate controls the speed of the GA in exploring of
new areas (Lin et al., 2003). The values of these parameters are quite often tuned
one by one, i.e. by trial and error. However, this can be a time consuming process
leading to suboptimal results, since the interactions between the parameters are
ignored this way (Eiben et al., 1999). There have been a number of suggestions and
theoretical investigations into the optimal values of crossover, mutation, and
population size (e.g. Schaffer & Morishima, 1987; Goldberg & Deb, 1991; Back, 1993;
Chipperfield & Fleming, 1995). The typical values of crossover and mutation rate have

been reported to lie in the range 0.5-1.0 and 0.001-0.05 respectively. However, most

59

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

investigations were based on simple function optimisation problems with traditional
chromosome encoding strategies and genetic operators. Therefore, their applicability
for other types of problems and custom genetic operators is quite limited. An
alternative to manual parameter tuning is meta-optimisation, i.e. the use of another
optimisation algorithm to tune the GA hyperparameters. For example, Grefenstette
(1986) applied a meta-GA to optimise the hyperparameters of another GA. An
approach to automatically set the parameters of evolutionary algorithms can also be
considered as antecedents of hyper-heuristics — a set of approaches that are
motivated by the goal of automating the design of heuristic methods to solve hard

computational search problems (Burke et al., 2013).

In this work, a PSO algorithm is used to tune the GA. Meta-PSO was chosen due to
its simplicity and relatively low computational overhead (compared to using another
GA) (Pandey et al., 2010) and suitability for the optimisation of functions with

continuous inputs (Hassan et al., 2004).

3.2. Notation

3.2.1. Case Study 1

SETS

i USP suites

i DSP suites

p products

t 6 time periods

PARAMETERS

Co USP storage capacity of product p [batches]

Fp DSP storage capacity of product p [batches]

CRp USP production rate of product p [batches/day]

FRp DSP production rate of product p [batches/day]

cTy" min production time for product p in USP suite i [days]
CTy™ max production time for product p in USP suite i [days]
FT,T”’ min production time for product p in DSP suite j [days]

60

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

FquaX max production time for product p in DSP suite j [days]

ap USP lead time of product p [days]

Bp DSP lead time of product p [days]

Pp USP storage cost of product p [RMU/batch]

Wp DSP storage cost of product p [RMU/batch]

€ USP product lifetime p [time periods]

Op DSP shelf-life of product p [time periods]

Ap correspondence factor for USP to DSP production of product p

Np manufacturing cost of product p [RMU/batch]

W changeover cost of product p [RMU / changeover]

Tp waste disposal cost of product p [RMU/batch]

Vp sales price of product p [RMU/batch]

Op backlog penalty of product p [RMU/batch]

Dpt demand of product p at time period t [batches]

INTEGER VARIABLES

producti part of the chromosome containing product labels allocated at time
period t to USP suite i

product; part of the chromosome containing product labels allocated at time
period t to DSP suite |

timeit part of the chromosome containing the number of production days
allocated at time period t to USP suite i

timej part of the chromosome containing the number of production days
allocated at time period t to DSP suite i

Bipt number of batches of product p produced at time period t in USP
suite i

Bipt number of batches of product p produced at time period t in DSP

suite j

Clpt number of batches of USP product p stored at time period t

Flpt number of batches of DSP product p stored at time period t

CWpt number of batches of USP product p wasted at time period t

FWopt number of batches of DSP product p wasted at time period t

Spt number of batches of product p sold at time period t

Apt number of batches of product p in backlog at time period p

BINARY VARIABLES

Yipt
Yipt
Zipt

Zipt

1 if product p is produced in USP suite i at time period t; 0 otherwise
1 if product p is produced in DSP suite j at time period t; 0 otherwise
1 if a new campaign of product p is produced in USP suite i at time
period t; O otherwise

1 if a new campaign of product p is produced in DSP suite j at time
period t; O otherwise

CONTINUOUS VARIABLES

CTipt
Fijt
Profit

production time for product p in USP suite i during time period t [days]
production time for product p in DSP suite j during time period t [days]
total profit (objective function) [RMU]

61

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

3.2.2. Case Study 2

SET

i facilities

p products

to¢ time periods

Pl set of products that can be produced by facility i
Tl; set of time periods in which facility i is available
PARAMETERS

Co storage capacity of product p [kg]

T,‘,’,”” min production time for product p in facility i [days]
T max production time for product p in facility i [days]

Fip production rate of product p at facility i [batches/day]

a lead time [days]

4 shelf-life of product [time periods]

Nip manufacturing cost of product p at facility i [RMU/batch]
Jo; storage cost [RMU/kg]

1] changeover cost [RMU/changeover]

v sales price [RMU/kg]

0 lateness penalty [RMU/kg]

4 product lifetime [time periods]

T backlog decay factor

ydip yield conversion factor for product p in facility i [kg/batch]
Dpt demand of product p at time period t [kg]

INTEGER VARIABLES

producti part of the chromosome containing product labels allocated at time
period t to facility i

timei part of the chromosome containing the number of production days
allocated at time period t to facility i

Bipt number of batches of product p produced at time period t in facility i

BINARY VARIABLES

Yipt 1 if product p is produced in facility i at time period t; O otherwise

Zipt 1 if a new campaign of product p is produced in facility i at time
period t; O otherwise

CONTINUOUS VARIABLES

Tipt production time for product p at facility i during time period t [days]
Kipt amount of product p produced in facility i at time period t [kg]

[t amount of product p stored at time period t [kg]

W amount of product p wasted in at time period t [kq]

Spt amount of product p sold at time period t [kg]

Apt amount of product p in backlog at time period p [kg]

Profit total profit — objective function [RMU]

62

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

3.3. Problem Definition

In this section, the industrial case studies of capacity planning and scheduling of
biopharmaceutical manufacture from two different literature sources are described. In
case study 1, a medium-term capacity planning and scheduling problem of a multi-
suite, multi-product biopharmaceutical manufacture from Lakhdar et al. (2005) is
presented. In case study 2, a long-term capacity planning and scheduling problem of

multi-site, multi-product bio-manufacture from Lakhdar et al. (2007) is solved.

3.3.1. Case Study 1

The objective of the planning problem presented here is to generate a yearlong
production schedule that would maximise the manufacturing profits of multi-suite
biopharmaceutical facility. The topology of this facility is illustrated in Figure 3.1. All
relevant parameters and product demand profiles for case study 1 are listed in Tables
3.1 and 3.2, respectively. The problem statement adapted from Lakhdar et al. (2005)

is as follows:

= Given:

o Biopharmaceutical products p = { p1, p2, ps }

o USP suitesi={1i, i» } and DSP suites j={ji1, j2 }

o A planning horizon of 360 days made of equal time periods
T={ty, ta, ..., ts }

o Product-dependent production rates, lead times, and production
throughputs (correspondence factors)

o USP and DSP product shelf-life, storage capacities and costs

o Product demands, sales price and backlog penalty costs

o Manufacturing and campaign changeover costs

63

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

o Minimum and maximum campaign durations
= Determine:
o Duration and sequence of campaigns
o Production quantities along with inventory profiles

o Product sales and late deliveries profile

o Maximise the profitability of the schedule

Table 3.1. All relevant parameters used in case study 1.

Product

P1 P2 P3
USP production rate CR;, [batches / day] 0.05 0.045 0.08
USP lead time ap [days] 30 32 22.5
USP product lifetime ¢, [time periods] 1 1 1
USP storage capacity C, [batches / time period] 10 10 10
USP minimum campaign length CTy"" [days] 20 21 12.5
USP minimum campaign length CT,** [days] 60 60 60
DSP production rate FR,, [batches/days] 0.1 0.1 0.1
DSP lead time S, [days] 40 42 345
DSP product lifetime o, [time periods] 3 3 3
DSP storage capacity Fy[batches / time period] 40 40 40
DSP minimum campaign length FT,’,f"” [days] 10 10 10
DSP minimum campaign length FT,* [days] 60 60 60
Production factor A, 1 1 1
Sales price v, [RMU / batch] 20 20 20
Production cost rp [RMU / batch] 2 2 2
Backlog penalty 6, [RMU / batch] 20 20 20
Changeover cost y, [RMU / changeover] 1 1 1
Waste disposal cost 1, [RMU / batch] 5 5 5
USP storage cost pp [RMU / batch] 5 5 5
DSP storage cost wp [RMU / batch] 1 1 1

64

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Table 3.2. Product demand profile [batches] for case study 1.

Time period (each period represents 60 days)

Product t1 t t3 ts ts ts
p1 0 0 0 6 0 6
p2 0 0 6 0 0 0
p3 0 8 0 0 8 0

Figure 3.1. Biopharmaceutical facility topology for the case study 1.

3.3.2. Case Study 2

The goal of the planning problem presented in this case study is to generate a 15-
yearlong production schedule to maximise manufacturing profits. The problem
presented here is a single-objective problem adapted from Lakhdar et al. (2007). All
relevant data, e.g. demand profile, parameters, are listed in Tables 3.3-3.8. The

following is a brief problem statement:

= Given:
o A network of multi-product facilities i = { i1, iz, ..., i10 }
o Biopharmaceutical products p = { p1, p2, ..., p15 }
o A planning horizon of 15 vyears with equal time periods
t={ty, to, ..., leo }
o Production rates, yields, and lead times
o Product lifetimes and storage capacities

o Product demands and sales prices

65

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

o Backlog decay factor

o Manufacturing, changeover, storage costs, and late delivery penalties

o Minimum and maximum campaign durations

Determine:

o Campaign durations and sequence of campaigns

o Production quantities along with inventory profiles

o Product sales and late deliveries profile

To:

o Maximise manufacturing profits

Table 3.3. Parameter data for case study 2.

Parameter Value
Production lead time a [days] 14
Product lifetime ¢ [time periods] 8
Sales price v [RMU / kg] 25
Storage cost p [RMU / kg] 0.01
Backlog penalty 6 [RMU / kg] 0.1
Changeover cost ¢ [RMU / changeover] 2
Backlog decay 0.5

Table 3.4. Production yields ydi, [kg / batch] for industrial case study 2.

Product
Facility p1 p2 p3 pa ps Ps Pz Ps P9 P P P12z P13 Pia Pis
i1 10 1 0 8 0 6 0O 10 2 9 7 1 0 12 12
i2 9 0 0 8 0 6 0 9 0 8 10 O 10 12 11
i3 0 0 0 0 0 0 0 0O 0 O 0 0 9 0 0
i4 0 0 0 9 0 0 0 O o0 O 0 0 0 0 0
is 0 0 0 10 0 0 0O 10 0 8 8 0 0O 11 11
is 0 0 0 12 0 0 0O 10 o 8 17 O 0 17 14
iz 0 0 0 0 0 0 10 0 O 10 O 0 0 0 0
is 0 0 36 0 19 0 0 0O 0 o0 0 0 0 0 0
io 10 O 0 12 0 5 0 0O 0 8 16 O 0 12 13
i10 9 1 0 12 0 5 0O 10 2 8 14 1 10 12 12

66

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Table 3.5. Product demand profile [kg] for case study 2.

Time period (each period represents 87 days)

Product 1y ts t12 16 20 24 t2s 32 36 a0 T4 tss ts2 ts6 teo
p1 21 32 18 28 61 104 153 156 164 163 161 162 162 163 165
p2 6 5 4 4 4 3 3 3 3 3 3 3 2 2 2
ps 12 43 38 5 22 52 97 132 133 135 137 118 109 100 90
P4 583 628 655 687 758 921 989 941 993 649 621 573 521 468 421
ps 12 12 11 10 9 7 6 5 4 3 2 2 2 2 3
Ps 211 200 245 246 257 266 284 274 226 180 166 151 137 123 110
p7 4 5 5 7 6 5 8 9 8 9 7 7 6 5 5
ps 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5
P9 15 15 15 13 12 9 8 6 5 4 3 3 2 2 2
P10 72 99 104 102 111 120 130 139 188 120 106 93 81 69 58
P11 552 615 699 737 743 733 684 572 518 471 424 381 342 307 274
P12 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5
P13 211 252 290 298 286 216 169 153 150 145 110 100 93 84 102
P14 2 2 4 3 3 3 16 11 13 16 16 16 16 17 17
P1s 4 4 5 6 16 11 24 32 37 40 41 42 42 43 44

67

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Table 3.6. Production rates ri, [kg / day] for case study 2.

Product
Facility pP1 p2 ps P4 ps Pe p7 Ps Po P10 P11 P12 P13 P14 Pis
i1 0.35 0.39 0 0.45 0 0.29 0 0.35 0.25 0.39 0.41 0.39 0 0.12 0.35
[P 0.6 0 0 0.61 0 0.6 0 0.6 0 0.43 0.56 0 0.6 0.6 0.6
i3 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0
is 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0
is 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45
is 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45
iz 0 0 0 0 0 0 0.45 0 0 0.45 0 0 0 0 0
i 0 0 0.58 0 0.45 0 0 0 0 0 0 0 0 0 0
io 0.45 0 0 0.45 0 0.45 0 0 0 0.45 0.45 0 0 0.45 0.49
i10 0.45 0.45 0 0.45 0 0.45 0 0.45 0.45 0.45 0.49 0.45 0.45 0.45 0.45

68

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Table 3.7. Production costs i [RMU / kg] for case study 2.

Product
Facility p1 p2 ok} pa ps Ps Pz Ps Po P Pz Pz Pz P Pis
i1 1 1 0 10 0 3 0 1 1 1 3 1 0 1 1
i2 10 O 0 5 0 2 0 5 0 10 2 0 2 5 2
i3 0 0 0 0 0 0 0 0O 0 O 0 0 1 0 0
i4 0 0 0 1 0 0 0 0O 0 O 0 0 0 0 0
i5 0 0 0 20 0 0 0O 20 0 20 20 O 0 5 20
is 0 0 0 10 0 0 0O 10 0 10 10 O 0 1 10
iz 0 0 0 0 0 0 10 0 0 10 O 0 0 0 0
is 0 0 1 0 5 0 0 0O 0 O 0 0 0 0 0
io 10 O 0 10 0 10 0 0O 0 10 8 0 0 1 10
i10 15 15 0 15 0 15 0 15 15 15 15 15 15 15 15

Table 3.8. Facility capability Pli[boolean value] for case study 2.

Product
Facility p: p2 PpPs pPsa Ps Ps P77 Ps Po P P Pz Pz P Pis
i 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1
iz 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1
i3 0 0 0 0 0 0 0 0 O 0 0 0 1 0 0
i4 0 0 0 1 0 0 0 0 O 0 0 0 0 0 0
is 0 0 0 1 0 0 0 1 O 1 1 0 0 1 1
is 0 0 0 1 0 0 0 1 O 1 1 0 0 1 1
i7 0 0 0 0 0 0 1 0 O 1 0 0 0 0 0
i 0 0 1 0 1 0 0 0 O 0 0 0 0 0 0
ig 1 0 0 1 0 1 0 0 O 1 1 0 0 1 1
i10 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1

In their paper, Lakhdar et al. (2007) stated that the presented MILP model was an
extension of the one already discussed in case study 1 described earlier. The core
mathematical formulation for the single-objective problem remained mostly the same
with the only most noticeable change being the lack of explicit model of separation
between USP and DSP suites. Nevertheless, the complexity of the problem in case
study 2 is much higher compared to case study 1 due to a greater number of products,
facilities, and time periods (refer to Table 3.9 for a comparison). A 15-year time
horizon is assumed comprising 60 time periods. Each individual time period t is 87
days long compared to 60 in case study 1. There are 15 products that need to be

69

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

allocated to 10 facilities. Additional subsets are introduced to define facility capability
and availability: PI;, the set of products that can be manufactured in facility i (Table
3.8), and TI;, the set of time periods during which facility i is available for use. All
facilities are assumed to be available throughout the time horizon, apart from facility

is which is unavailable until time period ts, and facility is which is unavailable until time
period tu. Minimum 775" and maximum Tp® campaign durations are assumed to be

0 and 87, respectively. Production yield ydi, (Table 3.4), rate ri, (Table 3.6), and cost

nip (Table 3.7) of each product p depend on facility i it is being manufactured in.

Table 3.9. The comparison of MILP model complexity between case study 1 and 2.

Case Study 1 Case Study 2
Single equations 535 19,430
Single variables 457 25,018
Discrete variables 252 9,382
Non-zero elements 1,750 72,244

3.4. Methods

The implementation of mathematical models using algebraic modelling systems such
as GAMS is very different compared to general-purpose programming languages
such as C++. GAMS allows the mathematical models to be implemented in a way that
is similar to their mathematical notation, while the general-purpose programming
languages require an explicit definition of every expression. Another critical challenge
of developing an efficient GA-based approach was identifying the smallest number of
independent variables so as to maintain the dimensionality of the problem low and
the shortest sequence of steps needed to evaluate the candidate solutions for the

case studies to ensure good performance.

In this section, the structure of the proposed GA-based approach and the steps of the

algorithms that captured capacity planning objectives for multiple products across

70

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

multiple suites and facilities are outlined. Most of the GA methods is explained in the
methods section for case study 1. In case study 2, the focus is on the rolling horizon
strategy taken to improve the performance of the standard GA for solving the long-
term capacity planning problem. The relative complexity of the optimisation problems
is illustrated by the summary of the MILP model statistics shown in Table 3.1. The
MILP models were recreated in GAMS 23.9.5 and solved with a CPLEX 12.4.0.1
solver. GA and PSO algorithms were implemented using C++ programming language
and compiled using the Microsoft Visual C++ Compiler vi4 (MSCV). The
mathematical models are summarised in Appendices C and D; however, the reader
is advised to refer to the original papers for a more in-depth explanation. Both case
studies were performed on an Intel i5-6500 based Windows 10 system with 16GB of

RAM.

3.4.1. GA Parameter Tuning

The process of identifying the optimal parameters for an optimisation algorithm or a
machine learning one is usually costly, involves the search of a large, possibly infinite,
space of candidate parameter sets, and may not guarantee optimality (Camilleri et al.,
2014). A simple PSO algorithm is implemented as a meta-optimiser to automatically
tune the crossover and mutation parameter values in both case studies of this chapter
(and throughout this thesis). Each particle, i.e. a potential solution, is initiated with
randomised position and velocity vectors. The particle’s position in a decision space
is defined by its position vector comprising the parameter values of the crossover and
mutation. The particle’s velocity is the speed and direction at which the particle is
traversing the decision space during each epoch. The fitness of each particle is
assessed by running the GA using the parameter values encoded in the position
vector for a specified number of independent algorithm runs with a fixed population

size measuring the average of the best objective function values achieved at the end

71

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

of each run. The concept of the meta-optimisation is illustrated in Figure 3.2 while
Algorithm 3.1 lists a pseudocode for it. The parameter values of PSO algorithm (Table
3.2) were chosen based on the studies performed by Eberhart and Shi (2000) and
Trelea (2003). Meta-optimisation is also applied in other chapters of this thesis (mainly

Chapter 4) to automatically set the parameters of the GAs.

Meta-Optimisation Algorithm
(Particle Swarm Optimisation)

Meta-Optimisation Problem
(find optimal GA crossover and mutation values)

Genetic Algorithm

Capacity Planning Problem
(e.g. maximise operating profit)

Figure 3.2. The meta-optimisation approach. Adapted from Camilleri et al. (2014).

Table 3.10. Meta-optimisation parameters used in case study 1 and 2 to find the
optimal crossover and mutation parameter values for the GA.

Case Study 1 Case Study 2

PSO swarm size! 20

Number of PSO epochs? 200

PSO inertia weight w3 0.729

PSO local weight c,* 1.494

PSO global weight c2° 1.494

Number of GA runs 100 50

GA population size 100 200

1 The number of candidate solutions, i.e. particles.

2 An equivalent of generations in the GA.

3 Determines how much of the original velocity is retained.

4 Determines how much the personal best position of a particle affects the global search process. Larger
local weights drive the particles towards their own personal bests thus breaking the swarm apart.

5 Determines how much the global best position affects the global search process. Larger global weights
tend to keep the swarm tighter turning it into one large hill-climber.

72

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Algorithm 3.1. PSO-based meta-optimisation of the GA.

© oo ~NO O~ wWN P

N NDNNDNNDNNMNNMNNNNRE PRPRPEPRPRPRER PR P PR
© ONO Ul A WNPFP OO OO~NOOOA~ WDNPEFO

swam = @
epoch=0 = epochs counter
best = <> = placeholder for best position vector

for swarm_size times
X = A position vector with random values from 0.0 to 1.0 for each GA parameter
V = A velocity vector with random values from 0.0 to 1.0 for each GA parameter
particle = {X, vV}
swarm = swarm U { particle }
end for
while epoch < epochs
for each particle X in swarm
particle’s fitness = n-run performance of the GA using parameter values encoded in X
if best == <> or particle’s fitness > best fitness
best = X
end if
end for
for each particle X and V in swarm
X* = previous fittest location of the current particle
for each dimension i = update particle’s position X and velocity V vectors
r1 = random number from 0.0 to 1.0 inclusive
rz=random number from 0.0 to 1.0 inclusive
Vi = wWvi + cari(Xit — Xi) + carz(best — xi)
Xi = Xi+ Vi
Ensure xiis in 0.0-1.0 range = can be either reinitialised or set to the closest bound
end for
end for
epoch +=1
end while
return best

3.4.2. Case Study 1

3.4.2.1. Chromosome Structure

In case study 1, the GA-based approach uses a semi-direct representation, i.e. only

the USP part of the schedule is encoded. Each chromosome is an | i |-by-| t | array of

tuples where i is a set of USP suites, and t is a set of discrete-time periods (illustrated

in Figure 3.3). Each tuple comprises a product label p and production time CTiy in

USP suite i at time period t measured in days. Both variables are randomly generated

at the beginning of the GA during the initial population generation. The variable CTiy

is generated randomly within the minimum CTZ,"” and maximum CTjp® production

73

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

time range. The DSP part of the schedule is constructed during fitness evaluation

using the USP variables.

L&} to th
i1 (p, CTipt) (p, CTipt) (p, CTipt)
o § i | (p, CTiot) (p, CTipt) .. | (p,CTim)
in (p, CTipt) (p, CTipt) (p, CTipt)

Figure 3.3. Chromosome encoding strategy for case study 1. Each (p, CTiy) pair
represents a gene encoding which product p and how many days CTi, have been
allocated to USP suite i at a time period t.

3.4.2.2. Genetic Algorithm

The GA comprises the following steps: fithess evaluation, tournament selection,
crossover, mutation, and replacement. In case study 1, chromosomes for crossover
and mutation are selected using a binary tournament with replacement strategy which
favours individuals with a higher objective function value, i.e. schedules with a larger
profit value. A uniform crossover operator with a rate of pC is used to exchange the
tuples between the chromosomes. Each tuple is also mutated with a rate pM to avoid
premature convergence and improve the quality of the final solution. During mutation,
the product label is changed by replacing it with a different random value from the set
of available products P. The length of production is varied by adding or subtracting a
random number of days, ensuring the allocated campaign time is within the
constrained range, CT,’-E’” and CTp™. If the length of production after mutation
happens to fall outside of the constrained range, it is set to the value of the closest
bound. In both case studies, the GAs are augmented with elitism (the term was
originally coined by De Jong (1988)) which is a highly exploitative method of
preserving the fittest chromosomes from the previous population (Luke, 2013). In

case study 1, a single best chromosome is re-inserted into the population whenever

74

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

it is lost. Finally, the GA is set to terminate early if the fitness of the best individual has

not improved for 100 consecutive generations.

3.4.2.3. Fitness Evaluation

In both case studies, the fithess evaluation procedures contain algorithmic
adaptations of the MILP models (Lakhdar et al., 2005; Lakhdar et al., 2007) of multi-
product biopharmaceutical manufacture. In case study 1, the fitness evaluation
procedure generates a complete production schedule (fills the DSP part) and
estimates the values of binary and continuous variables, e.g. Ziy, Bip, Clpt, which are
used in the objective function to calculate the profitability of the schedule (Equation
3.1). The pseudo algorithm of the fitness evaluation procedure for case study 1 is

presented in Algorithm 3.2.

Algorithm 3.2. Pseudocode for fithess evaluation in case study 1

1 for each time period t
2 for each upstream suite i
3 p = productsit
4 CTipt = timeit
5 Zipt=1— (t >0 and p == productsi1)
6 Bipt = Zipt + CRp(CTipt — GpZipt)
7 Clpt = Clpt + Bipt
8 end for
9 for each product p
10 ift>qp
1 CWot = Clpngy 1= (5 ehuq Bioo * Zgiug CWoo)
12 end if
13 Clpt = Clpt + Clpt1 — CWpt
14 if Clpt > Cp
15 CWopt = CWpt + Clpt — Cp
16 Clpt=Cp
17 end if
18 for each downstream suite |
19 if productsj ==
20 Bipt = ApClpt
21 Zipt=1—(t >0 and p == productsjt1)
22 while (FTi= B2+ BJ;‘TZD"“) > FTI
23 Bjpt= Bjpt — 1

75

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Algorithm 3.2. (continued) Pseudocode for fithess evaluation in case study 1

24 end while
B:
25 Clpt=Cly — JT";
26 Flpt = Flpt + Bijpt
27 productsjt = p
28 timej = FTjpt
29 end if
30 end for
31 ift>aop
32 FWot = Flpioy 1~ (8o o, Spo + Toriq, FWpe)
33 end if
34 Flpt = Flpt + Flpt1 — FWhpt
35 if Flpt > Fp
36 FWpt= FWpt + Flpt — Fp
37 Flot = Fp
38 end if
39 if Dpt >0
40 if Dpt < Flpt
41 Spt = Dpt
42 Flpt = Flpt — Spt
43 else
44 Spt = Flpt
45 Flpt =0
46 Apt = Dpt — Spt
47 end if
48 end if
49 if Apt1 >0
50 if Apt1 < Flpt
51 Spt = Spt + Apt1
52 Flot = Flpt — Apt1
53 else
54 Spt = Spt + Flpt
55 Flpt =0
56 Apt = Apt + Apt1 — Spt
57 end if
58 end if
59 end for
60 end for

In Algorithm 3.2, Lines 3 and 4 retrieve the product label p and the number of
production days allocated to USP suite i at time period t, CTiyx, from the chromosome
which is an | i |-by-| t | array. Lines 5 and 6 calculate the number of changeovers and
batches produced in USP suite i at time period t. In Line 5, the value of the changeover

variable Zi, will be equal to 1 if and only if product p has not been produced in USP

76

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

suite i at a previous time period t — 1. Line 7 accumulates the production from all USP
suites. Lines 10-12 calculate the amount of product p wasted in USP suites at time
period t which is equal to the number of batches left unprocessed from ¢, periods ago.
The amount of USP inventory of product p at time period t is calculated in Line 13 by
adding the cumulative value obtained in Line 7 from time period t — 1 and subtracting
the amount of waste CW,:. Lines 14-17 ensure that the USP inventory level Cl, does
not exceed the storage limit C,. Any excess inventory of product p during time period

tis calculated as waste CW (Line 15).

Line 19 ensures that the assignment of product p to DSP suite j at time period t is
performed only once. Line 20 calculates how many batches will be produced in a DSP
suite j at time period t. This is performed by multiplying the USP inventory value Clpy
by the production correspondence factor A, which specifies the respective
throughputs from USP and DSP suites. For example, a factor of 0.5 signifies that for
every two USP batches one DSP batch is produced. Line 21 evaluates the number of
changeovers in DSP suites similarly to Line 5. Line 22 estimates the campaign
duration FTjp of product p at DSP suite j during time period t. It also checks whether
the DSP campaign length does not exceed the allowed maximum FT',?aX. If it does,
the value of variable By is iteratively decremented until the production time FTjy is
below or equal to FT,’D"aX (Line 23). Line 25 updates the value of USP inventory of
product p at time period t by subtracting the number of batches that are processed in
DSP suite j. Line 26 accumulates the production from all DSP suites. Lines 27 and 28
assign the product p and DSP production time FTjx to the DSP part of the

chromosome.

The amount of DSP waste FW, and inventory levels Fly of final product p at time

period t are calculated in Lines 31-38 similarly to Lines 10-17. In Lines 39-48, if there

77

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

is a demand Dy for product p at time period t, then the amount of product sold Sy is
calculated based on the number of batches stored in DSP inventory Fly. If there are
more batches in storage than there are in demand (Line 40), the variable Sy will be
equal to the value of demand (Line 41). Otherwise, Line 44 assigns the value of DSP
storage Flp to Sp, and the backlog is recorded using variable Ay for that time period
in Line 46. If the inventory allows it (Line 50), the backlog from a previous time period

Apr1is sold in Line 45. Otherwise, it is accumulated in Line 51.

The fitness of each chromosome is equal to the profit achieved by the schedule which
is calculated with the same objective function (Equation 3.1) as presented by Lakhdar
et al. (2005) using the aforementioned binary and continuous variables. The objective
function value is equal to the difference between the total sales ., ¥.; v, S, and the
total costs of manufacturing ¥, ¥.:(Xi1pBipc + Xj1MpBjpe), Product changeovers
2p 2t Qi VpZipe + XjVpZjpt), intermediate and final product storage

Yp 2t(ppClyr— w,pFlL,e), late deliveries ¥, 6,4,,, and waste disposal

Profit = Zp Zt(vpspt - Zianipt - Zilppzipt - Zj anjpt -

78

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

3.4.3. Case Study 2

3.4.3.1. Chromosome Structure

The increased complexity of the planning problem in case study 2 presented a
challenge for the GA-based approach. Encoding the chromosomes as full-scale
| i |-by-| t | arrays was found to be computationally costly. A rolling time horizon method
was taken to explore the large search space in a more efficient manner by dividing
the 15-yearlong planning problem into 15 equal sub-problems solved consecutively.
In order to accomplish this, each chromosome encoded a sub-problem as an | i |-by-
| 7| array of product p and the length of production Tiy values where r ctand | 7| =
4. 1 represents the extent of the rolling time horizon, i.e. a dynamic subset of 4 time
periods which correspond to the timeline of the sub-problem being solved. For
example, 7= {1y, tz, t3, ta } and 7 = { ts7, tss, ts9, teo } CONtain the time periods for the first
and last sub-problems, respectively. The best solution from each sub-problem is
stored in the final, full-scale | i |-by-| t | solution, before proceeding to solve the
following sub-problem. The values of the variables corresponding to the best solution
such as the number of batches Bip: of product p produced in each facility i during time
period t are fixed so they would not need to be recalculated for the next sub-problem.
To distinguish the rolling time horizon approach-based GA from the standard one ,
which uses a direct full-scale encoding strategy, it will be referred to it as the dynamic

GA.

3.4.3.2. Genetic Algorithm

This section explains the dynamic GA procedure. Algorithm 3.3 lists the pseudocode

for the dynamic GA. Figure 3.4 illustrates the concept of it.

79

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Algorithm 3.3. Pseudocode for the dynamic GA applied in case study 2.

1 for each subproblem
2 parents = @
3 gen=0 = subproblem generation counter
4 num_restarts = 0 = tracks the number of times the GA was restarted
5 subproblem_best = O = placeholder for the best solution to the current subproblem
6 Generate new parent population
7 while gen < max_gens
8 if gen = x and subproblem_best == subproblem_best from x generations ago
9 if num_restarts < desired number of GA restarts
10 Generate new parent population
11 num_restarts += 1
12 else
13 break
14 end if
15 end if
16 for each parent in parents
17 EvaluateFitness(parent)
18 if subproblem_best = O or fitness of parent > fitness of subproblem_best
19 subproblem_best = parent
20 end if
21 end for
22 offspring = { top n of the fittest individuals in parents, breaking ties at random }
23 for (Jparents| — | offspring |) / 2 times
24 parenta = BinaryTournament(parents)
25 parent, = BinaryTournament(parents)
26 offspringa, offspringn = Crossover(parenta, parents)
27 offspring = offspring U { Mutate(offspringa), Mutate(offspringy) }
28 end if
29 parents = offspring
30 gen+=1
31 end while
32 Extend the full-scale solution with subproblem_best =fix solved variables
33 end for

A new parent population is generated for every sub-problem with the values of product

p for each facility i selected randomly from the set of allowable products for that facility,

Pli, making sure the facility i is also available for use at time period t € Tli. A product

label with a value of 0 is also included in the set to denote facility i idling at time period

t. The parent population of gen + 1 is made up of the top 5% of the fittest individuals

from the previous parent population and the offspring (recombined parents) (see

Lines 22-29, Algorithm 3.3). A uniform crossover operator with a probability pC is used

to create two offspring from two parent chromosomes. The product label p

and production time encoded in each chromosome are mutated independently with

80

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Year 9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8
l36 l37 135 139 tAO tAl [42 t43 t44 l45 I46 I47 145 l49 lSD ‘51 tSZ [53 t54 t55 t56 l57 ISB I59 lGD

Facility

Figure 3.4. An illustration of how the long-term capacity planning problem from case study 2 can be divided into smaller sub-problems. The full
solution and each sub-problem are | i |-by-| t | and | | |-by-| 7 | arrays respectively. When | 7 | = 4, the sub-problems overlap with one another on
the parts that are shaded in grey. For example, once the first sub-problem is solved { ti, t2, t3, t+}, some of the fixed binary and continuous variables
from time period t4 will be used to estimate the variable values over time period ts for the second sub-problem { ts, ts, t7, ts}. The dynamic GA
generates a solution to the full-scale problem by solving the sub-problems in a chronological order and concatenating the best solutions from

each one.

81

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

probabilities pMutP and pMutT, respectively. Provided that the facility i is available for
use at time period t, the value of product label p is mutated by assigning 0 or a random
value from the subset PI; (products that can be manufactured in facility i). Production
time is mutated by adding or subtracting a random number of days, similarly to the
mutation procedure employed in case study 1. A completely new parent population is
generated when the best fitness value remains unchanged for a specified number of
consecutive generations (Lines 8-16, Algorithm 3.3). When this repeats, the GA stops
solving the sub-problem (Line 13, Algorithm 3.3) and extends the full-scale solution

with the best solution to the most recent sub-problem (Line 32, algorithm 3.3).

3.4.3.3. Fitness Evaluation

The fitness evaluation procedure in the dynamic GA of case study 2 is very similar to
that of case study 1. In Algorithm 3.4, the variable ¢ is used to iterate through the
values of the | i |-by-| 7| array encoded by each chromosome. The product label p and
production time Tiy are retrieved from the chromosomes in Lines 4 and 5. The value
of the binary changeover variable Ziy is set to 1 in Line 6 if variable Bip .1, the number
of batches of product p produced in facility i in the previous time period slot, is 0. The
value of the number of batches variable Bi, during time period t is calculated in Line
7 and converted into kilograms Kjy: using the yield conversion factor ydiyin Line 8. The
value of ydi, depends on the facility i which the product p is being manufactured in.
Line 9 accumulates the value of Ky into the variable I, — the amount of product p in
kilograms stored at time period t. The amount of product waste Wy is estimated in
Lines 13-15. The value of this variable is equal to the amount of product p that was
not sold and remained in storage for more than { time periods. The rest of the
pseudocode logic in Algorithm 3.4, i.e. from Line 17 and onwards is nearly identical

to Lines 39-58 in Algorithm 3.2 (fithess evaluation for case study 1). The only notable

82

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

differences are the lack of storage capacity constraints and the addition of backlog

decay factor m which diminishes the importance of the backlogged orders over time.

Algorithm 3.4. Pseudocode for fitness evaluation in case study 2.

1 ¢€=0
2 for each time period t in subproblem =or for {fromOto| 1|
3 for each facility i
4 p = productsig
5 Tipt = timeig
6 Zipt=1—(t>0 and Bipt+1==0)
7 Bipt = Zipt + rip(Tipt — 0Zipt)
8 Kipt = Biptydip
9 Ipt = Ipt + Kipt
10 end for
11 E=¢+1
12 for each product p
13 ift>¢
14 Wt = Ipeg1 — (Z%:g.g Spet Z%:g.g Wpe)
15 end if
16 Ipt = Ipt + lipt-1 — Wt
17 if Dpt >0
18 if Dpt < Ipt
19 Spt = Dpt
20 Ipt = lpt — Spt
21 else
22 Spt = Ipt
23 lbt=0
24 Apt = Dpt — Spt
25 end if
26 end if
27 if Apt120
28 if Apt1 < lpt
29 Spt = Spt + Apra
30 Ipt = lpt — Apt1
31 else
32 Spt= Spt + Ipt
33 lbt=0
34 Apt = Apt + TApt1 — Spt
35 end if
36 end if
37 end for
38 end for

83

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

The fitness of each chromosome is evaluated using the objective function of profit
maximisation (Equation 3.2) defined by Lakhdar et al. (2007). The objective function

value is equal to the difference between the total sales ¥, Y;er;, vSp: and the total
operating costs which include the costs of manufacturing and changeovers
2p Ztert; ierp;(MipBipe + WZip), Storage Y, Yierr, plpe, and late deliveries

Zp ZtETIi SApt-

PTOfit = Zp ZtETIi(VSpt - plpt_ 5Apt - ZieIPi(nipBipt + lpZipt)) Equation 3.2

3.5. Results

In this section, the results to the case studies of capacity planning and scheduling of
biopharmaceutical manufacture from the literature are presented. In case study 1, the
problem consists of a multi-suite facility, with 2 USP { i1, i} and 2 DSP { j1, j»} suites
to produce 3 products { p1, p2, ps } with multiple intermediate demand dates due over
a 360-day long production time horizon. The horizon is discretised into 6 time periods
{ta, to, ..., ts } Of 60 days. In case study 2, the problem consists of 10 facilities { i1, iz,
..., io } with different manufacturing capabilities PI; (subset of facilities capable of
producing product p) and availability Tl; (subset of facilities available at time period t)
to produce 15 products { p1, p2, ..., p1s } due annually over a 15-yearlong production
time horizon. The horizon consists of 60 discrete time periods { t1, to, ..., tso } Of 87

days.

The GAs discussed in the previous sections for case study 1 and case study 2 are
used to solve the respective scheduling problems, and the results are compared with
the recreated MILP models in Tables 3.11 and 3.13. A comparison between the
production schedules generated using MILP and a GA is also provided in Figures 3.5

and 3.6.

84

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

3.5.1. Case Study 1

The proposed GA developed in this chapter was first applied to case study 1 on
medium-term capacity planning for a single-site, multi-suite, multi-product
biopharmaceutical facility. Initially, a MILP model was developed for the problem as a
benchmark for comparison with the GA performance. In their original MILP work,
Lakhdar et al. (2005) reported an objective function value of 487 relative monetary
units (RMU) with a 5% optimality gap for this problem. The margin of optimality (also
known as a relative optimality gap) is defined as the relative distance between the
relaxed MILP solution and the current best integer MILP solution (Brooke et al., 1998).
In other words, it is the relative difference between the “best estimate” solution and
“the best integer” solution that satisfies all integer requirements/constraints. Lakhdar
et al. (2005) reported that it took 16 seconds to solve the optimisation problem. Using
the reproduced MILP model an objective function value of 490 RMU was achieved

with 0% optimality gap indicating a global optimum.

Table 3.11. Case study 1 results and model statistics for MILP and GA models.

MILP GA® GAP
Max obj. function value 490 4901 490!
Solution time (s) 0.22 0.07? 0.07?
Optimality gap 0% 0%? 0%:3
Avg. obj. function value* - 490+ 0 489 + 5
Population size - 100
Crossover rate, pC> - 0.710
Mutation rate, pM® - 0.070
Termination® - 100

a Results obtained using the same random number generator seed from the meta-optimisation.
b Results obtained using a different random number generator seed.

1 Max objective function value obtained from 100 independent GA runs

2 An average solution time of a single GA run

3 An optimality estimate relative to the global optimal obtained using the recreated MILP model
4 Mean objective function value of 100 independent GA runs (mean + 1 standard deviation).

5 The parameter values were selected using the PSO algorithm.

6 Each run was terminated when the fitness had not improved for 100 generations or maximum
generation limit (1000) had been reached.

85

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

In contrast to the mathematical programming approaches, such as MILP, GA is not
guaranteed to converge on the same value every time it is run. As a result, the search
process for the optimal value(s) is typically performed by running the GA for a number
of independent runs (generating a new population for each one). Literature suggests
values in the range of 20 and 50 runs, e.g. Taherdangkoo et al. (2013), Allmendinger
et al. (2014). In case study 1, because of the fast execution speeds of the GA, i.e.
less than a second per single run, the number of runs was set to 100. Each run was
terminated when the fitness had not improved for 100 generations or maximum

generation limit (1000) had been reached.

Time periods (t,= 60 days)

t ty ts ty ts ts
UsP1| 4(60) 4 (50) 2 (50) 3 (60) 2 (40) 3 (60)
3 [usp2 | 2(54) 2 (44) 2 (44) 4 (60) 4 (50) 2 (50)
3 |osp1| 3(55) 5 (50) 2 (50) 3(30) 2 (20) 5 (50)
psp2 | 2(52) 2 (20) 2 (20) 3(55) 5 (50)

Product1 Product2 Product3

Figure 3.5. Production schedule for case study 1 with an objective function value of
490 RMU and 0% optimality gap. Both the MILP model and the proposed GA
generated the same schedule. The first number in each cell denotes the number of
batches produced which is followed by the production time [days] in brackets. The
shading of the box indicates which product is being manufactured.

The aforementioned PSO-based meta-optimisation approach was used to tune the
crossover and mutation parameter values, pC and pM. Using this approach, the
optimal values of crossover rate (pC = 0.710) and mutation rate (pM = 0.070) were
identified, and the GA achieved the global optimum of 490 RMU for 100 consecutive,
independent algorithm runs. The GA also generated a production schedule with the
product allocation pattern identical to the one from the recreated MILP model (Figure
3.5). The average solution time of the GA was 0.07 s. In contrast, MILP took an

average of 0.22 s to find the global optimum (even though MILP is a deterministic

86

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

technique, the running time can be affected by the background processes thus the

MILP model was run 10 times to obtain a more accurate estimate).

Given the fast performance of the proposed GA-based method and the optimality of
the results, it can be considered as a viable alternative for addressing medium-term
capacity planning and scheduling problems similar in structure and complexity to case

study 1.

3.5.2. Case Study 2

Having tackled medium-term, single-site facility scheduling, the GA was then
extended to address long-term planning across multi-site, multi-product
biopharmaceutical manufacturing facilities in case study 2. To set the benchmark for
the GA, the recreated single-objective MILP model was used to achieve an objective
function value of 66,360 RMU with a 0% optimality gap for this problem. It took
approximately 16.7 min to find the global optimum. With the optimality gap increased
to 1%, the MILP model achieved an objective function value of 65,940 RMU in 8.77

S.

As discussed earlier, two versions of a GA (standard and dynamic) were applied to
solve the long-term capacity planning problem presented in case study 2. Using the
standard version, each chromosome encoded the full-scale problem as an | i |-by-| t |
array (where | i | =10 and | t | = 60), and the GA was set to terminate after 1000
generations had elapsed. In the dynamic version, a rolling time horizon approach was
utilised to break down the full-scale 15-yearlong scheduling problem into 15 sub-
problems. Each chromosome encoded only a part of the full schedule as an
| i |-by-| 7| array (where 1 €t and | | = 4) corresponding to the sub-problem being
solved. Both GA versions were run 50 times. The crossover, mutation, and elitism

operators were identical in both standard and dynamic versions.

87

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

The PSO-based meta-optimisation was applied to tune both the standard and
dynamic GAs to ensure a fair comparison of the two versions. The dynamic GA was
restarted once the fitness value remained unchanged for a set number of consecutive
generations defined by a termination criterion. In an attempt to achieve a higher
objective function value using the dynamic GA, different population sizes (100, 200,

300) and termination criteria (25, 50, 75) were tested (see Table 3.12).

Table 3.12. Case study 2 results and model statistics for the dynamic GA model using
different population sizes and termination criteria.

Avg. obj. Max (?bj' Avg. solution Population Termination
function value! function time size criterion®
value?
65,399 + 131 65,653 391s 100 25
65,518 + 144 65,799 6.11s 100 50
65,543 + 144 65,818 8.30s 100 75
65,652 + 112 65,849 8.09s 200 25
65,755 £ 105 65,934 12.87s 200 50
65,797 + 92 65,987 17.20s 200 75
65,806 + 66 65,921 12.66 s 300 25
65,855 + 86 65,997 19.86 s 300 50
65,883 + 92 66,068 26,85s 300 75

1 Average of best objective function values from 50 independent GA runs

(mean % 1 standard deviation)

2 Max objective function value obtained from 50 independent GA runs.

3 If the best objective function value remained unchanged for a given number of consecutive

generations, the GA is restarted with a new parent population. The second time the best objective

function value stayed the same for the same number of generations, the GA was terminated.
As expected, increasing the population size and termination criterion had a positive
impact on the maximum and mean objective function values. For example, with a
population size of 300 and a termination criterion of 75, the mean and maximum
objective function values achieved with the dynamic GA after 50 runs were 65,883 +
92 and 66,068, respectively. In comparison, the global optimum achieved with MILP
was 66,360. However, the improvements to the objective function value came at the

cost of longer execution times, i.e. upwards of 15 s for a single run on average.

Therefore, for the best trade-off between the solution quality, i.e. the objective function

88

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

value, and the performance of the dynamic GA, the population size and the

termination criterion were set to 200 and 25, respectively.

The comparison of the results between the MILP and the two GA versions is
summarised in Table 3.13. After 50 runs, the mean best objective function value using
the standard GA was 61,186 + 437 while the dynamic GA (with a population size of
200 and a termination criterion of 25 generations) achieved 65,652 + 112. The rolling
time horizon approach led to significant performance gains. Not only the mean
objective function value obtained with the dynamic GA was higher and had lower
standard deviation than the standard GA, but also the execution time was
approximately 2.7 times faster (8.09 s vs 21.56 s). The dynamic GA was also
comparable to the relaxed MILP model both in terms of the speed (8.09 s vs 8.77 s)
and solution quality. Using the known global optimum of 66,360 as an upper bound,
the average and the lowest optimality gaps achieved with the dynamic GA (with a
population size of 200 and a termination criterion of 25 generations) were estimated
to be 1.1% and 0.8%, respectively. In comparison, the relaxed MILP model returned
an objective function value of 65,940 with a 0.6% optimality gap. The comparison of
the Gantt charts in Figure 3.6 shows that the scheduling pattern of the dynamic GA

(Figure 3.6.b) is similar to that of the relaxed MILP model (Figure 3.6.a), for example:

= Facilities irand i run with little to no idle time and with a variety of different products
allocated to them.

= Facility iz is busier in the first half of the scheduling table with more product
allocations.

= Product ps is almost exclusively produced in the facility ia.

= Facility i4s has no idle time periods.

= Certain facilities such as is and i;o are completely idle.

89

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Table 3.13. Case study 2 results and model statistics for MILP and GA models.

MILP GA

Global optimum Relaxed Dynamic? Dynamic® Standard? Standard?
Max obj. function value 66,360 65,940 65,8491 65,8771 61,880! 62,193
Time (s) 1000.36 8.77 8.092 8.182 21.562 24.082
Optimality gap? 0% 0.6% 0.8%3 0.7%3 7.8%3 7.43
Avg. obj. function value* - 65,652 £ 112 65,686 £ 105 61,186 £+ 437 61,490 £ 469
Population size - 200 200
Crossover rate, pC> - 0.935 0.597
Mutation rate, pMutP> - 0.018 0.001
Mutation rate, pMutT® - 0.867 0.295
Elitism - 70% 5%
Termination - 256 1000

a Results obtained using the same random number generator seed from the meta-optimisation.

b Results obtained using a different random number generator seed.

1 Max obj. function value obtained from 50 independent GA runs.

2 An average solution time of a single GA run.

3 An optimality estimate relative to the global optimum obtained using the recreated MILP model, i.e. 1 — obj. function value / global optimum

4 Average of best objective function values from 50 independent GA runs

(mean + 1 standard deviation)

5The parameter values were selected using the PSO algorithm.

6 If the best objective function value remained unchanged for 25 consecutive generations, the GA was restarted with a new parent population. The second time the best
objective function value stayed the same for the same number of generations, the GA was terminated. The maximum generation limit was set to 1000.

90

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15
5|16|7|8]|9%9(10 11|12 13|14 15‘16 17|18|19|20|21)|22 (23|24 25‘26 27(28]29|30(31|32|33|34(35(36|37(38(|39(40|41]|42|43(44(45|46)|47|48]49]|50|51(52(53|54|55]|56]/57|58|5%|60
Al |z
i9
i10]
Year1 Year 2 Year 3 Year 4 Year5 Year 6 Year7 Year 8 Year9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15
B Zr
= i5
£ fie =
[.1
=l | I | l
i9
i10

pl|p2|(p3|pa|pS|p6|p7|p8 | pY |pl0fpll|pl2|pl3 pl4|pl5

Figure 3.6. Production schedules for case study 2. Each product p €{ p1, p2, ..., p1s } is denoted by a color label displayed in the legend below
the schedules. The numbers of batches of each product produced have been removed for clarity purposes.
(a) generated using the MILP model. An objective function value of 65,940 RMU was obtained with 0.6% optimality margin (based on the known

global optimum as the upper bound).

(b) generated using the dynamic GA. An objective function value of 65,849 RMU was obtained (0.8% estimated optimality margin)

91

3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling

3.6. Summary

This chapter has demonstrated how a GA can be applied to solve medium- and long-
term biopharmaceutical capacity planning problems formulated as discrete-time
mixed integer programs in a fast and efficient manner. The key enabling features of
the GA-based approaches included a chromosome encoding strategy, a rolling time
horizon approach to improving the performance of the GA for tackling the long-term
planning problem, and algorithms that captured capacity planning objectives for
multiple products across multiple suites and facilities. A PSO-based meta-
optimisation method was also presented for automatically setting crossover and
mutation parameter values based on the average best objective function value
achieved with the GA. The viability of the GA-based scheduling optimisation
approaches was demonstrated on two industrially-relevant case studies from the

literature.

In case study 1, a medium-term capacity planning problem of a single-site, multi-suite
biopharmaceutical facility was solved. The proposed GA obtained the global optimum
faster than a related MILP model. In case study 2, a more computationally complex,
long-term capacity planning problem of a multi-site biopharmaceutical manufacture
was solved. Using the rolling horizon approach, the full-scale problem was divided
into 15 sub-problems which were solved consecutively. Using the parameters for the
best trade-off between the performance and solution quality, the average run time of
the dynamic GA was 8.09 s whereas the average optimality gap of the solutions was

1.1%, according to the known global optimum.

92

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

4. Continuous-Time Biopharmaceutical

Capacity Planning and Scheduling

4.1. Introduction

In the preceding chapter, GA approaches were compared with MILP for discrete-time
based optimisation of biopharmaceutical capacity plans. In the first case study, both
GA and MILP models generated a globally optimal solution. The discretisation of the
time horizon into a number of time intervals of uniform durations was advantageous
in terms of making it simpler to model the planning problem but it also had several
shortcomings. The key one was the inability to meet the product demand on time
(Figure 4.1). This was because of the inherent limitation of the discrete-time
representations adopted in the original MILP formulation by Lakhdar et al. (2005) in
their biopharmaceutical capacity planning model. The constraints of fixed time periods
and the manufacturing of at most one product at any given time period irrespective of
the sufficient time available for further production resulted in several days of unutilised
production time (see Figure 4.2). For example, the USP1 and USP2 suites were
occupied for approximately 89% and 84% of the total available production time,
respectively. So, the demand for product p; at time period ts was not met even though

the facility had spare capacity.

Other shortcomings of discrete-time based models have been reported in the
literature. These include inaccuracy, due to the aforementioned approximation of the
time horizon, as well as unnecessary increases in of the overall size of the resulting
mathematical programming problems, due to the introduction of a large number of
binary variables associated with each discrete time interval have been reported in the

literature (Floudas & Lin, 2004). To address these drawbacks, methods based on

93

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

continuous-time representations have received a substantial amount of attention.
They provide greater potential for the development of more efficient and realistic
modeling and solution approaches. In the continuous-time models, the manufacturing
campaigns (more broadly referred to as events) are allowed to take place at any point
in the continuous domain of time. This kind of flexibility is accomplished using variable
event times that can be either made to be specific to each unit/product or defined
globally. Using the continuous-time approach, the mathematical programming
problems can sometimes end up being smaller in size and easier to solve because of

the elimination of the inactive time periods.

8 —a p1 A A
o2 [h /B
g6 = ” A S0 ome
g |mn Y AN .
g, w2/
s | =3 3 ¥ ¥
/ P X AN
2 ’-‘.‘ s
.
0 i i / u H.L .
11 2 13 4 5 16

Figure 4.1. Supply (bar) and demand (line) profile of the globally optimal solution to
the case study 1. The demand for product p1 at time period t4 was not met on time.

a) Time periods (t,= 60 days)
t t t3 i ts ts
usp1| 4(60) | 4(50) 2 (50) 3(60) [2(40) 3(60)
@ |usp2| 2(54) | 24 | 2144 | 460) | 4(50) 2 (50)
3 |osp1| 3(55) | s5(50) 2 (50) 3(30) | 2(20) 5 (50)
psp2 | 2(52) | 2@0) | 2(0 3(55) 5 (50)
b) USP 1 10 10 20
@ |usp2 6 16 16 10 10
3 |bsp1 5 10 10 30 40 10
DSP 2 8 40 20 5 10

Product1l Product2 Product3

Figure 4.2. Unutilised production time. (b) The numbers in the cells indicate how many
days were left unutilised by (a) the globally optimal solution.

94

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

However, due to the variable and more flexible nature it becomes more difficult to
model scheduling problems and the continuous-time based MILP models often tend
to have even more complicated formulations than the discrete-time based
alternatives. Moreover, the usefulness and computational efficiency of the
continuous-time formulation depend on the number of predefined event points
(Méndez et al., 2006). If the global optimum of the scheduling problem requires at
least n points then fewer points will lead to sub-optimal or even infeasible solutions
whereas a large number of points will lead to long computation times. Since the
number of points is not known in advance, it is usually determined iteratively by
increasing it until there is no improvement in the objective function. In certain cases,
a substantial number of model instances need to be solved for each scheduling
problem. Furthermore, this stopping criterion does not guarantee the optimality of the

schedule and may terminate with a sub-optimal solution.

Inspired by the NeuroEvolution strategies, e.g. Stanley and Miikkulainen (2002) , this
chapter presents a novel variable-length chromosome structure and a set of new
genetic operators to automatically determine the optimal permutation, number, and
length of production campaigns to satisfy the capacity planning problem objectives
and constraints. This variable-length GA-based scheduling optimisation method is
validated on two industrially-relevant case studies adapted from the literature and

compared with related discrete- and continuous-time MILP models.

This chapter is organised as follows: Section 4.2 defines the scheduling problems of
the two examples in more detail. Section 4.3 describes the key components of the
novel continuous-time GA-based approach for biopharmaceutical capacity planning.
Section 4.3.1 explains the variable-length chromosome structure and encoding
strategy. Section 4.3.2 introduces new genetic operators and Section 4.3.3 explains

the scheduling heuristic used for evaluating the fithess of each candidate solution and

95

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

constructing the Gantt charts. Case study 1 and 2 results are presented in Section
4.4. The flexible GA-based approach is compared with discrete- and continuous-time
based MILP models on the example 1 in Section 4.3.1. In Section 4.3.2, a discrete-
time MILP model is used to benchmark the performance of the flexible GA-based

approach on the example 2.

4.2. Problem Definition

In this chapter, the novel variable-length GA is validated on two examples adapted
from Lakhdar et al. (2005). Both examples are based on industrially-relevant data and

cover the most common aspects of the biopharmaceutical manufacturing.

4.2.1. Case Study 1

This case study has been already presented in the first case study of the previous
chapter. This particular scheduling problem was first solved by Lakhdar et al. (2005)
using a discrete-time based MILP model, then later by Kabra et al. (2013) using a
continuous-time MILP model based on an STN framework, and finally by Vieira et al.
(2016) using a continuous-time MILP model based on RTN framework. In the original
problem statement in Lakhdar et al. (2005), the planning horizon was discretised into
time periods of uniform durations (60 days). Therefore, the problem data and most of
the constraints were time period-based. In this chapter, the problem statement and
the original data are adjusted to suit the continuous-time domain. The rightmost
boundary of each time period is assigned as a due date for product demand. For
example, any product demand due in the first time period in the discrete-time model
is equivalent to being due on the 60" day from the beginning of the schedule in the
continuous-time model. It is assumed that overproduction is not allowed, sales are

possible only at the demand date, and the backlog can be sold by the next 60" day.

96

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

For example, if the delivery on the first 60" day from the start of schedule was missed,
that late order can be sold after the next 60 days, i.e. on the 120" day. Additional
adjustments include the conversions of the time period-based shelf-life durations and
the continuous rates of USP and DSP production into an actual number of days. Both
Kabra et al. (2013) and Vieira et al. (2016) had to make similar assumptions and
adjustments to suit their continuous-time MILP-based models. The problem statement

for case study 1 is as follows:

= Given:

o 3 biopharmaceutical products p = { p1, p2, ps }

o A biopharmaceutical facility with 2 USP suites i = { i1, I } and 2 DSP suites

j={i2}

o A continuous planning horizon of 360 days

o Product-dependent production and changeover durations.

o Finite product shelf-life and storage capacity

o Product demand with multiple intermediate due dates

o Manufacturing, storage, waste disposal, backlog, and changeover costs
= Determine:

o The number, duration, and sequence of manufacturing campaigns

o Production quantities along with sales and inventory profiles
= To:

o Maximise total profit

Table 4.1. Product demand profile [batches] for case study 1. The due date is the n™"
day from the start of the schedule.

Due date
Product 60 120 180 240 300 360
p1 0 0 0 6 0 6
p2 0 0 6 0 0 0
ps 0 8 0 0 8 0

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Table 4.2. All relevant parameters for case study 1.

Product

P1 P2 P3
USP duration [days] 20 22.2 125
USP lead time [days] 10 10 10
DSP duration [days] 10 10 10
DSP lead time [days] 10 10 125
Shelf-life [days] 180 180 180
Storage limit [batches] 40 40 40
Sell price [RMU / batch] 20 20 20
USP production cost [RMU / batch] 2 2 2
DSP production cost [RMU / batch] 2 2 2
Storage cost [RMU / batch] 1 1 1
Waste disposal cost [RMU / batch] 5 5 5
Backlog penalty [RMU / batch] 20 20 20
USP changeover cost [RMU / batch] 1 1 1
DSP changeover cost [RMU / batch] 1 1 1

4.2.2. Case Study 2

To further demonstrate the features of the variable-length GA-based scheduling
optimisation approach developed in this chapter, case study 2 introduces a more
complex scheduling problem with more products, more DSP suites, and a planning
horizon that is nearly twice as long. The topology of the multi-product, multi-suite
biopharmaceutical facility in case study 2 is shown in Figure 4.3 and the problem

statement is as follows:

= Given:
o 4 biopharmaceutical products p = { p1, p2, ps, P2 }
o A biopharmaceutical facility with 2 USP suites i = {1, i> } and 3 DSP suites
J={inj2is}
o A continuous planning horizon of 540 days and
o Product-dependent production and changeover durations.
o Finite product shelf-life and storage capacity
o Product demand with multiple intermediate due dates

o Manufacturing, storage, waste disposal, backlog, and changeover costs

98

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

= Determine:
o The number, duration, and sequence of manufacturing campaigns
o Production quantities along with sales and inventory profiles

= To:

o Maximise total profit

Figure 4.3. Biopharmaceutical facility topology for the example 2.

Table 4.3. Production data for example 2.

Product

P1 P2 P3 Pa
USP duration [days] 20 22.2 125 125
USP lead time [days] 10 10 10 10
DSP duration [days] 10 10 10 10
DSP lead time [days] 10 10 125 125
Shelf-life [days] 180 180 180 180
Storage limit [batches] 40 40 40 40
Sell price [RMU / batch] 25 20 17 17
USP production cost [RMU / batch] 5 2 1 1
DSP production cost [RMU / batch] 5 2 1 1
Storage cost [RMU / batch] 1 1 1 1
Waste disposal cost [RMU / batch] 5 5 5 5
Backlog penalty [RMU / batch] 20 20 20 20
USP changeover cost [RMU / batch] 1 1 1 1
DSP changeover cost [RMU / batch] 1 1 1 1

99

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Table 4.4. Product demand profile [batches] for case study 2. The due date is the n™"
day from the start of the schedule.

Due date
Product 60 120 180 240 300 360 420 480 540
p1 0 0 0 6 0 4 0 0 4
p2 0 4 0 0 0 0 4 0 0
0] 0 0 0 0 10 0 0 0 10
P4 0 6 0 8 0 0 0 0 0

4.3. Methods

In this section, the key components of the GA such as chromosome structure,
crossover, and mutation are described. The details of the continuous-time scheduling
heuristic for evaluating the fitness of each chromosome and constructing schedules
are also outlined. The GA parameters have been tuned using the PSO-based meta-
optimisation approach which has been described earlier in Section 3.4.1 of Chapter
3. The fitness of the PSO particle, i.e. GA parameter vector, was assessed by
measuring the mean best objective function value achieved after 20 GA runs with a

population size of 100 for 100 generations using that parameter vector.

The GA-based DST discussed in Chapter 2 was applied in this chapter to solve the
industrially-relevant case studies of multi-suite, multi-product biopharmaceutical
manufacture. Python API developed in this thesis provided with the methods for data
I/O and visualisation, e.g. to generate Gantt charts and inventory profiles. The
variable-length GA with its components and the scheduling heuristic have been
implemented in C++ programming language and compiled using a g++-8 compiler.
Appendix B discusses the technical details and demonstrates an example of the GA-
based DST application using Python API. The discrete-time MILP model was
recreated in GAMS 23.9.5 and solved with a CPLEX 12.4.0.1 solver. Both case
studies have been solved on an Intel i5-6500 based Ubuntu 16.04 LTS system with

16GB of RAM.

100

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

4.3.1. Chromosome Structure

In the previous chapter, the chromosomes encoded the product labels and production
time into a table of fixed dimensions which were defined by the problem statement,
i.e. the number of products, time periods, facilities/USP suites. Unlike a discrete-time
representation, a continuous-time one does not have such a grid that is well-defined
by the problem variables, e.g. divided by the number of products and time periods of
uniform durations. Without the discretised planning horizon, it becomes more
challenging to encode the candidate solutions. However, it is still possible to use fixed-
length chromosomes in the continuous-time domain, but this approach would have
the same aforementioned limitations as continuous-time based MILP models — the
number of genes encoding the events, i.e. the chromosome length, would have to be
determined iteratively thus adding another hyper-parameter that needs to be tuned
and possibly worsening the overall GA performance. To eliminate the need for this
variable, a variable-length GA is developed to explore the decision space by
simultaneously varying both the number as well as the length of individual product

campaigns.

The key to the flexible GA-based approach presented in this chapter is a variable-
length chromosome structure. At the time of writing, there were not any known works
in the literature using variable-length chromosomes to solve process design or
capacity planning problems in the biopharmaceutical industry. However, they were
applied in other domains such as finding the optimal number, types, and positions of
wireless transmitters to meet the objectives of maximum coverage and minimum cost
(Ting et al., 2009) and creating an interpreter capable of solving Artificial Intelligence
(Al) planning problems described in the standardised Planning Domain Definition
Language (PDDL) (Brie & Morignot, 2005). The main source of inspiration for the

variable-length chromosome structure presented in this chapter is NeuroEvolution of

101

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Augmenting Topologies (NEAT) method developed by Stanley and Miikkulainen
(2002). The artificial evolution of neural networks using a GA has shown great promise
in reinforcement learning tasks outperforming standard methods in many benchmark
tasks. NEAT enables the neural networks to evolve not only their weights but also the
connections and the overall topology from basic elements. This is achieved by
employing a flexibile encoding strategy and a set of special genetic operators. This
chapter adapts the idea of evolution from the most basic, unit element into a complex
solution to create a variable-length chromosome structure for continuous-time

scheduling.

In this chapter, every variable-length chromosome comprises the most basic, unit
elements called genes. Each gene encodes a single USP manufacturing campaign
with a product label p, a USP suite i the product campaign would take place in, and
the number of batches to be produced. Since the DSP campaigns are dependent on
the output from the USP suites, it is not necessary to encode the DSP campaigns
information into the variable-length chromosomes. This information can be inferred
from the USP campaigns when a chromosome is decoded into a production schedule
using a continuous-time scheduling heuristic. Figure 4.4.a illustrates the gene and
chromosome structures using UML diagrams whereas Figure 4.4.b visualises the
overall variable-length chromosome structure at the start and end of a GA. More
detailed UML diagrams and C++ implementations of the gene and chromosome are

provided and explained in Appendix B.

Even though it is possible to set how many genes within each chromosome would be
generated at the beginning of the GA, the algorithm presented in this chapter is
designed to evolve the candidate solutions from a single gene, i.e. a single USP
manufacturing campaign of one batch of a random product assigned to a random

USP suite. This is accomplished by modifying certain traditional genetic operators,

102

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

e.g. uniform crossover, as well as introducing a few new ones to add a new random

gene at the end of every GA generation and to mutate the old ones.

a) Gene Chromosome
; Fields o Fields |
| product | | objective i
' suite pC i
{ num_batches | | pSwap i
' pMutP i1 vector<Gene> genes
| pMutS Lo ;
| pPosB Lo Methods ;
' pNegB Cross(Chromosome other) :
11 Mutate() i
| Methods .1 SwapGenes()
i Mutate() P T
' MakeNewGene()
: MutateProductNum()
i MutateSuite() i
i MutateNumBatches()
b) | GEN 100 Chromosome |
Product i | [i2] [#] [2] [
T 1 o | 8] [3] [3] |7

Figure 4.4. Variable-length chromosome:

(a) UML diagram representations of the gene and chromosome structures

(b) An example of a variable-length chromosome at the start (GEN 0) and end of the
GA (GEN 100). The values in the boxes correspond to the USP suite label followed
by the number of batches produced. The product label is denoted by the colour.

In Figure 4.4.a, chromosome’s Mutate() method would call gene’s Mutate() method

which comprises individual mutation operators that are discussed in Section 4.3.2.2.

4.3.2. Genetic Algorithm

The search process, i.e. the evolution of the variable-chromosomes, is based on a
standard generational scheme using parent and offspring populations. The parent
population is not only used to create an offspring population through binary

tournaments with replacement, a modified uniform crossover, and a set of special

103

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

mutation genetic operators but also to keep a memory of the fittest individuals found
by the GA. The offspring replace the parents only if they have a better objective
function value. In other words, the parent and offspring populations are combined and
the new parent population of gen + 1 is created by selecting the best solutions from

the combined pool.

4.3.2.1. Crossover

The traditional uniform crossover is adapted to suit the variable-length chromosome
structure. Before the crossover is applied, the chromosomes are sorted according to
the number of genes they possess. This way the crossover operator is performed on
similar individuals. Provided that both parent chromosomes have a sufficient number
of genes (at least 3), the genes are exchanged with a rate of 0.5 until the end of the
shorter chromosome is reached. The extra genes from a longer parent are copied to

the shorter one with a rate of 0.5. The crossover operator is illustrated by Figure 4.5.

Figure 4.5. An example of a modified uniform crossover between two variable-length
chromosomes: genes 2 and 3 are exchanged between the parent chromosomes and
gene 5 from the first parent chromosome is copied to the second one.

4.3.2.2. Mutation

Several special gene- and chromosome-level mutation operators are introduced (see

Figures 4.4.a and Figure 4.6) to perform the following in an order:

104

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

1. MutateProductNum(): to mutate product label mutation with a rate of pMutP.

2. MutateSuiteNum(): to mutate USP suite label with a rate of pMutS.

3. MutateNumBatches(): to increase or decrease the number of batches by one with
a rate of pPosB and pNegB, respectively.

4. MakeNewGene(): to add a new random gene to the end of the chromosome
(occurs unconditionally).

5. SwapGenes(): to swap two genes within the same chromosome with a rate of

pSwap.

Product label mutation |

II@I“”WI@I\

...

,,,

‘ Negative mutation of the number of batches |

II@IW”HI@I\

vy
Mutated

...

,,,,,,,,,,

...

,,,,,,,,,,,,,,,,,,,

Figure 4.6. Variable-length mutation steps. pMutP, pMutS, pPosB, and pNegB denote
the rate of each gene undergoing the corresponding mutation. The addition of a new
gene and swap mutation occur once per chromosome.

105

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

4.3.3. Continuous-Time Scheduling Heuristic

In both case studies, the fithess of each chromosome is equal to the total profit
achieved by the schedule encoded in the variable-length chromosome. However,
before the profit can be calculated the schedule and the resulting product inventory,
sales, backlog, and waste profiles need to be constructed. One of the main challenges
of developing the continuous-time scheduling heuristic of this chapter was finding a
way to track the values of various variables over time. In Chapter 3, fithess evaluation
was made easier because of the discrete-time representation. The values of binary
and continuous variables were stored in arrays of a fixed size that was defined by the
problem e.g. number of products and time periods. Therefore, it was relatively simple

to “look up” the value of any variable over any given time period.

In order to be able to accurately track information such as the expiry date of each
individual batch and how many batches are available for any given demand, the
continuous-time scheduling heuristic was developed using Object Oriented
Programming (OOP)-based approach. The heuristic is based on three key objects:
Batch, Campaign, and Schedule (see Figure 4.6). The ability to keep track of

individual batches makes it possible to generate very detailed production schedules.

‘ Batch | | Campaign } | Schedule |
Fields P Fields o Fields ’
: product i i product ! profit
| start i isuite | lrevenue
i end ¢ | num_batches | i production_cost
i stored_on : i start 3 : changeover_cost
! expires_on i iend | istorage_cost
”””””””””””””” : vector<Batch> batches backlog_penalty
""""""""""""""""" i waste_disposal_cost :
i vector<vector<int>> § = sales profile !
i vector<vector<int>> B = backlog profile :
! vector<vector<int>> W = waste profile |
| vector<vector<int>> | = inventory profile

| vector<Campaign> campaigns
: vector<vector<priority_queue<Batch>> inventory

S |

Figure 4.6. UML diagrams of the key objects used in the scheduling heuristic to
construct a schedule from a variable-length chromosome.

106

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

The Batch object represents one whole batch of a specific product and it contains
information when the batch was stored (or manufactured) and when it is expected to
expire. The Campaign object represents the product campaign of a specific product
in one of the available processing suites and it contains the following: the start date,
end date, and the list of batches (Batch objects) produced. The Schedule object
characterises the final decoded solution or schedule which also comprises the
objective function value, i.e. total profit in this chapter, as well as the costs of
production, product changeovers, storage, waste disposal, and backlog penalty. The
product inventory is implemented using a priority queue data structure. A priority
queue is a data structure containing elements, e.g. batches, such that each one has
been assigned a priority based on a specific attribute, e.g. the expiry date. A batch
with a higher priority (imminent expiry date) will be processed (or sold) before any
batch with lower priority. This way the amount of product wasted due to expired shelf-
life is minimised. Each product has an individual priority queue for every demand due

date. Schedule is constructed and evaluated in the following four core steps (see

Figure 4.7).
‘ Chromosome ‘ Production data
P - i= USP duration
- i i= USPleadtime !
@ i2°1 e DSPduration |
2] ! |- DSPleadtime !

‘ Scheduling heuristic

EH Lead time | Batch 1 | Batch 2

stept | |G
]
| |7 |[iz |[Lead time] Batch1 [Batchz |

[D] [Lead time | Batch 1 | [Batch 1|
STEP 2 g
P [Lead time [Batch1 [Batchz |
1
0 Time 60
,,
STEP 3 Creation of sales and inventory profiles
STEP 4 ‘ Objective function evaluation

Figure 4.7. Scheduling heuristic. A high-level illustration of how the
continuous-time scheduling heuristic is used to decode and evaluate a variable-length
chromosome containing two genes.

107

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

4.3.3.1. Step 1

First, a schedule of USP campaigns is constructed for each USP suite based on the
production data and the information encoded by the genes within the variable-length
chromosome. Each gene is mapped to a Campaign object by assigning the product
and USP suite labels and the number of batches to it. The order of the genes within
the chromosome determines the chronological order of the campaigns. The start date
of a campaign is equal to the end of the previous one (0 if it is the very first campaign)
plus the number of days needed for the equipment set-up and cleaning, i.e. the USP
lead time (see Table 4.2). The end date of a USP production campaign is estimated
by adding the product of the total number of batches of that campaign and the number
of days needed to produce one batch to the start date. It is ensured that all USP
campaigns are set to end within the planning horizon defined by the scheduling
problem, i.e. 360 days for case study 1 and 540 days for case study 2. Genes
encoding the USP campaigns beyond the planning horizon are removed from the

chromosomes. Algorithm 1 lays out a brief pseudocode for Step 1.

Algorithm 4.1. Pseudocode of the step 1 of the scheduling heuristic.

1 procedure CreateUSPSchedule(chromosome, schedule)

2 for each gene in chromosome

3 Create a campaign object

4 Map the values encoded in the gene (product, suite, no. batches) to the campaign
5 if this is the first campaign in the corresponding USP suite

6 campaign.start = USP lead time of the corresponding product

7 else

8 Get the prev_campaign in the current USP suite from the schedule

9 if prev_campaign.product == campaign.product

10 Continue prev_campaign

11 if prev_campaign.end > planning horizon

11 Adjust the prev_campaign.num_batches so that prev_campaign.end < planning horizon
12 end if

12 continue

13 end if

14 campaign.start = prev_campaign.end + USP lead time of the corresponding product

15 end if

16 campaign.end = campaign.start + USP no. days to produce the gene.num_batches
17 if campaign.end > planning horizon

18 Adjust the campaign.num_batches so that campaign.end < planning horizon

19 end if

108

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Algorithm 4.1. (continued) Pseudocode of the step 1 of the scheduling heuristic.

20 if campaign.num_batches == 0

21 Remove the corresponding gene from the chromosome

22 else

23 Add campaign to schedule.campaigns for the corresponding USP suite
24 end if

25 end for

26 end procedure

4.3.3.2. Step 2

Using the information from the previous step, a schedule of DSP campaigns is created
for each DSP suite. The earliest USP campaigns are assigned to the DSP suites with
the earliest availability. The start of each DSP campaign depends on the day the first
USP batch becomes available and whether it is necessary to allocate extra time to
set-up a DSP campaign. For example, if the USP batch becomes available on the 10"
day for DSP but the lead time of a DSP campaign is 15 days then the DSP campaign
will start on the 15" day. It is quite common in the biopharmaceutical industry to take
the intermediate product through the DSP processing stage as soon as it leaves the
USP stage generally due to the low stability of the intermediate molecules. Therefore,
the scheduling model schedules every DSP campaign to start immediately once the
batch from the USP stage is ready. Similarly to Step 1, every DSP manufacturing
campaign is represented by a Campaign object which, in addition to the product label,
the number of batches, the start and end dates, also contains a list of Batch objects

for each batch of final product. Algorithm 4.2 lists brief pseudocode for Step 2.

Algorithm 4.2. Pseudocode of the step 2 of the scheduling heuristic.

1 procedure CreateDSPSchedule(schedule)

2 for each earliest usp_campaign in schedule.campaigns

3 Create a dsp_campaign object

4 dsp_campaign.product = usp_campaign.product

5 Find a DSP suite with the earliest availability

6 if this is the first campaign in the corresponding DSP suite
7 if DSP lead time > the day the first USP batch is available
8 dsp_campaign.start = DSP lead time

9 else

0

1 dsp_campaign.start = the day the first USP batch is available

109

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Algorithm 4.2. (continued) Pseudocode of the step 2 of the scheduling heuristic.

11 end if

12 else

13 Get previous_dsp_campaign in the current DSP suite from the schedule.campaigns

14 if previous_dsp_campaign.end + DSP lead time > the day the first USP batch is available
15 dsp_campaign.start = previous_dsp_campaign.end + DSP lead time

16 else

17 dsp_campaign.start = the day the first USP batch is available

18 end if

19 dsp_campaign.end = dsp_campaign.start + DSP duration

20 Create a dsp_batch object

21 dsp_batch.product = dsp_campaign.product

22 dsp_batch.stored_on = dsp_campaign.end

23 dsp_batch.expires_on = dsp_batch.stored_on + shelf-life of the corresponding product
24 dsp_campaign.num_batches = 1

25 Add dsp_batch to dsp_campaign.batches list

26 Add dsp_batch to schedule.inventory for the earliest demand due date

27 for each remaining usp_batch in usp_campaign

28 if the day usp_batch is available + DSP duration > planning horizon
29 break

30 end if

31 dsp_campaign.end = the day usp_batch is available + DSP duration
32 Create another dsp_batch object

33 dsp_batch.product = dsp_campaign.product

34 dsp_batch.stored_on = dsp_campaign.end

35 dsp_batch.expires_on = dsp_batch.stored_on + shelf-life of the corresponding product
36 dsp_campaign.num_batches += 1

37 Add batch to dsp_campaign.batches list

38 Add dsp_batch to schedule.inventory for the earliest demand due date
39 end for

40 end for

41 end procedure

4.3.3.3. Step 3

Having both the USP and DSP schedules constructed in Steps 1 and 2, the next step
is to create the profiles for how many batches will be sold, stored, in backlog, and
wasted due to expired shelf-life or overproduction, e.g. exceeded storage limits. The

product profiles are later used in Step 4 to evaluate the objective function value.

Algorithm 4.3. Pseudocode of the step 3 of the scheduling heuristic.

1 procedure CreateProductProfiles(schedule)

2 S g = supply profile
3 B e gz = backlog profile
4 W e Zlpixldl = waste profile
5 | e gl = inventory profile
6 for each product p

110

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Algorithm 4.3. (continued) Pseudocode of the step 3 of the scheduling heuristic.

7 for each p demand due date d
8 Get the inventory queue for p and d from schedule.inventory
9 Add the leftover inventory of p from the last demand due date d — 1 to the current one
10 Count the backlog from the last demand due date d — 1, i.e. Bpd += Bpd-1
11 Remove any expired and excess batches of p from the inventory and add the count to Wpd
12 if the number of batches in the inventory = p demand on d
13 Spd = p demand on d
14 if there are any batches of p remaining in the inventory
15 Use the remainder to fill the backlog orders Bpd and update Spd
16 end if
17 else
18 Spd = all available batches in the inventory
19 Add the count of late deliveries to backlog Bpd
20 end if
21 Add the count of the remaining p batches in the inventory to Ipd
22 end for
23 end for

24 Assign S, B, W, | to schedule
25 end procedure

The sales, backlog, waste, and inventory profiles are created on the basis of product
demand due dates, i.e. the product profiles are integer arrays of | p |-by-| d |
dimensions where | p | is the number of products and | d | is the number of due dates.
The inventory profile is not the same as the inventory of final product. The former is
used to record how many batches were left in storage on any given due date d and
the later is a priority queue which gives the highest sales or delivery priority to the
older batches. All batches are sold in the order of the date they were stored on, which
in return minimises the amout of waste due to expired shelf-life. Any extra amount of
unsold product incurs inventory costs which effectively penalises overproduction in
the objective function of profit maximisation. Backlog is penalised until it is cleared.
Both backlog and inventory costs are cumulative. Step 3 procedure is summarised in

Algorithm 4.3.

4.3.3.4. Step 4

The final step evaluates the objective function value by calculating the profit which is

equal to the difference between the total revenue, i.e. sales, and the total costs of

111

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

USP and DSP production, product changeovers, storage, waste disposal, and
backlog. The objective function from the original discrete-time Lakhdar et al. (2005)
model (see Equation 1 in Section 3.4.2.3) was modified slightly to suit the proposed
approach. The production and changeover costs are estimated on the basis of a
manufacturing campaign. The costs of storage, waste disposal, and backlog penalty

are estimated on the basis of a product demand due date.

Algorithm 4.4. Pseudocode of the step 4 of the scheduling heuristic.

1 procedure EvaluateSchedule(chromosome, schedule)

for each usp_campaign in schedule.campaigns
schedule.production_cost += usp_campaign.num_batches x USP production cost per batch
schedule.changeover_cost += USP changeover cost

end for

for each dsp_campaign in schedule.campaigns
schedule.production_cost += dsp_campaign.num_batches x DSP production cost per batch
schedule.changeover_cost += DSP changeover cost

end for

10 S, B, W, | = CreateProductProfiles(schedule)

11 for each product p

12 for each p demand due date d

© 00 ~NO U~ WN

13 schedule.revenue += Spq X sales price of p

14 schedule.backlog_penalty += Bpa % backlog penalty of p

15 schedule.waste_disposal_cost += Wpg X waste disposal cost of p
16 schedule.storage_cost += Ipg X storage cost of p

17 end for

18 end for

19 schedule.profit = (

20 schedule.revenue —

21 schedule.production_cost —

22 schedule.changeover_cost —

23 schedule.backlog_penalty —

24 schedule.waste_disposal_cost —

25 schedule.storage_cost

26)

27 chromosome.objective = schedule.profit
28 end procedure

4.4. Results

In this section, the validity of the variable-length GA-based scheduling optimisation
method is demonstrated on two industrially-relevant case studies adapted from the

literature. In case study 1, the GA-based optimisation method is compared with a

112

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

recreated discrete-time (Lakhdar et al., 2005) and reported continuous-time MILP
models (Kabra et al., 2013; Vieira et al., 2016). The problem consists of a multi-suite
facility with 2 USP and 2 DSP suites producing 3 products with multiple intermediate
demands due over a 360-day (1 year) planning horizon. In example 2, the GA is
compared with a recreated discrete-time MILP model only. The problem consists of a
multi-suite facility with 2 USP and 3 DSP suites producing 4 products with multiple

intermediate demands due over a 540-day (1.5 year) planning horizon.

As mentioned earlier, the original input data has been adapted from Lakhdar et al.
(2005) to suit the continuous-time domain and the scheduling heuristic presented in
this chapter. The continuous production rates are converted from batches per day into
production days per batch. The lead times as used in discrete-time model in Lakhdar
et al. (2005) include not only the cleaning and set-up time but also the time for the
production of the first batch of the product. Therefore, they are adjusted to account
for the cleaning and set-up time only. Product lifetime variables are also converted

from time periods to the corresponding number of days.

4.4.1. Case Study 1

The model statistics and the comparison of the results between the flexible GA-based
approach and the MILP-based models are provided in Table 4.5 for the industrial case
study of multi-product, multi-suite biopharmaceutical production. The Gantt charts
from the different models are shown in Figure 4.9. In their original work, Lakhdar et
al. (2005) reported an objective function value of 487 with 5% optimality gap in 16 s;
in contrast the recreated model achieved an objective function value of 490 by solving
the problem to zero gap in 0.22 s. Due to the aforementioned limitations of the
discrete-time model, the product demand for product p. was not met on time during

time period ts (see Figure 4.8.b).

113

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Kabra et al. (2013) solved the example 1 problem using a continuous-time MILP
formulation based on an STN representation and reported an objective function value
of 517 with 0% optimality gap, zero backlogs, and zero wastage (Table 4.5.b). Vieira
et al. (2016) proposed a continuous-time MILP formulated based on an RTN
representation. They solved the problem to zero gap and achieved an objective
function value of 519 with no wastage and all product demands met on time (Table
4.5.c). Both models were reported to take more CPU time to solve the example 1
problem (85.5 s and 46.9 s respectively) than the discrete-time MILP due to a large
number of constraints needed for accurate monitoring of storage tasks and product

changeovers.

It is important to note that both Kabra et al. (2013) and Vieira et al. (2016) made
several assumptions about the case study 1 problem. For example, Vieira et al. (2016)
had to relax certain storage constraints in order to compare the results with Lakhdar
et al. (2005). Furthermore, the number of batches in both continuous-time MILP
models was set as a continuous variable in contrast to the original Lakhdar et al.
(2005) model. This is also reflected by the continuous values in Gantt charts shown
in Figure 4.9.b and Figure 4.9.c. Without the continuous variable assumption, Vieira
et al. (2016) reported a lower objective function value of 513. In comparison, the GA

achieved an objective function value of 518 maintaining the integer constraints.

The GA-based scheduling optimisation approach developed in this chapter achieved
an objective function value of 518 during every single one of the 20 independent runs
in 0.05 s on average (the parameters of the GA are listed in Table 4.5.a). The best
solution met all product demands on time (Figure 4.8) with zero wastage and had a
better objective function value than the discrete-time MILP (490), Kabra et al. (2013)

(517), and Vieira et al. (2016) (513) using an integer batch-extent variable.

114

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Table 4.5. Case study 1 scheduling problem: comparison of results from the novel
continuous-time GA approach with other discrete-time and continuous-time models.

Model type

GA? MILP (STN)® MILP (RTN)® MILP¢
Time representation Continuous Continuous Continuous Discrete
Best obj. function value 518! 517b 513 (519)c 490 (487)¢
Mean. obj. function value 518 + 0? - - -
Optimality gap - 0%P 0%° 0% (5%)
Run time (s) 0.05% 85.5° 2.2 (46.9)° 0.22 (16)¢
No. runs 20 -
No. generations 100 -
No. chromosomes 100 -
Starting length 14 -
pC 0.027 -
pMutP 0.005 -
pMutS 0.016 -
pPosB 0.900 -
pNegB 0.854 -
pSwap 0.403 -

1 Best obj. function value achieved out of 20 runs

2Mean best obj. function value = its standard deviation of 20 runs

3 Mean running time of a GA single run

4 Number of genes per chromosomes at the beginning of the GA

a Continuous-time GA presented in this chapter

b Reported by Kabra et al. (2013)

¢ Reported by Vieira et al. (2016) using an integer batch-extent variable and continuous batch-extent
variable in brackets

dRecreated model result and the reported one by Lakhdar et al. (2005) in brackets

8 a ;1 A -
-8 p2 P A
g 6 > p3 S| ™ A -
E 4 /= p2 VoS A /
. — p3/ X W
=] i Y
=4 ,"‘ ,"’ \\
5
:’” “\ /’
0 .:' < / i b5 e
ju 2 3 4 5 6

Figure 4.8. Supply (bar) and demand (line) profile of the best case study 1 solution
generated with the continuous-time GA-based approach (obj. function value of 518).

In the biopharmaceutical industry, the term batch is typically used to denote a
complete biopharmaceutical process (see Figure 1.1). If the number of batches is
continuous then this could mean either an unfinished process or lower than typical

yield. Either way, it is uncommon to have the number of batches set as a continuous

115

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

a) b)
USP14 8 (100) 11 (220) Time periods (t,= 60 days)
LJusez| S i 100) t t t t %
g UsP1| 4(60) 4(50) 2 (50) 3 (60) 2 (40) 3(60)
m "
DSP1- 5 (98) 11 (210) g USP 2 4 (60) 4(50) 2 (50)
A |bsP1 3 (55) 5 (50) 2 (50) 3(30) 2 (20) 5 (50)
psP2 IEET o 8 8) DsP2 Bl
Product1 Product2 Product3
0 60 120 180 240 300 360
Day
C) 1 1 1 1 1 d)
1 1 1 1
g oo I O n| = i 3 e O v
z e ey | e ® @ ® o A ©)] E ? * 3.0 16 2.4 3.0
E . : ' H '
o BlEEE el e o e [- 2 A
=2 Gyl ows L@y (32) E (4.8) @] 2.25 3.0 16 24 3.0
1 1 1 1 N7
. o pe | pzeiesd | pae S I — a1 el [a]
3]3 1.3) : 24 : (2.3) : 3.2) : (4.8) : 8.0 6.0 3.0 6.0
g ﬂ 1 q 1 n 1
:n p3t | P32 p1M | P12 | ppis . = T " [(/3] 7 |
gl (32) ! (4.8) ©) ! @ o ! 5) | w0os0 \ 'I 3.0 |
— 6.5 120 180 240 300 360 60l 14d 20q 24q so 364
di1 dz d3 d4 ds

Figure 4.9. Gantt charts generated for the case study 1:

(a) continuous-time GA-based approach (obj. function value of 518). Each box displays the number of batches followed by the campaign length.
(b) discrete-time MILP (obj. function value of 490). Each box displays the number of batches produced and production time.

(c) RTN-based continuous-time MILP (Vieira et al., 2016) (obj. function value of 519, CO indicates a changeover)

(d) STN-based continuous-time MILP (Kabra et al., 2013) (obj. function value of 517)

116

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

variable as it makes the interpretation of the result and Gantt charts (see Figure 4.9.c

and Figure 4.9.d) more difficult.

The gaps between the campaigns in Figure 4.9.a correspond to the lead time needed
to set-up a hew campaign or to switch between two different ones. Using the novel
GA-based scheduling optimisation approach, the capacity utilisation of USP1 and
USP2 suites was 94% and 79%, respectively. In contrast, using an integer batch-

extent variable, Vieira et al. (2016) reported utilisation rates of 96% and 80%.

It is interesting to see that the scheduling pattern of the novel variable-length GA
presented in this chapter (Figure 4.9.a) is very similar to that of the discrete-time MILP
model (Figure 4.9.b). For example, there are 6 batches of product p, and 8 batches
of product ps scheduled for manufacture at the beginning of both schedules.
Moreover, both models achieved the same average USP capacity utilisation of 86.5%.
Nevertheless, the variable-length GA enabled by the continuous-time scheduling
heuristic was more effective at utilising the available production time which made it
possible not only to meet all product demands on time but also presented an

opportunity for additional production capacity.

,,,‘,,, pl _.:A
8 e p2 Am A
w | = p3
£ 6 3 p1 i A
£ | mm p2
24| 3 p3 ; A
o A A
z X I
2
r/
0 - o \ -..:’ h¥ e
t1 02 £3 t4 5 t6

Figure 4.10. Supply (bar) and demand (line) profile of the best solution (obj. function
value of 562) generated using the continuous-time GA for the case study 1 with an
increased demand for product p1.

117

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

The variable-length GA was further tested by increasing the demand for product p: at
the end of planning horizon by 3 batches, i.e. from 6 to 9 on 540" day. Using the same
hyper-parameter values (Table 4.5), the variable-length GA generated a production
schedule (see Figure 4.11) with an objective function value of 562 and all product
demands met on time (displayed in Figure 4.10). The capacity utilisation of USP1 and

USP2 suites increased to approximately 97% and 96%, respectively.

USP1 6 (133) 2 (40) 6 (75) 3 (60)

USP3 10 (125) 10 (200)

Suite

DSP1 6(121) 2 (30) 6(73) 3 (50)

DSP2 10 (123) 10 (190)

0 60 120 180 240 300 360

Day

Figure 4.11. Gantt chart generated using the continuous-time GA-based approach for
the case study 1 with an increased demand for product p1.

4.4.2. Case Study 2

In this section, a more complex case study of multi-product, multi-suite
biopharmaceutical manufacture is used to demonstrate that the novel variable-length
GA-based scheduling optimisation approach can be extended for facilities with more
manufacturing suites, more products, and longer demand profiles. In case study 2,
the proposed GA was used to generate a 1.5 production plan for biopharmaceutical

facility with 2 USP and 3 DSP suites manufacturing 4 distinct products.

The comparison of the results and schedules between the GA and the discrete-time
MILP is provided in Table 4.6 and Figures 4.12 and 4.13. The discrete-time MILP

model solved the case study 2 problem to 0% optimality gap achieving an objective

118

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

function value of 598 in approximately 11 s. Despite the global optimality, due to the
aforementioned inherent limitations of the discrete-time domain, the model was only
capable of meeting approximately 86% of all product demands on time (see Figure

4.10.b). The capacity utilisation rate was 88% for both USP suites.

The GA-based scheduling optimisation approach, on the other hand, significantly
outperformed the discrete-time MILP model achieving mean and best objective
function values of 725 + 37 and 801 respectively. Additionally, the best solution
generated using the GA met all of the product demands on time (see Figure 4.12)
(compared to 8 late deliveries in the MILP solution) without product waste. The
capacity utilisation rates of the USP suites were 97% and 99%. The GA was also

approximately 14 times faster on average than the discrete-time MILP model.

a
) 10 4 X ¥
o 2
8 Y
g | P
I, ;
5 6 Pk i |
g == 8
g o B2 P2 A
2 —]
o| EE A X /
ol i RV
@ w6 7 B 0
b
) 10 4 p X I
@ p2
8 * m
N / \ /
S 6 P x /AR
g | == e s |]
g 4 e LA e [oA
0 i:: / n': il Hlﬂ: [“ﬂ;’/
u @ w6 6 7 B8 0

Figure 4.12. Supply (bar) and demand (line) profile of the best case study 2 solution
generated with (a) continuous-time GA-based approach (obj. function value of 801)
and (b) discrete-time MILP (obj. function value of 598)

119

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

Table 4.6. Case study 2 scheduling problem: comparison of results from the novel

continuous-time GA approach with discrete-time MILP model.

Model type
GA®? MILP®
Time representation Continuous Discrete
Best obj. function value 801! 598
Mean obj. function value 725 + 372 -
Optimality gap - 0%
Run time (s) 0.793 11.03
No. runs 20 -
No. generations 1000 -
No. chromosomes 100 -
Starting length 14 -
pC 0.027 -
pMutP 0.005 -
pMutS 0.016 -
pPosB 0.900 -
pNegB 0.854 -
pSwap 0.403
1Best obj. function value achieved out of 20 runs
2Mean best obj. function value = its standard deviation of 20 runs
3 Mean running time of a single GA run
4 Number of genes per chromosomes at the beginning of the GA
a)
USP1 Ce@s | 6 (120) 5 (63) 2 (40) 4 (89) 4(80)
Usp2 4 4(88) I 5 2(40) [2(44) 11 (138)
-:g; DSP1 I N o 2(32) 4.(70)
DSP2 4 4(76) 5 (60) 2 (30) 11 (125)
DSP3+ 6 (110) 2 (30) 4 (77)
- 2 8 2 g = & g g 3
Day
b) Time periods (t,= 60 days)
ty t, ty ty tg te ty tg to
USP 1 2(54) 2 (44) 2(50) 3 (60) 4 (60) 4(50) 2(54) 2 (44) 4 (60)
2 UsP 2 4 (60) 2(50) 3(60) 3 (60) 4 (60)
£ [Dpsp1 2(50) | 3(30) 230) | 380 | 3@0)
“ |bsp2 2(52) 2(20) 6 (60) 4(40) 2(52) 2(20) 2(54.5)
DSP 3 2(54.5) 6 (60)

Product1 Product2 Product3 Product3

Figure 4.13. Gantt charts generated for the case study 2 using different models:

(a) continuous-time GA-based approach
(b) discrete-time MILP

120

4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling

4.4, Summary

In this chapter, a new variable-length GA-based optimisation approach has been
developed for the optimisation of medium-term capacity plans of multi-product, multi-
suite biopharmaceutical facilities. The flexible GA-based approach accounts for the
same features as its discrete- and continuous-time MILP-based counterparts
including but not limited to product-dependent changeovers, multiple intermediate
demand due dates, backlogs, limited storage capacity, shelf-life, and waste disposal.
The validity of the new approach has been demonstrated on two industrially-relevant
case studies previously solved using both discrete- and continuous-time based MILP
models from the literature. In case study 1, the proposed GA-based scheduling
optimisation approach generated a solution that had higher objective function value
than the globally optimal medium-term schedules created related using discrete- and
continuous-time MILP models. In example 2, the continuous-time GA-based approach
was tested on a problem with a more complex facility topology as well as a longer
demand profile. The GA solution met all of the product demands on time significantly
outperforming the discrete-time MILP solution, which despite the global optimality and
available production capacity only met approximately 86% of all product demands on

time.

121

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

5. Multi-Objective Biopharmaceutical

Capacity Planning and Scheduling

5.1. Introduction

In the previous chapter, a novel variable-length GA-based optimisation approach was
developed for continuous-time medium-term capacity planning and scheduling of
multi-suite, multi-product biopharmaceutical facility. The novel variable-length GA was
demonstrated to be an efficient and flexible optimisation approach outperforming both
discrete- and continuous-time MILP models on literature-based industrial case
studies. However, both case studies were single-objective while in reality
biopharmaceutical companies have to consider multiple objectives and constraints

that are often conflicting.

Hence this chapter builds upon the variable-length GA and scheduling heuristic
described earlier by incorporating multiple objectives, including maximising the total
production throughput, minimising the cumulative deviations from the strategic
product inventory targets whilst satisfying demands on time and avoiding product
waste over a 3-year period. The continuous-time scheduling heuristic described in the
previous chapter is extended with additional constraints and features such as rolling
product sequence-dependent changeovers, varying manufacturing vyields, and
product QC/QA approval times. The functionality of the multi-objective variable-length
GA is illustrated on an industrially-relevant case study. The GA-based scheduling
optimisation approach developed in this chapter is demonstrated to generate a set of
production schedules with optimal number and length of manufacturing campaigns to

satisfy the aforementioned objectives and constraints. The importance of the genetic

122

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

operators introduced in Chapter 4 and the impact of the starting number of genes on

the performance of the GA are also investigated.

This chapter is organised as follows: Section 5.2 lists the input data and describes
the multi-objective biopharmaceutical scheduling problem in more detail. The
methods of this chapter are described in Section 5.3. Section 5.3.1 explains how the
variable-length chromosome structure described in Chapter 4 was modified to suit the
scheduling problem of this chapter. Section 5.3.2 describes the key parts of the GA
with a focus on multi-objective selection and constraint satisfaction components.
Section 5.3.3 presents the extended continuous-time scheduling heuristic for
evaluating the objective values of each candidate solution and decoding
chromosomes into production schedules. The results and discussion are given in
Section 5.4. Section 5.4.1 defines the bounds of the objective space and sets a
benchmark for the multi-objective GA by first solving the scheduling problem of this
chapter with a single-objective GA. Section 5.4.2 evaluates the individual impact of
the population size and the number of generations on the performance of the multi-
objective GA. Section 5.4.3 investigates the importance of each genetic operator.
Section 5.4.4 evaluates the impact of the starting number of genes. Finally, the
results of the multi-objective GA are discussed and compared with the single-

objective GA in Section 5.4.5.

5.2. Problem Definition

The focus of this chapter is on multi-objective capacity planning and scheduling of a
multi-product biopharmaceutical facility with 1 USP and 1 DSP suite. The topology of
the facility is illustrated in Figure 5.1. The problem statement of the industrial case

study is as follows:

123

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Given:
o A start date (1-Dec-2016) and a planning horizon of 3 years
o A set of biopharmaceutical products { A, B, C, D}
o USP and DSP processing times
o Product-dependent manufacturing yields
o Product sequence-dependent changeovers
o Varying amounts of product stock available at the beginning of the
schedule
o Desired minimum and maximum number of batches per individual product
campaign
o Unique manufacturing requirements to produce the batches in multiples of
a specified number
o QC/QA approval times
o 3-year profile of strategic product inventory targets
o 3-year profile of uncertain monthly product demand
Determine:
o A setof production schedules and the number and length of manufacturing
campaigns for each one
o Production quantities along with inventory and late delivery profiles
So as to (constrained deterministic multi-objective problem):
o Maximise the total production throughput
o Minimise the total inventory deficit, i.e. cumulative differences between the
monthly product inventory levels and the strategic inventory targets
Subiject to:
o The total backlog being no greater than 0 kg, i.e. meet all product demands
without delays

o The total waste being no greater than 0 kg

The demand forecast comprises a planning horizon of 3 years (1096 days) with

realistic monthly due dates. It is often not enough just to be able to meet the product

demand on time. In order to be able to deal with unforeseen events and uncertainties

such as unplanned facility shutdowns or higher-than-anticipated product demands,

biopharmaceutical companies strive to meet specific strategic product inventory

124

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

targets. The strategic inventory targets are listed alongside product demand in Table

5.3.

. \ 7 ,I,
Ny /
~. \
.

Figure 5.1. Biopharmaceutical facility topology.

The facility is assumed to be available for the entirety of the 1096-day planning
horizon. Before the biopharamceutical products can be shipped to meet the demand,
they have to pass the 90-day QC/QA process. For example, if a demand for a certain
product is due on the 31 March 2018, then the material must be manufactured by the
31 December 2017. Product sequence-dependent changeover time (Table 5.1) is
incurred only when there is a switch between different product manufacturing
campaigns. Any excess or expired product is considered as wasted material which
must be avoided/minimised. Each product has a different manufacturing yield which
determines how many kilograms are produced in a single batch. Additionally, due to
specific DSP requirements, product D needs to be produced in multiples of 3 batches.

The complete process data for the industrial case study is provided in Table 5.2.

Table 5.1. Product-dependent changeovers [days].

To product
A B C D
B A 0 10 16 20
£ 3 B 16 0 16 20
O ©
I o C 16 10 0 20
o D 18 10 18 0

125

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.2. Process data for the industrial case study.

Product

A B C D
Inoculation duration [days] 20 15 20 26
Seed duration [days] 11 7 11 9
Production duration [days] 14 14 14 14
USP duration [days]* 45 36 45 49
DSP duration [days] 7 11 7 7
QC/QA duration 90 90 90 90
Shelf-life [days] 730 730 730 730
Yield per batch [kg] 3.1 6.2 4.9 5.5
Storage limit [kg] 250 250 250 250
Opening stock [kg] 18.6 0 19.6 320
Minimum batch throughput per campaign 2 2 2 3
Maximum batch throughput per campaign 50 50 50 30
Produce batches per campaign in multiples of 1 1 1 3

1USP duration is a sum of inoculation, seed, and production durations

The first objective is to maximise the total kilogram throughput of the production
schedule. It is calculated as the sum of throughputs from individual manufacturing
campaigns. The second objective is to minimise the total inventory deficit — a
cumulative difference between the inventory level and the corresponding strategic
target whenever the latter is greater than the former. The multi-objective optimisation
problem is also subject to the following constraints: the total amount of backlog and
product waste must be < 0 kg. The way the constraints were handled in the model will

be explained in the subsequent sections.

126

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.3. Product demand followed by the strategic inventory targets inside the
brackets.

Product
Due date A B C D
1-Jan-17 0(6.2) 0(0) 0(0) 0(22)
1-Feb-17 0(6.2) 0(0) 0 (4.9) 5.5 (27.5)
1-Mar-17 3.1(9.3) 0 (0) 0(9.8) 5.5 (27.5)
1-Apr-17 0(9.3) 0 (0) 0(9.8) 0 (27.5)
1-May-17 0(12.4) 0 (0) 0(9.8) 5.5 (27.5)
1-Jun-17 3.1(12.4) 0 (0) 0(9.8) 5.5 (33)
1-Jul-17 0 (15.5) 0 (0) 4.9 (19.6) 5.5 (33)
1-Aug-17 3.1(21.7) 0(0) 4.9 (19.6) 5.5 (27.5)
1-Sep-17 3.1(21.7) 0(0) 0(4.7) 5.5 (27.5)
1-Oct-17 3.1(24.8) 0(0) 0(19.6) 0 (27.5)
1-Nov-17 0(21.7) 0(0) 0(19.6) 11 (38.5)
1-Dec-17 6.2 (24.8) 0(0) 9.8 (19.6) 5.5 (33)
1-Jan-18 6.2 (27.9) 0 (0) 4.9 (14.7) 0(33)
1-Feb-18 3.1(21.7) 0 (0) 0 (19.6) 5.5 (33)
1-Mar-18 6.2 (24.8) 0 (0) 4.9 (19.6) 5.5 (33)
1-Apr-18 0 (24.8) 0 (0) 0(14.7) 11 (33)
1-May-18 3.1(24.8) 0 (0) 0(14.7) 5.5 (27.5)
1-Jun-18 9.3 (27.9) 0(6.2) 4.9 (19.6) 5.5 (33)
1-Jul-18 0(27.9) 0(6.2) 9.8 (19.6) 0(33)
1-Aug-18 6.2 (27.9) 0(6.2) 0(9.8) 5.5 (33)
1-Sep-18 6.2 (31) 0(6.2) 0(19.6) 5.5 (38.5)
1-Oct-18 0(31) 0(6.2) 0(19.6) 5.5 (33)
1-Nov-18 6.2 (34.1) 6.2 (6.2) 4.9 (19.6) 11 (38.5)
1-Dec-18 9.3(34.1) 0(6.2) 4.9 (19.6) 5.5 (33)
1-Jan-19 0 (27.9) 0(6.2) 0 (24.5) 0(33)
1-Feb-19 9.3 (27.9) 0(6.2) 9.8 (34.3) 11 (33)
1-Mar-19 6.2 (27.9) 0(6.2) 0 (24.5) 0(33)
1-Apr-19 3.1(27.9) 0(6.2) 0(29.4) 11 (44)
1-May-19 6.2 (34.1) 6.2 (6.2) 4.9 (39.2) 5.5 (33)
1-Jun-19 3.1(34.1) 0(6.2) 9.8 (39.2) 5.5 (33)
1-Jul-19 0(31) 0(6.2) 9.8 (29.4) 0 (33)
1-Aug-19 9.3 (31) 0(6.2) 0 (19.6) 11 (33)
1-Sep-19 6.2 (21.7) 0(6.2) 4.9 (19.6) 11 (22)
1-Oct-19 9.3 (15.5) 0(6.2) 9.8 (14.7) 0(11)
1-Nov-19 6.2 (6.2) 0(6.2) 4.9 (4.9) 5.5 (11)
1-Dec-19 0 (0) 6.2 (6.2) 0 (0) 5.5 (5.5)

5.3. Methods

Chapter 2 defined a list of key requirements for the GA-based scheduling optimisation

tool including the flexibility and applicability to a wide range of biopharmaceutical

127

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

facility models. In order to accomplish this, it is important to continue developing such
a framework that could be used to solve a variety of biopharmaceutical scheduling
problems without having to make significant changes to it. Therefore, the work of this
chapter re-uses a lot of the methods described in Chapter 4, i.e. variable-length
chromosome structure, genetic operators, scheduling heuristic. The focus of this
section is on the changes and the additional features added to the GA and the
scheduling heuristic, e.g. the multi-objective optimisation, the handling of constraints,

rolling product changeovers.

Similarly to Chapter 4, the GA-based DST was applied in this chapter to solve the
industrially-relevant ~ multi-objective scheduling problem of multi-product
biopharmaceutical manufacture. The API developed in Python was used for data 1/0O
and visualisation such as plotting of Gantt charts and Pareto fronts. The variable-
length multi-objective GA and the continuous-time scheduling heuristic were both
implemented in C++ programming language and compiled with a gcc-8 compiler.
Appendix B discusses the technical details and demonstrates an example of the GA-
based DST application using Python API. The scheduling problem of this chapter has

been solved on an Intel i7-4770HQ based macOS 10.13.5 system 16GB of RAM.

5.3.1. Chromosome Structure

The biopharmaceutical facilities described in the scheduling problem examples in
Chapter 4 had relatively complex topologies with multiple USP and DSP suites. Each
variable-length chromosome consisted of genes encoding USP suite and product
labels and the number of batches produced. According to the problem definition of
this chapter, the biopharmaceutical facility has only 1 USP and 1 DSP (Figure 5.1).
Hence, the amount of information that needs to be encoded by each gene can be

reduced by removing the USP suite labels (see Figure 5.2.a).

128

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

In order to demonstrate the flexibility of the novel encoding strategy developed earlier,
the core idea behind the variable-length chromosome structure is preserved in this
chapter: a 1-D list of genes is used to encode a production schedule. Every gene in
the list contains a product label { A, B, C, D } and a number of batches. Figure 5.2.b
displays an example of what a variable-length chromosome looks like at the start

(GEN 0) and after 100 generations (GEN 100) of the GA have elapsed.

a) Gene Chromosome
§ Fields o Fields |
| product . objective i
! num_batches | ipC i
' pMutP . | pSwap !
pPosB . 1 vector<Gene> genes
: pPNegB o |
; L Methods |
i Methods i Cross(Chromosome other) !
| Mutate() ' 1 Mutate() i
| MakeNewGene() . | SwapGenes()
i MutateProductNum() T
+ MutateNumBatches()

b)

Product 1

= @ @ EEEE

Figure 5.2. Variable-length chromosome:

(a) UML diagram representations of the gene and chromosome structures

(b) An example of a variable-length chromosome at the start (GEN 0) and end of the
GA (GEN 100). The values in the boxes correspond to the number of batches
produced. The product label is denoted by the color.

The order of the genes (from left to right) defines the timing of each manufacturing
campaign. e.g. the second gene in the chromosome encodes the second
manufacturing campaign in the production schedule. The initial population is created
by generating a pool of random chromosomes containing a single gene. With the aid

of special genetic operators described in Chapter 4, the chromosomes are enabled to

129

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

grow and shrink in length over the course of the GA. The impact of the starting number

of genes on the algorithm’s performance is assessed in detail in the results section.

5.3.2. Genetic Algorithm

With the exception of the USP suite mutation operator, all other genetic operators
described in Chapter 4 and the aforementioned variable-length chromosome
representation are integrated into a multi-objective GA that is based on NSGA-II.
NSGA-II is well-know for its effectiveness at solving a wide variety of multi-objective
problems, e.g. see Raisanen and Whitaker (2005) and Hamdy et al. (2016). The multi-
objective variable-length GA employs a generational reproduction scheme using two
populations (parents and offspring) with a fixed number of chromosomes. Parent
population is used to keep track of the best solutions found, i.e. provides elitism, while
the offspring population is a result of crossover, mutation, and selection operators.
Figure 5.3 displays a high-level schematic of the key steps of the multi-objective GA
developed in this chapter. After the initial population of single-gene chromosomes is
created and evaluated, the steps are performed continuously until the maximum
number of generations is reached. For completeness, the descriptions of the genetic

operators described in Chapter 4 have also been included in the schematic.

The scheduling problem of this chapter is a constrained multi-objective optimisation
problem. An area of the objective space where the corresponding solutions do not
meet the constraint requirements is known as infeasible region. Production schedules
that are not able to meet all product demands on time and/or result in a certain amount
of product waste (either due to expired shelf-life or exceeded storage limits) would
belong to the infeasible region. Constraint handling and representation in heuristic-
based optimisation is a difficult issue (Harjunkoski et al., 2014). Simpler constraints

such as the fact that a valid schedule has to be a permutation of jobs or product

130

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

NSGA-Il Ranking

1 procedure Rank(parents, offspring)
2 R = combine parents and offspring population
3 F = using non-dominated sort, get a list of all non-dominated fronts from R
4 N = |parents|
5 i=1

4 parents = @
5 while |parents| + |F| <N

6 Assign crowding distance to the chromosomes in F;
7 Add F; to parents

8

i+=1
9 end while
10 Sort F; in descending order according to the crowding distance
1" Insert the first N — |parents| elements of F;into parents

12 end procedure

Binary Tournament Selection based on Constrained-Domination

= |If both chromosomes violate constraints, select the one with the smaller violation
= Otherwise, select the one that Pareto dominates the other or has a greater crowding distance

Crossover

= Sort the chromosomes based on their length
= Apply uniform crossover on each pair of parent chromosomes with a rate of pC:
o If parent chromosomes have different lengths, exchange the genes until the end of a
shorter chromosome is reached
o Conditionally copy the genes from the longer chromosome to the shorter one

Mutation

= For each gene in the offspring chromosome:
o Mutate the product label with a rate of pMutP
o Increase the number of batches with a rate of pPosB
o Decrease the number of batches with a rate of pNegB
= Add a new random gene
= Swap the positions of two genes within the chromosome once with a rate of pSwap

Scheduling Heuristic

= Using product sequence-dependent changeovers and process data, decode the offspring
chromosome into a schedule

Product

HEEEEEE O

= Calculate the total production throughput, total inventory deficit, total backlog, and total
product waste levels

Figure 5.3. Schematic of the core steps of the multi-objective GA developed in
Chapter 5. Assuming the initial population has been created and evaluated, the steps
are looped through until the maximum number of generations is reached.

131

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

demands can be mapped into the problem representation and into the choice of
genetic operators. However, such implicit representation becomes harder with the

increasing number and complexity of constraint.

The most basic methods of constraint handling are to discard all infeasible solutions
or to apply a penalty function. More sophisticated methods include the use of repair
mechanisms to convert infeasible solutions into feasible ones during the search
process or the handling of only some of the degrees of freedom by the meta-heuristic
search strategy and fixing the remaining ones during the evaluation of the solution

(Harjunkoski et al., 2014), e.g. by using local priority rules (Piana & Engell, 2010).

In this work, repairing infeasible schedules was deemed to be too computationally
expensive. The penalty-based constraint handling was rejected to avoid introducing
additional parameters into the model. Moreover, according to Sand et al. (2008),
incorrectly applied penalty, e.g. too large, may prevent the heuristic from traversing

infeasible sub-regions in disjoint search spaces.

There have been several other constraint-handling approaches for the multi-objective
problems reported in the literature, e.g. Fonseca and Fleming (1998) and Ray et al.
(2001). For its simplicity and computational efficiency, a constraint-handling approach
proposed by Deb et al. (2002) is used together with a binary tournament selection to
choose more optimal, non-dominated solutions. The pseudocode for this procedure
is listed in Algorithm 5.1. Using this approach, the solutions which do not satisfy the
constraints of the problem, i.e. with a total amount of backog and/or product waste
greater than 0 kg, will not be selected, i.e. will be ranked lower by the NSGA-II ranking
algorithm, even if the values of the objectives are better than those of the solutions
which fully satisfy the constraints. Therefore, the GA initially selects the chromosomes

based on the extent of constraint statisfaction.

132

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Algorithm 5.1. Procedure for binary tournament multi-objective selection based on
constrained-domination (Deb et al., 2002). DetermineDominance procedure returns
an integer flag of 1 if solution g dominates p, -1 if p dominates g, and 0 if both solutions
are non-dominated.

1 procedure Select(q, p)
flag = DetermineDominance(q, p)
if flag ==
return g
else if flag == -1
return p
end if
if g.d > p.d = if both g and p are non-dominated select the solution with a larger crowding distance
return q
elseif p.d>q.d
return p
end if
13 Randomly select between q and p if both solutions have the same crowding distance
14 end procedure
15
16 procedure DetermineDominance(d, p)

17 if g.constraints != p.constraints = constraints variable is equal to the sum of all constraint violations

© 00 NO b wWN

B R
N R O

18 if g.constraints < p.constraints
19 return 1

20 return -1

21 endif

22 g_dominates = false
23 p_dominates = false

24 for each objective = all objectives are assumed to be minimised
25 if g.objective < p.objective

26 g_dominates = true

27 else if p.objective < g.objective

28 p_dominates = true

29 end if

30 end for

31 if g_dominates == true and p_dominates == false

32 return 1

33 else if p_dominates == true and q_dominates == false
34 return -1

35 end if

36 returnO

37 end procedure

5.3.3. Continuous-Time Scheduling Heuristic

The variable-length chromosomes are decoded into production schedules using a
continuous-time scheduling heuristic adapted from Chapter 4. In this chapter, the
scheduling heuristic describes the biopharmaceutical manufacturing model of a multi-

product biopharmaceutical facility with 1 USP and 1 DSP suite operating in a fed-

133

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

batch mode with staggered bio-reactors and rolling product sequence-dependent
changeovers. For completeness, Figure 5.4 provides UML diagrams of the key
objects used by the continuous-time scheduling heuristic. Algorithm 5.2 lists a brief

pseudocode explaining the schedule construction logic.

Batch | | Campaign } | Schedule
‘ Fields P Fields P Fields 3
: product : 1 product 3 throughput]
i kg i kg . !inventory_deficit |
! start ! i num_batches | I vector<vector<double>> S = sales profile !
! harvested_on ! istart ! vector<vector<double>> B = backlog profile |
stored_on first_harvest i i vector<vector<double>> W = waste profile
| expires_on : end 3 ivector<vector<double>>| = inventory profile !
i approved_on : | vector<Batch> batches | i vector<Campaign> campaigns 1

1 vector<vector<priority _queue<Batch>> inventory

Figure 5.4. UML diagrams of the key objects used in the scheduling heuristic of this
chapter to construct a schedule from a variable-length chromosome.

Algorithm 5.2. Pseudocode of the continuous-time scheduling heuristic part that builds
a schedule in this chapter.

1 procedure CreateSchedule(chromosome, schedule_start_date)
2 Create a new schedule object
3 if AddFirstCampaign(first gene in chromosome, schedule, schedule_start_date) == true

4 for each remaining gene in chromosome
5 if prev_gene.product != gene.product
6 if AddNewCampaign(gene, schedule) == false = product changeover
7 break
8 end if
9 else
10 if ContinuePreviousCampaign(gene, schedule) == false
11 break
12 end if
13 end if
14 end for
15 endif

16 return schedule

17 end procedure

18

19 procedure AddFirstCampaign(gene, schedule, schedule_start_date)
20 Create a new campaign object

21 campaign.product = gene.product

22 campaign.start = schedule_start_date

23 campaign.first_harvest = campaign.start + USP duration of campaign.product
24 if AddFirstBatch(campaign) == false

25 return false

26 else

27 AddRemainingBatches(gene, campaign)

28 endif

29 Add campaign to schedule.campaigns list

134

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic
part that builds a schedule in this chapter.

30 return true = will signal to CreateSchedule procedure to continue building the schedule
31 end procedure
32

33 procedure AddNewCampaign(gene, schedule)

34 Create a new campaign object

35 prev_campaign = last most recent campaign in schedule.campaigns list

36 campaign.product = gene.product

37 campaign.first_harvest = prev_campaign.end + changeover duration = see Figure 5.6.c
38 campaign.start = campaign.first_harvest — USP time of campaign.product

39 if AddFirstBatch(campaign) == false

40 return false

41 else

42 AddRemainingBatches(gene.num_batches — 1, campaign)
43 endif

44 Add campaign to schedule.campaigns

45 return true

46 end procedure

47

48 procedure ContinuePreviousCampaign(gene, schedule)

49 prev_campaign = last most recent campaign in schedule.campaigns list
50 return AddRemainingBatches(gene.num_batches, prev_campaign)
51 end procedure

52

53 procedure AddFirstBatch(campaign)

54 Create a new batch object

55 batch.product = campaign.product

56 batch.harvested_on = campaign.first_harvest

57 batch.stored_on = batch.first_harvest + DSP duration of batch.product
58 if batch.stored_on > planning horizon

59 return false = this will send a signal to CreateSchedule procedure to stop
60 endif

61 batch.kg = manufacturing yield of batch.product

62 batch.start = campaign.start

63 batch.approved_on = batch.stored_on + QC/QA approval time of batch.product

64 Add batch to campaign.batches list

65 Add batch to schedule.inventory for the appropriate batch.product demand due date
66 campaign.kg += batch.kg

67 return true

68 end procedure

69

70 procedure AddRemainingBatches(num_batches, campaign)

71 Ensure num_batches is within the minimum and maximum batch throughput bounds
72 Ensure num_batches is a multiple of the given number for gene.product

73 while num_batches > 1

74 Create a new batch object

75 prev_batch = last most recent batch in campaign.batches list

76 batch.product = campaign.product

77 batch.harvested_on = previous_batch.stored_on

78 batch.stored_on = batch.harvested_on + DSP time of batch.product

79 if batch.stored_on > planning horizon

80 return false = this will send a signal to CreateSchedule procedure to stop
81 end if

82 batch.kg = manufacturing yield of batch.product
83 batch.start = batch.harvested_on — USP duration of batch.product

135

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic
part that builds a schedule in this chapter.

84 batch.approved_on = batch.stored_on + QC/QA approval time of batch.product

85 Add batch to campaign.batches list

86 Add batch to schedule.inventory for the appropriate batch.product demand due date
87 campaign.kg += campaign.kg + batch.kg

88 num_batches = num_batches — 1

89 end while

90 last_batch = last most recent batch in campaign.batches list

91 campaign.end = last_batch.stored_on

92 end procedure

Figure 5.5 explains the concept of rolling product changeovers with a simple
illustrative example of how a two-gene chromosome is decoded into a production
schedule of two manufacturing campaigns. In Figure 5.5.a, the chromosome contains
two genes: one represents a manufacturing campaign of one batch of product A and
another — a manufacturing campaign of one batch of product C. The length of each
production campaign is determined based on the number of batches within each gene
and the number of USP and DSP days for the corresponding product. For example, it
takes 52 days in total (45 for USP and 7 for DSP) to produce 1 batch of product A.
The order of the genes within the variable-length chromosome determines the timings
of the manufacturing campaigns. Hence, the campaigns are scheduled in sequence
one after another. At the first glance, it might seem that the two manufacturing
campaigns in Figure 5.5.b overlap with each other. However, it only looks so because
of the aforementioned rolling product sequence-dependent changeovers. Figure 5.5.c
illustrates how the rolling changeovers are implemented. For example, once the
Inoculation stage of product A is complete, a changeover process can begin to
prepare the stage for product C while product A is in Seed stage. The rolling product
changeovers have the obvious benefit of making the utilisation of the available
production time more efficient. However, not every biopharmaceutical facility design
can allow this especially if the individual manufacturing stages do not take place in

separate rooms.

136

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

The product sequence-dependent changeover time is used to determine the start date
of the new campaign. This is illustrated by the black and white striped box which
separates the DSP stages of products A and C in Figure 5.5.c (see also Lines 37 and
38 in Algorithm 5.2). The manufacturing campaign of product C is scheduled in such
a way that its production stage ends 16 days, i.e. the number of changeover days

(see Table 5.1), after the end of the manufacturing campaign of product A.

>

1 batch 1 batch

Chromosome
o]

[1 2
Gene number

b)

A 52 days

Product

C 52 days

0 § 10 15 20 25 30 35 40 45 50 55 60 65 70 5

Day

Inoculation 20 days 20 days
Seed 11 days 11 days
Production 14 days 14 days

DSP 7 e 7 days

6 é £0 1‘5 Zb 2‘5 Gb 35 40 4‘5 5‘0 5‘5 6‘0 6‘5 76 7é
Day

Figure 5.5. An example of the relationship between (a) the genes (b), the decoded
production schedule displayed at a product campaign level, and (c) at a manufacturing
stage level.

Every finished batch of each product is added to an inventory that is also implemented
using a priority queue which ensures that the oldest batches are delivered first.
Similarly to the continuous-time scheduling heuristic described in the preceding
chapter, every product is assigned an individual priority queue for each due date.

Additional check is introduced to ensure that every batch of product has been

137

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

approved by the QC/QA before it can be delivered. The scheduling heuristic maintains
that each chromosome encodes a production schedule which starts and ends within
the set planning horizon. Genes encoding production campaigns beyond the planning

horizon are removed from the chromosome.

The crossover and mutation operators can sometimes cause multiple, consecutive
genes encode manufacturing campaigns of the same product. After the schedule has
been constructed, the heuristic combines the consecutive genes encoding the

campaigns of the same product into one. Figure 5.6. illustrates an example of this.

[
£ A
3
a B
E Cc
<)
=
o
0 1 2 3 4
Gene number
B
5 C
S
S
<3
&0 |
Al
0 20 40 60 80 100 120
Day

B
Cc

Chromosome

0 1 2 3 4
Gene number

Figure 5.6. Correction of the mapping of genes to the production campaigns. In (a),
the genes 2 and 3 correspond to the same product. The continuous-time scheduling
heuristic combines them into (b) one contiguous manufacturing campaign and re-
maps it to (c) a single a gene.

138

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

5.4. Results

In this section, the novel multi-objective variable-length GA developed earlier in this
chapter is used to generate 3-year production schedules for a multi-product
biopharmaceutical facility. The objectives and constraints of the capacity planning and
scheduling problem are to maximise the total kilogram throughput, minimise the total
kilogram inventory deficit whilst avoiding product waste and meeting all product
demands on time. The multi-objective results are discussed in Section 5.4.5 by
comparing the trade-offs between the best non-dominated solutions. Sections 5.4.2-
5.4.4 study the relationship between the GA, its genetic operators, and their
parameter values by varying them one at a time, keeping all the others unchanged,
i.e. by performing ablation studies. It is acknowledged this is not the most optimal way
because it does not account for the interactions between the operators (Eiben et al.,
1999). Nevertheless, this approach can given some useful insights about the relative
importance of each parameter and genetic operator. The following experiments are

performed:

= |n Section 5.4.2, the impact of the number of chromosomes on the GA’s
performance is investigated while keeping the number of generations constant
and vice versa.

= Section 5.4.3 assesses the importance of each genetic operator by comparing
the performance of the GA when the corresponding rate value is set to 0.

= Section 5.4.4 evaluates the effect of the starting number of genes on the GA’s
performance. Moreover, it investigates how the length of the chromosomes in the

best Pareto front changes as a function of the number of generations.

Every experiment is performed for 50 independent GA runs. The top Pareto fronts

from each individual run are combined and sorted again using the non-dominated sort

139

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

method (Deb et al., 2002) to obtain the best Pareto front. The performance of the
multi-objective GA is evaluated on the basis of the maximum and mean hypervolume
achieved after 50 runs. The hypervolume indicator measures the size of the area
between a reference point (worst possible objective functions values) and the Pareto
front. In this work, the maximum hypervolume is equal to the area between a
reference point and the best Pareto front whereas the mean hypervolume correspond
to the mean area size between a reference point and a Pareto front from a individual

GA run.

Using unary performance indicators to assess the performance of multi-objective
algorithms can be problematic (Zitzler et al., 2003). Nevertheless, the hypervolume
indicator is often used for assessing the performance of many multi-objective
evolutionary algorithms (Knowles et al., 2003; Zitzler & Kiinzli, 2004; Fonseca et al.,
2006). In this work, an improved dimension-sweep algorithm proposed by (Fonseca
et al., 2006) and provided by the DEAP framework (Fortin et al., 2012) is used to

estimate the hypervolume indicator.

5.4.1. Objective Space

In order to set a benchmark for the multi-objective GA and get a better understanding
of what the objective space looks like, the scheduling problem was first solved as a
single-objective optimisation problem. A single-objective GA with 1000 chromosomes
was run for 1000 generations 50 times (50 independent runs). In other words, a total
of 50M objective function evaluations were performed to find the best value of each
objective subject to the constraints of the scheduling problem (the total amount of

backlog and product waste must be equal to 0 kg).

140

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

The worst possible values of the objectives (when the total production throughput is
0 kg and when the inventory deficit is equal to the sum of all strategic product inventory
target values, i.e. 2651.7 kg) were used as a reference point for estimating the
hypervolume indicator. The best values of the objectives (total production throughput
of 630.4 kg and total inventory deficity of 184.8 kg) obtained with a single-objective
GA were combined to create an ideal point which together with a reference point were
used to make an assumption about the boundaries of the objective space for the
problem of this chapter. The total area of the objective space was also used to
normalise the hypervolume indicator to lie in the 0.0-1.0 range. Figure 5.7 displays
the reference and ideal points, the single-objective solutions, and the objective space
of the scheduling problem of this chapter. The results and statistics of the single-

objective optimisation are also provided in Table 5.4.

2500

N
o
o
o

1500 a4 Single-objective solution 1 [630.4, 469.3]
v Single-objective solution 2 [513.1, 184.8]

1000

Total inventory deficit [kg]

500 i

ldeal Poin

0 100 200 300 400 500 600
Total throughput [kg]

Figure 5.7. The objective space (dashed line) of the scheduling problem described in
this chapter. The objectives are to maximise the total production throughput and to
minimise the total inventory deficit subject to the sum of total backlog and product
waste being equal to 0 kg. The single-objective solutions were obtained with a single-
objective GA after 50 independent runs of 1000 generations with 1000 chromosomes.

141

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.4. The best individual objective values (bold) obtained with a single-objective
GA.

Single-objective solution

1. Maximise total 2. Minimise total
throughput inventory deficit
Total throughput [kg] 630.4 513.1
Total inventory deficit [kq] 469.3 184.8
Total backlog [kg] 0 0
Total waste [kg] 0 0
Starting length? 1
No. runs 50
No. generations 1000
No. chromosomes 1000
pC 0.108
pMutP 0.041
pPosB 0.608
pNegB 0.766
pSwap 0.471
Run time? 12.6s 13.7s

1 The starting number of genes per chromosome in the initial population.
2Mean run time of a single GA run.

5.4.2. The Impact of The Number of Chromosomes and The

Number of Generations

This section assesses the sensitivity of the multi-objective GA to the increasing
number of chromosomes while the number of generations is set to a sufficiently large
number and vice versa. The parameter values of genetic operators and the starting
number of genes used during the single-objective optimisation (Table 5.4) are also

applied here to the multi-objective GA.

Figures 5.8.a and 5.8.b illustrate how the maximum and mean hypervolume values
as well as the mean time of a single GA run are affected by the number of
chromosomes and generations, respectively. Tables 5.5 and 5.6. contain a more
detailed summary of the results and statistics of the experiments such as the objective
function values of the boundary solutions X and Y from the best Pareto front and the

number of unique non-dominated solutions in the best Pareto front. The best

142

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

attainment surfaces together with all non-dominated solutions collected from every

GA run using different parameter combinations are displayed in Figures 5.9 and 5.10.

Overall, the performance of the GA, i.e. maximum and mean hypervolume values,
improves with the increasing number of chromosomes and generations. Based on the
comparison between Figures 5.8.a and 5.8.b, it is apparent that the number of
chromosomes has a greater impact on the maximum and mean hypervolume than
the number of generations. For example, after 50 runs of 1000 generations with 100
chromosomes, the values of maximum and mean hypervolume are 0.992 and 0.982
+ 0.011 respectively, whereas, when the number of generations is set to 100 and the
number of chromosomes is set to 1000, the maximum and mean values increase to

0.994 and 0.991 * 0.005, respectively.

a) b)
1.000 80 1.000 80
0.995 _ |70 0.995 | _ _ * |70
. A r//’//////- [

0.990 A 60 0.990 60
0985 50_, 00985 50_
£ 2 £ LA
% L o % o
2 0.980 20E o980 20E
s - a -
g 5 2 5
I - <

0.975 0.975

0.970 20 0.970 20

0.965

0.960

Highest hypervolume
A Max hypervolume
—8— Mean hypervolume

200 400 600 800

No. chromosomes

1000

1200

10

0

0.965

0.960

Highest hypervolume
A Max hypervolume

—&— Mean hypervolume

200

400

600 800
No. generations

1000 1200

0

Figure 5.8. The impact of the number of (a) chromosomes and (b) generations on the
performance of the multi-objective variable-length GA. In (@), the number of
generations was fixed at 1000 whereas in (b) the number of chromosomes was set to
1000. The vertical lines denote the standard deviation of mean hypervolume. The
black dashed line marks the highest maximum hypervolume achieved.

143

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.5. The impact of the number of chromosomes on the performance of the multi-objective variable-length GA.

No. chromosomes

100 200 300 600 900 1200
Max hypervolume 0.992 0.990 0.992 0.994 0.994 0.994
Mean hypervolume? 0.982 +0.011 0.973 + 0.008 0.989 + 0.008 0.994 + 0.000 0.991 + 0.006 0.994 + 0.000
No. solutions? 35 31 35 35 37 35
Solution X3 [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4]
Solution Y3 [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3]
Run time* [s] 2.14 4.74 8.32 19.20 36.10 52.8
No. runs 50
No. generations 1000
Starting length® 1
Table 5.6. The impact of the number of generations on the performance of the multi-objective variable-length GA.
No. generations
100 200 300 600 900 1200
Max hypervolume 0.994 0.994 0.994 0.994 0.994 0.994
Mean hypervolume? 0.991 + 0.005 0.993 + 0.004 0.993 + 0.001 0.994 + 0.000 0.994 + 0.000 0.994 + 0.000
No. solutions? 35 35 36 35 36 37
Solution X3 [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4] [583.0, 193.4]
Solution Y3 [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3] [630.4, 469.3]
Run time* [s] 55 10.5 18.7 32.3 52.1 71.2
No. runs 50
No. chromosomes 1000
1

Starting length®

1 Mean * 1 standard deviation.

2The number of solutions in the best Pareto front.
3 The boundary solutions of the best Pareto front.
4 Average time elapsed for each of the 50 runs.

5 The starting number of genes per chromosome in the initial population.

144

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

a 500
) = Solutions from all 50 runs
4 Single-objective solution 1 So\utign
aso| T Single-objective solution 2 P
x Best non-dominated solutions
B
2 a00 4
=
] t
=
5
350
z
2
c
s
£ 300
=
]
]
[
250
.
200 Solution
™~ Ideal Poinj
400 450 550 600

Figure 5.9. All non-dominated solutions (black circles) and the best Pareto front (red crosses) with (a) 100, (b) 600, and (c) 1200 chromosomes.

500

500
Total throughput [kg]

a)

450
400
350

300

Total inventory deficit [kg]

X 4 > ®

Solutions from all 50 runs
Single-objective solution 1
Single-objective solution 2
Best non-dominated solutions

Solutien

250
200 T Solutinh '
- Ideal Poin,
400 450 550 600

Figure 5.10. All non-dominated solutions and the best Pareto front (red crosses) after (a) 100, (b) 600, and (c) 1200 generations.

500
Total throughput [kg]

b)

b)

Total inventory deficit [kg]

Total inventory deficit [kg]

500
* Solutions from all 50 runs
4 Single-objective solution 1 Solution
aso| T Single-objective solution 2
x Best non-dominated solutions
400
350
300
250
200 Solution X '
v Ideal Poinj
400 450 550 600

500
Total throughput [kg]

500
* Solutions from all 50 runs
4 Single-objective solution 1 Solution
aso| T Single-objective solution 2
x Best non-dominated solutions
400
350
300
250
200 solution X ;
v Ideal Poin;
400 450 550 600

500
Total throughput [kg]

145

c)

Total inventory deficit [kg]

Total inventory deficit [kg]

500

450

400

350

w
1=}
=]

N
w
=)

200

500

450

400

350

300

250

200

e Solutions from all 50 runs
4 Single-objective solution 1 Solution
v Single-objective solution 2
x Best non-dominated solutions
Solu
. Ideal Poing
450 550 600

500
Total throughput [kg]

X 4 » o

Solutions from all 50 runs
Single-objective solution 1
Single-objective solution 2
Best non-dominated solutions

Solution

450 550

500
Total throughput [kg]

600

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

However, the relationship between the GA’s performance and the number of
chromosomes is not perfectly linear, e.g. the maximum and mean hypervolume
values are actually higher when the number of chromosomes is 100 rather than 200
(Figure 5.8.a). The performance trend appears to be much more consistent with the
number of generations, i.e. increasing this number leads to an improvement. In both
cases, the maximum hypervolume stops improving once the total number of objective
function evaluations = 30M (50 runs of 1000 generations with 600 chromosomes or

50 runs of 600 generations with 1000 chromosomes).

The mean time of single GA run increases linearly with both the number of
chromosomes and the number of generations. Nevertheless, the computational
performance of the multi-objective variable-length GA developed in this chapter is
more affected by the number of chromosomes rather than generations. It takes longer
to run a GA with 1000 chromosomes for 100 generations than the other way around.

The reason for this is because the evaluation of the chromosomes is parallelised.

5.4.3. The Importance of Genetic Operators

In the previous chapter, a set of new genetic operators was introduced to give the
variable-length GA the means to search for the optimal number and permutation of
production campaigns manufacturing the right amounts of the product. In this section,
a series of ablation experiments is performed with a purpose of evaluating the relative

importance of the following genetic operators:

= Modified uniform crossover which takes place with a rate of pC.
= Product label mutation that affects each gene individually with a rate of pMutP.
= Positive (+1) and negative (-1) mutations of the number of batches encoded in

each gene with the rates of pPosB and pNegB respectively.

146

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

= Swap mutation — two genes are made to swap their positions once per

chromosome with a rate of pSwap.

First, a benchmark was established by performing 50 runs of the multi-objective GA
with 1000 chromosomes for 600 generations with all genetic operator parameter
values set to 0.5 (see Table 5.7.a). The number of chromosomes and the number of
generations were selected based on the findings from the previous section: out of all
the combinations studied, this one gave the best tradeoff between the maximum
hypervolume, the consistency of top non-dominated solutions from run to run, and the
computational performance. The impact of each genetic operator on the GA’s
performance was evaluated by setting the corresponing rate to 0. The results and
statistics of the experiments are provided in Table 5.7. The impact of disabling each
operator is also illustrated by displaying the best Pareto fronts and all non-dominated

solutions collected from the individual GA runs in Figure 5.11.

With the exception of product label mutation, individually disabling all other genetic
operators had a negative impact on the mean hypervolume. Assuming the importance
of each genetic operator can be quantified by the increase/decrease in mean
hypvervolume when it is disabled, then, according to the results of ablation
experiments, the operators can be ranked in the following order (from the most to the

least important):

1. Negative mutation of the number of batches. Disabling this operator reduced the
base case mean hypervolume from 0.930 + 0.009 to 0.844 + 0.061. Moreover, the
consistency of the GA’s performance was signficantly reduced. In Figure 5.11.e,
the non-dominated solutions collected from the individual runs are a lot more

widely scattered compared to the base case (Figure 5.11.a).

147

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

2. Positive mutation of the number of batches. Without this operator, the base case
mean hypervolume dropped from 0.930 to 0.912 whereas the standard deviation
increased from 0.009 to 0.016. Compared to the negative mutation of the number
of batches, the impact was not as severe because the GA had other means of
increasing the number of batches. For example, several consecutive genes can
sometimes end up encoding the same product label because of the crossover,
swap mutation or the addition of a new gene. The continuous-time scheduling
heuristic combines the consecutive genes with the same product label summing
up the number of batches from each gene.

3. Swap mutation. Compared to disabling the uniform crossover, the impact of
disabling the swap mutation on the mean hypervolume was only slighty more
negative. However, the variability in non-dominated solutions from run to run was
nearly four times larger.

4. Madified uniform crossover. Disabling this genetic operator had negligible impact
on the maximum and mean hypervolume values.

5. Product label mutation. The GA is capable of varying the product labels through
crossover, swap mutation, and the addition of a new gene. Therefore, disabling
this operator likely made the overall search process more directed which is also

relfected by the improved maximum and mean hypervolume values.

Therefore, the recommendation for selecting the starting parameter values for solving
biopharmaceutical scheduling problems similar to the one of this chapter would be to
set pNegB, pPosB, and pSwap high with pNegB > pPosB > pSwap > 0.5 and set pC

and pMutP low (0.0-0.1 range) or disable altogether.

148

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.7. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f)
swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case when the parameters of all genetic

operators are set to 0.5.

a) b) C) d) e) f)
Maximum hypervolume 0.957 0.959 0.994 0.958 0.960 0.946
Mean hypervolume? 0.930 £ 0.009 0.923 £ 0.007 0.993 £ 0.003 0.912 £0.016 0.844 £ 0.061 0.920 £ 0.026
No. solutions? 17 13 37 22 12 18
Run time? [s] 29.0 28.9 29.1 29.1 28.9 29.2
No. runs 50
No. generations 600
No. chromosomes 1000
Starting length* 1
pC 0.5 0
pMutP 0.5 0
pPosB 0.5 0
pNegB 0.5 0
pSwap 0.5 0

1 Mean * 1 standard deviation.

2The number of solutions in the best Pareto front.

3 Average time elapsed for each of the 50 runs.

4The starting number of genes per chromosome in the initial population.

149

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

500

a_) T b) 500 — C) 500
e Solutions from all 50 runs e Solutions from all 50 runs | e Solutions from all 50 runs
4 Single-objective solution 1 ' 4 Single-objective solution 1 4 Single-objective solution 1 Solution
o
450 v Single-objective solution 2 \.‘. 450 ¥ Single-objective solution 2 450 v Single-objective solution 2
x Best non-dominated solutions & i x Best non-dominated solutions x Best non-dominated solutions
- - -
o o o
X 400 X 400 X 400
= = =
&] &
= [~ =
< 5 <
350 350 350
2 z . 2
£ 2 . £
c . c - c
: : g 0 :
E 300 . E 300 . E 300
5 ! . 5
E = E
250 . 250 Solution 250
200 200 200 Solution
v Ideal Poing v Ideal Poinf v Ideal Poin
400 450 500 550 600 400 450 500 550 600 400 450 500 550 600
Total throughput [kg] Total throughput [kg] Total throughput [kg]
d 500 - e 500 - . f 500 .
» Solutions from all 50 runs . * Solutions from all 50 ryns » Solutions from all 50 runs
4 Single-objective solution 1 4 Single-objective solugion 1¢ 4 Single-objective solution 1 Y
aso| ¥ Single-objective solution 2 . aso| ¥ Single-objective solution 2 . 450/ ¥ Single-objective solution 2 o
x Best non-dominated solutions s | % Best pon-dominated solutions x Best non-dominated solutions ‘é
o e &
— = . . — .
g 400 X, 400 g 400
= £ =
B S ¢ 5
k] E mG k]
T . . . T
350 350 350
o g e o
g £ . . g
c € b c o
3 ¢ . 3
> 2 >
£ 300 E 300 £ 300
= - . . ¢ - .
z] T Soluti
3 g . 3Solution X
(= o = (=
250 % 250 Solution 250
.
. SQlutibn X
200 200 . 200
v Ideal Poing - - -\deal Poing v Ideal Poin
400 450 550 600 400 450 550 600 400 450 550 600

500 500
Total throughput [kg] Total throughput [kg]

500
Total throughput [kg]

Figure 5.11. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and
(f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case when the parameters of all genetic
operators are set to 0.5.

150

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

5.4.4. The Impact of The Starting Number of Genes

This section evaluates how the starting number of genes in the variable-length
chromosome affects the performance of the multi-objective variable-length GA. A total
of 5 experiments were performed: when the starting number of genes is 1 (a base
case), 3, 6, 9, and 12. Each experiment was performed by running the GA with 1000
chromosomes for 600 generations and 50 runs with all genetic operator parameter

values set to 0.5.

According to the results displayed in Figure 5.12 and listed Table 5.8, increasing the
starting number of genes does not have a significant positive or negative impact on
the maximum and mean hypervolume achieved with the multi-objective variable-
length GA. Nevertheless, there was a slight improvement in the performance when
the starting number of genes was increased from 1 to 3 (the base case maximum and
mean hypervolume increased from 0.957 and 0.930 + 0.009 to 0.966 and 0.933 +
0.009) and from 1 to 6 (the base case maximum and mean hypervolume increased
from 0.957 and 0.930 % 0.009 to 0.963 and 0.933 + 0.009). However, increasing the

starting number of genes beyond 6 decreased the performance slightly.

1.00

A Max hypervolume

—— Mean hypervolume
0.99 yp

0.98

Hypervolume

=
©
B

o
©
w

0.92

091 2 4 6 8 10 12

Starting no. genes

Figure 5.12. The impact of the starting number of genes on the maximum and mean
hypervolume. Vertical lines denote the standard deviation of mean hypervolume.

151

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.8. The impact of the starting number of genes on the maximum and mean hypervolume.

a) b) c) d) e)
Maximum hypervolume 0.957 0.966 0.963 0.958 0.954
Mean hypervolume? 0.930 £ 0.009 0.933 £ 0.009 0.933 £ 0.009 0.929 £ 0.012 0.927 £ 0.01
No. solutions? 17 18 18 21 18
Run time3 [s] 29.9 29.8 29.9 29.9 30.0
No. runs 50
No. generations 600
No. chromosomes 1000
Starting length* 1 3 6 9 12
pC 0.5
pMutP 0.5
pPosB 0.5
pNegB 0.5
pSwap 0.5

1 Mean + 1 standard deviation.

2The number of solutions in the best Pareto front.

3 Average time elapsed for each of the 50 runs.

4The starting number of genes per chromosome in the initial population.

152

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

5.4.5. Multi-Objective GA Results

This section highlights the advantages of the multi-objective approach for optimising
the production schedules of a multi-product biopharmaceutical facility by comparing
the boundary solutions X and Y of the best Pareto front with one another and with the
single-objective solutions. The reason for selecting the solutions for comparison from
the extreme ends of the Pareto front was to illustrate the trade-off between the two
objectives more clearly. As it was discussed earlier, the best Pareto front is generated

by re-sorting combined Pareto fronts collected from individual GA runs.

Figure 5.13 displays the total objective space that was determined with a single-
objective GA and the best Pareto front generated with a multi-objective GA side-by-

side. Table 5.9 provides the details about the Pareto front boundary solutions X and

a) b)
500
Solutions from all 50 runs
2500 A Single-objective solution 1 Solution Yg
450 v Single-objective solution 2
x Best non-dominated solutions
B 2000)
= 2 400
= =
g 5
s T
- ; T

21500 A Single-objective solution 1 [630.4, 469.3] 5, 350
S v Single-objective solution 2 [513.1, 184.8] :o:
c
g g
£ Z 300
= 1000 "__w
k] 5
= [

250

500 i
Ideal Poin 200 i
¥- = Solution Ideal Poin}
0 100 200 300 400 500 600 400 450 500 550 600
Total throughput [kg] Total throughput [kgl

Figure 5.13. Multi-objective optimisation results:

(a) Objective space determined with a single-objective GA.

(b) The best Pareto front (red crosses) and all non-dominated solutions (black circles)
collected from individual runs of the multi-objective variable-length GA (maximum and
mean hypervolume of 0.994 and 0.944 + 0.000).

153

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

Table 5.9. The boundary solutions X and Y of the best Pareto front generated with the
multi-objective variable-length GA.

Pareto front boundary solution

X Y
Total throughput [kg] 574.4 630.4
Total inventory deficit [kg] 191.4 469.4
Total backlog [kg] 0 0
Total waste [kg] 0 0
Starting length? 1
No. runs 50
No. generations 600
No. chromosomes 1000
pC 0.108
pMutP 0.000
pPosB 0.608
pNegB 0.766
pSwap 0.471
Run time? 20.0s 20.0s

1 The starting number of genes per chromosome in the initial population.
2Mean run time of a single GA run.

According to Figure 5.13 and Table 5.9, the multi-objective variable-length GA is
capable of finding solutions which meet all product demands on time and avoid
product waste and, at the very least, non-dominate the single-objective solutions. For
example, the total inventory deficit of solution X is only slightly larger than that of the
single-objective solution 2 (191.3 vs 184.8 kg) but it also has a larger total production
throughput (513.1 kg vs 574.4 kg). On the other hand, solution Y matches the single-
objective solution 1, i.e. the total production throughput and total inventory deficit are
the same for both (630.3 kg and 469.4 kg respectively). The key advantage of the
multi-objective GA over the single-objective one is that it provides more options. A
total of 36 unique non-dominated solutions were generated. Every production
schedule in the best Pareto front offers close-to-optimal (if not optimal) trade-off
between maximising the manufacturing capacity of a facility and maintaining a
balanced product inventory. A single production schedule can be selected from the
non-dominated solutions using, for example, a weighted sum method, Euclidean

distance (finding a production schedule that is closest to the ideal point in the objective

154

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

space) or using a more sophisticated Monte Carlo simulation-based sensitivity

analysis to evaluate the robustness of the schedule to the variations in product

demand.
a)

o | 8250150 o o1eses)
. C 44.1 (108) 34.3(94) 19.6(73)
g
=]
<
o

A 86.8 (241) 27.9(108) 12.4(73)

B 124 (58) 12.4(58)

46:— k 94@ %J, Lé’/e % 4’01— %')v.,%f %J, Yy % /1/0.', Lé’)v.,%» *% Vé’/e %, /161, %
<z <, <5 "0, b % 0, D O < .S Q2 2
Ov(@ 0‘(,\ 0»(’) 0() LA OJ) 0() thp 01,9 0{@ o ", 0\7‘5, 0\)\9 O\’g 0\7‘9 Yo 0{9 0{9 q"’a

o | | Me5@3®) 1s5@se)
. C 53.9 (122) 44.1 (108)
g
k=]
<
o

A 117.8 (311)

B 18.6 (69)

%Le 5 2 %’e % 2 L%o % 2 ", 2 ds’)e %”e %’e Lz"’o G@"e %"’e J%e %’e 4@’\3 %/v’o ‘F%e /%"e X 2
Qo % G G, 0 T, G Ty g 0 o "y Ky g Gy Yo Uy Uy %

Figure 5.14. Production schedules of (a) solution X and (b) solution Y from the best

Pareto front. The numbers in
manufactured, followed by the p

the boxes show how many kilograms are being
roduction time (days).

Figure 5.14 compares the production schedule of solution X with that of solution Y.

Every campaign in both solutions has a batch throughput that is within the minimum

155

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

and maximum bounds of the corresponding product. The special requirement of
product D to be produced in multiples of 3 batches has also been met. All campaigns
of product D in either solution has a humber of batches that is evenly divisible by 3.
The production schedule of solution X has 11 manufacturing campaigns which are
124-day long and produce 11 batches or 52 kg on average. In contrast, the production
schedule of solution Y comprises 7 manufacturing campaigns with an average
duration of 180 days, and average throughput of 19 batches and 90 kg. This difference
follows the overall pattern of the non-dominated solutions: shorter but more frequent
campaigns scheduled appropriately will lead to better balanced product inventory, i.e.
lower inventory deficit, but at the cost of lower total production throughput due to more
changeovers taking place. In Figure 5.16, the gaps between the strategic inventory
targets and the product inventory levels of solution Y are wider and more frequent
than those displayed in Figure 5.15 for solution X. The product inventory levels profile
of solution X has a more balanced, sawtooth-like pattern, i.e. the inventory tends
increase and decrease at a more even rate , compared to those of solution Y. For
example, the monthly mean inventory level of product D for solution X is 52.2 £ 20.7
kg; in contrast, the monthly mean inventory level of product D for solution Y is 61.9 £

41.2 kg.

This comparison illustrates the value of the variable-length chromosome structure for
multi-objective scheduling problems. First, it enables the scheduling optimisation to
take place in continuous-time. Second, it allows the GA to evolve a set of non-

dominated solutions with varying total numbers of production campaigns.

156

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

- .1 mHON UmuD - I@HON UMD - -llllllll mHON U&D - mHON UmuD
] ————n==d T AON] lmHQN NON] AmmmmmEERe==d 5 TQ7 AON * 6T0Z AON
o 6100 | @ —h 6707 120 o 6102 1O sl 6 10 100
© 610 das T gt 6 [0 2 dOS © 610¢ das - 610 das
bl 6T0C bny | + v 6 [0 DNY . S . 610¢ bny ———— [0 DNV
s D 610¢ In[] mm— 6 T 7 (N[= [alle e 6102 |nl . 6102 N[
Sc8 A== 6 TOZ UN(S cg Hﬂom un(S c 28 A== 6 T0Z UN[*= 510z Unf
c oc p==2Z7 6I0cAely | © ® = - 610¢ Aejy c S 25 pecaliimmm— 6 [0 ARIN = 610¢ Aely
m m W gummmnsann==d ¢ TOZ JdV m m W e E— G T () 7 ady m 5 W == T 7 JdY = 6T0Z Jdy
- - - = . e = - - . e
[6I0C Ue Lo ———— ()7 UE 5 ro 610¢ ue E— (7 UE
) - =4 8102 020 | 4 ¢ - ——— QT (¢ 30 = ¢ - — 810¢ 220 A e 0T (7 2300
mﬁwm mmm ﬂm%m w_wm .— " 810¢ das 4 810¢ das
8102 bnv Y 3707 DNV) . 8107 bnv Y mmmdu 0107 OV
groz Inl A m— 5707 N[" 810z Inf o m— 0 T0Z7 |N[
- ____ Y8TI0C unf 3 m— 0T 7 UN[0 - ____ {8102 UN[3 m—n 0 T UN[
--4810¢ Aein Aemmmmgn 0T (07 AR ° ~=4810¢ Ael sl 9707 A0
810z 4dv 810¢ 4dv 810¢ 4dv 8102 4dv
8T0C 1B %= 3T0C 1Bl > 8I0CIBW | = 2T0C Jel
s ey 2 e | 8 e
£10¢ 23Q £L10¢ 22Q itozosa | o 1102 220
LIQZ AON e [(07 NON P LTIQZ NON |+ ———/ T ()7 \ON
LT0Z 30 —— /707 120 [e) £I0Z PO Fa ——— 707 120
£10¢ dag p £10¢ da5 = f10cdes | 5 E 3 - L10¢ Qo5
n n @
Mmmm,:_q mmm,iq [J) L1oc Inf TEGT L1oz Inf
LTI0Z unf £10Z unf Y £10¢ unf zZ9z LT0Z unf
L102 Aew W mmmde /O ARIY [T0C Aey | = O = Wt [T0Z ABIN
LI0Z 4dv « mmt / 70 4dY £ £10Z 4dy " o mm—t / 07 JdY
foe iy =i g toeiy |44l =S o
£10Z uef £10Z uef @] £T0Z uef L —/ TOZ7 UR[
n =} n o n S} [o o © o o g Q 9 o © N =} [fa} o N [}) [=) o ©o© o © o o ©o o O
SomoN g~ @ oNoe R R N I N nomo4 g " owoNoe CEE RN A
Y 63 O [24
- 610c2ad [~4610¢ 220 610z22d [~4610Z 220
© 6L0C AON | @ _Z5s%610C NON _.-A |6T0ZAON | © _Iz#®{6T0Z NON
g erocdss | & e 2105 2 e = e 0106 G52
a @ - Phte [o] ~
by 6roC bny | ¥ A ~2=4610¢ bnvy 2] n‘ s derocbny | T S| ~-22246T0Z DNy
g D 610 Inf g - b 610¢ Inf 246102 IN[25 2 - 3 610Z Inf
S c 8 6102 un(ScgS - 6102 un(< #6102 un(Ses +« . 6102 un(
= R . A - « Ae E8E 4 . e
SES 610C Aeln | © gz — <6102 Al = 610¢ Aely g — ~1610C AelW
258 610¢ 1dv 259 B {610¢ ady < .1 e 6T0Z 4dY gcg <, {610¢ ady
o= efosasy | E0E e o< 2T0¢ G2 ¥ Siie |68 o< I0T0¢ aay
Lo 6I0¢ Ue Lo T “=T=MpT0¢ ue D A =3MpT0C Ue Lo T “3HeT0¢ ue
¢ 8TI0Z222d | ¥ ¢ b 78102 220 « « 8102230 | ¥ ¢ ' *°418T0¢ 230
n sl | e 1 * A —
810¢ das o {810¢ das [&] 4 * (8107 dos .. {810¢ das
810Z bnv Zr-a-o242107 BNy =] b &z=/810¢ bny To=a==22=4310¢ Dny
810Z In[* e” 810Z |n[ko] b =4g102 In[7 «” 8102 In[
810¢ unf s e J810¢ un(o < o< ~lg10¢ unf S e J810¢ unf
8T0Z Al - M3T0Z Ael = b &4 8T0¢ Aein ~ 438702 Aely
8102 4dv A 43107 Idv - Ag10¢ 1dy A 48107 Jdv
810¢ 1ep -« ®5810¢ 1o o 3107 Je « 518107 Jey
810¢ g4 “. 24810¢ 9°4 :] = »=3T0Z q94 “ 248107 924
810z ue[> ~8~g10g ue[Lo & < o9 T07 uef b) ~e“g10Z uef
e s ; o Sy e
- 1 I -
L10Z 320 « ! LI0Z 1O Yo} [l <« /102 120 « MZON 120
£19¢ Bne D i 8582 1 1100 By AR
]
L1oz inf . &=/ 10Z N[= TEGT ™~ X102 In[“. & /102 N[
L10Z unf B — VANV TV =) 292z a7 107 unf B —TA LAY
1102 Aeiy - 110¢ Aoy o £o £ dY 7102 ARy « 1102 Aely
£10¢ 1dy # L10¢ 1dy T | Mg/ T0Z 1dY # £10¢ 1dy
LI0Z 1e <« LT0Z e L 4 ¢ 4w /TOT JeI < LT0Z 1en
[107 934 ~ac 47702 9o R W=/ T0Z 434 ~4:4/702 924
41107 uef .oZoN uef “ .oZoN uef .oZoN uef
R 8 8 8 8§ 8 R 2] 8 8 8 8 R =2 8 8 8 R 2

(] 6]

157

Figure 5.16. Product ((_JA [1 B [C]C D) inventory levels of solution Y.

5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling

5.5. Summary

This chapter considered a real-life capacity planning and scheduling problem of multi-
product biopharmaceutical manufacture featuring multiple objectives and constraints,
product-dependent changeovers, QC/QA checks, and storage and shelf-life limits. An
adaptable, variable-length multi-objective GA and a continuous-time scheduling
heuristic were adapted from Chapter 4 to tackle the aformentioned scheduling
problem. The problem was first solved using a single objective GA to determine the
objective space and set a benchmark for the multi-objective optimisation. The
variable-length multi-objective GA achieved on average 99.4% of the total objective
space hypervolume and generated a Pareto front that, at the very least, non-
dominated the solutions obtained with a single-objective GA. Furthermore, all
solutions met the constraints of the planning problem including the special
manufacturing requirements. In the next chapter, the proposed approach will be
extended to generate production plans under uncertainty of the biopharmaceutical

environment.

158

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

6. Multi-Objective Biopharmaceutical

Capacity Planning Under Uncertainty

6.1. Introduction

In the previous chapter, the single-objective variable-length GA developed in Chapter
4 was extended with a multi-objective component for continuous-time optimisation of
total production throughput and monthly inventory levels of a multi-product
biopharmaceutical facility given a 3-year long product demand profile with multiple
intermediate due dates. Adding the ability to optimise several objectives
simultaneously was shown to be advantageous compared to the single-objective GA-
based approach. The multi-objective variable-length GA was used to generate a set
of production schedules that not only met all product demands on time without
exceeding storage and shelf-life limits but also provided a trade-off between
maximising the utilisation of the biopharmaceutical facility’s capacity and having a
more balanced product inventory. Nevertheless, the presented approach did so
deterministically without the consideration for an inherent feature of
biopharmaceutical manufacture which is the uncertainty of conditions in this

environment.

Meeting product demand in the biopharmaceutical industry is a highly sensitive issue
owing to the high value and importance of the products. However, the market demand
is often not known in advance and must be estimated. In case the demand uncertainty
is neglected during the planning process, the obtained production schedules may be
costly or even infeasible. For example, in the 1990s, Wyeth and Immunex (now
Amgen) developed Enbrel for the treatment of rheumatoid arthritis. When Enbrel was

finally launched in 1998, the demand was higher than what it was anticipated. Even

159

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

after increasing volume with their existing Enbrel CMO, both Wyeth and Immunex
were unable to satisfy the higher than expected market demand (Kamarck, 2006).
Malik et al. (2002) estimated that the lack of manufacturing capacity for the highly
successful arthritis drug, Enbrel, cost the company more than $200M in lost revenue
in 2001. Therefore, the biopharmaceutical companies must ensure an adequate

supply of the product.

Production plans created based on the assumption that the average product demand
scenarios will occur can be flawed. Savage (2002) called this phenomenon The Flaw
of Averages stating that whenever an average is used to represent an uncertain
quantity it ends up distorting the results as it neglects the impact of the inevitable
fluctuations. A decision to produce the amount equal to an average product demand
will lead to the profit that will be on average less than the profit associated with
average demand. Lower-than-average demand will lead to higher inventory costs and
increased chance of product waste while greater demand will exceed the capacity of
the facility and result in late deliveries. A better way to make plans under demand
uncertainty is by utilising Monte Carlo simulation which can be used to generate
hundreds of demand scenarios based on the whole range of possible values and their

likelihood of occurring.

The term Monte Carlo simulation (or method) was coined by Metropolis and Ulam
(1949) in reference to games of chance, a popular attraction in Monte Carlo, Monaco.
It was a codename for the simulations performed during the 1930s and 1940s to
estimate the probability that the chain reaction needed for an atom bomb to detonate
would be successful. The key idea behind Monte Carlo simulation is to use
randomness by generating draws from a probability distribution. Monte Carlo
simulation performs risk analysis by building models of possible results by substituting

a probability distribution for any factor that has inherent uncertainty. It then calculates

160

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

results over and over, each time using a different set of random values from the
probability functions. Depending upon the number of uncertainties and the ranges
specified for them, a Monte Carlo simulation could involve thousands or tens of
thousands of recalculations before it is complete. Monte Carlo simulation produces

distributions of possible outcome values.

In this chapter, the multi-objective variable-length GA from the previous chapter is
extended with a Monte Carlo simulation component to generate medium-term
production schedules that are robust to the variations in product demand. For the sake
of brevity, the integrated Monte Carlo simulation and multi-objective GA approach will
be referred to as the stochastic GA while the multi-objective GA without Monte Carlo
simulation will be referred to as the deterministic GA. The advantages of the
stochastic GA over the deterministic one will be demonstrated by comparing the
production schedules generated when the uncertainty in demand is ignored by using
only the most likely demand values and when it is accounted for by characterising it

with a probability distribution.

The chapter is organised as follows: Section 6.2 contains the input data and the
definition of the biopharmaceutical scheduling problem with uncertain product
demand. Section 6.3 describes how Monte Carlo simulation is integrated with the
multi-objective variable-length GA presented in the previous chapter and how the
combined approach is used to generate production schedules under the product
demand uncertainty. Additionally, the section explains how the stochastic GA is made
more efficient by accelerating the computationally expensive Monte Carlo simulations
using GPU resources. The results and discussion are given in Section 6.4. Similarly
to Section 5.4.1, Section 6.4.1 first defines the stochastic objective space and then
presents the best Pareto front generated using a stochastic multi-objective GA. The

trade-offs between the boundary solutions X and Y of the best Pareto front are

161

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

explored in Section 6.4.2. Section 6.4.3 shows the impact of neglecting the
uncertainty in product demand by comparing the production schedules generated
using the stochastic GA (GA with Monte Carlo simulation embedded in the
optimisation) and deterministic GA. Deterministic GA outcomes were tested with

Monte Carlo simulation post-optimisation.

6.2. Problem Definition

The scheduling problem from the previous chapter has been adapted to demonstrate
the features of the integrated multi-objective variable-length GA and Monte Carlo

simulation approach. For completeness, the problem statement is as follows:

= Given:
o A start date (1-Dec-2016) and a planning horizon of 3 years
o A set of biopharmaceutical products { A, B, C, D}
o USP and DSP processing times
o Product-dependent manufacturing yields
o Product sequence-dependent changeovers
o Varying amounts of product stock available at the beginning of the
schedule
o Desired minimum and maximum number of batches per individual product
campaign
o Unique manufacturing requirements to produce the batches in multiples of
a specified number
o QC/QA approval times
o 3-year profile of strategic product inventory targets
o 3-year profile of uncertain monthly product demand
= Determine:
o A set of production schedules
o The number and length of manufacturing campaigns
o Production quantities along with inventory and late delivery profiles
= So as to (constrained stochastic multi-objective problem):

o Maximise the total production throughput

162

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

o Minimise the median total inventory deficit, i.e. cumulative differences
between the monthly product inventory levels and the strategic inventory
targets

= Subject to:
o The median total backlog being no greater than 0 kg

It is assumed that the biopharmaceutical facility is available during the entire 3-year
(1096-day) period. The product demand is assumed to be due on the first day of each
month. The products must undergo a 90-day QC/QA process before they can be
delivered which must be taken into consideration when meeting the product demand.
Product sequence-dependent changeover time (Table 6.1) is incurred only when
there is a switch between different product campaigns. Each product has a different
manufacturing yield which determines how many kilograms are produced in a single
batch. Due to the QC/QA approval process, there is a certain amount of product stock
made available at the beginning of the schedule to meet the product demand during
the first 90 days. The complete process data for the industrial case study is provided

in Table 6.2. The strategic product inventory monthly targets are listed in Table 6.3.

In the last chapter, one of the objectives was to minimise the total inventory deficit
which was defined as the cumulative sum of the differences between the product
inventory levels and the corresponding strategic monthly targets whenever the latter
were greater than the former. In this chapter, the product demand is characterised by
a triangular probability distribution based on the specifications of minimum, maximum,
and most likely amounts for each due date (see Table 6.4 and Figure 6.1). Therefore,
the total inventory deficit and total backlog will have a corresponding distribution of
different values depending on the randomly generated product demand scenarios

during Monte Carlo simulation.

163

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

The goal of the stochastic GA is to generate a set of schedules that are the most
robust to the variations in product demand, e.g. with a high probability of meeting all
product demands on time. This is accomplished by maximising the total production
throughput and minimising the median total inventory deficit subject to the median
total backlog being no greater than 0 kg. The objective of the total production
throughput maximisation remains unchanged from the previous chapter as the
throughput from each individual manufacturing campaign is the same regardless of

the product demand scenario.

Table 6.1. Product sequence-dependent changeovers [days].

To product
A B C D
5 A 0 10 16 20
g 3 B 16 0 16 20
I © C 16 10 0 20
e D 18 10 18 0

Table 6.2. Process data for the industrial case study.

Product

A B C D
USP duration [days] 45 36 45 49
DSP duration [days] 7 11 7 7
QC/QA duration 90 90 90 90
Yield per batch [kg] 3.1 6.2 4.9 55
Opening stock [kg] 18.6 0 19.6 110
Minimum batch throughput per campaign 2 2 2 3
Maximum batch throughput per campaign 50 50 50 30
Produce batches per campaign in multiples of 1 1 1 3

Due to the skewness of product demand distributions (Figure 6.1) and the expected
non-symmetrical distributions of the stochastic multi-objective optimisation outcomes,
median was chosen as a measure of central tendency. Later in this chapter, non-
parametric statistical tests are applied to analyse the stochastic optimisation results

and compare them with the results from the deterministic optimisation.

164

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

Table 6.3. Strategic inventory targets.

Product

Due date A B C D

1-Jan-17 6.2 0 0 22

1-Feb-17 6.2 0 4.9 275
1-Mar-17 9.3 0 9.8 275
1-Apr-17 9.3 0 9.8 275
1-May-17 12.4 0 9.8 275
1-Jun-17 12.4 0 9.8 33
1-Jul-17 15.5 0 19.6 33
1-Aug-17 21.7 0 19.6 275
1-Sep-17 21.7 0 14.7 275
1-Oct-17 24.8 0 19.6 275
1-Nov-17 21.7 0 19.6 38.5
1-Dec-17 24.8 0 19.6 33
1-Jan-18 27.9 0 14.7 33
1-Feb-18 21.7 0 19.6 33
1-Mar-18 24.8 0 19.6 33
1-Apr-18 24.8 0 14.7 33
1-May-18 24.8 0 14.7 275
1-Jun-18 27.9 6.2 19.6 33
1-Jul-18 27.9 6.2 19.6 33
1-Aug-18 27.9 6.2 9.8 33
1-Sep-18 31 6.2 19.6 38.5
1-Oct-18 31 6.2 19.6 33
1-Nov-18 34.1 6.2 19.6 38.5
1-Dec-18 34.1 6.2 19.6 33
1-Jan-19 27.9 6.2 24.5 33
1-Feb-19 27.9 6.2 34.3 33
1-Mar-19 27.9 6.2 24.5 33
1-Apr-19 27.9 6.2 29.4 44
1-May-19 34.1 6.2 39.2 33
1-Jun-19 34.1 6.2 39.2 33
1-Jul-19 31 6.2 29.4 33
1-Aug-19 31 6.2 19.6 33
1-Sep-19 21.7 6.2 19.6 22
1-Oct-19 15.5 6.2 14.7 11
1-Nov-19 6.2 6.2 4.9 11
1-Dec-19 0 6.2 0 5.5

165

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

Table 6.4. Product demand uncertainty for a 3-year period.

Product

Due date A B C D

1-Jan-17 0 0 0 0

1-Feb-17 0 0 0 Tr(4.5, 5.5, 8.25)
1-Mar-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)
1-Apr-17 0 0 0 0

1-May-17 0 0 0 Tr(4.5, 5.5, 8.25)
1-Jun-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)
1-Jul-17 0 0 Tr(3.9,4.9,7.35) Tr(4.5,5.5, 8.25)
1-Aug-17 Tr(2.1, 3.1, 4.65) 0 Tr(3.9,4.9,7.35) Tr(4.5,5.5, 8.25)
1-Sep-17 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)
1-Oct-17 Tr(2.1, 3.1, 4.65) 0 0 0

1-Nov-17 0 0 0 Tr(10, 11, 16.5)
1-Dec-17 Tr(5.2, 6.2, 9.3) 0 Tr(8.8,9.8,14.7) Tr(4.5,5.5, 8.25)
1-Jan-18 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) 0

1-Feb-18 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)
1-Mar-18 Tr(5.2, 6.2, 9.3) 0 Tr(3.9, 4.9, 7.35) Tr(4.5,5.5, 8.25)
1-Apr-18 0 0 0 Tr(10, 11, 16.5)
1-May-18 Tr(2.1, 3.1, 4.65) 0 0 Tr(4.5, 5.5, 8.25)
1-Jun-18 Tr(8.3, 9.3, 13.95) 0 Tr(3.9,4.9,7.35) Tr(4.5,5.5, 8.25)
1-Jul-18 0 0 Tr(8.8, 9.8, 14.7) 0

1-Aug-18 Tr(5.2, 6.2, 9.3) 0 0 Tr(4.5, 5.5, 8.25)
1-Sep-18 Tr(5.2, 6.2, 9.3) 0 0 Tr(4.5, 5.5, 8.25)
1-Oct-18 0 0 0 Tr(4.5, 5.5, 8.25)
1-Nov-18 Tr(5.2, 6.2, 9.3) Tr(5.2,6.2,9.3) Tr(3.9,4.9,7.35) Tr(10, 11, 16.5)
1-Dec-18 Tr(8.3, 9.3, 13.95) 0 Tr(3.9,4.9,7.35) Tr(4.5,5.5, 8.25)
1-Jan-19 0 0 0 0

1-Feb-19 Tr(8.3, 9.3, 13.95) 0 Tr(8.8,9.8,14.7) Tr(10, 11, 16.5)
1-Mar-19 Tr(5.2, 6.2, 9.3) 0 0 0

1-Apr-19 Tr(2.1, 3.1, 4.65) 0 0 Tr(10, 11, 16.5)
1-May-19 Tr(5.2, 6.2, 9.3) Tr(5.2,6.2,9.3) Tr(3.9,4.9,7.35) Tr(4.5,5.5, 8.25)
1-Jun-19 Tr(2.1, 3.1, 4.65) 0 Tr(8.8,9.8,14.7) Tr(4.5,5.5, 8.25)
1-Jul-19 0 0 Tr(8.8, 9.8, 14.7) 0

1-Aug-19 Tr(8.3, 9.3, 13.95) 0 0 Tr(10, 11, 16.5)
1-Sep-19 Tr(5.2, 6.2, 9.3) 0 Tr(3.9,4.9,7.35) Tr(10, 11, 16.5)
1-Oct-19 Tr(8.3, 9.3, 13.95) 0 Tr(8.8, 9.8, 14.7) 0

1-Nov-19 Tr(5.2, 6.2, 9.3) 0 Tr(3.9,4.9,7.35) Tr(4.5,5.5, 8.25)
1-Dec-19 0 Tr(5.2, 6.2, 9.3) 0 Tr(4.5, 5.5, 8.25)

Note: Tr(x, y, z) denotes a triangular distribution where X, y, and z are the minimum, mode (most likely),
and maximum values.

166

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

Max

Median
Mode
Min

[}

> |6L02 220
6L0Z AON
6102 100
610z des
610z Bny
6L0Z Inr

6L0z unp
16102 ey
6102 1dy
6102 ‘el
6102 984
6L0Z uer
810z 28Q
* 8102 AON
810z 100
810z des
810z Bny
gLoZ Inr

gLoz unp
8102 AeN
810z 1dy
8L0Z Jel
810Z 9o
gL0z uer
110z 28q
1102 AON
/102 PO
110zg des
110¢g Bny
10Z Inp

/L0z unp
1102 Aen
210z 1dy
/102 Jeiy
2102 984

ol L0c uer

Max

Median
Mode
Min

610z 280
6L0Z AON
6102 120
610z des
610z Bny
6L0Z InP

6L0z unpe
6102 AN
610z 1dy
6102 1.l
6102 9e4
6L0Z uer
810z 28
8102 AON
810z 120
81L0¢ des
810z Bny
gLoz Inr

gLoz unp
810z Aen
810z 1dy
810z ‘el
810z 9o4
810z uer
110z 2=8q
/102 AON
/102 190
.10z des
110 Bny
Loz nr

Loz unp
1102 fen
210¢ 1dy
1102 ‘e
1102 9e4

14

12

10

By

~ Lb0c uer

Max

Median
Mode
Min

A A A A A

'y

®x

®x

®x

®x

®Xx

®x
ox
® X

®Xx
®x

[

ox

®Xx

* X
®x
*x
® X
*x

® X

®x

yvyvyvwvyvyw

16

12

B

X 10

<

Max

Median
Mode
Min

14

12

10

By

<t

6102 220
6102 AON
6102 120
610z deg
6102 Bny
6102 Inr

610z unp
6102 fel
6102 1dy
6102 ‘BN
6102 9o4
610Z uer
8102 220
8102 AON
8102 120
810z des
810z Bny
gL0z Inr

gL0zg unpe
8102 fel
810¢ 1dy
8102 1Bl
8102 9o4
810z uer
2102 220Q
/102 AON
1102 120
/102 des
1102 Bny
10z Inp

/1L0gZ unp
1102 Re
£10¢ 1dy
/102 1.y
/102 9o4
/102 ver

6102 220
6102 AON
6102 120
610z deg
6102 Bny
610z Inr

610z unpe
6102 fely
610¢ 1dy
6102 1Bl
6102 9°4
6102 uer
810z 220
8102 AON
8102 120
810z des
810¢ Bny
gLoz Inr

810z unpe
8102 Ae
810¢ 1dy
8102 JEel
8102 9o
810¢ uer
2102 28q
/10T AON
/102 120
210z deg
1102 Bny
/102 Inp

JL0z unpe
1102 Re
/102 1dy
2102 ‘e
/102 9o4
1102 uer

Figure 6.1. Min, median, and max product ((_JA 218 [C]JC D) demand values for each due date after 1,000 Monte Carlo simulation trials using

the corresponding triangular distribution from Table 6.4 as an input.

167

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

6.3. Methods

The multi-objective variable-length GA and the scheduling heuristic have been
implemented in C++ programming language and compiled with MSVC14 compiler to
run on a CPU. The Monte Carlo simulation component was developed using C++ and
CUDA 8.0 API and compiled with NVCC v8.0 compiler to run on a GPU. The
industrially-relevant capacity planning and scheduling problem of medium-term multi-
product biopharmaceutical manufacture under uncertainty has been solved on Intel
i5-6500 (CPU) and NVIDIA GTX-1060 (GPU) based Windows 10 system with 16GB

of RAM and 6 GB of VRAM.

The chromosome encoding strategy, genetic operators, NSGA-Il based multi-
objective optimisation, constraint handling, and the scheduling heuristic remain
largely unchanged from the previous chapter. Therefore, for the sake of brevity, the
focus of this section is placed on the implementation details of Monte Carlo simulation
integration with the multi-objective GA and steps taken to improve the performance of

the stochastic multi-objective GA-based framework.

Figure 6.2 provides a flowchart illustrating of how Monte Carlo simulation fits into the
GA-based scheduling optimisation framework from a high-level. First, a continuous-
time scheduling heuristic is applied to decode the variable-length chromosomes into
production schedules (the heuristic logic has been discussed in Chapters 4 and 5).
This is accomplished using the product sequence-dependent changeovers and
process data just the same way as it was described in the previous chapter. After the
schedule has been constructed, its robustness to the variations in product demand is
then tested by conducting Monte Carlo simulation trials. Hundreds of demand
scenarios are generated for each individual production schedule based on the

provided triangular probability distributions for each product and its every demand due

168

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

date. The performance of production schedule, e.g. total inventory deficit, total
amount of backlog, is evaluated on each randomly generated demand scenario. For
each Monte Carlo simulation trial t, the calculated values of total inventory deficit and
total amount of backlog are stored in | t |-dimensional arrays (see Lines 9 and 10 in
Figure 6.2). After the simulation trials are completed, the medians of the total inventory
deficit and total backlog distributions are assigned to the corresponding chromosome

as the objective and constraints values.

‘ Variable-length chromosome ‘

I (50 (50 I
g

Scheduling heuristic

! Using product sequence-dependent changeovers and process data, decode the chromosome into a schedule

o10e
L1102
102
0z
LT0¢

H
H 1
H i
H i
! o) IS 12 batches. . Zbatches H
H 1
: i
i - i
: g ¢ 9 batches 11 batches H
H 3 !
' 2 '
i
1 S o 28 batches 13 baiches H
' i
H i
: B 2 2 5 1
H
H 1
' i
H
1
H 1
: 1
[o " [— o " H
: § g § 58§58 g FEY E 8 !
! ~ 8 B 8 [8O N
B B33 EanEgzEsesn :
@ ° 8 5 !
H

Objective function evaluation

1 procedure EvaluateSchedule(chromosome, schedule)
2 chromosome.objective; = schedule.total_production_throughput H
3 deficit_distribution, backlog_distribution = MonteCarloSimulationKernel(schedule) = executed on a GPU |
4 chromosome.objective, = Median(deficit_distribution) '
i 5 chromosome.constraints = Median(backlog_distribution) :
6 end procedure

7

8

9

procedure MonteCarloSimulationKernel(schedule) :
deficit_distribution € RN = used to store total inventory deficit value after each trial |

10 backlog_distribution € R/ = used to store total backlog value after each trial |
n for each simulation trial t in parallel
112 D = CreateDemandScenario(Tr) :
113 Build inventory and backlog profiles for D
14 deficit_distribution, = calculate total inventory deficit i
i 15 backlog_distribution, = calculate total backlog H
16 end for

17 return deficit_distribution, backlog_distribution !

1 18 end procedure

P19 .
1 20 procedure CreateDemandScenario(Tr) '
P21 D € RIpdI = create an empty demand array to store randomly sampled values |
P22 for each product p '
123 for each demand due date d :
. 24 D,y = random number drawn from the corresponding probability distribution Trpy :
1 25 end for H
126 end for |

127 return D
end procedure

[
©

Figure 6.2. Objective function evaluation of the chromosome using the continuous-
time scheduling heuristic and Monte Carlo simulation.

169

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

One the major drawbacks of Monte Carlo simulation is the associated computational
overhead. In this chapter, 1000 Monte Carlo simulation trials were applied for the
evaluation of each chromosome and the impact of this on the execution performance
can be seen in Figure 6.3.a. The average time elapsed for a single run of stochastic
GA with Monte Carlo simulation embedded into the optimisation was approximately
100-fold longer than that of a deterministic GA without Monte Carlo simulation.
Reducing the number of Monte Carlo simulation trials to improve the performance is
not ideal as the error of the simulation estimates is inversely proportional to the
number of trials. The larger the number of trials is, the more confident the estimates
are. Hence, it was necessary to find a way to improve the performance, i.e. execution

speed, without sacrificing the accuracy and confidence of the results.

a) b)

350 350
300 300

250 250

Time [s]
Time [s]

150 150

100

100

50 50

0

deterministic GA stochastic GA (CPU) stochastic GA (GPU) stochastic GA (CPU)

Figure 6.3. Average elapsed time for each of the 50 GA runs with 100 chromosomes
for 1000 generations:

(a) deterministic GA vs. CPU-only stochastic GA

(b) Stochastic GA with Monte Carlo simulation performed on a GPU vs. CPU-only
stochastic GA

Note: fitness evaluations deterministic and CPU-only stochastic GAs were performed
in parallel

Since the individual Monte Carlo simulation trials are independent form each other in

this study, the overall simulation process can be made more efficient through the use

170

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

of Single Instruction Multiple Data (SIMD)-based architectures. Modern GPUs are
optimised for SIMD type processing with massive parallelism. For example, compared
to an average consumer-grade Central Processing Unit (CPU) which typically has
from 4 to 8 cores, a single GPU can have over 2000 cores (Vanek et al., 2017). Figure
6.4 illustrates the difference between the high-level architectures of GPU and CPU.
Each individual Monte Carlo trial can be assigned to a single core on a GPU thus
enabling hundreds of trials to be performed in parallel with substantial savings in

computational power and time.

CPU GPU
32 Cores 32 Cores
Core 1 Core 2
32 Cores 32 Cores
Core 3 Core 4 : :
32 Cores 32 Cores

,,,

Figure 6.4. Comparison of a high-level architecture between a Central Processing
Unit (CPU) and a Graphics Processing Unit (GPU).

In this work, only the Monte Carlo simulation component from the stochastic multi-
objective GA-based framework was made to run on a GPU since it was found to be
the biggest performance bottleneck compared to other components. The execution of
the program was transferred from CPU to GPU every time
MonteCarloSimulationKernel (see Lines 3, 8-18 in Figure 6.2) was invoked during the
objective function evaluation. Once the simulation finished, the execution of the

program was transferred back to CPU to continue running the GA.

Accelerating Monte Carlo simulation with a GPU reduced the mean running time of a
single stochastic GA run by approximately 30 times (see Figure 6.3.b). In other words,

in the time it takes to complete a single run of a CPU-only stochastic GA, 30 runs of

171

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

a GPU-accelerated stochastic GA could be completed. As it was outlined in the
requirements section of Chapter 2, the ability to achieve solutions in a timely manner
is very valuable as it would enable the production schedulers to test more scenarios

and perform more case studies with different inputs in less amount of time.

6.4. Results

In this section, the validity of stochastic multi-objective GA outlined earlier is
demonstrated on an industrially-relevant case study of multi-objective
biopharmaceutical capacity planning and scheduling. The problem requires to
produce a set of optimal 3-year schedules for a multi-product biopharmaceutical
facility manufacturing 4 products under uncertain monthly demand. The objectives of
the capacity planning and scheduling problem are to maximise the total kilogram
throughput, minimise the median total kilogram inventory deficit. The optimisation

problem is subject to the constraint of 0 kg median total kilogram backlog.

First, Section 6.4.1 defines the objective space of the stochastic optimisation problem
using a single-objective GA with integrated Monte Carlo simulation The results
obtained using a stochastic, multi-objective GA with Monte Carlo simulation
embedded into the optimisation are discussed in Section 6.4.2 by comparing the
trade-offs between two non-dominated solutions selected from the extreme ends of
the best Pareto front. Section 6.4.3 strengthens the argument for stochastic
optimisation with a comparison of the production schedules generated using the
stochastic and deterministic GAs. The schedules generated with the deterministic GA
are tested using Monte Carlo simulation post-optimisation to show the impact of
optimisation using only the most likely values, ignoring the uncertainty in product

demand.

172

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

6.4.1. Stochastic Objective Space

In the preceding chapter, a single-objective GA was applied to obtain an ideal point
(a combination of the best objective function values) which together with a reference
point (a combination of the worst possible objective function values) was used to
assume the boundaries of the objective space. Knowing the total hypervolume of the
objective space, made it more convenient to gauge the performance of the multi-
objective GA using a hypervolume indicator normalised to 0.0-1.0 range (the higher,
the better). Moreover, this also made it easier to interpret and compare the different

Pareto fronts to one another.

Table 6.5. The best values of each objective (bold) obtained with the stochastic single-
objective GA.

Stochastic single-objective solution

1. Maximise total 2. Minimise median total
throughput inventory deficit
Total throughput [kg] 602.1 514.3
Median total inventory deficit [kg] 555.2 423.1
Median total backlog [kg] 0.0 0.0
No. Monte Carlo simulation trialst 1000
No. runs 50
No. generations 1000
No. chromosomes 100
Starting length? 1
pC 0.108
pMutP 0.041
pPosB 0.608
pNegB 0.766
pSwap 0.471
Run time3[s] 8.94 9.13

1 Number of Monte Carlo simulations for each chromosome evaluation.

2The starting number of genes per chromosome in the initial population.

3 Mean run time of a single GA run
The same methodology is also applied in this chapter. The scheduling problem with
uncertain demand is first solved using a single-objective GA that also has Monte Carlo

simulation embedded into the objective function evaluation. The highest total

production throughput and the lowest median total inventory deficit values are used

173

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

to create an ideal point (see Table 6.5) to define the limits of the stochastic objective

space for the scheduling problem of this chapter (see Figure 6.5.a).

a) b)
650
Ref, Point A Single-Objective GA solution 1
2500 v Single-Objective GA solution 2

600
B]
+= 2000 -
2 ©
] 5

L .

- > 550 Solution Yg
<§ & Single-objective solution 1 [602.1, 555.2] .2
g 1500 v Single-objective solution 2 [514.3, 423 1] 2
£ £
® w®
2]
,E < 500
8 1000 3
= =

450

500 +
v Solution X deal Point
Ideal Point N
0 100 200 300 400 500 600 460 480 500 520 540 560 580 600
Total throughput [kg] Total throughput [kg]

Figure 6.5. (a) Stochastic objective space and (b) the best Pareto front generated
using the stochastic multi-objective GA (hypervolume of 0.997). The gray shaded area
is used for illustrative purposes to show the area of the objective space that is
dominated by the Pareto front solutions.

Table 6.6. Boundary solutions X and Y of the best Pareto front generated using the
stochastic multi-objective GA (hypervolume of 0.997).

Stochastic Pareto solution

X Y
Total throughput [kg] 539.3 601.5
Median total inventory deficit [kg] 424.4 551.7
Median total backlog [kg] 0 0
No. Monte Carlo simulation trials! 1000
No. runs 50
No. generations 1000
No. chromosomes 100
Starting length? 1
pC 0.108
pMutP 0.041
pPosB 0.608
pNegB 0.766
pSwap 0.471
Run time3[s] 10.81

1 Number of Monte Carlo simulations for each chromosome evaluation.
2The starting number of genes per chromosome in the initial population.
3 Mean run time of a single GA run

174

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

The goal of the GA in this chapter is to generate a Pareto front of unique non-
dominated solutions with the maximum hypervolume value, i.e. as optimal as possible
in terms of the specified objectives and constraints. However, as it was described
earlier, the GA is an optimisation technique that is not guaranteed to converge on the
same solution(s) every time. Therefore, the top Pareto front is saved at the end of
each individual GA run. After all 50 runs are completed, the fronts are combined and
sorted again using the non-dominated sorting algorithm described by Deb et al. (2002)
to create the best Pareto front containing a set of top non-dominated solutions. Such
front of non-dominated solution with a hypervolume of 0.997 is displayed in Figure

6.5.b alongside the single-objective solutions and the ideal point.

6.4.2. Stochastic Multi-Objective GA Results

This section compares the solutions X and Y selected from the extreme end of the
best Pareto front generated after 50 stochastic GA runs with a population size of 100

for 1000 generations (see Figure 6.5.b and Table 6.6).

The production schedule of solution X (Figure 6.6.a) has a greater number of
manufacturing campaigns than solution Y (Figure 6.6.b). The average production time
per campaign of solution X is 117 days compared to 161 days for solution Y. Similar
to the previous chapter, the model predicted that more frequent but shorter
manufacturing campaigns scheduled according to a recurring pattern would lead to
better optimised product inventory levels but at the cost of lower total production
throughput because of the lost production time due to more frequent product

changeovers.

According to the Mann-Whitney U test, the difference between the total inventory

deficit distributions of the solutions X and Y (Figure 6.7.a) was found to be statistically

175

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

a)
oo mssy B2505 By S5 (119)
- C 49 (115) 53.9 (122) 9.8 (59)
S
=]
2
a
A- 89.9 (248) 46.5 (150) 6.2 (59)
B 1816 (69) 124s)
46{"_)‘/” %fe % l)!z/_b @%‘J%Leléov’ o,e . (’/eo‘s'%‘j% ‘}9"’99 N J@/O\S\@'Oe%beuo\j s’e
Uy s gy G, s By, G 0y Yy G B "y U 0y e Ry G, R R,

JN - wan | T

5 C 63.7 (136) 44.1 (108)
=
k=]
<
o
A 74.4(213) 58.9 (178)
B 31(91)

% %y b %, T % %

Yo, by By B Y S Ny %, Tt b Sy K
0, 0y 0
Yo o v

%, o, B U A Y, Ty S, %, R R S
D B, p T 0 S D W, D 0, D S B, <p o, O
Bp s s 0 2 R, Yy By U, e Ry, gy R By 2y %o

Figure 6.6. Production schedules of (a) solution X and (b) Y from the best Pareto front
after 50 runs generated using the stochastic GA. The numbers in the boxes show how
many kilograms are being manufactured, followed by the production time (days).

significant with a two-tailed p value of 0. Mann-Whitney U test is a non-parametric
alternative to independent samples t-test. The null hypothesis Ho of the test is that the
probability of a random observation from distribution X exceeding a random
observation from distribution Y is the same, i.e. P(X > Y) == P(Y > X). While Mann-
Whitney U test helps to evaluate the probability of the effect, it does not reveal any

details about its size. However, this can be evaluated by calculating the point estimate

176

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

of the Hodges-Lehmann’s median difference A which is equal to the median of all
pairwise differences between the two distributions (Hodges Jr & Lehmann, 1963). The
value of A between the total inventory deficit distributions of the solutions X and Y is
equal to 126 kg. This value can also be interpreted in the following way: the total

inventory deficit of the solution Y is 126 kg higher on average than that of the solution

X.
a) b)
Solution X Solution X
. 0.03 - 08
2 206
S 002 3
E’- g 04
2 =
0.00 .mHHH HHthHHm 0.0
Solution Y Solution Y
0.03 08
- >
3]
£ 206
=S 0.02 El
g 4
= £ 04
2001 =
| |
\\H” ‘ H”'HIHH 3
0.00 400 50 600 700 005 | e — T
Total inventory deficit [kg] Total backlog [ka]

Figure 6.7. Comparison of (a) the total inventory deficit and (b) total backlog
distributions between the solutions X and Y from the best Pareto front generated using
the stochastic GA.

The median total backlog is equal to 0 kg for both solutions (Table 6.7). Nevertheless,
solution X has a greater probability of meeting the product demand compared to the
solution Y (0.82 vs 0. 0.50). Using Mann-Whitney U test, the difference between the
total backlog distributions in Figure 6.7.b is also found to be statistically significant

(two-tailed p value of 0) with A of 0.1 kg.

The results of the stochastic multi-objective GA show that depending on the chosen
objectives and constraints, there can be multiple alternative solutions to a scheduling
problem even in the presence of uncertainty. The stochastic GA generates a set of
equally good alternative production schedules. Depending on the business strategy,

177

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

decision-makers can decide whether it is more acceptable to choose a production
schedule that would result in higher total throughput but also a higher risk of not being

able to meet the inventory targets and product demands on time or vice versa.

Table 6.7. Comparison of the solutions X and Y from the best Pareto front generated
using the stochastic GA.

Stochastic Pareto front solution

X Y
Total throughput [kg] 539.3 601.5
Max total backlog [kg] 8.2 16.0
Mean total backlog [kg] 0.2+0.6 71+43
Median total backlog [kg] 0 0
Min total backlog [kg] 0 0
P(total backlog < 0 kg) 0.82 0.50
Max total inventory deficit [kg] 683.4 786.0
Mean total inventory deficit [kg] 432.6 = 58.6 558.6 £ 59.0
Median total inventory deficit [kg] 424.4 551.7
Min total inventory deficit [kg] 259.4 355.6

6.4.3. Comparison with the Deterministic GA

This section of the results will discuss the merits of integrating Monte Carlo simulation
into the multi-objective variable-length GA for creating production schedules under
demand uncertainty. As mentioned earlier, the advantages will be illustrated by
comparing the stochastic optimisation results with a deterministic GA-based

approach.

The scheduling problem presented in this chapter was solved again but the
uncertainty in product demand was ignored and instead of the probability distributions
(Table 6.4) only the most likely product demand values were used as an input. First,
the objective space was defined using a deterministic single-objective GA without
Monte Carlo simulation. Then, a multi-objective GA, also without Monte Carlo

178

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

simulation, was used to generate the best Pareto front of deterministic solutions in a

similar way that was described in earlier in the last paragraph of Section 6.4.1.

a) b)
Ref. Point 4 Single-Objective GA solution 1
2500 goo| ¥ Single-Objective GA solution 2
2000
= = 500
= =
5 5
£ 3
> 1500 A Single-objective solution 1 [630.4, 464.3] >
g v Single-objective solution 2 [488.2, 174.8] .g 400
$ $
£ £
= 1000 |
Q2 ©
300
500 i
200 v
Ideal Point Solution X Ideal Point
0 100 200 300 400 500 600 450 475 500 525 550 575 600 625

Total throughput [kg] Total throughput [kg]

Figure 6.8. (a) Deterministic objective space and (b) the best Pareto front generated
using the deterministic multi-objective GA (hypervolume of 0.996).

Table 6.8. The best values of each objective (bold) obtained with a deterministic single
objective GA.

Deterministic single-objective solution

1. Maximise total 2. Minimise total
throughput inventory deficit
Total throughput [kg] 630.4 488.2
Total inventory deficit [kg] 464.3 174.8
Total backlog [kg] 0 0
No. runs 50
No. generations 1000
No. chromosomes 100
Starting length?! 1
pC 0.108
pMutP 0.041
pPosB 0.608
pNegB 0.766
pSwap 0.471
Run time?[s] 0.78 0.86

1 The starting number of genes per chromosome in the initial population.
2Mean run time of a single GA run

Table 6.8 lists the best single-objective values obtained with a deterministic single-

objective GA (without Monte Carlo simulation) whereas Figure 6.8.a shows the

179

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

boundaries of the deterministic objective space defined by the reference and ideal
points. The solution X (refer to Figure 6.8.b and Table 6.9) from the best Pareto front
generated with the deterministic multi-objective GA, i.e. without Monte Carlo
simulation, is compared to the solution X (see Figure 6.5.b and Table 6.6) from the
best Pareto front generated using the stochastic GA. For convenience, the two
solutions will be referred to as deterministic and stochastic solution respectively. To
be able to compare the deterministic solution with the stochastic one, Monte Carlo
simulation is used to conduct a stochastic analysis to assess its robustness to the

variability of product demand.

Table 6.9. The boundary solutions X and Y of the best Pareto front generated using
the deterministic multi-objective GA without the embedded Monte Carlo simulation-
based optimisation.

Deterministic Pareto front solution

X Y
Total throughput [kg] 498.5 630.4
Total inventory deficit [kg] 175.4 461.4
Total backlog [kg] 0 0
No. runs 50
No. generations 1000
No. chromosomes 100
Starting length?! 1
pC 0.108
pMutP 0.041
pPosB 0.608
pNegB 0.766
pSwap 0.471
Run time2[s] 3.07

1 The starting number of genes per chromosome in the initial population.
2Mean run time of a single GA run

Using only the most likely demand values, the deterministic solution (solution X from
Figure 6.8.b and Table 6.9) achieved the total throughput and total inventory deficit
values of 498.5 kg and 175.4 kg respectively. The production schedules of the
deterministic (Figure 6.9.a) and stochastic solution (Figure 6.9.b) are very similar: both

contain short but frequent recurring manufacturing campaigns. Therefore, at the first

180

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

glance, it might seem like the production schedule generated deterministically would
perform similarly to the production schedule generated using a stochastic GA under

uncertain product demand, i.e. have a similar median total inventory deficit and a

median total backlog equal to 0 kg.

a)
o [(60a3) i EE e
LA 52.7 (164) 49.6 (157) 217(94) 62(59) 124(73)
5
=
2
&
c 49 (115) 49 (115)
B 18,6 (69) 124(58) 12.4(58)
%#e‘é/}v’%e%’e% % % % %»‘34"3 0&@9%&9‘) %»T_, .bv.,%’eo‘%e%»e‘)%
OJG.Q?)OJ) 0()‘7) %% Q/@O\’ Q{ o "%, %, 0{99{9 Gy Yo %, OJ‘QQ)O
o | szsasy BEY S0
. C 49 (115) 53.0 (122) 9.8 (59)
5
=l
<)
o
A 80.9 (248) 465(150) 6.2 (59)
B 186 (69) 12,4 (58)
o, %J—e RS %Le N %"e RS oy, %"‘e Y Yo
Lo 0% s s T % Uy Gy e T R Yo U Uy 0 o e v

Figure 6.9. Production schedules of (a) the deterministic solution X and (b) stochastic
solution X from the respective best Pareto fronts. The numbers in the boxes show
how many kilograms are being manufactured, followed by the production time (days).

181

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

However, after Monte Carlo simulation was applied post-optimisation to evaluate the
robustness of the deterministic solution to the variability of demand, it was found that
the corresponding production schedule had a significantly lower probability of meeting

product demands on time.

a) b)
Stochastic Stochastic
0.03 - 0.8
>
2 S 06
S 002 3
g 204
- ‘ H u\a -
0.00 HHH”H‘ HH“mluHum 0.0
Deterministic Deterministic

o
o
w
o
(=)

oy oy

5 £ 06

S 002 g

g =4

E 204

=001)
Hm -

] ..
0.00 300 400 500 600 700 005+ | |é‘ [o V— 55 5=
Total inventory deficit [kg] Total backlog [kg]

Figure 6.10. A comparison of (a) the total inventory deficit (a) and (b) total backlog
distributions between the stochastic and deterministic solutions. after the stochastic
analysis with Monte Carlo simulation

Table 6.8. A comparison between the stochastic and the deterministic solutions.

Solution

Stochastic Deterministic
Total throughput [kg] 539.3 498.5
Max total backlog [kg] 8.2 27.1
Mean total backlog [kg] 0.2+0.6 71+43
Median total backlog [kg] 0 6
Min total backlog [kg] 0 0
P(total backlog < 0 kg) 0.82 0.01
Max total inventory deficit [kg] 683.4 776.5
Mean total inventory deficit [kg] 432.6 £ 58.6 504.8 + 74.1
Median total inventory deficit [kg] 424.4 501
Min total inventory deficit [kg] 259.4 238.4

Note: the stochastic solution was generated using a multi-objective GA with Monte Carlo
simulation embedded into the optimisation of the objectives. The deterministic solution was
obtained using a multi-objective GA without the integrated Monte Carlo simulation. Instead, Monte
Carlo simulation was used to perform a post-optimisation sensitivity analysis of the solution was
performed using it.

182

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

Figure 6.10 and Table 6.8 illustrate and list the results of the Monte Carlo simulation-
based sensitivity analysis of the deterministic solution and the comparison with the
stochastic solution generated using the multi-objective GA with Monte Carlo
simulation embedded into the objective function evaluation. The production schedule
generated using the deterministic multi-objective GA was capable of meeting all
product demands in only 14 randomly generated product demand scenarios out of
1000 in total (1.4%). Moreover, the median total inventory deficit level was also higher
(501 kg vs 424.4 kg) than that of the production schedule generated using the

stochastic GA with integrated Monte Carlo simulation.

80
-4~ |nventory target 25 --«- |nventory target
-&- Median demand -&- Median demand
650 —— Median inventory 20 —— Median inventory
15
40
=] o 10
S ‘Ai\ lA"A‘_ X
A A-A-‘" TaaLk ". A—A-lri—l-l—i k*‘—k-‘—t-‘-i—‘*i—’
AL AN Ak \ 5 !) ") !
20 AR X Iy ’ i oy I
/ N\ 1]) : 1 i’
A 3 0 : anl 15 :
LA | Als . s | OmeessstesssssssstetitiTetsiTioeese
Ie’s ‘d.\ “\ e p .\,r*o‘.lq /‘A
oleste st ttly Ny b4 Vs -5
PSP PP I R R~ 00 00 00 00 €0 €0 00 80 €000 S0 0T XTI I I T -1 Or\r\r\rsr\r\r\r\v\r\r\r\wmmwmmmwmwmwmmmmmmmmmmmm
[slelalslolslslele/lslslolslolalslelslolole/slole/slolslelelelelelelelele] [slelalslelelelolelslolelslolslalelslolololelelolalelalalelelelelelelele]
[SV[aN [V [V [oN[X [N [aN [¥ [N [N [aN[oN [o¥ [oV [aN [oN [a¥ [aN [oN [o [V oN[X [o¥ [N [aN [oN [SN [N [aN [N [oN oV [aN [N) AN NN AN AN N NN NN NN N IO NI NN NN NN NN
CO e S DAG 2 0CcO SRS >»CSAn20CcOEsS>c50Q5 29 COES>CcSDan2cass > cSoQAg2ocasEs >c50Qa5 29
To8 28535080080 8285350200808285350200 082053508005 0820853508005 08385350200
SL=<=5"Zn0ZA-L=<=5"2n0zZza->u=<=2"2n0zZ0 SL=I=5" 0z sI<=5"nCzo-Hu=<=5"InCz0
70 -+~ Inventory target -~ |nventory target
-#- Median demand 140 --#- Median demand
60 —— Median inventory 120 —— Median inventory
50 100
40
A 80
o s A =
X 30 I ! 3 X
/
60
40
/ kA z i—‘ - N
A Ak 3
I [} | h
M Eadt) e H '|l I‘ll l
_10V\Nr‘\V\VKI\T\V\P\HP\RWBOBQODOOODD&OJOOOODQDQC’)C?Q’C’)OCDO‘ICDC?G’)O‘JO‘! P PP P P =P R~ R~ 00 00 00 €0 €0 00 00 CO 00 00 QOO N NN Y Y YYD
0000000000000 00000000OCO00000OO000O0 [el=lelelololololelolelololelo/slololelolololo]o/olelelelele]elolelelele)
CNONON NN OO O NN N ON OO NN N N OV O NN N NN NN N NN N NN NN NN AN OO NN OV NN N NN NN N OO O NN N NN NN NN N NN N
COES>CSOaAp>0cOsS>cS0aE>20casEsS>c5003 >0 cOES>cSoom>0caosEE>c5oapn>0cakb=s>c50a3>0
Tows3 200 Sows3 L0090 S3mws3 Lo0 S3ws3 LS00 Sows3 Lo0 S2ws3 Loo
EL‘E§<§3"2302Q£$§<§E‘j2$OZDE$E<§;ﬁ’2$OZQ E$§<§3j<?($ozDE$§<§3ﬁ2$OZDEf§<§3ﬁgﬁozg

Figure 6.11. Individual product ((J ALD] B[] CIl D) inventory profiles of the
deterministic solution after the stochastic analysis with Monte Carlo simulation. The
negative inventory levels highlighted by the red ovals indicate the median amount of
unmet product demand.

Using the Mann-Whitney U-test, the difference between the total inventory

distributions of the deterministic and stochastic solutions is statistically significant

183

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

(two-tailed p value of 0) with A of 71.4 kg. The difference between the total backlog

distributions is also statistically significant (two-tailed p value of 0) with A of 6.4 kg.

More importantly, the deterministic solution has only 0.01 probability of meeting all

product demands on time compared to 0.82 probability of the stochastic solution.

According to Figure 6.11, the deterministic production schedule is expected to be

unable to meet the demand on time for products A and C on 6 separate due dates. In

comparison, the stochastic solution meets all product demands on time on average

(Fig

80
60

40

Kg

20

0

70
60
50

40

Kg

30

ure 6.12).

-4~ Inventory target 25 -+~ |nventory target
--o- Median demand -®- Median demand
—— Median inventory 20| T Median inventory
15
o 10
) ka] P4
y A*A"‘ Yk k *‘ A—A—A—i—‘-’-i A*A—tl—A*i—Ai—i—’
W aws 't \ 5 ! A i i
A Y / i i ‘. 3
/ '\ 1’ o 1K 1
A : 4 i R :
e | Al .l (eeeeesenetsssetnsessss 660006 200000
I'e"e L NN 4 A \/‘%ﬂ. ik 1\
oot ot 2Ty LA R 2y w 5
PP PP e s s - - 0000 00 0000 €0 00 00 CO 00 0 T DI DM D DD -1 Dr\r\r\r\r\mml\h-mmwoomwwmwmwwwmwmmmmmmmommm@
0000000000000 0O0O000000O0000OO0O0O0O0OOO [elololelolelelolelelelelelololelelelololelelelolelolelelololo{ololol o]
(SN ot [a[aN[o [N [o¥ [a¥ [N [oX [a¥ [N [aN [at [¥ [aN ot [a¥[aN[aF [N [aN[a¥ [t [a¥ [aX [aN[aN [l [a¥ [aX [o¥ (ol [aN [a¥ ¥) OOV OV OO O OO OO OV NN O OO NN OV OO OV OO N OO NN NN N NN
cCOLESNcsOag20caCLSacsoag20casSa>cs5005 20 coLLS>csoag>0coaLsE > cFsoamg>0cabs > c50052>0
@ Q. 3 3] @ O S990 [of=% S 980 [of=% S280 T 5290 [of=% 5950
BP2RE3532 303880212352 B0388 =22 352 3038 BPSRE 352 B0388PSRE 353 oS48 LSI2 352 Z028
-=*- Inventory target -+~ |nventory target
--#- Median demand 140 -#- Median demand
—— Median inventory 120 —— Median inventory
100
AA
2in 80
AN g
\
INA A 60
A 4 \
/
kA kA KA AL kAL AA
W ek N Y 40
! 3 4 --. & A -A*A
Akkd).\ 2X * ., A Ak
7
sessss TH L 1Y . =" HUNIH “a" \\. »
0 AR el H

Y R == = I~ I~ 0000 00 0O €0 €0 00 00 COC0 B0 T D I DT B> BN > HO

P P P P PP P P S 00 00 0000 €0 00 00 6000 00 0 0N DN H) H A HDH D HMH O

[eleleleleolelolelolelelolololelololeloslelelelolelelolelele/olelelelelele)
NI O N NN NN NN N N NN NN N N N N N

COL > CTSDaG20CO L2 CSOORE20COSs>c5008 20
50858535502 850858535083858825553505233
SUL=I<s57In0zZz05w =I5 An0zo-5u=I<=5"a2nCzn

OO000000000C000000C00000000000000000
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 6.12. Individual product (|:|A Osf0cHl D) inventory profiles of the
stochastic solution.

Based on the comparison between the deterministic and stochastic solutions, the

advantages of the stochastic GA are evident. The difference between the total

inventory deficit and total backlog distributions of the two solutions is statistically

significant. The stochastic solution has a much greater chance of meeting all product

184

6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty

demands on time despite the variations. Moreover, the monthly product inventory

levels of the stochastic solution are expected to be closer to the set strategic targets.

6.5. Summary

In this chapter, the novel continuous-time GA-based scheduling optimisation
approach described in Chapters 4 and 5 was extended with Monte Carlo simulation
to address an inherent and very important feature of biopharmaceutical industry —
uncertainty in product demand. The monthly demand for each product was
characterised with a triangular distribution defined by the minimum, most likely, and
maximum quantities. Integrating Monte Carlo simulation into the multi-objective GA
permitted the identification of more robust production schedules better suited to
handle product demand fluctuations. The benefits of an integrated GA and Monte
Carlo simulation approach were demonstrated by comparing it with a deterministic
approach. The production schedules generated with a deterministic GA were based
on the most likely demand values and did not account for the variability in product
demand. Hence, in scenarios where the product demand was higher than expected

the solution was shown as not able to meet all product demands on time on average.

185

7. Commercialisation

7. Commercialisation

7.1. Introduction

This chapter outlines a plan for potential commercialisation of the work generated
during this PhD. A minimum viable product (MVP) has been developed to
demonstrate the viability of the commercialisation plan. The following areas are

discussed:

= Delivery model — best way to deliver the software so that benefits both the clients
and the software developers.

= Architecture — the overall design of the software including database schema, user
experience (UX), and user interface (Ul).

= Revenue model — strategies for pricing the software based on its features.

7.2. Delivery Model

Traditionally, businesses would buy software, install it and maintain it on their own
machines. That software delivery model is giving way to a modern one known as

Software as a Service (SaaS).

The concept of Saas is relatively simple: just like e-mails or social media applications,
business applications can also be accessed with a Web browser over the Internet.
Instead of buying a license and installing the software on individual machines, a
business buys a subscription to use the application and services hosted in a cloud
environment. Cloud computing has become so popular that it was introduced as a
new word in the English language in 2012 (Dutt et al., 2017). According to the forecast

by the International Data Corporation (IDC, 2018), worldwide public cloud services

186

7. Commercialisation

spending is expected to reach $203.4B by 2020 and SaaS solutions are estimated to

account for about 60% of this spending.

SaaS model offers multiple benefits to software developers and buyers alike. For
buyers, the advantages include easier and more frequent upgrades, lower cost of
ownership, and better support from vendors as they have to be more responsive to
customers or risk losing subscription revenues (Dubey & Wagle, 2007). Moreover, the
investment in SaaS product development tends to be higher which also results in
higher software quality compared to perpetual licensing (Choudhary, 2007). For
software developers, the benefits of a SaaS approach include reduced deployment
time, streamlined software building and testing cycles using, for example, continuous
integration (CI) systems, and the ability to monitor software usage which can be used
to enhance it. Countering the advantages of SaaS are the risks of reliability and
security of the service. For example, some of the biopharmaceutical companies might

have concerns about data privacy.

SaaS model is especially attractive for deploying the GA-based DST developed
during this PhD. Using high-performance cloud computing environments, it is possible
to make the computationally demanding features, e.g. GPU-accelerated integrated
Monte Carlo simulation for stochastic optimisation, accessible to all users on virtually
any platform (including tablets, mobile phones, different Operating Systems —
anything that can run a Web browser). In contrast, using the traditional delivery model,
clients would be most likely restricted to one platform and would not be able to access
such complex features unless they invest in building the IT infrastructure and buying

specialist hardware with high-performance CPUs and GPUs.

Therefore, this chapter proposes to build and deliver the GA-based DST as a SaaS
application.

187

7. Commercialisation

7.3. Architecture

This section explains the proposed architecture of the SaaS solution for capacity and

scheduling of biopharmaceutical facilities using snapshots of an actual MVP.

7.3.1. Overview

The GA-based DST has been developed according to most of the requirements and

specifications outlined in Chapter 2. The tool comprises the following three core parts:

High-performance, multi-threaded C++ implementations of the work that was
presented in the previous chapters, i.e. GA-based scheduling optimisation
algorithms and biopharmaceutical scheduling models.

Python API which wraps up the C++ components, provides methods for data input
and output, results reporting and visualisation, Gantt charts generation, and also
makes the integration with other libraries or applications much more streamlined.
Django (Django, 2018) open source web framework which provides a user-friendly
platform to view and manage input data and scheduling optimisation results.
There are a number of different web frameworks available, but Django is the most
popular Python web framework that encourages rapid development, clean,
pragmatic design, and offers a very wide range of features available out-of-the-
box, including but not limited to a web server, extensible authentication system,
and an object relational mapping (ORM) tool for storing and retrieving data from a

relational database.

Figure 7.1 displays a high-level architecture of a SaaS application (GA-based DST)

that is hosted in a cloud environment and accessible over the Internet using a Web

browser. Django web framework is responsible for handling client’s requests using

Models, Views, Templates, and a Uniform Resource Locator (URL) Dispatcher,

188

7. Commercialisation

Models. A URL Dispatcher maps the requested URL to a View function and calls it.
For example, if a client requested to enter new or edit the existing data, a URL
Dispatcher would map that request to a corresponding View function which would
perform one or several Create, Read, Update, and Delete (CRUD) operations in the

relational database.

i High Performance C++ Components i
T I
: E
i GA-based Scheduling P
! Solvers Models 1 i
H I
R — s
1 Python API :
! 1
. e !
I
i Data Results E
: 110 Analysis !
: :
I = Schedules = Objectives |
1 = Product profiles = Constraints H
l;’ ! = Detailed lists of = Process data H
al tasks, campaigns, = Demand !
B and batches i
@l ! i
8| :
3 ; Django Web Framework i
| 1
(L] [Shhbhhbbbih ittt —— 1
H I
i Database i
| 1
| 1
| 1
| Al i
i i
: Model)
I o
1 : :
i View P
I 1
} URL Dispatcher Template 1
B e —— !
[— L------------_-_-_-_-________________________l
Web Browser
[Client |

Figure 7.1. High-level architecture of the GA-based Decision Support Tool
implemented as a SaaS application.

In an example scenario, if a client requests to create production schedules for a

specific facility, the URL Dispatcher would call a matching View function to retrieve

189

7. Commercialisation

the input data comprised of Facility, Product, Changeover, Demand, and
InventoryTarget tables (Figure 7.2) from the database using user_id and facility_id.
The input data is passed to Python API (see Figure 7.1) which connects the web
framework and the high-performance C++ implementations of the variable-length GAs
and scheduling models described in the earlier chapters. Python API is responsible
not only for transferring the data back and forth from the C++ components but also for
formatting, analytics, and reporting the results back to the web framework. After the
request is complete, the View function would save the output data in the Schedule,
Campaign, Batch, and Inventory tables (Figure 7.2), create a Template — an HTTP
object with tables, figures, and Gantt charts from the scheduling optimisation — and

render it using a Web browser.

vid i
i password !
: email
i last_login
' date_joined
\ Input Data | | Output Data |
‘ Facility ‘ ‘ Product ‘ [Demand J ‘ L Schedule J ‘ Campaign | [Batch
P id Pl bolid Plid bolid T
© i user_id i luser_id ' user_id i tuser_id i iuser_id i iuser_id
: label ; ! facility_id ' product_id i | facility_id ! |schedule_id i iproduct_id
\ {num_usp_suites | |label ' due_date : ! throughput ! |num_batches : :schedule_id
! | num_dsp_suites color ' kg_amount P inventory_deficit | i kg_amount : storage_date
. | description | usp_days backlog || start_date i approval_date
b ' dsp_days i ! waste ! end_date i expiry_date
! approval_days P e i delivery_date
1 | shelf_ife o T | Inventory |t
L lid | lkg_yield P jid i
© ! user_id i | opening_stock id Do {user_id |
' facility_id : kg_storage_limit user_id product_id
! | product_from_id : |min_batch_throughput | ! product_id i schedule_id
i i product_to_id i i max_batch_throughput | ! date A ! date
days i1 batch_multiple | kg_amount Lo ' kg_amount

Figure 7.2. Database schema utilised by the GA-based Decision Support Tool.

7.3.2. Input Data Setup

Before the SaaS application can be accessed, a new client would need to create a
user account first (Figure 7.3). A user account allows the client to write and save data
that is protected with a password. Moreover, the user account type determines how

190

7. Commercialisation

much the client will be charged for using the service (pricing is discussed in Section
7.4). Once a user account is created, a client can start entering the input data for the

scheduling problem.

eeeeeeee

Password

Figure 7.3. Sign up (Register) page view.

Biopharma Scheduling
You have no saved facilities.
+ New Faciity
Facility Lavel
Number of USP suites
Number of DSP suites
Description
Saved Facllities
show o vees ECIECCITEE S s
Lab Deserip usp #DSP suites A
o []

Figure 7.4. Entering facility data into the application. (a) and (b) display the different
ways of gaining access to (c) a facility form whereas (d) displays a facility data table.

191

7. Commercialisation

The first step is to enter data about the biopharmaceutical facility that needs to be
optimised. This can be accomplished by filling in the facility form (Figure 7.4.c) that is
accessible from the Facilities > New Facility tab (Figure 7.4.a). The form can also be
accessed by selecting the Facilities > Saved Facilities tab and then clicking the “+

New Facility” button (Figure 7.4.b).

Saved Facilities

b)

Biopharma Scheduling

Saved Products

ile e e o ®
H

Figure 7.5. Entering product data into the application. (a) displays how to access (b)
the form (only a portion of it is shown here) for entering data about an individual
product. (c) displays a product data table.

Once the data about the facility is set up (Figure 7.4.d), a client can then begin

assigning products to the facility. All forms for entering product-related data, including

192

7. Commercialisation

process data (7.5.b), product sequence-dependent changeovers, and product

demand, can be accessed from the Products > New Product tab (Figure 7.5.a).

Proguct |

b)

Product Changeovers

Figure 7.6. Entering product sequence-dependent changeover data into the
application. (a) shows the form for entering the data whereas (b) displays the product
changeover table with the data filled-in.

When all of the products are defined for a given facility (Figure 7.5.c), a client can
enter data about the product sequence-dependent changeovers. This is
accomplished by going over to the Products > Product Changeovers tab which gives
access to a product changeovers form (7.6.a). The changeovers data is set up by
adding individual rows specifying the product sequence (from-to), the duration (days),
and the facility since the changeovers are inherently dependent not only on the
product but also on the design and capabilities of a biopharmaceutical facility. The
product changeover data table is displayed in Figure 7.6.b. Finally, the product

demand and strategic inventory targets can be added to the database of the

193

7. Commercialisation

application by uploading CSV files containing the data. When the right file is added

and uploaded (Figure 7.7.a), a client is presented with a graphical output and a

message informing of success (Figure 7.7.b).

a)
Product demand
jemand data @
Choose fike
b)
Biopharma Scheduling About Pricin
Product demand
A A - ' :
"‘J\\ /) / /\\ f"\ A N -
R ff X [\ f\ "J \ / \\
] WA A P YR A
/ \ / \
[/N WV \/ " VYV
pload of product dota @

Figure 7.7. Uploading product demand data into the application: (a) before and (b)
after the upload.

7.3.3. Optimisation Setup

Once all of the required input data is in the database, the scheduling optimisation

dashboard for a specific facility can be accessed by clicking the Plan icon (Figure 7.8).

Saved Facilities

.....

Figure 7.8. Accessing scheduling optimisation dashboard.

194

7. Commercialisation

After having clicked the icon, a client is presented with a minimalistic dashboard that
displays only the key problem settings such as objectives, constraints, and the start
date of the schedule (Figure 7.9.a). The advanced settings such as the number of
runs, generations, and chromosomes, the rates of crossover and mutation operators

are also available and can be accessed by clicking the Advanced Settings icon (Figure

Biopharma Scheduling

There are no schedules for facility IE42

Total backiog ne greater than:
a1 p aste ne greate

uuuuuuu
2

There are no schedules for facility IE42
°

Randam state

Figure 7.9. Scheduling optimisation setup in the application. (a) lists only the key
scheduling optimisation settings whereas (b) displays an expanded list of advanced
mostly GA-related parameters.

Once all the parameters are set, the scheduling optimisation can be initiated by
clicking the Run scheduler button. When this button is pressed, the web framework
instructs the scheduling optimisation process to start running in the background. This
way the web page remains responsive and a client can continue interacting with it

195

7. Commercialisation

while the optimisation is running. In certain cases, the optimisation process can take
longer than a few seconds to complete. Therefore, a progress bar is used to inform of

the application status (Figure 7.10).

Figure 7.10. Scheduling optimisation in progress.

7.3.4. Visualisation of Results

When the scheduling optimisation is finished, the best non-dominated solutions
generated with the GA are transferred to the web framework using Python API for
display (Figure 7.11). First, a client will be presented with an interactive table of
solutions and, if the scheduling optimisation problem has two objectives, an

interactive graph of the best Pareto front (Figure 7.11.a).

Schedules for facility IE42

Figure 7.11. Scheduling optimisation results view. In (a), if the optimisation problem
has two objectives, an interactive chart of the best Pareto will be displayed. In (b),
every row in the table represents a unique schedule that can be inspected by clicking
the corresponding View schedule icon in the Actions column.

196

7. Commercialisation

b)

Schedules for facility IE42

Figure 7.11. (continued) Scheduling optimisation results view. In (a), if the
optimisation problem has two objectives, an interactive chart of the best Pareto will
be displayed. In (b), every row in the table represents a unique schedule that can be
inspected by clicking the corresponding View schedule icon in the Actions column.

Each row in the table corresponds to a unique production schedule which can be
inspected by clicking the View schedule icon in the Actions column (7.11.b). Clicking
this icon will bring up a detailed view of the schedule which includes an interactive
Gantt chart and an interactive table listing the production throughput, and the start

and end dates of each manufacturing campaign (Figure 7.12).

Campaign list

ssssss

Figure 7.12. Detailed view of a selected production schedule. In (a), manufacturing
campaigns can be inspected by hovering over them in the Gantt chart. In (b),
individual product profiles can be viewed by selecting the View inventory icon in the
Actions column of the production schedule table.

197

7. Commercialisation

b)

Campaign list

Figure 7.12. (continued) Detailed view of a selected production schedule. In (a),
manufacturing campaigns can be inspected by hovering over them in the Gantt chart.
In (b), individual product profiles can be viewed by selecting the View inventory icon
in the Actions column of the production schedule table.

The inventory profile, strategic targets, and demand of each product (Figure 7.13) can
be inspected by clicking the View inventory icon in the Actions column of the
production schedule table (Figure 7.12.a). Clicking this icon would return a web page

with interactive charts that display the quantities for each due date.

Inventory levels

Figure 7.13. Product inventory profile.

198

7. Commercialisation

7.4. Pricing

Unlike the traditional software development and delivery model, SaaS model has the
potential of reaching a broader range of users and building a relationship between a
producer and a customer that creates and captures value where the customer
participates actively. The relationship with them shapes the service and determines
which features are essential and which are not. Hence, it is important to let the
customers know that they are buying a highly customizable service that can be
improved with their feedback. The experience gained from a relationship with one
customer will also help bring new ones onboard. Therefore, the pricing of a SaaS
application can be quite complicated compared to on-premise software with perpetual

licenses.

Fortunately, with a SaaS model it is possible to charge for usage. The modularity of
the GA-based DST enables different pricing strategies. It is not necessary to pack all
of the application’s value into one single (and often large) number that can put off a
lot of smaller scale clients. For starters, clients could select one of three different
subscription plans priced proportionally to the number of features made available (see
Figure 7.14). A Free subscription plan would allow the users to test the basic features
of the platform at no cost which would provide some organic growth for the business.
A free user account can be thought of as the first step towards building a relationship
between a client and a SaaS provider. Free users can be later convinced to switch to
a paying subscription by showing them the value of the platform. The biggest
downside of Free subscription plan is its scalability. Too many free users can put a
strain on resources, e. g. storage space and processing speed, with a marginal benefit
to the service provider. A better alternative to a Free subscription plan would be a

limited trial period.

199

7. Commercialisation

Premium

LLLsLs

£0 / month £X / month £XX / month

Sign up ﬁ ”’ﬁ‘ Sign up

Figure 7.14. Monthly subscriptions plans priced proportionally to the number of
features provided by the service.

A client would have to pay for Basic and Premium subscription plans but also would
get access to a broad range of useful features such as the ability to create schedules
for a larger number of products and longer planning horizons, the ability to perform
sensitivity analysis and stochastic optimisation, and have the SaaS provider create a
scheduling model that is tailored to their biopharmaceutical facility. The main purpose
of a Basic subscription plan is to provide a reliable but moderate stream of revenue
from the customers who might not necessarily require customisation or complex
features but would like to use the tool to estimate the available capacity of the facility
or to evaluate the impact of shorter product changeovers or increased product
demand. A Premium plan with a high-level of customisation would suit customers who
operate uniquely designed facilities with distinct manufacturing capabilities and
deliver biopharmaceuticals in unpredictable markets. They are likely to benefit from
features such as multi-objective scheduling optimisation under uncertainty, e.g.

production yields and product demand, the most.

While the pre-defined and readily-available subscription plans are a good starting
point, it is better to understand the exact features that the customers value the most.
In addition to asking for a customer’s feedback directly, this can also be accomplished

by collecting and analysing usage data (especially from free or trial users). This would

200

7. Commercialisation

identify which group certain types of customers fall into and help determine the right

subscription plans.

7.5. Summary

This chapter described an implementation plan of the GA-based DST generated
during this PhD thesis. An MVP was developed to demonstrate the practical value of
the tool and the viability of the plan. It was proposed to deliver it as a SaaS application
because of the lower development and deployment costs, and a subscription-based
pricing model which would facilitate building stronger, mutually beneficial relationships

with the customers.

Once the SaaS application starts generating revenue, it could be expanded further to
include not only the models and algorithms for scheduling optimisation but also other
features such as process economics models (Farid, 2007), tools for assessing
process robustness (Stonier et al., 2012) and algorithms for process design and
optimisation (Allmendinger et al., 2012; Simaria et al., 2012). Additional features
would increase the value of the application, help retain the existing and attract the

new customers.

201

8. Conclusions and Future Work

8. Conclusions and Future Work

8.1. Introduction

Suboptimal scheduling of biopharmaceutical manufacturing campaigns can have
significant financial implications such as increased variable costs incurred by holding
too much inventory or loss of profit due to insufficient or underutilised capacity to meet
the product demand. In order to create a -cost-effective production plan,
biopharmaceutical companies need to consider a wide range of factors including but

not limited to:

= Product-dependent yields and process durations of individual manufacturing
stages.

= Manufacturing capabilities of the facility, e.g. the number of USP and DSP suites.

= Amount of time required for setup and clean-up between the manufacturing
campaigns. The duration of a changeover can depend not only on the products
but also on the sequence they are manufactured in.

= Product and process-dependent constraints, e.g. finite storage space and product
shelf-life, minimum and maximum production throughput limits.

= Multiple concurrent and often conflicting objectives, e.g. maximisation of profit,
minimisation of costs, maximisation of production throughput and capacity
utilisation, meeting all product demands on time, avoiding product waste,
minimisation of the differences between the monthly product inventory levels and
the corresponding strategic targets etc.

= Lengthy QC/QA approval times. The manufacturing campaigns have to be
scheduled in a such way that the product material is made available several weeks

or even months in advance of the delivery due date.

202

8. Conclusions and Future Work

= Uncertain variables inherent in the biopharmaceutical manufacturing environment

such as product demand.

This thesis has addressed all of these features of biopharmaceutical capacity
planning and scheduling. Moreover, a flexible Decision Support Tool (DST) (including
not only the Application Programming Interface but also a more user friendly web-
based interface) based on a Genetic Algorithm (GA) was developed to help the
biopharmaceutical companies tackle the said challenges and make better scheduling

decisions faster. The reasons for taking a GA-based approach were several:

= Most of the optimisation methods for biopharmaceutical capacity planning and
scheduling reported utilise discrete-time modelling and Mixed Integer Linear
Programming (MILP). There have been multiple MILP-model reported for single-
and multi-objective optimisation of biopharmaceutical capacity plans using
discrete- and continuous-time representations. In comparison, the number of
scheduling optimisation methods based on a GA or other alternatives is much
more limited. Therefore, there is significant potential for new research exploring
alternative optimisation methods for biopharmaceutical capacity planning and
scheduling.

= The tools for mathematical programming typically require high level of expertise
(Mustafa et al., 2006). There is also reported lack of transparency associated with
certain exact methods which often requires intervention from the specialists
(Widmer et al., 2008). In contrast, the core features of a GA are relatively simple
to implement (Deb, 2001) and combine with other methods such as Monte Carlo

simulation.

Briefly, the GA-based DST brings the following benefits to both academia and
industry:

203

8. Conclusions and Future Work

= A variable-length chromosome structure for continuous-time scheduling which
makes it possible to create accurate and realistic production schedules. The
validity of the variable-length GA was first demonstrated in Chapter 4 on two
industrial case studies adapted from the literature and compared with discrete-
and continuous-time MILP models. The same variable-length chromosome
structure was also applied in Chapters 5 and 6 to solve entirely new deterministic
and stochastic multi-objective case studies.

= Flexible multi-objective optimisation. The advantages of a GA-based multi-
objective optimisation were demonstrated in Chapter 5. Instead of a single
solution, the multi-objective GA presents a biopharmaceutical strategist with a set
of non-dominated solutions to choose from.

= |Integrated Monte Carlo simulation, i.e. stochastic GA, for generating production
schedules under product demand uncertainty. The benefits of stochastic GA were
demonstrated in Chapter 6. It identified production schedules which had high
probabilities of meeting all product demands on time despite the large variations.
In comparison, the production schedules generated with a deterministic approach,
i.e. GA without the integrated Monte Carlo simulation, had only < 2% probability
of meeting the product demands on time according to the post-optimisation Monte

Carlo simulation-based sensitivity analysis.

8.2. Contribution of This Thesis

The following Sections 8.2.1-8.2.5 outline the contributions of this thesis and briefly
describe the work undertaken to create a flexible and user-friendly DST for realistic
medium-term scheduling of a multi-product biopharmaceutical facility that could tackle

multiple conflicting objectives and the uncertainty of biopharmaceutical environment.

204

8. Conclusions and Future Work

8.2.1. Discrete-Time Biopharmaceutical Capacity

Planning and Scheduling

At the time of writing Chapter 3 there were not any relevant papers on GA-based
methods for biopharmaceutical capacity planning and scheduling. Therefore, the goal
was to fill in the knowledge gap by developing GA-based alternatives to the discrete-
time MILP-based models reported in the literature. The GA-based scheduling
optimisation was evaluated on two cases studies adapted from the literature. In the
first case study, a medium-term capacity planning problem of a single-site, multi-suite
biopharmaceutical facility was solved. The GA-based approach obtained the global
optimum faster than a MILP model. In the second case study, a more complex, long-
term capacity planning problem of a multi-site biopharmaceutical manufacture was
solved. A rolling time horizon approach was implemented to improve the GA
performance. Using this approach, the average optimality gap achieved with the GA

was 1.1%.

A Particle Swarm Optimisation (PSO) algorithm was used to automatically tune the
GA parameters. The objective of the PSO algorithm was to maximise the mean best
GA objective function value achieved after a given number of independent runs using

the parameters encoded in a particle’s position.

Other key contributions of Chapter 3 include a chromosome encoding strategy,
algorithmic adaptations that captured capacity planning objectives for multiple
products across multiple suites and facilities, and a rolling time horizon approach to

improve the GA performance.

205

8. Conclusions and Future Work

8.2.2. Continuous-Time Biopharmaceutical Capacity

Planning and Scheduling

The challenges and limitations encountered in Chapter 3 provided the motivation for
the development of unique GA-based scheduling optimisation methods that leveraged
the GA’s flexibility instead of attempting to solve the scheduling problems by adapting

the mathematical models.

Chapter 4 introduced a novel variable-length chromosome structure and an entirely
new continuous-time scheduling heuristic for decoding the chromosomes into full-
solutions, i.e. production schedules. The heuristic included a wide-range of
biopharmaceutical manufacture features such as product-dependent changeovers,
multiple intermediate demand due dates, backlogs, limited storage capacity, shelf-life,
and waste disposal. The validity of the new approach was demonstrated on two
literature-based examples of medium-term biopharmaceutical capacity planning and
scheduling problems. In the first example, the variable-length GA was applied to a
scheduling problem involving a single, multi-suite (2 USP and 2 DSP suites)
biopharmaceutical facility manufacturing three products. The GA-based approach met
all of the product demands on time and achieved a higher objective function value
than the discrete- and continuous-time MILP-based solutions reported in the
literature. In the second example, the variable-length GA was compared with a
discrete-time MILP-based model on a problem involving a longer demand profile and
a single, multi-suite (2 USP and 3 DSP suites) biopharmaceutical facility producing
four products. The GA solution met all of the product demands on time and achieved
an objective function value that was 33% greater than that of the globally optimal
discrete-time MILP solution which met approximately 86% of all product demands on

time.

206

8. Conclusions and Future Work

8.2.3. Multi-Objective Biopharmaceutical Capacity

Planning and Scheduling

Chapter 5 continued with the development of the variable-length GA for continuous-
time biopharmaceutical capacity planning and scheduling by adding a multi-objective
component. The variable-length chromosome structure and the new genetic
operators introduced in Chapter 4 were integrated with NSGA-Il. A completely new,
real-life capacity planning and scheduling problem of multi-product biopharmaceutical
manufacture was used to demonstrate the advantages of the multi-objective
optimisation. The problem featured a single biopharmaceutical facility manufacturing
four products to meet a demand profile based on realistic due dates, multiple
objectives and constraints, rolling product sequence-dependent changeovers, QC/QA
times, storage and shelf-life limits. The objectives of the problem were to maximise
the total kilogram throughput and to minimise the sum of differences between the
inventory level and the corresponding strategic targets. The production schedules that
did not meet product demand on time or resulted in product waste were treated as
infeasible. The scheduling problem was first solved using a single objective GA to
determine the objective space and set a benchmark for the multi-objective
optimisation. The variable-length multi-objective GA achieved on average 99.4% of
the total objective space and generated a Pareto front that, at the very least, non-

dominated the solutions obtained with a single-objective GA.

8.2.4. Multi-Objective Biopharmaceutical Capacity

Planning and Scheduling Under Uncertainty

Chapter 6 expanded upon the ideas presented in Chapters 4 and 5 by integrating
Monte Carlo simulation with a multi-objective variable-length GA to tackle production

scheduling under uncertain product demand. The integrated Monte Carlo simulation

207

8. Conclusions and Future Work

and GA approach, i.e. stochastic GA, was applied to the biopharmaceutical capacity
planning and scheduling problem adapted from Chapter 5. The product demand
uncertainty was quantified using a triangular distribution defined by the minimum,
most likely, and maximum product demand quantities for each due date. The benefits
of the stochastic GA were demonstrated by comparing it with a deterministic approach
(a GA without Monte Carlo simulation). The stochastic GA permitted the identification
of more robust production schedules with much higher probabilities of meeting all
product demands on time and lower expected cumulative deviations from the strategic
inventory targets. On the other hand, the production schedules generated with a
deterministic GA ignored the variability in product demand thus in scenarios where
the product demand was higher than expected the solutions were shown to have close

to 0% probability of meeting product demands on time.

8.2.5. Commercialisation

Chapter 7 outlined a plan for commercialising the work generated during this PhD. A
minimum viable product (MVP) was developed to demonstrate the viability of the plan
and the various features of the GA-based DST. A Software-as-a-Service (SaaS)-
based delivery model of the product was discussed highlighting many benefits to both
the developer(s) as well as the users of the tool or clients. A subscription pricing model
was proposed to charge the users or clients according to the usage of tool. Finally, it
was suggested that the GA-based DST could be used as a platform to include other
decisional frameworks reported in the literature, e.g. process economics models
(Farid, 2007), tools for assessing process robustness (Stonier et al.,, 2012), and
algorithms for process design and optimisation (Allmendinger et al., 2012; Simaria et

al., 2012).

208

8. Conclusions and Future Work

8.3. Future Work

This PhD thesis demonstrated how GA-based scheduling optimisation can be used
to tackle continuous-time, multi-objective, deterministic and stochastic
biopharmaceutical capacity planning problems. This section lists a number of ways

the work conducted in this PhD thesis could be improved and expanded.

8.3.1. Additional Constraints and Features

The continuous-time scheduling heuristics presented in this thesis assumed that the
biopharmaceutical facilities were available for the entire planning horizon. However,
in reality, biopharmaceutical companies often have to regularly shut down their
facilities for maintenance or inspection. The variable-length chromosome could
include several special genes encoding a facility shut-down taking place. This way
the GA could generate production schedules with optimised start and end dates of
the facility shut-down(s) without compromising the objectives and constraints of the
problem. Moreover, an integrated Monte Carlo simulation and GA approach could be
applied to evaluate the impact of unplanned facility shut-downs which can occur, for

example, due to contamination or equipment breakdown.

In Chapter 6, the stochastic GA was applied to create production schedules under
demand uncertainty. The novel stochastic scheduling optimisation approach could be
taken further to tackle other uncertainties inherent in the biopharmaceutical
manufacturing process such as variable fermentation titres and process yields,
contamination risks, QC/QA rejection rates, and clinical attrition rates. The integrated
Monte Carlo simulation and multi-objective variable-length GA could be used to
generate production schedules that have the highest probabilities of meeting the

specified objectives and constraints under the aforementioned uncertainties and risks.

209

8. Conclusions and Future Work

This PhD work considered objectives and constraints including total profit, total
production throughput, maintaining strategic inventory targets, meeting all product
demands on time, and avoiding product waste. It would be interesting to evaluate
other objectives such as minimisation of product changeovers. Furthermore, it could
also be of interest to test whether the biopharmaceutical facility has sufficient capacity
to accommodate the production of an additional product by minimising the total
manufacturing time whilst meeting all product demands on time. The GA would need
to not only determine the timings and durations of the manufacturing campaigns but
also when the facility can remain idle. In this work, each gene corresponded to a real
manufacturing campaign. The start and end dates of every manufacturing campaign
were inferred from the order of the genes in the variable-length chromosome and the
product-dependent process durations and changeovers. A straightforward fix to
enable the minimisation of manufacturing time would be to allow the genes to encode
dummy campaigns that do not have a product label associated with them. The number
of batches of a dummy campaign could be used to encode the idle time duration in
the facility. The timings of the real and dummy manufacturing campaigns can be

implicitly encoded by the order of genes within the chromosome.

Finally, the variable-length chromosome could be extended to address capacity
planning and scheduling of multiple biopharmaceutical facilities. For example, the
continuous-time scheduling described in Chapter 4 could be adapted for multi-site
biopharmaceutical manufacture by changing the USP suites to biopharmaceutical
facilities. Each gene could encode biopharmaceutical facility and product labels, and

the number of batches to be manufactured.

210

8. Conclusions and Future Work

8.3.2. Improved GA-based Optimisation

This PhD thesis focused on a generational single-objective GA and a multi-objective
GA based on NSGA-II. It would be beneficial to investigate how the variable-length
chromosome structure would perform with other GA types, e.g. compare the

generational GA with a steady-state one.

One of the major limitations of NSGA-II is that its performance degrades with an
increasing number of objectives and constraints (Ishibuchi et al., 2008). Therefore, for
many-objective scheduling problems the variable-length chromosome structure could
be integrated with more sophisticated MOEAs such as NSGA-IIl (Yuan et al., 2014)

or Unified (U)-NSGA-IIl (Seada & Deb, 2015).

It would also be interesting to see whether the work developed in this thesis could be
combined and enhanced with Reinforcement Learning, e.g. for tuning and controlling
the GA, creating a hyper-heuristic, or for improving the scheduling models.
Allmendinger (2012) provided a good review of Reinforcement Learning applications
in Evolutionary Optimisation and the development of hyper-heuristics. Zhang (1996)
studied Reinforcement Learning applications in short-term job-shop scheduling with
the aim to learn a repair-based scheduler capable of repairing a set of temporal and

resource constraint violations.

In summary, this PhD thesis presents novel GA-based methods that are relatively
easy to implement and provides a strong foundation for future work developing
advanced stochastic multi-objective capacity planning and scheduling optimisation

methods for the biopharmaceutical industry.

211

References

References

Abara, J. (1989). Applying integer linear programming to the fleet assignment
problem. Interfaces, 19, 20-28.

Allmendinger, R. (2012). Tuning evolutionary search for closed-loop optimization. The
University of Manchester (United Kingdom).

Allmendinger, R., Simaria, A. S., & Farid, S. S. (2012). Efficient discovery of
chromatography equipment sizing strategies for antibody purification
processes using evolutionary computing. In International Conference on
Parallel Problem Solving from Nature (pp. 468-477): Springer.

Allmendinger, R., Simaria, A. S., Turner, R., & Farid, S. S. (2014). Closed-loop
optimization of chromatography column sizing strategies in biopharmaceutical
manufacture. Journal of chemical technology and biotechnology, 89, 1481-
1490.

Almada-Lobo, B., Klabjan, D., Anténia carravilla, M., & Oliveira, J. F. (2007). Single
machine multi-product capacitated lot sizing with sequence-dependent
setups. International Journal of Production Research, 45, 4873-4894.

Amodeo, L., Prins, C., & Sanchez, D. R. (2009). Comparison of metaheuristic
approaches for multi-objective simulation-based optimization in supply chain
inventory management. In Workshops on Applications of Evolutionary
Computation (pp. 798-807): Springer.

Asenjo, J. A., Montagna, J. M., Vecchietti, A. R., Iribarren, O. A., & Pinto, J. M. (2000).
Strategies for the simultaneous optimization of the structure and the process
variables of a protein production plant. Computers & Chemical Engineering,
24, 2277-2290.

Back, T. (1993). Optimal mutation rates in genetic search. In Proceedings of the fifth
international conference on genetic algorithms (pp. 2-8): Morgan Kaufmann,
San Mateo, CA.

Beazley, D. (2010). Understanding the python gil. In PyCON Python Conference.
Atlanta, Georgia.

Bitran, G. R., & Yanasse, H. H. (1982). Computational complexity of the capacitated
lot size problem. Management science, 28, 1174-1186.

Blau, G. E., Pekny, J. F., Varma, V. A., & Bunch, P. R. (2004). Managing a portfolio
of interdependent new product candidates in the pharmaceutical industry.
Journal of Product Innovation Management, 21, 227-245.

Branke*, J., & Mattfeld, D. C. (2005). Anticipation and flexibility in dynamic scheduling.
International Journal of Production Research, 43, 3103-3129.

Brastow, W., & Rice, C. (2003). Planning pharmaceutical manufacturing strategies in
an uncertain world. BioProcess International, 1, 46-55.

Brie, A. H., & Morignot, P. (2005). Genetic Planning Using Variable Length
Chromosomes. In ICAPS (pp. 320-329).

Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. (1998). GAMS: the solver
manuals. Washington, DC, GAMS Development Corporation.

Brunet, R., Guillén-Gosalbez, G., Pérez-Correa, J. R., Caballero, J. A., & Jiménez, L.
(2012). Hybrid simulation-optimization based approach for the optimal design
of single-product biotechnological processes. Computers & Chemical
Engineering, 37, 125-135.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R.
(2013). Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society, 64, 1695-1724.

Camilleri, M., Neri, F., & Papoutsidakis, M. (2014). An algorithmic approach to
parameter selection in machine learning using meta-optimization techniques.
WSEAS Transactions on systems, 13, 202-213.

212

References

Chen, M.-S., & Liao, F. H. (1998). Neural networks training using genetic algorithms.
In Systems, Man, and Cybernetics, 1998. 1998 IEEE International
Conference on (Vol. 3, pp. 2436-2441): IEEE.

Chipperfield, A., & Fleming, P. (1995). The MATLAB genetic algorithm toolbox. In
Applied Control Techniques Using MATLAB, IEE Colloquium on (pp. 10/11-
10/14): IET.

Choudhary, V. (2007). Comparison of software quality under perpetual licensing and
software as a service. Journal of Management Information Systems, 24, 141-
165.

Copil, K., Worbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing
and scheduling problems: a classification and review of models. OR spectrum,
39, 1-64.

Corne, D. W., Knowles, J. D., & Oates, M. J. (2000). The Pareto envelope-based
selection algorithm for multiobjective optimization. In International conference
on parallel problem solving from nature (pp. 839-848): Springer.

Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Multi-objective optimization methods and
application in energy saving. Energy, 125, 681-704.

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-
memory programming. |IEEE computational science and engineering, 5, 46-
55.

Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear
inequalities. New York.

De Jong, K. (1988). Learning with genetic algorithms: An overview. Machine learning,
3,121-138.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16):
John Wiley & Sons.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on evolutionary
computation, 6, 182-197.

DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the
pharmaceutical industry: new estimates of R&D costs. Journal of health
economics, 47, 20-33.

DiMasi, J. A., Hansen, R. W., & Grabowski, H. G. (2003). The price of innovation: new
estimates of drug development costs. Journal of health economics, 22, 151-
185.

Ding, H., Benyoucef, L., & Xie, X. (2006). A simulation-based multi-objective genetic
algorithm approach for networked enterprises optimization. Engineering
Applications of Artificial Intelligence, 19, 609-623.

Django. (2018). Django overview | Django. In.

Dubey, A., & Wagle, D. (2007). Delivering software as a service. The McKinsey
Quarterly, 6, 2007.

Dutt, A., Jain, H., & Kumar, S. (2017). Providing Software as a Service: a design
decision (s) model. Information Systems and e-Business Management, 1-30.

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors
in particle swarm optimization. In Evolutionary Computation, 2000.
Proceedings of the 2000 Congress on (Vol. 1, pp. 84-88): IEEE.

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in
evolutionary algorithms. IEEE Transactions on evolutionary computation, 3,
124-141.

Eskandari, H., Rabelo, L., & Mollaghasemi, M. (2005). Multiobjective simulation
optimization using an enhanced genetic algorithm. In Proceedings of the 37th
conference on Winter simulation (pp. 833-841): Winter Simulation
Conference.

Farid. (2007). Process economics of industrial monoclonal antibody manufacture.
Journal of Chromatography B, 848, 8-18.

213

References

Farid, S., Washbrook, J., & Titchener-Hooker, N. J. (2007). Modelling
biopharmaceutical manufacture: Design and implementation of
SimBiopharma. Computers & Chemical Engineering, 31, 1141-1158.

Farid, S. S., Novais, J. L., Karri, S., Washbrook, J., & Titchener-Hooker, N. J. (2000).
A tool for modeling strategic decisions in cell culture manufacturing.
Biotechnology Progress, 16, 829-836.

Farid, S. S., Washbrook, J., & Titchener-Hooker, N. (2001). Decision-support tool for
risk analysis in biopharmaceutical manufacture. IFAC Proceedings Volumes,
34, 161-165.

Farid, S. S., Washbrook, J., & Titchener-Hooker, N. J. (2005). Decision-support tool
for assessing biomanufacturing strategies under uncertainty: Stainless steel
versus disposable equipment for clinical trial material preparation.
Biotechnology Progress, 21, 486-497.

Fike, R. (2009). Nutrient Supplementation Strategies for Biopharmaceutical
Production, Part 2. BioProcess Int, 7.

Floudas, C. A., & Lin, X. (2004). Continuous-time versus discrete-time approaches for
scheduling of chemical processes: a review. Computers & Chemical
Engineering, 28, 2109-2129.

Fogel, D. B., & Atmar, J. W. (1990). Comparing genetic operators with Gaussian
mutations in simulated evolutionary processes using linear systems. Biological
Cybernetics, 63, 111-114.

Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple
constraint handling with evolutionary algorithms. I. A unified formulation. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 28, 26-37.

Fonseca, C. M., Paquete, L., & Lopez-lbanez, M. (2006). An improved dimension-
sweep algorithm for the hypervolume indicator. In Evolutionary Computation,
2006. CEC 2006. IEEE Congress on (pp. 1157-1163): IEEE.

Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning
Research, 13, 2171-2175.

Friedman, L. M., Furberg, C., DeMets, D. L., Reboussin, D., & Granger, C. B. (2015).
Fundamentals of clinical trials: Springer.

Gatica, G., Papageorgiou, L. G., & Shah, N. (2003). Capacity Planning Under
Uncertainty for the Pharmaceutical Industry. Chemical Engineering Research
and Design, 81, 665-678.

George, E. D.,, & Farid, S. S. (2008). Strategic Biopharmaceutical Portfolio
Development: An Analysis of Constraint-Induced Implications. Biotechnology
Progress, 24, 698-713.

Gicquel, C., Hege, L., Minoux, M., & Van Canneyt, W. (2012). A discrete time exact
solution approach for a complex hybrid flow-shop scheduling problem with
limited-wait constraints. Computers & Operations Research, 39, 629-636.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13, 533-549.

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used
in genetic algorithms. Foundations of genetic algorithms, 1, 69-93.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on systems, man, and cybernetics, 16, 122-128.

Gutjahr, W. J., & Pichler, A. (2016). Stochastic multi-objective optimization: a survey
on non-scalarizing methods. Annals of Operations Research, 236, 475-499.

Hamdy, M., Nguyen, A.-T., & Hensen, J. L. (2016). A performance comparison of
multi-objective optimization algorithms for solving nearly-zero-energy-building
design problems. Energy and Buildings, 121, 57-71.

Harjunkoski, 1., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann,
I. E., Hooker, J., Méndez, C., Sand, G., & Wassick, J. (2014). Scope for

214

References

industrial applications of production scheduling models and solution methods.
Computers & Chemical Engineering, 62, 161-193.

Hartl, D. L. (1988). A primer of population genetics: Sinauer Associates, Inc.

Hassan, R., Cohanim, B., de Weck, O., & Venter, G. (2004). A copmarison of particle
swarm optimization and the genetic algorithm. American Institute of
Aeronautics and Astronautics.

Haupt, R. (1989). A survey of priority rule-based scheduling. Operations-Research-
Spektrum, 11, 3-16.

Hertz, A., & Widmer, M. (2003). Guidelines for the use of meta-heuristics in
combinatorial optimization. European Journal of Operational Research, 151,
247-252.

Ho, J. C., Chang, Y.-L., & Solis, A. O. (2006). Two modifications of the least cost per
period heuristic for dynamic lot-sizing. Journal of the Operational Research
Society, 57, 1005-1013.

Hodges Jr, J. L., & Lehmann, E. L. (1963). Estimates of location based on rank tests.
The Annals of Mathematical Statistics, 598-611.

Holland, J., & Goldberg, D. (1989). Genetic algorithms in search, optimization and
machine learning. Massachusetts: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence: U
Michigan Press.

IDC. (2018). Worldwide Public Cloud Services Spending Forecast to Reach $122.5
Billion in 2017, According to IDC. In.

Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective
optimization. In Genetic and Evolving Systems, 2008. GEFS 2008. 3rd
International Workshop on (pp. 47-52): IEEE.

James, K., & Russell, E. (1995). Particle swarm optimization. In Proceedings of 1995
IEEE International Conference on Neural Networks (pp. 1942-1948).

James, R. J., & Almada-Lobo, B. (2011). Single and parallel machine capacitated
lotsizing and scheduling: New iterative MIP-based neighborhood search
heuristics. Computers & Operations Research, 38, 1816-1825.

Jankauskas, K., Long, A., Osborne, M., McCartney, G., Papageorgiou, L., & Farid, S.
(2017). Multi-objective medium-term capacity planning for stainless steel and
single-use multi-product biopharmaceutical facilities under uncertainty using a
genetic algorithm. In ABSTRACTS OF PAPERS OF THE AMERICAN
CHEMICAL SOCIETY (Vol. 253): AMER CHEMICAL SOC 1155 16TH ST,
NW, WASHINGTON, DC 20036 USA.

Jankauskas, K., Papageorgiou, L. G., & Farid, S. S. (2017). Continuous-Time
Heuristic Model for Medium-Term Capacity Planning of a Multi-Suite, Multi-
Product Biopharmaceutical Facility. In Computer Aided Chemical Engineering
(Vol. 40, pp. 1303-1308): Elsevier.

Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review.
International Journal of Production Research, 46, 1619-1643.

Jiang, Z., Droms, K., Geng, Z., Casnocha, S., Xiao, Z., Gorfien, S., & Jacobia, S. J.
(2012). Fed-Batch Cell Culture Process Optimization. BioProcess
International.

Jin, Y., & Branke, J. (2005). Evolutionary optimization in uncertain environments-a
survey. IEEE Transactions on evolutionary computation, 9, 303-317.

Kabra, S., Shaik, M. A., & Rathore, A. S. (2013). Multi-period scheduling of a multi-
stage multi-product bio-pharmaceutical process. Computers & Chemical
Engineering, 57, 95-103.

Kaitin, K., & DiMasi, J. (2010). Pharmaceutical innovation in the 21st century: new
drug approvals in the first decade, 2000-2009. Clinical Pharmacology &
Therapeutics, 89, 183-188.

215

References

Kallrath, J. (2002). Planning and scheduling in the process industry. OR spectrum,
24, 219-250.

Kalyanmoy, D. (2011). Multi-objective optimization using evolutionary algorithms: An
introduction. KanGAL Report.

Kamarck, M. E. (2006). Building biomanufacturing capacity—the chapter and verse.
Nature biotechnology, 24, 503-505.

Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing
problem: a review of models and algorithms. Omega, 31, 365-378.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing
(pp. 302-311): ACM.

Kimms, A. (1999). A genetic algorithm for multi-level, multi-machine lot sizing and
scheduling. Computers & Operations Research, 26, 829-848.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220, 671-680.

Knowles, J. D., Corne, D. W., & Fleischer, M. (2003). Bounded archiving using the
Lebesgue measure. In Evolutionary Computation, 2003. CEC'03. The 2003
Congress on (Vol. 4, pp. 2490-2497): IEEE.

Koksalan, M. M., Wallenius, J., & Zionts, S. (2011). Multiple criteria decision making:
from early history to the 21st century: World Scientific.

Kondili, E., Pantelides, C., & Sargent, R. (1993). A general algorithm for short-term
scheduling of batch operations—I. MILP formulation. Computers & Chemical
Engineering, 17, 211-227.

Lainez, J. M., Schaefer, E., & Reklaitis, G. V. (2012). Challenges and opportunities in
enterprise-wide optimization in the pharmaceutical industry. Computers &
Chemical Engineering, 47, 19-28.

Lakhdar, K., Farid, S., Savery, J., Titchener-Hooker, N., & Papageorgiou, L. (2006).
Medium term planning of biopharmaceutical manufacture under uncertainty.
Computer Aided Chemical Engineering, 21, 2069-2074.

Lakhdar, K., & Papageorgiou, L. G. (2006). An iterative mixed integer optimisation
approach for medium term planning of biopharmaceutical manufacture under
uncertainty. Chemical Engineering Research and Design, 86, 259-267.

Lakhdar, K., & Papageorgiou, L. G. (2008). An iterative mixed integer optimisation
approach for medium term planning of biopharmaceutical manufacture under
uncertainty. Chemical Engineering Research and Design, 86, 259-267.

Lakhdar, K., Savery, J., Papageorgiou, L., & Farid, S. (2007). Multiobjective Long-
Term Planning of Biopharmaceutical Manufacturing Facilities. Biotechnology
Progress, 23, 1383-1393.

Lakhdar, K., Zhou, Y., Savery, J., Titchener-Hooker, N. J., & Papageorgiou, L. G.
(2005). Medium term planning of biopharmaceutical manufacture using
mathematical programming. Biotechnology Progress, 21, 1478-1489.

Langer, E. (2009). Trends in capacity utilization for therapeutic monoclonal antibody
production. In MAbs (Vol. 1, pp. 151-156): Taylor & Francis.

Langer, E., & Rader, R. A. (2017). Top Trends in Biopharmaceutical Manufacturing,
2017. Pharmaceutical Technology, 41.

Levis, A. A., & Papageorgiou, L. G. (2004). A hierarchical solution approach for multi-
site capacity planning under uncertainty in the pharmaceutical industry.
Computers & Chemical Engineering, 28, 707-725.

Lim, A. C., Washbrook, J., Titchener-Hooker, N. J., & Farid, S. S. (2006). A computer-
aided approach to compare the production economics of fed-batch and
perfusion culture under uncertainty. Biotechnology and bioengineering, 93,
687-697.

Lin, W.-Y., Lee, W.-Y., & Hong, T.-P. (2003). Adapting crossover and mutation rates
in genetic algorithms. J. Inf. Sci. Eng., 19, 889-903.

216

References

Liu, S., Simaria, A. S., Farid, S. S., & Papageorgiou, L. G. (2013). Designing cost-
effective biopharmaceutical facilities using mixed-integer optimization.
Biotechnology Progress, 29, 1472-1483.

Lorigeon, T., Billaut, J., & Bouquard, J. (2002). A dynamic programming algorithm for
scheduling jobs in a two-machine open shop with an availability constraint.
Journal of the Operational Research Society, 53, 1239-1246.

Luke, S. (2009). Essentials of metaheuristics (Vol. 113): Lulu Raleigh.

Luke, S. (2013). Essentials of metaheuristics: Lulu Com.

Majozi, T., Seid, E. R., & Lee, J.-Y. (2015). Synthesis, Design, and Resource
Optimization in Batch Chemical Plants: CRC Press.

Malik, A., Pinkus, G., & Sheffer, S. (2002). Biopharma's capacity crunch. McKinsey
Quarterly. In.

Melanie, M. (1996). An Introduction to Genetic Algorithms.

Méndez, C. A., Cerda, J., Grossmann, |. E., Harjunkoski, I., & Fahl, M. (2006). State-
of-the-art review of optimization methods for short-term scheduling of batch
processes. Computers & Chemical Engineering, 30, 913-946.

Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American
statistical association, 44, 335-341.

Miller, D. L., Schertz, D., Stevens, C., & Pekny, J. F. (2010). Mathematical
programming for the design and analysis of a biologics facility. BioPharm
International, 23.

Montagna, J. M., Vecchietti, A. R., Iribarren, O. A., Pinto, J. M., & Asenjo, J. A. (2000).
Optimal design of protein production plants with time and size factor process
models. Biotechnology Progress, 16, 228-237.

Mustafa, M., Washbrook, J., Titchener-Hooker, N., & Farid, S. (2006). Retrofit
decisions within the biopharmaceutical industry: an EBA case study. Food and
bioproducts processing, 84, 84-89.

Nie, W. (2015). Cost evaluation and portfolio management optimization for
biopharmaceutical product development. UCL (University College London).

Nie, W., Zhou, Y., Simaria, A. S., & Farid, S. S. (2012). Biopharmaceutical portfolio
management optimization under uncertainty. In Symposium on Computer
Aided Process Engineering (Vol. 17, pp. 20).

Nvidia, C. (2011). Nvidia cuda ¢ programming guide. Nvidia Corporation, 120, 8.

Otto, R., Santagostino, A., & Schrader, U. (2014). Rapid growth in biopharma:
Challenges and opportunities. In.

Oyebolu, F. B., van Lidth de Jeude, J., Siganporia, C., Farid, S. S., Allmendinger, R.,
& Branke, J. (2017). A new lot sizing and scheduling heuristic for multi-site
biopharmaceutical production. Journal of heuristics, 23, 231-256.

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments. In Advanced information networking and applications (AINA),
2010 24th IEEE international conference on (pp. 400-407): IEEE.

Pantelides, C. C. (1994). Unified frameworks for optimal process planning and
scheduling. In Proceedings on the second conference on foundations of
computer aided operations (pp. 253-274): Cache Publications New York.

Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules. Operations
Research, 25, 45-61.

Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2000). Strategic Supply Chain
Optimization for the Pharmaceutical Industries. Industrial & Engineering
Chemistry Research, 40, 275-286.

Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain
optimization for the pharmaceutical industries. Industrial & Engineering
Chemistry Research, 40, 275-286.

Paparrizos, K., Samaras, N., & Stephanides, G. (2003). A new efficient primal dual
simplex algorithm. Computers & Operations Research, 30, 1383-1399.

217

References

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg,
S. R, & Schacht, A. L. (2010). How to improve R&D productivity: the
pharmaceutical industry's grand challenge. Nature Reviews Drug Discovery,
9, 203-214.

Piana, S., & Engell, S. (2010). Hybrid evolutionary optimization of the operation of
pipeless plants. Journal of heuristics, 16, 311-336.

Pinto, J. M., & Grossmann, |. E. (1998). Assignment and sequencing models for
thescheduling of process systems. Annals of Operations Research, 81, 433-
466.

Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer
programming: Springer Science & Business Media.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm
intelligence, 1, 33-57.

Raisanen, L., & Whitaker, R. M. (2005). Comparison and evaluation of multiple
objective genetic algorithms for the antenna placement problem. Mobile
Networks and Applications, 10, 79-88.

Rajapakse, A., Titchener-Hooker, N. J., & Farid, S. S. (2005). Modelling of the
biopharmaceutical drug development pathway and portfolio management.
Computers & Chemical Engineering, 29, 1357-1368.

Rajapakse, A., Titchener-Hooker, N. J., & Farid, S. S. (2006). Integrated approach to
improving the value potential of biopharmaceutical R&D portfolios while
mitigating risk. Journal of chemical technology and biotechnology, 81, 1705-
1714.

Ransohoff, T. C. (2004). Considerations impacting the make vs. buy decision. Amer
Pharm Outsourcing, 5, 52-63.

Ray, T., Tai, K., & Seow, C. (2001). An evolutionary algorithm for multiobjective
optimization. Eng. Optim, 33, 399-424.

Reeves, C. (2003). Genetic algorithms. In Handbook of metaheuristics (pp. 55-82):
Springer.

rey Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic
algorithm for multiobjective optimization. In Proceedings of the first IEEE
conference on evolutionary computation, IEEE world congress on
computational intelligence (Vol. 1, pp. 82-87): Citeseer.

Rotstein, G. E., Papageorgiou, L. G., Shah, N., Murphy, D. C., & Mustafa, R. (1999).
A product portfolio approach in the pharmaceutical industry. Computers &
Chemical Engineering, 23, Supplement, S883-5886.

Sabatier, V., Mangematin, V., & Rousselle, T. (2010). From recipe to dinner: business
model portfolios in the European biopharmaceutical industry. Long Range
Planning, 43, 431-447.

Samsatli, N., & Shah, N. (1996a). An optimization based design procedure for
biochemical processes: Part |: Preliminary design and operation. Food and
bioproducts processing, 74, 221-231.

Samsatli, N., & Shah, N. (1996b). An optimization based design procedure for
biochemical processes: Part II: Detailed scheduling. Food and bioproducts
processing, 74, 232-242.

Sand, G., Till, J., Tometzki, T., Urselmann, M., Engell, S., & Emmerich, M. (2008).
Engineered versus standard evolutionary algorithms: A case study in batch
scheduling with recourse. Computers & Chemical Engineering, 32, 2706-
2722.

Saraph, P. V. (2001). Simulating biotech manufacturing operations: issues and
complexities. In Proceedings of the 33nd conference on Winter simulation
(pp. 530-524): IEEE Computer Society.

Savage, S. (2002). The flaw of averages. Harvard Business Review, 80, 20-21.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms. In Proceedings of the First International Conference on Genetic

218

References

Algorithms and Their Applications, 1985: Lawrence Erlbaum Associates. Inc.,
Publishers.

Schaffer, J. D., & Morishima, A. (1987). An adaptive crossover distribution mechanism
for genetic algorithms. In Genetic Algorithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms
(pp. 36-40): Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Schmidt, C. W., & Grossmann, I. E. (1996). Optimization models for the scheduling of
testing tasks in new product development. Industrial & Engineering Chemistry
Research, 35, 3498-3510.

Schrijver, A. (1998). Theory of linear and integer programming: John Wiley & Sons.

Seada, H., & Deb, K. (2015). U-NSGA-IIl: a unified evolutionary optimization
procedure for single, multiple, and many objectives: proof-of-principle results.
In International Conference on Evolutionary Multi-Criterion Optimization (pp.
34-49): Springer.

Senaratna, N. I. (2005). Genetic algorithms: The crossover-mutation debate. Bachelor
of Computer Science (Special) of the University of Colombo.

Shah, N. (1998). Planning and scheduling-single-and multisite planning and
scheduling: Current status and future challenges. In AIChE Symposium
Series (Vol. 94, pp. 75-90): New York, NY: American Institute of Chemical
Engineers, 1971-c2002.

Shaik, M. A., Janak, S. L., & Floudas, C. A. (2006). Continuous-time models for short-
term scheduling of multipurpose batch plants: A comparative study. Industrial
& Engineering Chemistry Research, 45, 6190-6209.

Shanley, A. (2014). Tufts’ New Figures on Drug-Development Costs Spark Debate.
In (Vol. 2016). BioPharm International.com: BioPharm International.
Sierksma, G. (2001). Linear and integer programming: theory and practice: CRC

Press.

Siganporia, C. (2016). Strategic Biopharmaceutical Production Planning for Batch and
Perfusion Processes. UCL (University College London).

Siganporia, C. C., Ghosh, S., Daszkowski, T., Papageorgiou, L. G., & Farid, S. S.
(2014). Capacity planning for batch and perfusion bioprocesses across
multiple biopharmaceutical facilities. Biotechnology Progress.

Silver, E. A. (1973). A heuristic for selecting lot size quantities for the case of a
deterministic time-varying demand rate and discrete opportunities for
replenishment. Prod. Inventory Manage., 2, 64-74.

Simaria, A. S., Turner, R., & Farid, S. S. (2012). A multi-level meta-heuristic algorithm
for the optimisation of antibody purification processes. Biochemical
Engineering Journal, 69, 144-154.

Spears, W. M., & Anand, V. (1991). A study of crossover operators in genetic
programming. In International Symposium on Methodologies for Intelligent
Systems (pp. 409-418): Springer.

Stack-Overflow. (2018). Stack Overflow Developer Survey 2018. In.

Stanley, K. O., & Miikkulainen, R. (2002). Efficient evolution of neural network
topologies. In Evolutionary Computation, 2002. CEC'02. Proceedings of the
2002 Congress on (Vol. 2, pp. 1757-1762): IEEE.

Stone, R. E., & Tovey, C. A. (1991). The simplex and projective scaling algorithms as
iteratively reweighted least squares methods. SIAM review, 33, 220-237.

Stonier, A., Simaria, A. S., Smith, M., & Farid, S. S. (2012). Decisional tool to assess
current and future process robustness in an antibody purification facility.
Biotechnology Progress, 28, 1019-1028.

Svinivas, N. (1995). Multiobjective optimization using nhondominated sorting in genetic
algorithms. IEEE Trans. Evol. Comput., 2, 221-248.

Syberfeldt, A., Ng, A., John, R. I., & Moore, P. (2009). Multi-objective evolutionary
simulation-optimisation of a real-world manufacturing problem. Robotics and
Computer-Integrated Manufacturing, 25, 926-931.

219

References

Taherdangkoo, M., Paziresh, M., Yazdi, M., & Bagheri, M. (2013). An efficient
algorithm for function optimization: modified stem cells algorithm. In Open
Engineering (Vol. 3, pp. 36).

Tait, K. (1998). Pharmaceutical industry. In (pp. 79.74-75).

Ting, C.-K., Lee, C.-N., Chang, H.-C., & Wu, J.-S. (2009). Wireless heterogeneous
transmitter placement using multiobjective variable-length genetic algorithm.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39, 945-958.

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information processing letters, 85, 317-325.

Vanek, J., Michalek, J., & Psutka, J. (2017). A Comparison of Support Vector
Machines Training GPU-Accelerated Open Source Implementations. arXiv
preprint arXiv:1707.06470.

Varma, V. A., Pekny, J. F., Blau, G. E., & Reklaitis, G. V. (2008). A framework for
addressing stochastic and combinatorial aspects of scheduling and resource
allocation in pharmaceutical R&D pipelines. Computers & Chemical
Engineering, 32, 1000-1015.

Vasquez-Alvarez, E., & Pinto, J. (2004). Efficient MILP formulations for the optimal
synthesis of chromatographic protein purification processes. Journal of
Biotechnology, 110, 295-311.

Vieira, M., Pinto-Varela, T., Moniz, S., Barbosa-Pévoa, A. P., & Papageorgiou, L. G.
(2016). Optimal planning and campaign scheduling of biopharmaceutical
processes using a continuous-time formulation. Computers & Chemical
Engineering, 91, 422-444.

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size
model. Management science, 5, 89-96.

Walsh, G. (2010). Biopharmaceutical benchmarks 2010. Nature biotechnology, 28,
917.

Widmer, M., Hertz, A., & Costa, D. (2008). Metaheuristics and Scheduling. Production
Scheduling, 33-68.

Yang, Y., Farid, S. S., & Thornhill, N. F. (2014). Data mining for rapid prediction of
facility fit and debottlenecking of biomanufacturing facilities. Journal of
Biotechnology, 179, 17-25.

Yuan, Y., Xu, H., & Wang, B. (2014). An improved NSGA-IIl procedure for
evolutionary many-objective optimization. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation (pp. 661-668): ACM.

Zhang, W. (1996). Reinforcement learning for job-shop scheduling.

Zitzler, E., & Kinzli, S. (2004). Indicator-based selection in multiobjective search. In
International Conference on Parallel Problem Solving from Nature (pp. 832-
842): Springer.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEAZ2: Improving the strength Pareto
evolutionary algorithm. TIK-report, 103.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Transactions on
evolutionary computation, 3, 257-271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003).
Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on evolutionary computation, 7, 117-132.

220

Appendix

Appendix

Appendix A

A.l. Publications

Jankauskas, K., Papageorgiou, L.G. and Farid, S.S., 2017. Continuous-Time
Heuristic Model for Medium-Term Capacity Planning of a Multi-Suite, Multi-Product
Biopharmaceutical Facility. In Computer Aided Chemical Engineering (Vol. 40, pp.
1303-1308). Elsevier.

Jankauskas, K., Papageorgiou, L. G., & Farid, S. S. (2017). Fast Genetic Algorithm
Approaches to Solving Discrete-Time Mixed Integer Linear Programming Problems
of Capacity Planning and Scheduling of Biopharmaceutical Manufacture. Computer
Aided Chemical Engineering (submitted)

Jankauskas, (Eli Lilly authors TBD), Papageorgiou, LG., Farid, SS. 2017. Multi-
objective Capacity Planning For Multi-product Biopharmaceutical Facilities Under
Uncertainty Using a Flexible Genetic Algorithm Approach. (Journal TBD) (in
preparation)

A.1l. Conferences

Jankauskas, K., Papageorgiou, LG., Farid, SS. 2018. Continuous-Time Heuristic
Model for Medium-Term Capacity Planning Of A Multi-Suite, Multi-Product
Biopharmaceutical Facility (Keynote), 27th European Symposium on Computer Aided
Process Engineering (ESCAPE), Barcelona, Spain, October 2-6.

Jankauskas, K., McCartney, GR., Osborne, MD., Papageorgiou, LG., Farid, SS. 2017.
Multi-Objective Capacity Planning for Multi-Product Biopharmaceutical Facilities
Under Uncertainty, 253rd ACS National Meeting, San Francisco, USA, April 2-6.

Jankauskas, K., Papageorgiou, LG., Farid, SS. 2016. Production Scheduling of A
Multi-Product Biopharmaceutical Facility Using a Genetic Algorithm, 28th European
Conference on Operational Research (EURO), Poznan, Poland, July 4-8.

221

Appendix

Appendix B

This appendix provides the technical details of the core flexible GA-based DST

components developed during this PhD thesis.

B.1. Gene

A gene class/structure was created for encapsulating problem-specific information,
e.g. encoded variables and methods for mutating them. This way, the variable-length
chromosome (see the next Appendix) can be used to solve different
biopharmaceutical scheduling problems just by plugging in a corresponding gene
encoding the minimum required variables. For example, the SingleSiteSimpleGene
displayed in Figure B.1.b does not have fields and methods associated with the USP
suites, e.g. usp_suite_num and mutate_usp_suite_num(), as this was not mandated

by the scheduling problems described in Chapters 5 and 6.

a) b)

>

SingleSite MultiSuiteGene
Struct

»

SingleSiteSimple Gene
Struct

= Fields
@ num_batches = Eield
li'ia num_products _Ie :
@ num_usp_suites "‘ num_batches
L p_minus_batch_mut - num_products
@, p_plus_batch_mut @ b_minus_batch_mut
@, p_product_mut . p_plus_batch_mut
"“a p_usp_suite_mut 'i-‘a p_product_mut
@ product_num @ product_num
@ usp_suite_num = Methods
[hivrss @ make_new
@ make_new @ Mutate
@ Mutate @ mutate_num_batches
G mutate_num_batches
[aa mutate_product_num
ﬁ’a mutate_product_num . e
@ . @ SingleSiteSimpleGene [+ 1 overl...
. mutate_usp_suite_num

o

SingleSiteMultiSuiteGene (+ 1 overload)

Figure B.1. Structure of a single variable-length chromosome gene:
(a) Gene structure utilised in Chapter 4
(b) Gene structure utilised in Chapters 5 and 6

222

Appendix

Algorithm B.1. C++ implementation of a gene used in Chapter 4.

#include <utility>
#include "utils.h"

struct SingleSiteMultiSuiteGene

{
SingleSiteMultiSuiteGene() {}
SingleSiteMultiSuiteGene(
int num_products,
int num_usp_suites,
double p_product_mut,
double p_usp_suite_mut,
double p_plus_batch_mut,
double p_minus_batch_mut
)
{
this->num_products = num_products,
this->num_usp suites = num_usp_suites,
this->p_product_mut = p_product_mut,
this->p_usp_suite mut = p_usp_suite_mut,
this->p_plus_batch_mut = p_plus_batch_mut,
this->p_minus_batch_mut = p_minus_batch_mut,
this->num_batches = 1;
this->product_num = utils::random_int(1, num_products);
this->usp_suite_num = utils::random_int(1, num_usp_suites);
}
SingleSiteMultiSuiteGene make new()
{
return std::move(
SingleSiteMultiSuiteGene(
num_products,
num_usp_suites,
p_product_mut,
p_usp_suite_mut,
p_plus_batch_mut,
p_minus_batch_mut
)
)5
}
inline void Mutate()
{
mutate_product_num();
mutate_usp_suite_num();
mutate_num_batches();
}
int product_num;
int usp_suite_num;
int num_batches;
private:
inline void mutate_ product num()
{

if (utils::random() >= p_product_mut) {
return;

}

int random_product_num = 0;

do { random_product_num = utils::random_int(1, num_products); }

while (product_num == random_product_num);
product_num = random_product_num;

223

Appendix

}
inline void mutate_usp_suite_num()
{
if (utils::random() >= p_usp_suite_mut) {
return;
}
int random_usp_suite_num = 0;
do { random_usp_suite_num = utils::random_int(1, num_usp_suites); }
while (usp_suite_num == random_usp_suite_num);
usp_suite_num = random_usp_suite_num;
}
inline void mutate_num_batches()
{
if (utils::random() < p_plus_batch_mut) {
num_batches += 1;
}
if (num_batches > 0 && utils::random() < p_minus_batch_mut) {
num_batches -= 1;
}
}

int num_products;

int num_usp_suites;
double p_product_mut;
double p_usp_suite_mut;
double p_plus_batch_mut;
double p_minus_batch_mut;

3

Algorithm B2. C++ implementation of a gene used in Chapter 5.

#include <utility>
#include "utils.h"

struct SingleSiteSimpleGene

{
SingleSiteSimpleGene() {}

SingleSiteSimpleGene(
int num_products,
double p_product_mut,
double p_plus_batch_mut,
double p_minus_batch_mut

)
{
this->num_products = num_products;
this->num_batches = 1;
this->p_product_mut = p_product_mut;
this->p_plus_batch_mut = p_plus_batch_mut;
this->p_minus_batch_mut = p_minus_batch_mut;
this->product_num = utils::random_int(1, num_products);
}

SingleSiteSimpleGene make_new()
{
return std::move(
SingleSiteSimpleGene(
num_products,
p_product_mut,

224

Appendix

p_plus_batch_mut,
p_minus_batch_mut

)
)
}
inline void Mutate()
{
mutate_product_num();
mutate_num_batches();
}

int product_num;
int num_batches;

private:

3

inline void mutate_product_num()
{
if (utils::random() >= p_product_mut) {
return;
}
int random_product_num = 0;
do { random_product_num = utils::random_int(1, num_products); }
while (product_num == random_product_num);
product_num = random_product_num;
}
inline void mutate_num_batches()
{
if (utils::random() < p_plus_batch_mut) {
num_batches += 1;
}
if (num_batches > 1 && utils::random() < p_minus_batch_mut) {
num_batches -= 1;
}
}

int num_products;

double p_product_mut;
double p_plus_batch_mut;
double p_minus_batch_mut;

225

Appendix

B.2. Variable-length Chromosome

The variable-length chromosome described in Chapter 4 and later used in Chapters
5 and 6 has been implemented using a template class (see BaseChromosome in
Figure B.2). Templates in C++ programming language make classes more abstract
by letting the user define the behavior of the class without specifically knowing what
datatype will be handled by the operators/methods of the class. This way the variable-
length chromosome can be compatible with genes comprising varying number of
mutation operators, parameters, and encoded variables. The ability to have a single
class that can handle several different gene types means the codebase is easier to
maintain and more reusable. The same variable-length chromosome base can be
applied to different biopharmaceutical capacity planning and scheduling problems,
e.g. Chapter 4 and 5, by specifying a problem-specific gene datatype. Gene
parameter values are passed from the chromosome using a variadic parameter pack

which improves the abstraction even further.

BaseChromosome<Gene> A
Template Class

4 Fields
@ genes
9. p_gene_swap
“; p_xo
4 Methods
Tz AddGene
? BaseChromosome (+ 1 overload)
@ Cross
¥ Mutate

. ~ @, SwapGenes - — I
NSGAChromosome<Gene> A —— SingleObjectiveChromosome<Gene> A
Template Class 4 Nested Types Template Class
% BaseChromosome<Gene> public 7 public | 4 gaseChromosome <Genes
| EEEE— | Genes : std::vector<Gene> <
4 Fields £ 4 Fields
constraints @ constraints

d b - @ objective
n

objectives
rank
S

L I K N O

Figure B.2. Variable-length chromosome.

NSGAChromosome and SingleObjectiveChromosome classes extend the
BaseChromosome class with GA-specific attributes, e.g. NSGAChromosome add
attributes required by the NSGA-II algorithm.

226

Appendix

Algorithm B.3. C++ implementation of the variable-length chromosome base.

#include
#include
#include
#include
#include
#include

<vector>
<cstdlib>
<utility>
<algorithm>
<functional>
"utils.h"

template<class Gene>
class BaseChromosome

{
public:

typedef std::vector<Gene> Genes;

explicit BaseChromosome() {}

template<class...

double p_xo,

double p_gene_swap,

GeneParams. ..
)
p_xo(p_xo0),
p_gene_swap(p_gene_swap)
{
while (starting_length-- > 0) {
genes.push_back(std: :move(Gene(params...)));
}
}
inline void Cross(BaseChromosome &other)
{
if (utils::random() > p_xo0) {
return;
}
if (genes.size() < 2 || other.genes.size() < 2) {
return;
}
int i;

if (genes.size() < other.genes.size()) {
for (1 = 0; i != genes.size(); ++i) {
if (utils::random() <= 0.50) {

GeneParams>
explicit BaseChromosome(
int starting_length,

std::swap(genes[i], other.genes[i]);

}
}
for (; i != other.genes.size(); ++1i) {
if (utils::random() <= 0.50) {
genes.push_back(other.genes[i]);
}
}
}
else {
for (1 = 0; i != other.genes.size(); ++i) {
if (utils::random() <= 0.50) {
std::swap(genes[i], other.genes[i]);
}
}
for (; i != genes.size(); ++i) {

if (utils::random() <= 0.50) {

Appendix

Algorithm B.3. (continued) C++ implementation of the variable-length chromosome

base.
other.genes.push_back(genes[i]);
}
}
}
}
inline void Mutate()
{
for (auto &gene : genes) {
gene.Mutate();
}
AddGene();
SwapGenes();
}
Genes;
private:
inline void AddGene()
{
genes.push_back(genes.back().make_new());
}
inline void SwapGenes()
{
if (utils::random() >= p_gene_swap) {
return;
}
int g1 = 0, g2 = 0;
do {
gl = utils::random_int(@, genes.size() - 1);
g2 = utils::random_int(@, genes.size() - 1);
} while (gl == g2);
std::swap(genes[gl], genes[g2]);
}

double p_xo;
double p_gene_swap;

3

228

Appendix

B.3. Genetic Algorithm

A base GA class was developed to improve the re-usability of the codebase and to
provide a standardised interface for single- and multi-objective GAs. It was also
implemented as a template class to make it possible to specify different scheduling
heuristics, i.e. as FitnessFunction (see Figure B.3 below). This way the codebase for
the GA could be re-used to solve the various biopharmaceutical scheduling problems

applying different scheduling heuristics.

| BaseGA<Chromosome, FitnessFu... A |
Tem plate Class

= Fields
@ fitness_function
9* indices
@ offspring
LA parents
= Methods
@ BaseGA [+ 1 overload)
@, Reproduce
E’* Select
@, Tournament

+ Nested Types

hS

public public
| NSGAIl<Chrom osome, FitnessFunction> # | (SingleObjectiveGA< Chromosome, FitnessFunction> A |
Templats Class Templzte Class
— BaseGA<Chromosome. FitnessFunction > —F BaseGA<Chromosome. FitnessFunction >
=l Fields =l Methods
Ba top_front @ Init<..ChromosomeParams>

= Methods Replace

@, CalculateCrowdingDistance Top (+ 1 overload)

mﬁ

@

@, Tournament
@ Update

ﬁ’a CheckDominance

@ Init<..ChromosemeParams>
@, NonDominatedSort + Nested Types
ﬁ’a Rank

@
GJE
@

TopFront (+ 1 overload)
Teurnament
Update

4 Nested Types

Figure B.3. Diagrams of Genetic Algorithms developed in this thesis.

229

Appendix

B.4. APl Usage Examples

This section provides practical examples (Algorithm B.4 and B.5) of how the GA-
based DST is used to solve the case studies described in Chapters 4 and 5 using the

Python API designed in this thesis.

Algorithm B.4. Demonstration of how the GA-based Decision Support Tool is used to
solve a single-objective scheduling problem described in the case study 1 of Chapter
4 using Python Application Programming Interface designed in this work.

Import Python Pandas library for data I/O
import pandas as pd

Import the desired model from the GA-based DST
from biopharma_scheduling.single_site.deterministic import DetSingleSiteMultiSuite

Data setup

start_date = '2016-11-02°'

demand = pd.read_csv('demand.csv', index_col='date")
product_data = pd.read_csv('product_data.csv')
usp_changeover_days = pd.read_csv('usp_changeover_days.csv')
dsp_changeover_days = pd.read_csv('dsp_changeover_days.csv')
num_usp_suites = 2

num_dsp_suites = 2

Specify which objective or objectives to optimise.

The objectives are pre-defined by the imported model

For example, calling DetSingleSiteMultiSuite.AVAILABLE_OBJECTIVES
will list all available objectives which can be minimised or

maximised by specifing the coefficient of -1 or 1, respectively
1

'total_backlog_penalty’,

'total_batch_backlog’,

'total_batch_supply',

'total_batch_throughput',

'total_batch_waste’,

'total_changeover_cost'’,

'total_cost’,

'total_production_cost’,

'total_profit’,

'total_revenue',

'total_storage_cost’,

'total_waste_cost’

HHIFHIFEHFHHFRHFHH

}
objectives = {
"total_profit': 1 # Coefficient of 1 indicates maximisation

}

Specify the GA parameters
ga_params = {
'num_runs': 20,
'popsize': 100,
'num_gens': 100,
‘starting_length': 1,
'p_x0': 0.026776,
'p_product_mut': 0.004667,
'p_usp_suite mut': 0.015991,
'p_plus_batch _mut': 0.896385,

230

Appendix

Algorithm B.4. (continued) Demonstration of how the GA-based Decision Support
Tool is used to solve a single-objective scheduling problem described in the case
study 1 of Chapter 4 using Python Application Programming Interface designed in this
work.

'p_minus_batch_mut': ©.853790,
'p_gene_swap': 0.403328

}

Create an instance of the model
model = DetSingleSiteMultiSuite(
**ga params, # unpacks GA parameters set-up earlier
random_state=7, # fix the seed for random number generator
num_threads=-1, # will evaluate solutions in parallel using all available cores
verbose=True, # will report progress status to the user

)

Fit the model using the GA params and the data defined earlier
model. fit(

start_date,

objectives,

num_usp_suites,

num_dsp_suites,

demand,

product_data,

usp_changeover_days,

dsp_changeover_days

)

After the model has been fit, the solutions, i.e. schedules,

will be contained in model.schedules list. If only one objective
was specified for the scheduling problem then it was solved using
a single-objective GA.
#
#
#

model.schedules will contain a single best solution that was found
during the specified number of GA runs.
schedule = model.schedules[9]

Will list the estimated values of all objectives
schedule.objectives

Will list a production schedule table for campaigns
schedule.campaigns

Will list a production schedule table for individual batches
schedule.batches

Will display a Gantt chart
schedule.campaigns_gantt()

Will display product inventory, supply, waste, and backlog profiles
schedule.batch_inventory

schedule.batch_supply

schedule.batch_waste

schedule.batch_backlog

231

Appendix

Algorithm B.5. Demonstration of how the GA-based Decision Support Tool is used to
solve a multi-objective biopharmaceutical scheduling problem with constraints
described in Chapter 5 using Python Application Programming Interface designed in
this work.

Import Python Pandas library for data I/O
import pandas as pd

Import the desired model from the GA-based DST
from biopharma_scheduling.single_site.deterministic import DetSingleSiteSimple

Data setup

start_date = '2016-12-01°

demand = pd.read_csv('demand.csv', index_col='date")

inventory_targets = pd.read_csv('inventory_targets.csv', index_col='date")
product_data = pd.read_csv('product_data.csv')

changeover_days = pd.read_csv('changeover_days.csv')

Specify which objective or objectives to optimise.

The objectives are pre-defined by the imported model

For example, calling DetSingleSiteSimple.AVAILABLE_OBJECTIVES
will list all available objectives which can be minimised or
maximised by specifing the coefficient of -1 or 1, respectively:
#{

'total_backlog penalty’,

'total_cost’',

"total_inventory_penalty’,

"total_kg backlog',

"total_kg inventory_deficit’,

"total_kg supply’,

"total_kg throughput',

'total_kg waste’,

"total_production_cost',

"total_profit',

'total_revenue',

'total_storage_cost',

'total_waste_cost’

B T T T T T T T T

#}

objectives = {
"total_kg_throughput': 1, # maximise
"total_kg_inventory_deficit': -1 # minimise

}

constraints = {
"total kg backlog': [-1, @], # total kg backlog <= ©
"total kg waste': [-1, @] # total kg waste <= 0

}

Specify the GA parameter
ga_params = {
‘num_runs': 50,
'num_gens': 1000,
'popsize': 600,
‘starting_length': 1,
'p_xo0': 0.108198,
'p_product_mut': 0.9,
'p_plus_batch_mut': ©.608130,
"p_minus_batch _mut': 0.765819,
'p_gene_swap': 0.471346,

}

Create an instance of the model
model = DetSingleSiteSimple(
**g3 params, # unpacks GA parameters set-up earlier

232

Appendix

Algorithm B.5. (continued) Demonstration of how the GA-based Decision Support
Tool is used to solve a multi-objective biopharmaceutical scheduling problem with
constraints described in Chapter 5 using Python Application Programming Interface
designed in this work.

random_state=7, # fix the seed for random number generator
num_threads=-1, # will evaluate solutions in parallel using all available cores
verbose=True, # will report progress status to the user

)

Fit the model using the GA params and the data defined earlier
model. fit(

start_date,

objectives,

kg_demand,

product_data,

changeover_days,

kg_inventory_target,

constraints
)
After the model has been fit, the solutions, i.e. schedules,
will be contained in model.schedules list. Since more than one
objective is specified, the scheduling problem will be solved
as a multi-objective problem.
#
model.schedules will contain a single best Pareto
front which is a result of the best Pareto fronts from each
individual run combined together and sorted again using a
non-dominated sorting algorithm.
#
Sorting the Pareto objective using either one of the two
objectives, will make it easier to obtain the boundary
solutions X and Y

sorted_schedules = sorted(model.schedules, key=lambda schedule:
schedule.objectives|['total_kg_throughput'].values[©@])
solution_x = sorted_schedules[0]

solution_y = sorted_schedules[-1]

Will list the estimated values of all solution X objective
solution_x.objectives

Will list a solution X production schedule table
solution_x.campaigns

solution_x.batches

Will display a Gantt chart for solution X campaigns
solution_x.campaigns_gantt()

Will display a Gantt chart for solution X tasks, e.g. inoculation, USP, DSP
solution_x.tasks_gantt()

Solution X inventory, supply, waste, and backlog profiles
solution_x.kg inventory

solution_x.kg supply

solution_x.kg waste

solution_x.kg_backlog

233

Appendix

Appendix C

This appendix summarises the mathematical model presented by Lakhdar et al.

(2005).

C.1. Production Constraints

Constraints 1 and 2 represent the manufacture of product in USP and DSP suites.
Upstream production, Bix, and downstream production, Bjx, are represented by
continuous rates of production, CR,and FR,, which are combined with their respective
USP and DSP lead times, a, and By, and USP and DSP production times, CTiy, and
FTj.. Constraints 3 and 4 activate lead time in USP suite i and DSP suite j if the same
product p has not been manufactured in the preceding time period, t — 1. Constraints
5 and 6 ensures that only one product p is produced in any USP suite i and DSP suite

j at any time period t.

Bipt = Zipt + CR,(CTipr — apZipe) Vi,p, t (1)
Bipt = Zjpt + FRy(FTjpt = BpZjpt) VY Jj.pit 2)
Zipt 2 Yipt = Yipt—1 Vipt (3)
Zipt Z Yipt = Yipe1 VDt (4)
YpYipe <1 Vit (5)
YpYipe S1 Vit (6)

C.2. Timing Constraints

Constraints 7 and 8 represent the appropriate minimum and maximum production
times for USP and DSP suites, which are only activated when Yy and Yj,:are equal
to 1. Constraints 9 and 10 ensure that the total USP or DSP time does not exceed the

specified production time horizon, H;.

234

Appendix

CT" ™ Yipt < CTipr < CT" Yy Vi)t

FTM™Y,,. < FT;

ot < Fljpe < FTp"Yjp V], p)t

Y, CTipe < Hp Vit

YpFTjpe <Hg Vj,t

C.3. Storage Constraints

(7)
(8)
(9)

(10)

Constraints 11 and 12 enforce an inventory balance in upstream and downstream

production and force the total downstream production to meet the product demand.

Constraints 13 and 14 ensure that the amount of upstream and downstream product

stored over timer period t is positive and below the maximum available storage

capacities, C, and F,. Both upstream and downstream product inventory is

constrained by the limited product shelf-life. Constraints 15 and 16 ensure the total

amount of stored upstream product and downstream product is used after the next ¢,

or optime periods, respectively.

1
Clpt = Clp,t—l + ZiBipt - ZZ] ijt — CWpt A |28 t

Flpt = Flp,t—l +Z]B]pt _Spt _FWpt Vp,t

0<ClL<C, Vpt
0<Fl<F, Vpt
t+¢p

Clpe < Zj29=t+1 Bjpo VDt

t+ap
Flpt < Xg—¢115p8 VDt

C.4. Backlog Constraints

(11)

(12)
(13)

(14)
(15)

(16)

Constraint 17 penalises the amount of product p that was late for delivery at time

period t, Ap.

Appendix

Apt = Ap,t—l + Dpt - Spt A4 P, t (17)

C.5. Objective Function

The objective function is to maximise profit which is equal to the difference between
total sales and total operating costs. All costs and prices are in relative monetary units

(RMU).

max Profit = Zp Zt(VpSpt - Zianipt - Zil/)pzipt - Zj NpBjpe —

236

Appendix

Appendix D

This appendix summarises the mathematical model presented by Lakhdar et al.

(2007).

D.1. Production Constraints

Constraint 1 represents biopharmaceutical production. The number of batches
produced in facility i of product p at time period t, By, is represented by a continuous
production rate, rip, production lead time, di, and production time Tix. Constraint 2
converts the integer number of batches, Bix, into kilograms, Kiyx, using a yield
conversion factor, ydi,. Constraint 3 activates lead time in facility i if the same product
p has not been manufactured in the preceding time period, t — 1. Constraint 4 ensures

that only one product p is produced in any facility i at any time period t.

Bipe = Zipe + Tpe(Tipt — @ipZipe) Vi,p € Pt €TI (1)
Kipe = Bipeydyy Vi,p € Pt € Tl (2)
Zipt 2 Yipt = Yipe-1 VLD EPI,tETI)
Yper; Yipt <1 Vit €Tl (4)

D.2. Timing Constraints

Constraints 5 and 6 represent the appropriate minimum and maximum campaign

durations, Tj;" and Tjp®, which are only activated when Yiuis equal to 1.

T ™Yt < Type ¥V i,p €PL,t € T ©

Tipe < min{T7'%*, H,}Yy,e Vi,p € Pl,t €T (6)

237

Appendix

D.3. Storage Constraints

Constraint 7 enforces inventory balance for production and forces the total production
to meet the product demand. Constraint 9 enforces that the amount of product p in

inventory at time period t is below the maximum storage capacity, C,, while the
constraint 10 ensures that the global storage capacity, C;,Ot, is not exceeded. The

duration a product can be is stored in inventory is limited by the constraint 10.

0<I,,<C, Vpt (8)

0< Yyl <C° Vit 9)
t+¢

Ipt S Zeztzjusp@ vpt (10)

D.4. Backlog Constraints

Constraint 11 penalises the amount of product p that was late for delivery at time

period t, Apt.

Apt = npAp,t—l + Dpt - Spt V p, t (11)

D.5. Objective Function

The objective function is to maximise profit which is equal to the difference between
total sales and total operating costs. All costs and prices are in relative monetary units

(RMU).

max Profit = Zp ZtETIi(VpSpt - pplpt - 6pApt - ZiEIPp(nipBipt + L|JipZipt)) (12)

238

	Declaration
	Abstract
	Impact Statement
	Acknowledgements
	Contents
	1. Background
	1.1. Biopharmaceutical Industry Overview
	Figure 1.1. Traditional drug development value chain (Source: Sabatier et al., 2010).
	Figure 1.2. The costs of biopharmaceutical drug development pathway (Source: Nie, 2015).

	1.2. Biopharmaceutical Manufacture
	Figure 1.3. Typical biopharmaceutical production process flowsheet. Adapted from Tait (1998).

	1.3. Planning and Scheduling Overview
	Figure 1.4. Major decisions in batch process scheduling (Source: Harjunkoski et al., 2014).

	1.4. Mathematical Programming
	Figure 1.5. A polytope defined as a feasible region by the constraints applied to the objective function. The simplicial cones are the corners (vertices) of a polytope.
	Figure 1.6. Different time representations used in scheduling problems (Source: Méndez et al., 2006).

	1.5. Heuristics
	1.5.1. Introduction to Genetic Algorithms
	Table 1.1. Most common terms used to describe Genetic Algorithms. Adapted from Luke (2009)
	Algorithm 1.1. Pseudocode of a basic GA.
	Figure 1.7. A cube formed by three-dimensional vectors (black circles) which represent positions of parent chromosomes in the decision space (Luke, 2009)

	1.5.2. Stochastic and Multi-Objective Approaches
	Figure 1.8. Relationship between the design (x1, x2) and objective (f1, f2) spaces of a two-objective optimisation problem (Source: Cui et al., 2017).

	1.5.3. Lot Sizing using Genetic Algorithms

	1.6. Related Work
	1.6.1. Process Design and Optimisation
	1.6.2. Portfolio Management and Capacity Planning
	Table 1.2. Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.
	Table 1.2. (continued) Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.
	Table 1.2. (continued) Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.
	Table 1.2. (continued) Resume of biopharmaceutical literature planning and scheduling optimisation. Adapted from Majozi et al. (2015) and extended.

	1.7. Aims and Outline of Thesis

	2. Decision Support Tool: Requirements and Design
	2.1. Problem Statement and Challenges
	Figure 2.1. Examples of different biopharmaceutical facility topologies (different USP to DSP suite number ratios): (a) 1:1, (b) 2:2, (c) 2:3. All three examples will be tackled in the later chapters of this thesis.
	Figure 2.2. A comparison between two production schedules and the corresponding inventory levels of product D. In (a), a schedule with fewer but longer manufacturing campaigns has higher total throughput albeit at the cost of (b) unbalanced product in...
	Figure 2.3. An example of a traditional product changeover. The new manufacturing campaign of product C can only take place after all tasks of product A campaign are finished.
	Figure 2.4. An example of a rolling product changeover. Numbers inside the blocks correspond to the duration of the corresponding task while a gap between the different task blocks denotes a changeover.
	Table 2.1. Minimum number of solutions for different cases over 8 years with a time period of one month (Source: Siganporia, 2016).

	2.2. Requirements and Design
	Algorithm 2.1. Parallel fitness assessment in C++ using OpenMP compiler directives. #pragma compiler directive tells the compiler to auto-parallelize the for loop with OpenMP. If a user is using a quad-core processor, the performance can be expected t...
	Figure 2.5. A high-level structure of the GA-based Decision Support Tool framework.
	Figure 2.6. Gantt chart generated with the GA-based Decision Support Tool for a biopharmaceutical facility with traditional product changeovers and a 2:2 USP to DSP ratio manufacturing three products.
	Figure 2.7. Gantt chart generated with the GA-based Decision Support Tool for a biopharmaceutical facility with rolling product sequence-dependent changeovers and a 1:1 USP to DSP ratio manufacturing four products.
	Figure 2.8. Production tasks Gantt chart example.

	2.3. Summary

	3. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling
	3.1. Introduction
	3.2. Notation
	3.2.1. Case Study 1
	3.2.2. Case Study 2

	3.3. Problem Definition
	3.3.1. Case Study 1
	Table 3.1. All relevant parameters used in case study 1.
	Table 3.2. Product demand profile [batches] for case study 1.
	Figure 3.1. Biopharmaceutical facility topology for the case study 1.

	3.3.2. Case Study 2
	Table 3.3. Parameter data for case study 2.
	Table 3.4. Production yields ydip [kg / batch] for industrial case study 2.
	Table 3.5. Product demand profile [kg] for case study 2.
	Table 3.6. Production rates rip [kg / day] for case study 2.
	Table 3.7. Production costs ηip [RMU / kg] for case study 2.
	Table 3.8. Facility capability PIi [boolean value] for case study 2.
	Table 3.9. The comparison of MILP model complexity between case study 1 and 2.

	3.4. Methods
	3.4.1. GA Parameter Tuning
	Figure 3.2. The meta-optimisation approach. Adapted from Camilleri et al. (2014).
	Table 3.10. Meta-optimisation parameters used in case study 1 and 2 to find the optimal crossover and mutation parameter values for the GA.
	Algorithm 3.1. PSO-based meta-optimisation of the GA.

	3.4.2. Case Study 1
	3.4.2.1. Chromosome Structure
	Figure 3.3. Chromosome encoding strategy for case study 1. Each (p, CTipt) pair represents a gene encoding which product p and how many days CTipt have been allocated to USP suite i at a time period t.

	3.4.2.2. Genetic Algorithm
	3.4.2.3. Fitness Evaluation
	Algorithm 3.2. Pseudocode for fitness evaluation in case study 1
	Algorithm 3.2. (continued) Pseudocode for fitness evaluation in case study 1
	𝑃𝑟𝑜𝑓𝑖𝑡= ,𝑝-,𝑡-(,𝜈-𝑝.,𝑆-𝑝𝑡.−,𝑖-,,𝜂-𝑝.𝐵-𝑖𝑝𝑡....−,𝑖-,,𝜓-𝑝.𝑍-𝑖𝑝𝑡..−,𝑗-,,𝜂-𝑝.𝐵-𝑗𝑝𝑡.−,𝑗-,,𝜓-𝑝.𝑍-𝑗𝑝𝑡..−.,,𝜌-𝑝.𝐶𝐼-𝑝𝑡.,− ,𝜔-𝑝.𝐹𝐼-𝑝𝑡.,− ,𝛿-𝑝.𝛥-𝑝𝑡. ,− ,𝜏-𝑝.𝐶𝑊-𝑝𝑡.−,𝜏-𝑝.,𝐹𝑊-𝑝𝑡.) Equati...

	3.4.3. Case Study 2
	3.4.3.1. Chromosome Structure
	3.4.3.2. Genetic Algorithm
	Algorithm 3.3. Pseudocode for the dynamic GA applied in case study 2.
	Figure 3.4. An illustration of how the long-term capacity planning problem from case study 2 can be divided into smaller sub-problems. The full solution and each sub-problem are | i |-by-| t | and | I |-by-| τ | arrays respectively. When | τ | = 4, th...

	3.4.3.3. Fitness Evaluation
	Algorithm 3.4. Pseudocode for fitness evaluation in case study 2.

	3.5. Results
	3.5.1. Case Study 1
	Table 3.11. Case study 1 results and model statistics for MILP and GA models.
	Figure 3.5. Production schedule for case study 1 with an objective function value of 490 RMU and 0% optimality gap. Both the MILP model and the proposed GA generated the same schedule. The first number in each cell denotes the number of batches produc...

	3.5.2. Case Study 2
	Table 3.12. Case study 2 results and model statistics for the dynamic GA model using different population sizes and termination criteria.
	Table 3.13. Case study 2 results and model statistics for MILP and GA models.
	Figure 3.6. Production schedules for case study 2. Each product p ∈ { p1, p2, …, p15 } is denoted by a color label displayed in the legend below the schedules. The numbers of batches of each product produced have been removed for clarity purposes.
	(a) generated using the MILP model. An objective function value of 65,940 RMU was obtained with 0.6% optimality margin (based on the known global optimum as the upper bound).
	(b) generated using the dynamic GA. An objective function value of 65,849 RMU was obtained (0.8% estimated optimality margin)

	3.6. Summary

	4. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling
	4.1. Introduction
	Figure 4.1. Supply (bar) and demand (line) profile of the globally optimal solution to the case study 1. The demand for product p1 at time period t4 was not met on time.
	Figure 4.2. Unutilised production time. (b) The numbers in the cells indicate how many days were left unutilised by (a) the globally optimal solution.

	4.2. Problem Definition
	4.2.1. Case Study 1
	Table 4.1. Product demand profile [batches] for case study 1. The due date is the nth day from the start of the schedule.
	Table 4.2. All relevant parameters for case study 1.

	4.2.2. Case Study 2
	Figure 4.3. Biopharmaceutical facility topology for the example 2.
	Table 4.3. Production data for example 2.
	Table 4.4. Product demand profile [batches] for case study 2. The due date is the nth day from the start of the schedule.

	4.3. Methods
	4.3.1. Chromosome Structure
	Figure 4.4. Variable-length chromosome:
	(a) UML diagram representations of the gene and chromosome structures
	(b) An example of a variable-length chromosome at the start (GEN 0) and end of the GA (GEN 100). The values in the boxes correspond to the USP suite label followed by the number of batches produced. The product label is denoted by the colour.

	4.3.2. Genetic Algorithm
	4.3.2.1. Crossover
	Figure 4.5. An example of a modified uniform crossover between two variable-length chromosomes: genes 2 and 3 are exchanged between the parent chromosomes and gene 5 from the first parent chromosome is copied to the second one.

	4.3.2.2. Mutation
	Figure 4.6. Variable-length mutation steps. pMutP, pMutS, pPosB, and pNegB denote the rate of each gene undergoing the corresponding mutation. The addition of a new gene and swap mutation occur once per chromosome.

	4.3.3. Continuous-Time Scheduling Heuristic
	Figure 4.6. UML diagrams of the key objects used in the scheduling heuristic to construct a schedule from a variable-length chromosome.
	Figure 4.7. Scheduling heuristic. A high-level illustration of how the continuous-time scheduling heuristic is used to decode and evaluate a variable-length chromosome containing two genes.
	4.3.3.1. Step 1
	Algorithm 4.1. Pseudocode of the step 1 of the scheduling heuristic.
	Algorithm 4.1. (continued) Pseudocode of the step 1 of the scheduling heuristic.

	4.3.3.2. Step 2
	Algorithm 4.2. Pseudocode of the step 2 of the scheduling heuristic.
	Algorithm 4.2. (continued) Pseudocode of the step 2 of the scheduling heuristic.

	4.3.3.3. Step 3
	Algorithm 4.3. Pseudocode of the step 3 of the scheduling heuristic.
	Algorithm 4.3. (continued) Pseudocode of the step 3 of the scheduling heuristic.

	4.3.3.4. Step 4
	Algorithm 4.4. Pseudocode of the step 4 of the scheduling heuristic.

	4.4. Results
	4.4.1. Case Study 1
	Table 4.5. Case study 1 scheduling problem: comparison of results from the novel continuous-time GA approach with other discrete-time and continuous-time models.
	Figure 4.8. Supply (bar) and demand (line) profile of the best case study 1 solution generated with the continuous-time GA-based approach (obj. function value of 518).
	Figure 4.9. Gantt charts generated for the case study 1:
	(a) continuous-time GA-based approach (obj. function value of 518). Each box displays the number of batches followed by the campaign length.
	(b) discrete-time MILP (obj. function value of 490). Each box displays the number of batches produced and production time.
	(c) RTN-based continuous-time MILP (Vieira et al., 2016) (obj. function value of 519, CO indicates a changeover)
	(d) STN-based continuous-time MILP (Kabra et al., 2013) (obj. function value of 517)
	Figure 4.10. Supply (bar) and demand (line) profile of the best solution (obj. function value of 562) generated using the continuous-time GA for the case study 1 with an increased demand for product p1.
	Figure 4.11. Gantt chart generated using the continuous-time GA-based approach for the case study 1 with an increased demand for product p1.

	4.4.2. Case Study 2
	Figure 4.12. Supply (bar) and demand (line) profile of the best case study 2 solution generated with (a) continuous-time GA-based approach (obj. function value of 801) and (b) discrete-time MILP (obj. function value of 598)
	Table 4.6. Case study 2 scheduling problem: comparison of results from the novel continuous-time GA approach with discrete-time MILP model.
	Figure 4.13. Gantt charts generated for the case study 2 using different models:
	(a) continuous-time GA-based approach
	(b) discrete-time MILP

	4.4. Summary

	5. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling
	5.1. Introduction
	5.2. Problem Definition
	Figure 5.1. Biopharmaceutical facility topology.
	Table 5.1. Product-dependent changeovers [days].
	Table 5.2. Process data for the industrial case study.
	Table 5.3. Product demand followed by the strategic inventory targets inside the brackets.

	5.3. Methods
	5.3.1. Chromosome Structure
	Figure 5.2. Variable-length chromosome:
	(a) UML diagram representations of the gene and chromosome structures
	(b) An example of a variable-length chromosome at the start (GEN 0) and end of the GA (GEN 100). The values in the boxes correspond to the number of batches produced. The product label is denoted by the color.

	5.3.2. Genetic Algorithm
	Figure 5.3. Schematic of the core steps of the multi-objective GA developed in Chapter 5. Assuming the initial population has been created and evaluated, the steps are looped through until the maximum number of generations is reached.
	Algorithm 5.1. Procedure for binary tournament multi-objective selection based on constrained-domination (Deb et al., 2002). DetermineDominance procedure returns an integer flag of 1 if solution q dominates p, -1 if p dominates q, and 0 if both soluti...

	5.3.3. Continuous-Time Scheduling Heuristic
	Figure 5.4. UML diagrams of the key objects used in the scheduling heuristic of this chapter to construct a schedule from a variable-length chromosome.
	Algorithm 5.2. Pseudocode of the continuous-time scheduling heuristic part that builds a schedule in this chapter.
	Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic part that builds a schedule in this chapter.
	Algorithm 5.2. (continued) Pseudocode of the continuous-time scheduling heuristic part that builds a schedule in this chapter.
	Figure 5.5. An example of the relationship between (a) the genes (b), the decoded production schedule displayed at a product campaign level, and (c) at a manufacturing stage level.
	Figure 5.6. Correction of the mapping of genes to the production campaigns. In (a), the genes 2 and 3 correspond to the same product. The continuous-time scheduling heuristic combines them into (b) one contiguous manufacturing campaign and re-maps it ...

	5.4. Results
	5.4.1. Objective Space
	Figure 5.7. The objective space (dashed line) of the scheduling problem described in this chapter. The objectives are to maximise the total production throughput and to minimise the total inventory deficit subject to the sum of total backlog and produ...
	Table 5.4. The best individual objective values (bold) obtained with a single-objective GA.

	5.4.2. The Impact of The Number of Chromosomes and The Number of Generations
	Figure 5.8. The impact of the number of (a) chromosomes and (b) generations on the performance of the multi-objective variable-length GA. In (a), the number of generations was fixed at 1000 whereas in (b) the number of chromosomes was set to 1000. The...
	Table 5.5. The impact of the number of chromosomes on the performance of the multi-objective variable-length GA.
	Table 5.6. The impact of the number of generations on the performance of the multi-objective variable-length GA.
	Figure 5.9. All non-dominated solutions (black circles) and the best Pareto front (red crosses) with (a) 100, (b) 600, and (c) 1200 chromosomes.
	Figure 5.10. All non-dominated solutions and the best Pareto front (red crosses) after (a) 100, (b) 600, and (c) 1200 generations.

	5.4.3. The Importance of Genetic Operators
	Table 5.7. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base case...
	Figure 5.11. The impact of disabling (b) crossover, (c) product mutation, (d) positive and (e) negative mutations of the number of batches , and (f) swap mutation on the performance of the multi-objective variable-length GA compared to (a) the base ca...

	5.4.4. The Impact of The Starting Number of Genes
	Figure 5.12. The impact of the starting number of genes on the maximum and mean hypervolume. Vertical lines denote the standard deviation of mean hypervolume.
	Table 5.8. The impact of the starting number of genes on the maximum and mean hypervolume.

	5.4.5. Multi-Objective GA Results
	Figure 5.13. Multi-objective optimisation results:
	(a) Objective space determined with a single-objective GA.
	(b) The best Pareto front (red crosses) and all non-dominated solutions (black circles) collected from individual runs of the multi-objective variable-length GA (maximum and mean hypervolume of 0.994 and 0.944 ± 0.000).
	Table 5.9. The boundary solutions X and Y of the best Pareto front generated with the multi-objective variable-length GA.
	Figure 5.14. Production schedules of (a) solution X and (b) solution Y from the best Pareto front. The numbers in the boxes show how many kilograms are being manufactured, followed by the production time (days).
	Figure 5.15. Product (A B C D) inventory levels of solution X.
	Figure 5.16. Product (A B C D) inventory levels of solution Y.

	5.5. Summary

	6. Multi-Objective Biopharmaceutical Capacity Planning Under Uncertainty
	6.1. Introduction
	6.2. Problem Definition
	Table 6.1. Product sequence-dependent changeovers [days].
	Table 6.2. Process data for the industrial case study.
	Table 6.3. Strategic inventory targets.
	Table 6.4. Product demand uncertainty for a 3-year period.
	Note: Tr(x, y, z) denotes a triangular distribution where x, y, and z are the minimum, mode (most likely), and maximum values.
	Figure 6.1. Min, median, and max product (A B C D) demand values for each due date after 1,000 Monte Carlo simulation trials using the corresponding triangular distribution from Table 6.4 as an input.

	6.3. Methods
	Figure 6.2. Objective function evaluation of the chromosome using the continuous-time scheduling heuristic and Monte Carlo simulation.
	Figure 6.3. Average elapsed time for each of the 50 GA runs with 100 chromosomes for 1000 generations:
	(a) deterministic GA vs. CPU-only stochastic GA
	(b) Stochastic GA with Monte Carlo simulation performed on a GPU vs. CPU-only stochastic GA
	Note: fitness evaluations deterministic and CPU-only stochastic GAs were performed in parallel
	Figure 6.4. Comparison of a high-level architecture between a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU).

	6.4. Results
	6.4.1. Stochastic Objective Space
	Table 6.5. The best values of each objective (bold) obtained with the stochastic single-objective GA.
	Figure 6.5. (a) Stochastic objective space and (b) the best Pareto front generated using the stochastic multi-objective GA (hypervolume of 0.997). The gray shaded area is used for illustrative purposes to show the area of the objective space that is d...
	Table 6.6. Boundary solutions X and Y of the best Pareto front generated using the stochastic multi-objective GA (hypervolume of 0.997).

	6.4.2. Stochastic Multi-Objective GA Results
	Figure 6.6. Production schedules of (a) solution X and (b) Y from the best Pareto front after 50 runs generated using the stochastic GA. The numbers in the boxes show how many kilograms are being manufactured, followed by the production time (days).
	Figure 6.7. Comparison of (a) the total inventory deficit and (b) total backlog distributions between the solutions X and Y from the best Pareto front generated using the stochastic GA.
	Table 6.7. Comparison of the solutions X and Y from the best Pareto front generated using the stochastic GA.

	6.4.3. Comparison with the Deterministic GA
	Figure 6.8. (a) Deterministic objective space and (b) the best Pareto front generated using the deterministic multi-objective GA (hypervolume of 0.996).
	Table 6.8. The best values of each objective (bold) obtained with a deterministic single objective GA.
	Table 6.9. The boundary solutions X and Y of the best Pareto front generated using the deterministic multi-objective GA without the embedded Monte Carlo simulation-based optimisation.
	Figure 6.9. Production schedules of (a) the deterministic solution X and (b) stochastic solution X from the respective best Pareto fronts. The numbers in the boxes show how many kilograms are being manufactured, followed by the production time (days).
	Figure 6.10. A comparison of (a) the total inventory deficit (a) and (b) total backlog distributions between the stochastic and deterministic solutions. after the stochastic analysis with Monte Carlo simulation
	Table 6.8. A comparison between the stochastic and the deterministic solutions.
	Figure 6.11. Individual product (A B C D) inventory profiles of the deterministic solution after the stochastic analysis with Monte Carlo simulation. The negative inventory levels highlighted by the red ovals indicate the median amount of u...
	Figure 6.12. Individual product (A B C D) inventory profiles of the stochastic solution.

	6.5. Summary

	7. Commercialisation
	7.1. Introduction
	7.2. Delivery Model
	7.3. Architecture
	7.3.1. Overview
	Figure 7.1. High-level architecture of the GA-based Decision Support Tool implemented as a SaaS application.
	Figure 7.2. Database schema utilised by the GA-based Decision Support Tool.

	7.3.2. Input Data Setup
	Figure 7.3. Sign up (Register) page view.
	Figure 7.4. Entering facility data into the application. (a) and (b) display the different ways of gaining access to (c) a facility form whereas (d) displays a facility data table.
	Figure 7.5. Entering product data into the application. (a) displays how to access (b) the form (only a portion of it is shown here) for entering data about an individual product. (c) displays a product data table.
	Figure 7.6. Entering product sequence-dependent changeover data into the application. (a) shows the form for entering the data whereas (b) displays the product changeover table with the data filled-in.
	Figure 7.7. Uploading product demand data into the application: (a) before and (b) after the upload.

	7.3.3. Optimisation Setup
	Figure 7.8. Accessing scheduling optimisation dashboard.
	Figure 7.9. Scheduling optimisation setup in the application. (a) lists only the key scheduling optimisation settings whereas (b) displays an expanded list of advanced mostly GA-related parameters.
	Figure 7.10. Scheduling optimisation in progress.

	7.3.4. Visualisation of Results
	Figure 7.11. Scheduling optimisation results view. In (a), if the optimisation problem has two objectives, an interactive chart of the best Pareto will be displayed. In (b), every row in the table represents a unique schedule that can be inspected by ...
	Figure 7.11. (continued) Scheduling optimisation results view. In (a), if the optimisation problem has two objectives, an interactive chart of the best Pareto will be displayed. In (b), every row in the table represents a unique schedule that can be i...
	Figure 7.12. Detailed view of a selected production schedule. In (a), manufacturing campaigns can be inspected by hovering over them in the Gantt chart. In (b), individual product profiles can be viewed by selecting the View inventory icon in the Acti...
	Figure 7.12. (continued) Detailed view of a selected production schedule. In (a), manufacturing campaigns can be inspected by hovering over them in the Gantt chart. In (b), individual product profiles can be viewed by selecting the View inventory icon...
	Figure 7.13. Product inventory profile.

	7.4. Pricing
	Figure 7.14. Monthly subscriptions plans priced proportionally to the number of features provided by the service.

	7.5. Summary

	8. Conclusions and Future Work
	8.1. Introduction
	8.2. Contribution of This Thesis
	8.2.1. Discrete-Time Biopharmaceutical Capacity Planning and Scheduling
	8.2.2. Continuous-Time Biopharmaceutical Capacity Planning and Scheduling
	8.2.3. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling
	8.2.4. Multi-Objective Biopharmaceutical Capacity Planning and Scheduling Under Uncertainty
	8.2.5. Commercialisation

	8.3. Future Work
	8.3.1. Additional Constraints and Features
	8.3.2. Improved GA-based Optimisation

	References
	Appendix
	Appendix A
	A.1. Publications
	A.1. Conferences

	Appendix B
	B.1. Gene
	Figure B.1. Structure of a single variable-length chromosome gene: (a) Gene structure utilised in Chapter 4
	Algorithm B.1. C++ implementation of a gene used in Chapter 4.
	Algorithm B2. C++ implementation of a gene used in Chapter 5.

	B.2. Variable-length Chromosome
	Figure B.2. Variable-length chromosome.
	Algorithm B.3. C++ implementation of the variable-length chromosome base.
	Algorithm B.3. (continued) C++ implementation of the variable-length chromosome base.

	B.3. Genetic Algorithm
	Figure B.3. Diagrams of Genetic Algorithms developed in this thesis.

	B.4. API Usage Examples
	Algorithm B.4. Demonstration of how the GA-based Decision Support Tool is used to solve a single-objective scheduling problem described in the case study 1 of Chapter 4 using Python Application Programming Interface designed in this work.
	Algorithm B.4. (continued) Demonstration of how the GA-based Decision Support Tool is used to solve a single-objective scheduling problem described in the case study 1 of Chapter 4 using Python Application Programming Interface designed in this work.
	Algorithm B.5. Demonstration of how the GA-based Decision Support Tool is used to solve a multi-objective biopharmaceutical scheduling problem with constraints described in Chapter 5 using Python Application Programming Interface designed in this work.
	Algorithm B.5. (continued) Demonstration of how the GA-based Decision Support Tool is used to solve a multi-objective biopharmaceutical scheduling problem with constraints described in Chapter 5 using Python Application Programming Interface designed ...

	Appendix C
	C.1. Production Constraints
	C.2. Timing Constraints
	C.3. Storage Constraints
	C.4. Backlog Constraints
	C.5. Objective Function

	Appendix D
	D.1. Production Constraints
	D.2. Timing Constraints
	D.3. Storage Constraints
	D.4. Backlog Constraints
	D.5. Objective Function

